文档库 最新最全的文档下载
当前位置:文档库 › 基于S7-300PLC的小车运动控制系统

基于S7-300PLC的小车运动控制系统

基于S7-300PLC的小车运动控制系统
基于S7-300PLC的小车运动控制系统

基于MATLAB的汽车运动控制系统设计仿真

课程设计 题目汽车运动控制系统仿真设计学院计算机科学与信息工程学院班级2010级自动化班 姜木北:2010133*** 小组成员 指导教师吴

2013 年12 月13 日 汽车运动控制系统仿真设计 10级自动化2班姜鹏 2010133234 目录 摘要 (3) 一、课设目的 (4) 二、控制对象分析 (4) 2.1、控制设计对象结构示意图 (4) 2.2、机构特征 (4) 三、课设设计要求 (4) 四、控制器设计过程和控制方案 (5) 4.1、系统建模 (5) 4.2、系统的开环阶跃响应 (5) 4.3、PID控制器的设计 (6) 4.3.1比例(P)控制器的设计 (7) 4.3.2比例积分(PI)控制器设计 (9) 4.3.3比例积分微分(PID)控制器设计 (10) 五、Simulink控制系统仿真设计及其PID参数整定 (11) 5.1利用Simulink对于传递函数的系统仿真 (11) 5.1.1 输入为600N时,KP=600、KI=100、KD=100 (12) 5.1.2输入为600N时,KP=700、KI=100、KD=100 (12) 5.2 PID参数整定的设计过程 (13) 5.2.1未加校正装置的系统阶跃响应: (13) 5.2.2 PID校正装置设计 (14) 六、收获和体会 (14) 参考文献 (15)

摘要 本课题以汽车运动控制系统的设计为应用背景,利用MATLAB语言对其进行设计与仿真.首先对汽车的运动原理进行分析,建立控制系统模型,确定期望的静态指标稳态误差和动态指标搬调量和上升时间,最终应用MATLAB环境下的.m 文件来实现汽车运动控制系统的设计。其中.m文件用step函数语句来绘制阶跃响应曲线,根据曲线中指标的变化进行P、PI、PID校正;同时对其控制系统建立Simulink进行仿真且进行PID参数整定。仿真结果表明,参数PID控制能使系统达到满意的控制效果,对进一步应用研究具有参考价值,是汽车运动控制系统设计的优秀手段之一。 关键词:运动控制系统 PID仿真稳态误差最大超调量

基于单片机的语音控制小车的开题报告_共4页

一、选题的依据、意义和理论或实际应用方面的价值 随着现代生活水平的不断提高,人们对智能化产品有着巨大的需求,语音智能控制作为简单快捷方便的操作方式得到越来越广泛人们的认可,例如手机智能语音拨号功能,就是很好的例子。随着电子业的发展, 自动化已不再是一 个新鲜的话题, 无人驾驶的小汽车也必将进入实用阶段, 未来驾驶汽车, 不再是只能依靠手动,语音等方式也有可能成为未来汽车的辅助驾驶途径之一。当前电子设计系统已进人了片上系统时代, 语音识别与处理技术在信息技术的人机 接口中得到了普遍关注。语音识别的音控小车作为典型应用之一,简单地诠释了人机一体化的设计思想。其设计理念缩短了人机界面的距离,增强了互动性和智能性,同时使得将信息技术和控制技术引入到车辆的操纵控制中,形成机器智能,使驾驶员的感知、决策和执行能力扩展成为可能。 二、本课题在国内外的研究现状 Bill Gates 在世界计算机博览会(COMDEX)主题演讲会上描绘IT事业的发展宏图时,率先指出:下一代操作系统和应用程序的用户界面将是语音识别。工业界应对语音识别领域的重大突破做好充分准备,因为那将是一场席卷全球的另一次热潮。 据统计部门的数据,至2006年中国汽车保有量已达3500万辆(其中轿车占80%,约2500万辆),每年仍以30%的速度递增。我国成为了继美国之后的第二大汽车生产和消费大国。汽车行业的迅猛发展也带动了相关配套、服务业的发展。而将功能强大的智能车载信息系统——车载电脑加载到汽车上已经成为欧美、日本等地汽车市场的首选新装备。我国语音智能控汽车产业有着巨大的发展前景。车载电脑给汽车带来了一场信息化的革命,让每辆汽车构建成一个完美的车载信息与娱乐系统终端,包括车载通讯系统、导航系统、数字娱乐系统以及辅助驾驶系统。车载通讯与导航系统主要指GPRS和GPS,让你“轻 车熟路”,而且轻松打电话。 三、课题研究的内容及拟采取的方法 我研究的课题题目是实现语音对小车的智能控制,按照其功能的实现可以划分如下模块:语音输入模块、主控模块(SPCE061A)、电机驱动模块、语 音输出模块、电源模块。语音输入模块实现语音的输入,讲录入的语音作为数据源。主控模块实现对语音的分辨、识别、与存储单元中的指令匹配,发出控制命令。电机模块通过主控模块的控制,对电机发出控制命令。语音输出模块控制发出控制命令相对应的语音。电源模块控制电源的连通。首先对存储器初始化,之后进行录音初始化,进入录音循环中,定时器中断程序控制采样频率,并按时间间隔将采样值送入语音样本队列,录音循环从语音样本队列中获取数据并进行编码,将编码后的数据送入存储器,成为语音资源。在训练过程中,系统调用了语音播放子程序,需要进行播放初始化,进入播放循环中,从语音资源中获取数据,解码,填入播放队列中,定时器中断程序从播放队列中取出数据送到D /A 转换器中,将语音信号送到扬声器中,使得整个训练过程在语音提示下从容进行。 四、课题研究中的主要难点以及解决的方法 1)如何实现对SPCE061A的无线语音接入? SPCE061A 内置MIC 放大电路和AGC 电路, 可很方便地接上MIC 使用。但考虑到小车在运动到距离用户较远的地方时, 无法接收到用户的语音命令, 而

