文档库 最新最全的文档下载
当前位置:文档库 › 离散系统的频率响应分析和零、极点分布

离散系统的频率响应分析和零、极点分布

离散系统的频率响应分析和零、极点分布
离散系统的频率响应分析和零、极点分布

实验2 离散系统的频率响应分析和零、极点分布

一、实验目的

通过MATLAB仿真简单的离散时间系统,研究其时域特性,加深对离散系统的冲激响应,频率响应分析和零、极点分布的概念的理解。

二、基本原理

离散系统的时域方程为

其变换域分析方法如下:

频域

)

(

)

(

)

(

]

[

]

[

]

[

]

[

]

ω

ωj

j

j

m

e

H

e

X

e

Y

m

n

h

m

x

n

h

n

x

n

y=

?

-

=

*

=∑∞

-∞

=

系统的频率响应为

ω

ω

ω

ω

ω

ω

ω

jN

N

j

jM

M

j

j

j

j

e

d

e

d

d

e

p

e

p

p

e

D

e

p

e

H

-

-

-

-

+

+

+

+

+

+

=

=

...

...

)

(

)

(

)

(

1

1

Z域

)

(

)

(

)

(

]

[

]

[

]

[

]

[

]

[z

H

z

X

z

Y

m

n

h

m

x

n

h

n

x

n

y

m

=

?

-

=

*

=∑∞

-∞

=

系统的转移函数为

N

N

M

M

z

d

z

d

d

z

p

z

p

p

z

D

z

p

z

H

-

-

-

-

+

+

+

+

+

+

=

=

...

...

)

(

)

(

)

(

1

1

1

1

分解因式

∏-

∏-

=

=

=

-

=

-

=

-

=

-

N

i

i

M

i

i

N

i

i

k

M

i

i

k

z

z

K

z

d

z

p

z

H

1

1

1

1

)

1(

)

1(

)

(

λ

ξ

,其中i

ξ

和i

λ

称为零、极点。

在MATLAB中,可以用函数[z,p,K]=tf2zp(num,den)求得有理分式形式的系统转移函数的零、极点,用函数zplane(z,p)绘出零、极点分布图;也可以用函数zplane (num,den)直接绘出有理分式形式的系统转移函数的零、极点分布图。

另外,在MATLAB中,可以用函数 [r,p,k]=residuez(num,den)完成部分分式展开计算;可以用函数sos=zp2sos(z,p,K)完成将高阶系统分解为2阶系统的串联。

三、实验内容及要求

一个LTI离散时间系统的输入输出差分方程为

y(n)-1.6y(n-1)+1.28y(n-2) =0.5x(n)+0.1x(n-1)

(1)编程求出此系统的单位冲激响应序列,并画出其波形。

(2)若输入序列x(n)=δ(n)+2δ(n-1)+3δ(n-2)+4δ(n-3)+5δ(n-4),编程求此系统输出序列y(n),并画出其波形。

(3)编程得到系统频响的幅度响应和相位响应,并画图。

(4)编程得到系统的零极点分布图,分析系统的因果性和稳定性。

解答:

(1)

clf;

N=40;

num=[0.5,0.1];

den=[1,-1.6,1.28];

y=impz(num,den,N)

stem(y);

xlabel('时间信号n');

ylabel('信号幅度');

title('冲击响应');

(2)

clf;

N=40;

num=[0.5,0.1];

den=[1,-1.6,1.28];

x=[1,2,3,4,5,zeros(1,N-1)];

y=filter(num,den,x)

stem(y);

xlabel('时间信号n');

ylabel('信号幅度');

title('输出波形');

函数y=cov(x,h)和y=filter(num,den,x)的区别clf;

N=40;

num=[0.5,0.1];

den=[1,-1.6,1.28];

x=[1,2,3,4,5,zeros(1,N-1)];

h=impz(num,den,N);

y=conv(x,h)

subplot(2,1,1);

stem(y);

xlabel('时间信号n');

ylabel('信号幅度');

title('输出波形');

y=filter(num,den,x);

subplot(2,1,2);

stem(y);

xlabel('时间信号n');

ylabel('信号幅度');

title('输出波形');

(3)

clf;

N=40;

fs=1000;

num=[0.5,0.1];

den=[1,-1.6,1.28];

[h,f]=freqz(num,den,256,fs);

mag=abs(h);

ph=angle(h);

ph=ph*180/pi;

subplot(2,1,1),plot(f,mag);

xlabel('频率(Hz)');

ylabel('幅度');

subplot(2,1,2),plot(f,ph);

xlabel('频率(Hz)');

ylabel('相位');

(4)

clf;

N=40;

num=[0.5,0.1];

den=[1,-1.6,1.28];

[z,p,k]=tf2zp(num,den);

zplane(z,p);

解:由图可知,零点在单位圆内,所以是因果的;极点在单位圆外,所以是不稳定的。

四、实验总结

由此次实验,我更深刻理解了如何用零极点图来画频率响应图,如何用零极点图判断系统地稳定性和因果性。期间遇到了个问题就是不知道如何表示单位冲激序列,后来查了下才知道可以表示为x=[1,zeros(1,N)]。通过这次实验,我感觉收获很多。

连续系统零极点分布与频响特性的关系

连续系统零极点分布与频响特性的关系 班级:02 学号:2014210 请利用MATLAB软件绘制下列因果系统的零极点图和频率响应特性曲线,并分析系统的滤波特性。 (1) H1(s); 程序如下: close all b=[2]; a=([1 2]); SYS=tf(b,a); pzplot(SYS); axis([-4,4 -2,2]); figure; freqs(b,a); MATLAB绘制的零、极点图和频率响应特性曲线如图所示。