语音控制小车使用说明资料

语音控制小车用户说明书

目录 一、语音控制小车概述 (3) 1.1 功能简介 (3) 1.2 参数说明 (3) 1.3 注意事项 (3) 二、小车实物 (4) 2.1 车体结构 (4) 2.2 小车实物图 (4) 2.3 动力电机驱动电路 (5) 2.4 方向电机控制电路 (6) 2.5 语音识别原理简介 (6) 三、软件流程 (7) 3.1 主程序流程图 (7) 四、如何使用 (9) 4.1 连接硬件 (9) 5.2 代码下载 (9) 5.3 训练小车 (9) 5.4 声控小车 (10) 5.5 重新训练 (11)

一、语音控制小车概述 1.1 功能简介 语音控制小车综合应用了SPCE061A的众多资源,打破了传统教学中单片机学习枯燥和低效的现状。小车采用语音识别技术,可通过语音命令对其行驶状态进行控制。 语音控制小车的主要功能: 1)可以通过简单的I/O操作实现小车的前进、后退、左转、右转功能; 2)配合SPCE061A的语音特色,利用系统的语音播放和语音识别资源,实现语音控制的功能; 3)可以在行走过程中声控改变小车运动状态; 4)在超出语音控制范围时能够自动停车。 1.2 参数说明 车体:双电机四轮驱动 供电:电池(四节AA:1.5V×4) 工作电压:DC 4V~6V 工作电流:运动时约200mA 1.3 注意事项 1)安装电池一定要注意电池的正负极性,切勿装反; 2)长期不用请将电池从电池盒中取出; 3)由于语音信号的不确定性,语音识别的过程会出现一定的误差和不准确性; 4)由于小车行动比较灵活,速度比较快,在使用时一定要注意保持场地足够大,且保证不会对周围的物体造成伤害; 5)不要让小车长时间运行在堵转状态(堵转状态:由于小车所受阻力过大,造成小车电机加电但并不转动的现象),这样会造成很大的堵转电流,有可能会损坏小车的控制电路。

运动控制系统双闭环直流调速系统仿真

运动控制系统双闭环直流调速系统仿真 TYYGROUP system office room 【TYYUA16H-TYY-TYYYUA8Q8-

本科生课程论文课程名称运动控制系统 学院机自学院 专业电气工程及其自动化学号 1212XXXX 学生姓名翟自协 指导教师杨影 分数

题目: 双闭环直流调速系统仿真 对例题设计的双闭环系统进行设计和仿真分析,仿真时间10s 。具体要求如下: 在一个由三相零式晶闸管供电的转速、电流双闭环调速系统中,已知电动机的额定数据为: P P =60kW , P P =220V , P P =308 A , P P =1000 r/min , 电动势系数 P P = V ·min/r ,主回路总电阻 R =Ω,变换器的放大倍数 P P =35。电磁时间常数 P P =,机电时间常数 P P =,电流反馈滤波时间常数 P PP =,转速反馈滤波时间常数 P PP =。额定转速时的给定电压(P P ?)P =10V ,调节器ASR ,ACR 饱和输出电压P PP ?= 8V , P PP =。 系统的静、动态指标为:稳态无静差,调速范围D=10,电流超调量 ≤5% ,空载起动到额定转速时的转速超调量 ≤10%。试求: (1)确定电流反馈系数β(假设起动电流限制在 以内)和转速反馈系数α。 (2)试设计电流调节器ACR.和转速调节器ASR 。 (3)在matlab/simulink 仿真平台下搭建系统仿真模型。给出空载起动到额定转速过程中转速调节器积分部分不限幅与限幅时的仿真波形(包括转速、电流、转速调节器输出、转速调节器积分部分输出),指出空载起动时转速波形的区别,并分析原因。 (4)计算电动机带40%额定负载起动到最低转速时的转速超调量σn 。并与仿真结果进行对比分析。

语音控制小车实验报告

语音控制小车实验报告 专业: 学号: 姓名: 2014年01月12日

一、实验目的 语音控制小车以SPCE061A单片机为核心,采用语音识别技术,可通过语音命令对其行驶状态进行控制。本次实验的主要目的: 1.通过简单的I/O 操作实现小车的前进、后退、左转、右转功能; 2.配合SPCE061A 的语音特色,利用系统的语音播放和语音识别资源,实现语音控制的功能; 3.在行走过程中声控改变小车运动状态; 4.在超出语音控制范围时使小车停车。 二、实验内容 1、SPCE061A简介 SPCE061A是一款性价比很高的十六位单片机,使用它可以非常方便灵活的实现语音的录放,该芯片拥有8路10位精度的ADC,其中一路为音频转换通道,并且内置有自动增益电路。这为实现语音录入提供了方便的硬件条件。两路10位精度的DAC,只需要外接功放(SPY0030A)即可完成语音的播放。该单片机具有一套易学易用的指令系统和集成开发环境,在此环境中,它支持标准 C 语言编程,也支持 C 语言与汇编语言的互相调用。另外还提供了语音录放的库函数,只要了解库函数的使用,就可以很容易的完成语音的录放、识别等功能,这些都为软件开发提供了方便的条件。 SPCE061A特性: 16位μ’nSP微处理器; 工作电压:内核工作电压VDD为 3.0V~3.6V(CPU),I/O口工作电压VDDH为VDD~5.5V(I/O); CPU时钟:0.32MHz~49.152MHz; 内置2K 字 SRAM; 内置32K 闪存 ROM; 可编程音频处理; 晶体振荡器; 系统处于备用状态下(时钟处于停止状态),耗电小于 2μA@3.6V; 2 个 16 位可编程定时器/计数器(可自动预置初始计数值); 2 个 10 位 DAC(数-模转换)输出通道; 32 位通用可编程输入/输出端口;

汽车运动控制方案

南京工程学院 课程设计说明书 题目汽车运动控制系统的 / 设计与仿真 课程名称MATLAB 的控制系统 院(系、部、中心) 专业) 班级 学生姓名 学号 设计时间 ? 设计地点基础实验楼B114 指导教师 \

2012年1月南京 目录 一、课设目的 (3) ^ 二、控制对象分析 (3) 、控制设计对象结构示意图 (3) 、机构特征 (3) 三、课设设计要求 (4) 四、控制器设计过程和控制方案 (4) 、系统建模 (4) 、PID控制器的设计 (4) 五、控制系统仿真结构图 (5) — 六、仿真结果及指标 (6) 对于二阶传递函数的系统仿真 (6) 输入为500N时,K P=700、K I=100、K D=100。 (6) 输入为50N时,K P=700、K I=100、K D=100 (7) PID校正的设计过程 (7) 未加校正装置的系统阶跃响应: (7) PID校正装置设计 (8)