-2-1.5-1-0.5 00.511.52 Real Axis (seconds -1 ) I m a g i n a r y A x i s (s e c o n d s -1) -10 1 -80 -60-40-200 Frequency (rad/s) P h a s e (d e g r e e s ) 10 10 10 10 -0.7 10 -0.4 10 -0.1 Frequency (rad/s) M a g n i t u d e (2) H 2(s) ; 程序如下: close all b=[1 0]; a=([1 2]); SYS=tf(b,a); pzplot(SYS); axis([-4,4 -2,2]); figure; freqs(b,a); MATLAB 绘制的零、极点图和频率响应特性曲线如图所示。 零极点图 频率特性曲线图

Real Axis (seconds -1) I m a g i n a r y A x i s (s e c o n d s -1) 10 10 10 10 Frequency (rad/s) P h a s e (d e g r e e s ) 10 10 10 10 10 101010 Frequency (rad/s) M a g n i t u d e

系统函数的零极点分布决定时域特性

摘要 本文详细分析了系统函数零极点的分布与冲击响应时域特性之间的关系。首先论述了如何通过MATLAB软件绘制出系统函数的零极点分布图。然后根据系统函数极点的不同分布情况,通过MATLAB软件绘制出冲击响应的时域函数,通过对图像的观察和比较,得出了极点的类型决定时间函数的时间连续形式,极点在S平面的位置决定时间函数的波形特点。最后,在极点相同,但零点不同的情况下,通过比较时域函数的波形,得出零点分布与时域函数的对应关系,即零点分布的情况只影响到时域函数的幅度和相位。 关键词:系统函数的零极点;时域特性;MATLAB软件

目录 1课程设计目的 (1) 2实验原理 (1) 3实现过程 (1) 3.1MATLAB简介 (1) 3.2系统函数极点分布情况 (2) 3.2.1极点为单实根 (2) 3.2.2极点为共轭复根 (2) 3.2.3极点为重根 (2) 3.2.4用MATLAB绘制系统函数的零极点分布图 (2) 3.3系统函数的零极点分布与冲击响应时域特性的关系 (6) 3.3.1用MATLAB绘制冲击响应的时域函数 (6) 3.3.2极点的类型决定时间函数的时间连续形式 (19) 3.3.3极点在S平面的位置决定时间函数的波形特点 (19) 3.3.4零点分布与时域函数的对应关系 (19) 4设计体会 (23) 5参考文献 (24)

1 课程设计目的 1.掌握系统函数的零极点分布与系统冲激响应时域特性之间的关系。 2.学习MATLAB 软件知识及应用。 3.利用MATLAB 编程,完成相应的信号分析和处理。 2 实验原理 拉普拉斯变换将时域函数f(t)变换为s 域函数F(s);反之,拉普拉斯逆变换将F(s)变换为相应的f(t)。由于f(t)与F(s)之间存在一定的对应关系,故可以从函数F(s)的典型形式透视出f(t)的内在性质。当F(s)为有理函数时,其分子多项式和分母多项式皆可分解为因子形式,各项因子指明了F(s)零点和极点的位置,显然,从这些零点和极点的分布情况,便可确定原函数的性质。 设连续系统的系统函数为)(s H ,冲激响应为)(t h ,则 ?+∞ -=0)()(dt e t h s H st 显然,)(s H 必然包含了)(t h 的本质特性。 对于集中参数的LTI 连续系统,其系统函数可表示为关于s 的两个多项式之比,即 其中),,2,1(M j q j =为)(s H 的M 个零点,),,2,1(N i p i =为)(s H 的N 个极点。 3 实现过程 3.1 MATLAB 简介 MALAB 译于矩阵实验室(MATrix LABoratory ),是用来提供通往 LINPACK 和EISPACK 矩阵软件包接口的。后来,它渐渐发展成了通用科技计算、图视交互系统和程序语言。 MATLAB 的基本数据单位是矩阵。它的指令表达与数学、工程中常用的习惯形式十分相似。比如,矩阵方程Ax=b ,在MATLAB 中被写成A*x=b 。而若要通过A ,b 求x ,那么只要写x =A \b 即可,完全不需要对矩阵的乘法和求逆进行编程。因此,用MATLAB 解算问题要比用C 、Fortran 等语言简捷得多。 MATLAB 发展到现在,已经成为一个系列产品:MATLAB “主包”和各种可选的toolbox “工具包”。主包中有数百个核心内部函数。迄今所有的三十几个工具包又可分为两类:功能性工具包和学科性工具包。功能性工具包主要用来扩充MATLAB 的符号计 ∏∏1 1) -()-() () ()(N i i M j j p s q s C s A s B s H ====

零极点对系统的影响

MATLAB各种图形 结论 1对稳定性影响 ○1增加零点不改变系统的稳定性; ○2增加极点改变系统的稳定性,不同的阻尼比下即使增加的是平面左侧的零点系统也有可能不稳定。 2对暂态性能的影响 ○A增加的零点离虚轴越近,对系统暂态性影响越大,零点离虚轴越远,对系统的影响越小。 分析表1可以发现,增加零点会对系统的超调量、调节时间、谐振峰值和带宽产生影响,且增加的零点越大,对系统的暂态性能影响越小。当a增加到100时,系统的各项暂态参数均接近于原系统的参数。增加的极点越靠近虚轴,其对应系统的带宽越小。同时还可以发现,时域中的超调量和频域中的谐振峰值在数值上亦存在一定的关系。具体表现为超调量减小时,谐振峰值也随之减小。 ○B增加的极点离虚轴越近,对系统暂态性影响越大,极点离虚轴越远,对系统的影响越小。 ①增加零点,会使系统的超调量增大,谐振峰值增大,带宽增加。 ②增加极点,会使系统的超调量减小,谐振峰值减小,带宽减小。 ③增加的零极点离虚轴越近,对系统暂态性影响越大;零极点离虚 轴越远,对系统的暂态性影响越小。 3 对稳态性能的影响 ①当增加的零极点在s的左半平面时,不改变系统的类型,使系统 能跟踪的信号类别不变,但跟踪精度会有差别。 ②当增加的零点在s的虚轴上时,系统的型别降低,跟踪不同输入 信号的能力下降。 ③当增加的极点在s的虚轴上时,系统的型别升高,跟踪不同输入 信号的能力增强。

1、绘制G1(s)的根轨迹曲线(M2_1.m) %画G1(s)的根轨迹曲线 n=[1,0]; %分子 d=[1,1,2]; %分母 figure1 = figure('Color',[1 1 1]); %将图形背景改为白色rlocus(n,d); %画G1(s)根轨迹曲线title('G1(s)的根轨迹'); %标题说明 2、绘制G1(s)的奈奎斯特曲线(M2_2.m) %画G1(s)的奈奎斯特曲线 figure1 = figure('Color',[1 1 1]); %将图形背景改为白色for a=1:10 %a取1,2,3……10,时,画出对应的奈奎斯特曲线G=tf([1/a,1],[1,1,1]); nyquist(G); hold on end title('G1(s)的奈奎斯特曲线'); %标题说明

零极点分布对系统频率响应的影响

备注:(1)、按照要求独立完成实验内容。 (2)、实验结束后,把电子版实验报告按 要求格式改名(例:09 号_张三 _实验七.doc)后,实验室统一刻 盘留档。 实验三零极点分布对系统频 率响应的影响 一、实验目的 1. 掌握系统差分方程得到系统函数的方法; 2. 掌握系统单位脉冲响应获取系统函数的方法; 3. 掌握用系统函数零级点分布的几何方法分析研究系统的频率响应 二、实验原理 在MA TLAB 中,可以用函数[z,p,K]=tf2zp ( num ,den)求得有理分式形式的系统转移函数的零、极点,用函数zplane( z,p)绘出 零、极点分布图;也可以用函数 zplane( num,den)直接绘出有理分式形式的系统转移函数的零、极点分布图。 另外,在MA TLAB 中,可以用函数[r,p,k]=residuez(num,den)完成部分分式展开计算;可以用函数sos=zp2sos( z,p,K )完成三、实验内容(包括代码与产生的图形) 1. 假设系统用下面差分方程描述: y(n)=x(n)+ay(n-1) 假设a=0.7, 0.8, 0.9 ,分别在三种情况下分析系统的频率特性,并打印幅度特性曲线。 B=1; A=[1,-0.7]; subplot(3,3,1);zplane(B,A); xlabel(' 实部Re'); ylabel(' 虚部Im'); title('y(n)=x(n)+0.7y(n-1) 传输函数零、极点分布'); grid on [H,w]=freqz(B,A,'whole'); subplot(3,3,4); 将高阶系统分解为 2 阶系统的串联。plot(w/pi,abs(H),'linewidth',2);

零极点对系统的性能影响分析

零极点对系统性能的影响分析 1任务步骤 1.分析原开环传递函数G0(s)的性能,绘制系统的阶跃响应曲线得到系 统的暂态性能(包括上升时间,超调时间,超调量,调节时间); 2.在G0(s)上增加零点,使开环传递函数为G1(s),绘制系统的根轨迹, 分析系统的稳定性; 3.取不同的开环传递函数G1(s)零点的值,绘制系统的阶跃响应曲线得 到系统的暂态性能(包括上升时间,超调时间,超调量,调节时间); 4.综合数据,分析零点对系统性能的影响 5.在G0(s)上增加极点,使开环传递函数为G2(s),绘制系统的根轨迹, 分析系统的稳定性; 6.取不同的开环传递函数G2(s)极点的值,绘制系统的阶跃响应曲线得 到系统的暂态性能(包括上升时间,超调时间,超调量,调节时间); 7.综合数据,分析极点对系统性能的影响。 8.增加一对离原点近的偶极子和一对距离原点远的偶极子来验证偶极子 对消的规律。

2原开环传递函数G0(s)的性能分析 2.1 G0(s)的根轨迹 取原开环传递函数为: Matlab指令: num=[1]; den=[1,0.8,0.15]; rlocus(num,den); 得到图形: 图1 原函数G0(s)的根轨迹 根据原函数的根轨迹可得:系统的两个极点分别是-0.5和-0.3,分离点为-0.4,零点在无限远处,系统是稳定的。 2.2 G0(s)的阶跃响应 Matlab指令: G=zpk([],[-0.3,-0.5],[1]) sys=feedback(G,1) step(sys) 得到图形:

图2 原函数的阶跃响应曲线 由阶跃响应曲线分析系统暂态性能: 曲线最大峰值为1.12,稳态值为0.87, 上升时间tr=1.97s 超调时间tp=3.15s 调节时间ts=9.95s ,2=? 超调量% p σ=28.3%

matlab实验四 系统的零极点分析

实验四连续时间系统复频域分析和离散时间系统z域分析 一.实验目的: 1.掌握连续信号拉氏变换和拉氏反变换的基本实现方法。 2.熟悉laplace函数求拉普拉斯变换,ilaplace函数求拉氏反变换 的使用。 3.掌握用ztrans函数,iztrans函数求离散时间信号z变换和逆z 变换的基本实现方法。 4.掌握用freqs函数,freqz函数由连续时间系统和离散时间系统 系统函数求频率响应。 5.掌握zplane零极点绘图函数的使用并了解使用零极点图判断系 统稳定性的原理。 二、实验原理: 1.拉氏变换和逆变换 原函数()() ?象函数 f t F s 记作:[()]() =→拉氏变换 L f t F s 1[()]() -=→拉氏反变换 L F s f t 涉及函数:laplace,ilapace. 例如:

syms t;laplace(cos(2*t)) 结果为:ans =s/(s^2+4) syms s;ilaplace(1./(s+1)) 结果为:ans = exp(-t) 2. 系统传递函数H(s)或H(z)。 12121212...()()()...m m m n n n b s b s b B s H s A s a s a s a ----+++==+++ 112112...()()()...m m m n n n b z b z b B z H z A z a z a z a --+--++++==+++ 其中,B 为分子多项式系数,A 为分母多项式系数。 涉及函数:freqz,freqs. 3. 系统零极点分布与稳定性的判定。 对于连续时间系统,系统极点位于s 域左半平面,系统稳定。 对于离散时间系统,系统极点位于z 域单位圆内部,系统稳定。 涉及函数:zplane. 三、 实验内容 1. 验证性实验 a) 系统零极点的求解和作图

高阶系统闭环零极点对系统特性地影响

现代工程控制理论 实验报告 实验名称:高阶系统闭环零极点对系统特性的影响

目录 一、实验目的 (3) 二、实验原理 (3) 1、高阶系统动态性能分析 (3) 2、系统的零极点的分布对系统的影响如下: (4) 三、实验过程 (4) 1、绘制增加极点前后系统y1,y2的阶跃响应曲线。 (4) 2、绘制增加零点前后系统y1,y3的阶跃响应曲线。 (6) 3、绘制增加远离虚轴的偶极子前后系统y1和y4的阶跃响应曲线 (7) 4、绘制增加靠近虚轴的偶极子前后系统y1和y5的阶跃响应曲线 (8) 四、实验结果及分析 (10) 1、绘制增加极点前后系统y1,y2的阶跃响应曲线。 (10) 2、绘制增加零点前后系统y1,y3的阶跃响应曲线。 (10) 3、绘制增加远离和靠近虚轴的偶极子前后系统的阶跃响应曲线 (10) 4、通过以上理论分析和仿真验证可得到以下结论: (10) 五、实验中存在问题 (11)

一、 实验目的 1、 增加或减少闭环零极点及闭环零极点的位置来研究高阶系统 的动态性能指标。 2、 学习用工程软件MATLAB 通过编程来绘制系统的阶跃响应曲 线。 3、 研究系统的零极点及偶极子对系统控制特性的影响。 二、 实验原理 1、高阶系统动态性能分析 高阶系统的闭环传递函数的一般形式可表示为: 11110111)()()(a s a s a s a b s b s b s b s R s C s G n n n n m m m m ++???++++???++==---- (n ≥m ) 表示成零极点形式后,为: ∏∏==++=n i i m j j p s z s K s G 11) ()( 式中:-z i (i=1,2,...,m)---闭环传递函数的零点 -p j (j=1,2,…,n)---闭环传递函数的极点。 假设系统闭环零极点都互不相同,且均为单重的。 则单位阶跃响应的拉氏变换为:

零点分布对系统的影响

燕山大学 课程设计说明书 课程名称:数字信号处理 题目:零点分布对系统的影响 学院(系):电气工程学院 年级专业: 2011级检测技术与仪器二班 学号: 学生姓名: 指导教师:王娜 教师职称:讲师

电气工程学院《课程设计》任务书 课程名称:数字信号处理课程设计 基层教学单位:仪器科学与工程系指导教师:学号学生姓名(专业)班级设计题目15、零点分布对系统的影响 设 计技术参数 2 1 19425 .0 6.1 1 1 ) ( - -+ - = z z z H 2 1 1 29425 .0 6.1 1 3.0 1 ) ( - - - + - - = z z z z H 2 1 1 39425 .0 6.1 1 8.0 1 ) ( - - - + - - = z z z z H 2 1 2 1 49425 .0 6.1 1 8.0 6.1 1 ) ( - - - - + - + - = z z z z z H 设 计要求(1)画出零极点分布图,并判断系统是否稳定 (2)求输入为单位阶跃序列时系统的响应,并判断系统稳定性 参考资料数字信号处理方面资料MATLAB方面资料 周次前半周后半周 应完成内容收集消化资料、学习MA TLAB软件, 进行相关参数计算 编写仿真程序、调试 指导教师签字基层教学单位主任签字 说明:1、此表一式四份,系、指导教师、学生各一份,报送院教务科一份。 2、学生那份任务书要求装订到课程设计报告前面。 电气工程学院教务科

目录 摘要 (1) 1 课题总体描述 (2) 2 设计原理 (2) 2.1离散系统的零极点 (2) 2.2系统稳定性、特性分析 (3) 2.2.1稳定性的概念 (3) 2.2.3系统零点的位置对系统响应的影响 (4) 3 MATLAB绘图分析 (5) 4 增加零点对系统稳定性的影响 (6) 4.1 零极点分布图及分析 (6) 4.2单位阶跃响应图及分析 (9) 5 总结 (16) 6 心得体会 (16) 参考文献 (17)