七、收获和体会 (9) >

Matlab 与控制系统仿真设计 一、课设目的 针对具体的设计对象进行数学建模,然后运用经典控制理论知 识 设计控制器,并应用Matlab 进行仿真分析。通过本次课程设计,建立理论知识与实体对象之间的联系,加深和巩固所学的控制理论知识,增加工程实践能力。 二、控制对象分析 、控制设计对象结构示意图 : 图1. 汽车运动示意图 、机构特征 汽车运动控制系统如图1所示。忽略车轮的转动惯量,且假定汽 车受到的摩擦阻力大小与运动速度成正比,方向与汽车运动方向相反。 根据牛顿运动定律,该系统的模型表示为: ?? ?==+v y u bv v m (1) 其中,u 为汽车驱动力(系统输入),m 为汽车质量,b 为摩擦阻 力与运动速度之间的比例系数,v 为汽车速度(系统输出),v 为汽车加速度。 假定kg m 1000=,m s N b /50?=,N u 500=。

基于PLC的小车自动往返运动控制系统2

第一章概述 1完成本次循环工作后,停止在最初位置。其运动路线示意图如下图1-1所示。 如图1-1 小车运动路线示意图 第二章硬件设计 2.1 主电路图 如图2-1为小车循环控制的主电路原理图。该电路图利用两个接触器的主触点KM1、KM2分别接至电机的三相电源进线中,其中相对电源的任意两相对调,即可实现电机的正反转,也可达到小车左右运行的目的。假设接通KM1为正转(小车右行),则接通KM2为反转(小车左行)。

图2-1小车循环控制的主电路原理 2.2 I/O地址分配 如表2-1为小车循环运动PLC控制的I/O分配表。在运行过程中,这些I/O口分别起到了控制各阶段的输入和输出的作用,并且也使小车的控制过程更清晰明了,动作与结果显示更加方便直接。 表2-1

2.3 I/O接线图 如图2-2为小车循环运动PLC控制的I/O接线图。在进行调试过程时,在PLC模块上,当I0.0有输入信号,即按下SQ1;当I0.1有输入信号,也即按下SQ2,以此类推,I/O接线图就是把实际的开关信号变成调试时的输入信号。同理,输出信号也是利用PLC模块把小车的实际运动用Q0.0、Q0.1的状态表现出来。 图2-2小车循环运动PLC控制的I/O接线图 2.4 元件列表 如表2-2为小车循环运动PLC控制的元件列表。在本次设计中就是利用这些元件,用若干导线连接起来组成了我们需要的原理图、I/O接线图。 表2-2

第三章软件设计 3.1 程序流程图 如图3-1为小车循环运动PLC控制的程序流程图。小车在一个周期内的运动由4段组成。设小车最初在左端,当按下启动按钮,则小车自动循环地工作,若按下停止按钮,则小车完成本次循环工作后,停止在最初位置。 首先小车位于初始位置,按下SB1启动后,小车向右行驶;当碰到行程开关SQ4,小车转向,向左行驶;碰到行程开关SQ2,小车再一次转向,向右行驶;碰到行程开关SQ3,小车又向左行驶,直到再次碰到SQ1,然后开始依次循环以上过程。若不按下停止按钮SB2则小车一直进行循环运动,若此时按下停止按钮SB2,小车又碰到行程开关SQ1,则小车回到初始位置。

语音控制的智能小车设计方案

语音控制的智能小车设计方案 根据美国玩具协会的调查统计,近年来全世界玩具销量增幅与全世界平均GDP增幅大致相当而全世界玩具市场的内在结构比重却发生了重大变化:传统玩具的市场比重正在逐步缩水,高科技含量的电子玩具则蒸蒸日上 美国玩具市场的高科技电子玩具的年销售额2004年较2003年增长52%,而传统玩具的年销售额仅增长3%英国玩具零售商协会选出的2001年圣诞最受欢迎的十大玩具中,有七款玩具配有电子元件从这些数字可以看出,高科技含量的电子互动式玩具已经成为玩具行业发展的主流本文设计一个具有语音识别功能的智能遥控小车该小车对传统的手动遥控小车的机械部分做了改进使之可以实现任意角度转向和以任意速度前进而不象一般的小车那样只能以固定角度转向和以固定速度前进因此更加接近真实的车辆 本文还在小车的控制系统中采用语音识别系统,使控制者可以用语音对小车进行控制,产生相应的动作,而且小车和控制者还具有一定的交互功能 1 智能小车总体结构框图 智能小车主要由转向机构、驱动机构、转向控制模块、驱动控制模块、遥控模块和语音控制模块六大部分组成,如图1所示