连续时间系统S域零极点分析

实验七 连续时间系统S 域零极点分析 一、目的 (1)掌握连续系统零极点分布与系统稳定性关系 (2)掌握零极点分布与系统冲激响应时域特性之间的关系 (3)掌握利用MATLAB 进行S 域分析的方法 二、零极点分布与系统稳定性 根据系统函数)(s H 的零极点分布来分析连续系统的稳定性是零极点分析的重要应用之一。稳定性是系统固有的性质,与激励信号无关,由于系统函数)(s H 包含了系统的所有固有特性,显然它也能反映出系统是否稳定。 对任意有界信号)(t f ,若系统产生的零状态响应)(t y 也是有界的,则称该系统为稳定系统,否则,则称为不稳定系统。 上述稳定性的定义可以等效为下列条件: ● 时域条件:连续系统稳定充要条件为∞

零极点对系统的影响

增加零极点以及零极点分布对系统的影响一般说来,系统的极点决定系统的固有特性,而零点对于系统的暂态响应和频率响应会造成很大影响。以下对于零极点的分布研究均是对于开环传递函 数。 零点一般是使得稳定性增加,但是会使调节时间变长,极点会使调节时间变短,是系统反应更快,但是也会使系统的稳定性变差。在波特图上反应为,增加一个零点会在幅频特性曲线上增加一个+20db/10倍频的曲线,幅频曲线上移,增加一个极点,会在幅频特性曲线上增加一个-20db/10倍频的曲线,幅频曲线下移。 在s左半平面增加零点时,会增加系统响应的超调量,带宽增大,能够减小系统的调节时间,增快反应速度,当零点离虚轴越近,对系统影响越大,当零点实部远大于原二阶系统阻尼系数ξ时,附加零点对系统的影响减小,所以当零点远离虚轴时,可以忽略零点对系统的影响。从波特图上来看,增加一个零点相当于增加一个+20db/10倍频的斜率,可以使的系统的相角裕度变大,增强系统的稳定性。 在s右半平面增加零点,也就是非最小相位系统,非最小相位系统的相位变化范围较大,其过大的相位滞后使得输出响应变得缓慢。因此,若控制对象是非最小相位系统,其控制效果特别是快速性一般比较差,而且校正也困难。对于非最小相位系统而言,当频率从零变化到无穷大时,相位角的便变化范围总是大于最小相位系统的相角范围,当ω等于无穷大时,其相位角不等于-(n-m)×90o。非最小相位系统存在着过大的相位滞后,影响系统的稳定性和响应的快速性。 在s左半平面增加极点时,系统超调量%pσ减小,调整时间st(s)增大,从波特图上看,s左半平面增加一个极点时,会在幅频特性曲线上增加一个- 20db/10倍频的曲线,也就意味着幅频特性曲线会整体下移,导致相角域度减小,从而使得稳定性下降。当极点离原点越近,就会增大系统的过渡时间,使得调节时间增加,稳定性下降,当系统影响越大当极点实部远大于原二阶系统

传递函数零极点对系统性能的影响

现代工程控制理论实验报告 学生姓名:??任课老师:???? 学号:??班级:

实验三:传递函数零极点对系统性能得影响 一、实验内容及目得 实验内容: 通过增加、减少与改变高阶线性系统得零极点,分析系统品质得变化,从中推导出零极点与系统各项品质之间得关系,进而总结出高阶线性系统得频率特性。 实验目得: (1)通过实验研究零极点对系统品质得影响,寻找高阶线性系统得降阶方法,总结高阶系统得时域特性。 (2)练习使用MATLAB语言得绘图功能,提高科技论文写作能力,培养自主学习意识。 二、实验方案及步骤 首先建立MATLAB脚本文件,使其能够绘出在阶跃输入下特征多项式能够变化得高阶线性系统得响应曲线。之后在以下六种情况下绘出响应曲线,分别分析其对系统输出得影响。 (1)改变主导极点,增减、改变非主导极点,加入非负极点,绘出多组线性系统在阶跃信号下得响应曲线。 (2)在不引入对偶奇子得前提下,加入非负极点,绘出多组线性系统在阶跃信号下得响应曲线。 (3)引入对偶奇子,绘出多组线性系统在阶跃信号下得响应曲线。

(4)探究系统稳定条件下单调曲线、振荡曲线得形成与零极点之间得关系. 三、实验结果分析 1、研究极点对系统品质得影响 (1)改变主导极点,得到得输出曲线如下: 将系统品质以表格方式列于下方。 主导极点-1、5 -0、5 -0、25

从两张图片中不难发现,在极点都就是负数得条件下,当主导极点出现较小变动时,整条输出曲线会出现很大得变化。 从表格中可以发现当主导极点由负半轴向原点靠近时,超调量、稳定时间逐渐增大,而且这两项指标得变化速率随着主导极点离原点得距离减小而增大。衰减率则出现轻微得先增大后减小得趋势,猜测在主导极点由负半轴向原点靠近得过程中,衰减率存在极值。 将两幅图片中发现得规律总结如下: (1)主导极点对系统品质有很大影响。 (2)在极点都小于零得条件下,主导极点得代数值越小,系统得准确性越好、快速性也越好。 (2)增减、改变非主导极点,得到得输出曲线如下:

零极点对系统性能的影响分析

摘要 本次课程设计主要是分析零极点对系统性能的影响。首先从根轨迹、奈奎斯特 曲线、伯德图和阶跃响应四方面分析原开环传递函数时的系统性能,然后在原开环 传递函数基础上增加一个零点,并且让零点的位置不断变化,分析增加零点之后系 统的性能,同时与原系统进行分析比较,发现增加的零点与虚轴的距离决定了对系 统影响的大小;再在原开环传递函数基础上增加一个极点,并且令极点位置不断变 化,分析增加极点后系统的性能,同时与原系统进行分析比较,同样发现增加的极 点与虚轴的距离决定了对系统的影响大小。 关键词:零极点开环传递函数系统性能 MATLAB 谐振带宽 The curriculum design is mainly the analysis of effect of zero pole on the performance of the system. First from the root locus, Nyquist curve, Bode diagram and step response analysis of four aspects of the original open-loop transfer function of the system performance, and then in the original open-loop transfer function is added on the basis of a zero, and let the zero point position changes continuously, increase system performance analysis of zero, at the same time and the original system analysis that increase, the zeros and the imaginary axis distance determines the impact on the system size; adding a pole in the original open-loop transfer function based on pole position, and make the changes, analysis of increasing performance point system, at the same time and the analysis of the original system, also found that increasing pole and the imaginary axis distance determines the impact on the size of the system. Keywords: zero pole open loop transfer function of system performance of MATLAB resonant bandwidth

实验-Z变换、零极点分析

(一)离散时间信号的Z 变换 1.利用MATLAB 实现z 域的部分分式展开式 MATLAB 的信号处理工具箱提供了一个对F(Z)进行部分分式展开的函数residuez(),其调用形式为: [r,p,k]=residuez(num,den) 式中,num 和den 分别为F(Z)的分子多项式和分母多项式的系数向量,r 为部分分式的系数向量,p 为极点向量,k 为多项式的系数向量。 【实例1】 利用MATLAB 计算321431818)(-----+z z z z F 的部分分式展开式。 解:利用MATLAB 计算部分分式展开式程序为 % 部分分式展开式的实现程序 num=[18]; den=[18 3 -4 -1]; [r,p,k]=residuez(num,den) 2.Z 变换和Z 反变换 MATLAB 的符号数学工具箱提供了计算Z 变换的函数ztrans()和Z 反变换的函数iztrans (),其调用形式为

)()(F iztrans f f ztrans F == 上面两式中,右端的f 和F 分别为时域表示式和z 域表示式的符号表示,可应用函数sym 来实现,其调用格式为 ()A sym S = 式中,A 为待分析的表示式的字符串,S 为符号化的数字或变量。 【实例2】求(1)指数序列()n u a n 的Z 变换;(2)()()2a z az z F -= 的Z 反变换。 解 (1)Z 变换的MATLAB 程序 % Z 变换的程序实现 f=sym('a^n'); F=ztrans(f) 程序运行结果为: z/a/(z/a-1) 可以用simplify( )化简得到 : -z/(-z+a) (2)Z 反变换的MATLAB 程序 % Z 反变换实现程序 F=sym('a*z/(z-a)^2'); f=iztrans(F) 程序运行结果为 f = a^n*n (二)系统函数的零极点分析 1. 系统函数的零极点分布 离散时间系统的系统函数定义为系统零状态响应的z 变换与激励的z 变换之比,即 )()()(z X z Y z H = (3-1)

K1.17 H(s)的零极点分布与时域特性

知识点K1.17 H(S)的零极点分布与时域特性 主要内容: 1.连续系统函数的零极点分布 2.连续系统函数的时域特性 基本要求: 1.掌握系统函数的零点与极点 2.熟练求解系统函数H(s)与时域响应h(t)

K1.17 H(S)的零极点分布与时域特性 1.系统函数的零点与极点 LTI 连续系统的系统函数是复变量s 的有理分式,即 A (s )=0的根p 1,p 2,…,p n 称为系统函数H (s )的极点; B (s )=0的根ξ1,ξ2,…,ξm 称为系统函数H (s )的零点。 ) ()()(s A s B s H =将零极点画在复平面上--零极点分布图。 例:) 1()1()2(2)(22+++=s s s s H σj ω0(2)-1-2j -j

例: 已知H (s )的零、极点分布图如示,并且h (0+)=2。求H (s )的表达式。σj ω0 -1j2-j2 解:由分布图可得 524)1()(22++=++=s s Ks s Ks s H 根据初值定理,有K s s Ks s sH h s s =++==+∞→∞→5 2lim )(lim )0(225 22)(2++=s s s s H

2. 系统函数H(s)与时域响应h(t) 问题:冲激响应的函数形式由H(s)的极点关系? 以下讨论的系统均为连续因果系统。 H(s)按其极点在s平面上的位置可分为:在左半开平面、虚轴和右半开平面三类。 (1)极点在左半开平面 (a)若系统函数有负实单极点p= –α(α>0),则A(s)中 有因子(s+α),其对应的响应函数为K e-αt ε(t)

传递函数零极点对系统性能的影响

现代工程控制理论实验报告 学生:任课老师: 学号:班级:

实验三:传递函数零极点对系统性能的影响 一、实验容及目的 实验容: 通过增加、减少和改变高阶线性系统 21.05 (s+s+1)(0.5s+1)(0.125s+1) 的零极点,分析系统品质的变化,从中推导出零极点和系统各项品质之间的关系,进而总结出高阶线性系统的频率特性。 实验目的: (1)通过实验研究零极点对系统品质的影响,寻找高阶线性系统的降阶方法,总结高阶系统的时域特性。 (2)练习使用MATLAB语言的绘图功能,提高科技论文写作能力,培养自主学习意识。 二、实验方案及步骤 首先建立MATLAB脚本文件,使其能够绘出在阶跃输入下特征多项式能够变化的高阶线性系统的响应曲线。之后在以下六种情况下绘出响应曲线,分别分析其对系统输出的影响。 (1)改变主导极点,增减、改变非主导极点,加入非负极点,绘出多组线性系统在阶跃信号下的响应曲线。 (2)在不引入对偶奇子的前提下,加入非负极点,绘出多组线性系统在阶跃信号下的响应曲线。