2 机械本体结构及工作原理 小车为轮式结构,如图2所示机械部分分为转向机构(图中椭圆内的部分)和驱动机构(图中椭圆外部分)转向机构主要由转向电机、转向架和两个前轮组成驱动机构采用玩具小车常用的双电机驱动方案,包括两个减速电机和两个后轮转向机构工作原理为:转向时由控制者向小车发出转向信号,转向电机根据转向信号正向或反向旋转一定角度,电机通过齿轮、齿条系统带动转向架摆动一定角度,最终带动与转向架固定在一起的前轮偏摆一定角度小车在转向时由于内、外侧的车轮的转弯半径不同,所以内外侧车轮的转速也不相同前轮为从动轮,会根据转弯角度的大小自动调节内、外侧车轮的转速;而后轮为主动轮,其转速分别由两个电机独立驱动,不会根据转弯半径自动调节转速因此小车转弯时,控制系统在控制转向电机的同时还需要根据转向角度的大小向两个驱动电机发出控制信号,

汽车运动控制系统仿真

一、摘要 2 二、课程设计任务 3 1.问题描述 3 2.设计要求 3 三、课程设计内容 4 1、系统的模型表示 4 2、利用Matlab进行仿真设计 4 3、利用Simulink进行仿真设计 9 总结与体会 10 参考文献 10

本课题以汽车运动控制系统的设计为应用背景,利用MATLAB语言对其进行设计与仿真.首先对汽车的运动原理进行分析,建立控制系统模型,确定期望的静态指标稳态误差和动态指标搬调量和上升时间,最终应用MATLAB环境下的.m文件来实现汽车运动控制系统的设计。其中.m文件用step函数语句来绘制阶跃响应曲线,根据曲线中指标的变化进行P、PI、PID校正;同时对其控制系统建立Simulink进行仿真且进行PID参数整定。仿真结果表明,参数PID控制能使系统达到满意的控制效果,对进一步应用研究具有参考价值,是汽车运动控制系统设计的优秀手段之一。 关键词:运动控制系统 PID仿真稳态误差最大超调量

一、课程设计任务 1. 问题描述 如下图所示的汽车运动控制系统,设该系统中汽车车轮的转动惯量可以忽略不计,并且假定汽车受到的摩擦阻力大小与汽车的运动速度成正比,摩擦阻力的方向与汽车运动的方向相反,这样,该汽车运动控制系统可简化为一个简单的质量阻尼系统。 根据牛顿运动定律,质量阻尼系统的动态数学模型可表示为: ???==+v y u bv v m 系统的参数设定为:汽车质量m =1000kg , 比例系数b =50 N ·s/m , 汽车的驱动力u =500 N 。 根据控制系统的设计要求,当汽车的驱动力为500N 时,汽车将在5秒内达到10m/s 的最大速度。由于该系统为简单的运动控制系统,因此将系统设计成10%的最大超调量和2%的稳态误差。这样,该汽车运动控制系统的性能指标可以设定为: 上升时间:t r <5s ; 最大超调量:σ%<10%; 稳态误差:e ssp <2%。 2.设计要求 1.写出控制系统的数学模型。 2.求系统的开环阶跃响应。 3.PID 控制器的设计 (1)比例(P )控制器的设计 (2)比例积分(PI )控制器的设计 (3)比例积分微分(PID )控制器的设计 利用Simulink 进行仿真设计。 二、课程设计内容 1.系统的模型表示

实验七-对汽车控制系统的设计与仿真

实验七 对汽车控制系统的设计与仿真 一、实验目的: 通过实验对一个汽车运动控制系统进行实际设计与仿真,掌握控制系统性能的分析和仿真处理过程,熟悉用Matlab 和Simulink 进行系统仿真的基本方法。 二、实验学时:4 个人计算机,Matlab 软件。 三、实验原理: 本实验是对一个汽车运动控制系统进行实际设计与仿真,其方法是先对汽车运动控制系统进行建摸,然后对其进行PID 控制器的设计,建立了汽车运动控制系统的模型后,可采用Matlab 和Simulink 对控制系统进行仿真设计。 注意:设计系统的控制器之前要观察该系统的开环阶跃响应,采用阶跃响应函数step( )来实现,如果系统不能满足所要求达到的设计性能指标,需要加上合适的控制器。然后再按照仿真结果进行PID 控制器参数的调整,使控制器能够满足系统设计所要求达到的性能指标。 1. 问题的描述 如下图所示的汽车运动控制系统,设该系统中汽车车轮的转动惯量可以忽略不计,并且假定汽车受到的摩擦阻力大小与汽车的运动速度成正比,摩擦阻力的方向与汽车运动的方向相反,这样,该汽车运动控制系统可简化为一个简单的质量阻尼系统。 根据牛顿运动定律,质量阻尼系统的动态数学模型可表示为: ? ??==+v y u bv v m & 系统的参数设定为:汽车质量m =1000kg , 比例系数b =50 N ·s/m , 汽车的驱动力u =500 N 。 根据控制系统的设计要求,当汽车的驱动力为500N 时,汽车将在5秒内达到10m/s 的最大速度。由于该系统为简单的运动控制系统,因此将系统设计成10%的最大超调量和2%的稳态误差。这样,该汽车运动控制系统的性能指标可以设定为: 上升时间:t r <5s ; 最大超调量:σ%<10%; 稳态误差:e ssp <2%。 2、系统的模型表示