(3)引入对偶奇子,绘出多组线性系统在阶跃信号下的响应曲线。 (4)探究系统稳定条件下单调曲线、振荡曲线的形成与零极点之间的关系。 三、实验结果分析 1、研究极点对系统品质的影响 (1)改变主导极点,得到的输出曲线如下: 将系统品质以表格方式列于下方。

从两图片中不难发现,在极点都是负数的条件下,当主导极点出现较小变动时,整条输出曲线会出现很大的变化。 从表格中可以发现当主导极点由负半轴向原点靠近时,超调量、稳定时间逐渐增大,而且这两项指标的变化速率随着主导极点离原点的距离减小而增大。衰减率则出现轻微的先增大后减小的趋势,猜测在主导极点由负半轴向原点靠近的过程中,衰减率存在极值。 将两幅图片中发现的规律总结如下: (1)主导极点对系统品质有很大影响。 (2)在极点都小于零的条件下,主导极点的代数值越小,系统的准确性越好、快速性也越好。 (2)增减、改变非主导极点,得到的输出曲线如下:

传递函数零极点对系统性能的影响

现代工程控制理论实验报告 学生姓名:任课老师: 学号:班级:

实验三:传递函数零极点对系统性能的影响 一、实验内容及目的 实验内容: 通过增加、减少和改变高阶线性系统 21.05 (s+s+1)(0.5s+1)(0.125s+1) 的零极点,分析系统品质的变化,从中推导出零极点和系统各项品质之间的关系,进而总结出高阶线性系统的频率特性。 实验目的: (1)通过实验研究零极点对系统品质的影响,寻找高阶线性系统的降阶方法,总结高阶系统的时域特性。 (2)练习使用MATLAB语言的绘图功能,提高科技论文写作能力,培养自主学习意识。 二、实验方案及步骤 首先建立MATLAB脚本文件,使其能够绘出在阶跃输入下特征多项式能够变化的高阶线性系统的响应曲线。之后在以下六种情况下绘出响应曲线,分别分析其对系统输出的影响。 (1)改变主导极点,增减、改变非主导极点,加入非负极点,绘出多组线性系统在阶跃信号下的响应曲线。 (2)在不引入对偶奇子的前提下,加入非负极点,绘出多组线性系统在阶跃信号下的响应曲线。 (3)引入对偶奇子,绘出多组线性系统在阶跃信号下的响应曲

线。 (4)探究系统稳定条件下单调曲线、振荡曲线的形成与零极点之间的关系。 三、实验结果分析 1、研究极点对系统品质的影响 (1)改变主导极点,得到的输出曲线如下: 将系统品质以表格方式列于下方。

从两张图片中不难发现,在极点都是负数的条件下,当主导极点出现较小变动时,整条输出曲线会出现很大的变化。 从表格中可以发现当主导极点由负半轴向原点靠近时,超调量、稳定时间逐渐增大,而且这两项指标的变化速率随着主导极点离原点的距离减小而增大。衰减率则出现轻微的先增大后减小的趋势,猜测在主导极点由负半轴向原点靠近的过程中,衰减率存在极值。 将两幅图片中发现的规律总结如下: (1)主导极点对系统品质有很大影响。 (2)在极点都小于零的条件下,主导极点的代数值越小,系统的准确性越好、快速性也越好。 (2)增减、改变非主导极点,得到的输出曲线如下:

传递函数零极点对系统性能的影响

现代工程控制理论实验报告学生:任课老师: 学号:班级:

实验三:传递函数零极点对系统性能的影响 一、实验容及目的 实验容: 通过增加、减少和改变高阶线性系统 21.05 (s+s+1)(0.5s+1)(0.125s+1) 的零极点,分析系统品质的变化,从中推导出零极点和系统各项品质之间的关系,进而总结出高阶线性系统的频率特性。 实验目的: (1)通过实验研究零极点对系统品质的影响,寻找高阶线性系统的降阶方法,总结高阶系统的时域特性。 (2)练习使用MATLAB语言的绘图功能,提高科技论文写作能力,培养自主学习意识。 二、实验方案及步骤 首先建立MATLAB脚本文件,使其能够绘出在阶跃输入下特征多项式能够变化的高阶线性系统的响应曲线。之后在以下六种情况下绘出响应曲线,分别分析其对系统输出的影响。 (1)改变主导极点,增减、改变非主导极点,加入非负极点,绘出多组线性系统在阶跃信号下的响应曲线。 (2)在不引入对偶奇子的前提下,加入非负极点,绘出多组线性系统在阶跃信号下的响应曲线。

(3)引入对偶奇子,绘出多组线性系统在阶跃信号下的响应曲线。 (4)探究系统稳定条件下单调曲线、振荡曲线的形成与零极点之间的关系。 三、实验结果分析 1、研究极点对系统品质的影响 (1)改变主导极点,得到的输出曲线如下: 将系统品质以表格方式列于下方。

从两图片中不难发现,在极点都是负数的条件下,当主导极点出现较小变动时,整条输出曲线会出现很大的变化。 从表格中可以发现当主导极点由负半轴向原点靠近时,超调量、稳定时间逐渐增大,而且这两项指标的变化速率随着主导极点离原点的距离减小而增大。衰减率则出现轻微的先增大后减小的趋势,猜测在主导极点由负半轴向原点靠近的过程中,衰减率存在极值。 将两幅图片中发现的规律总结如下: (1)主导极点对系统品质有很大影响。 (2)在极点都小于零的条件下,主导极点的代数值越小,系统的准确性越好、快速性也越好。 (2)增减、改变非主导极点,得到的输出曲线如下:

零点与极点计算和分析

关于放大器极、零点与频率响应的初步实验 1.极零点的复杂性与必要性 一个简单单级共源差分对就包含四个极点和四个零点,如下图所示: 图1 简单单级共源全差分运放极零点及频率、相位响应示意图 上图为简单共源全差分运放的极零点以及频率响应的示意图,可以看到,运放共有四个极点,均为负实极点,共有四个零点,其中三个为负实零点,一个为正实零点。后面将要详细讨论各个极零点对运放的频率响应的影响。 正在设计中的折叠共源共栅运算放大器的整体极零点方针则包括了更多的极零点(有量级上的增长),如下图所示:

图2 folded-cascode with gain-boosting and bandgap all-poles details

图3 folded-cascode with gain-boosting and bandgap all-zeros details 从上述两张图可以看到,面对这样数量的极零点数量(各有46个),精确的计算是不可能的,只能依靠计算机仿真。但是手算可以估计几个主要极零点的大致位置,从而预期放大器的频率特性。同时从以上图中也可以看到,详细分析极零点情况也是很有必要的。可以看到46个极点中基本都为左半平面极点(负极

点)而仿真器特别标出有一个正极点(RHP )。由于一般放大器的极点均应为LHP ,于是可以预期这个右半平面极点可能是一个设计上的缺陷所在。(具体原因现在还不明,可能存在问题的方面:1。推测是主放大器的CMFB 的补偿或者频率响应不合适。 2。推测是两个辅助放大器的带宽或频率响应或补偿电容值不合适)其次可以从极零点的对应中看到存在众多的极零点对(一般是由电流镜产生),这些极零点对产生极零相消效应,减少了所需要考虑的极零点的个数。另外可以看到46个零点中45个为负零点,一个为正零点,这个正零点即是需要考虑的对放大器稳定性产生直接影响的零点。 以上只是根据仿真结果进行的一些粗略的分析,进一步的学习和研究还需要 进行一系列实验。 1. 单极点传输函数——RC 低通电路 首先看一个最简单的单极点系统——RC 低通电 路,其中阻值为1k ,电容为1p ,传输函数为: sRC s H +=11)( 则预计极点p0=1/(2πRC )=1.592e8 Hz ,仿真得 到结果与此相同。 而从输出点的频率响应图中可以得到以下几个结 论: 图4 一阶RC 积分电路 1)-3dB 带宽点(截止频率)就是传输函数极点,此极点对应相位约为-45°。 2)相位响应从0°移向高频时的90°,即单极点产生+90°相移。 3)在高于极点频率时,幅度响应呈现-20dB/十倍频程的特性。 图5 一阶RC 电路极点与频率响应(R=1k C=1p )

零极点对系统滤波器性能的影响

数字信号处理课程设计报告书 课题名称 零极点对系统滤波器性能的影响 姓 名 学 号 院、系、部 电气工程系 专 业 电子信息工程 指导教师 2012年 6 月20日 ※※※※※※※※※ ※※ ※※ ※ ※ ※※※※※※※※※ 2009级数字信号处理 课程设计

零极点对系统滤波器性能的影响 一、设计目的 掌握通过系统函数画零极点分布图;掌握通过零极点设计滤波器的方法;掌握MATLAB设计FIR和IIR数字滤波器的方法并且学会用MATLAB对信号进行分析和处理;了解系统的零极点对滤波器特性的影响。 二、设计要求 1、画出系统的零极点分布图; 2、根据设定的零极点设计滤波器并对含噪信号进行滤波处理; 3、增加系统的极点分析系统的滤波性能是否有所改变。 三、使用说明 编制MATLAB程序,完成以下功能,由系统函数求出系统的零极点分布图,根据设定的零极点设计滤波器并对含噪信号进行滤波处理,观察改变系统极点滤波器性能的变化。 四、程序流程图 开始 ↓ 根据系统函数绘制零极点图 ↓ 根据零极点绘制脉冲响应 ↓ 根据零极点绘制频响特性 ↓ 将一加噪信号通过滤波器 ↓ 绘制此信号的幅频特性 ↓ 得到低频信号,即低通滤波器 ↓ 增加零极点 ↓ 绘制出零极点图,观察幅频特性的变化 ↓ 结束 五、程序设计 subplot(4,2,1); B=[1,3,3,1]; A=[6,0,2,0]; Zplane(B,A);

legend('零点','极点') title('零极点分布')%绘制零极点图; subplot(4,2,2); impz(B,A,10);%绘制脉冲响应; [H,w]=freqz(B,A); %绘制频率响应 subplot(4,2,3);plot(w/pi,abs(H));axis([0,1,0,1]); subplot(4,2,4);plot(w/pi,angle(H)); subplot(4,2,5) t=0:0.05:30; x=cos(0.05*pi*t)+cos(1000*pi*t) z=fft(x) plot(abs(z)); subplot(4,2,6) y=filter(B,A,z) plot(abs(y)) axis([0,800,0,500]); subplot(4,2,7) B=[1,3,3,1] A=[6,-3,2,-1,0] y=filter(B,A,z) plot(abs(y)); axis([0,800,0,500]); -2 02 -1 013Real Part I m a g i n a r y P a r t 零极点分布 零点极点 2 468 -0.5 00.5n (samples) A m p l i t u d e Impulse Response 0.5 1 0.510 0.5 1 -50 50200400600800 500 0200400600800 500 0200400600800 500 五、心得体会 通过这次的课程设计,我更加清楚得了解了零极点对系统滤波器性能的影

相关文档