基于语音控制的智能小车商业计划书

基于语音控制的智能小车 商业计划书 This model paper was revised by the Standardization Office on December 10, 2020

2012年第六届美新杯中国大学生物联网创新创业大赛 商业计划书 作品题目:基于语音控制的智能小车 作品成员:莫邵文赖伟玮代贺苏静怡 学校:东北大学秦皇岛分校 目录 2 3 3 3.品牌战略 (9) 4.企业文化 (10) 5.管理战略 (10) 6.科技创新 (10) 1.产品营销 (13) 2.产品推广 (14) 3.制造计划 (14)

1.股本结构 (15) 2.主要财务假定 (16) 3.未来五年主要财务报表 (17) 4.财务指标分析 (26) 5.投资收益与风险分析 (27) 28 一、作品摘要 随着我国科学技术的进步,智能化和自动化技术越来越普及,各种高科技也广泛应用于智能小车和机器人玩具制造领域,使智能机器人越来越多样化。智能小车是一个多种高薪技术的集成体,它融合了机械、电子、传感器、计算机硬件、软件、人工智能等许多学科的知识,可以涉及到当今许多前沿领域的技术。 本小车设计主要由单片机控制系统模块、稳压电源模块、舵机驱动模块、红外传感器模块和射频模块组成,系统以STC89c52单片机为核心,对外设进行控制,利用线性稳压芯片对电压进行稳定控制,使用两节18650锂电池为单片机及其他外设进行稳定供电,利用红外对管模块实现自动避障功能,利用nrf24l01射频模块和ld3320语音模块的结合,对小车进行变速、角度转变、启动和终止的实现。 下为小车成品图 图1-1小车成品图 二、作品介绍 在机械结构上,对普通的玩具小车做了改进,使小车的转向更加灵活,并且在设计范围内可以实现多角度和多档速度移动;而在控制系统部

Matlab汽车运动控制系统设计

1绪论 1.1选题背景与意义 汽车已经成为人们日常生活不可缺少的代步交通工具,在汽车发达国家,旅客运输的60%以上,货物运输的50%以上由汽车来完成,汽车工业水平和家庭平均拥有汽车数量已经成为衡量一个国家工业发达程度的标志。进行汽车运动性能研究时.一般从操纵性、稳定性和乘坐舒适性等待性着手。但近年来.随着交通系统的日趋复杂,考虑了道路环境在内的汽车运动性能开始受到关注。因此,汽车运动控制系统的研究也显得尤为重要,在文中,首先对汽车的运动原理进行分析,建立控制系统简化模型,确定期望的静态指针(稳态误差)和动态指针(超调量和上升时间)。然后对汽车运动控制系统进行设计分析。从而确定系统的最佳静态和动态指针。 2 论文基本原理分析 2.1.1汽车运动横向控制 (1)绝对位置的获得方法 汽车横向方向的控制使用GPS(全球定位系统)的绝对位置信息。GPS信息的精度与采样周期、时间滞后等有关。为提高GPS的数据精度和平滑数据.采用卡尔曼滤波对采样数据进行修正。GPS的采样周期为200ms相对应控制的周期采用50ms。另外考虑通信等的滞后、也需要进行补偿,采用航位推测法(dead reckoning)解决此问题。通过卡尔曼滤波和航位推测法推算出的值作为汽车的绝对位置使用来控制车速、横摆角速度等车辆的状态量。GPS 的数据通过卡尔曼滤波减少偏差、通过航位推测法进行误差和迟滞补偿.提高了位置数据推算的精度。 (2)前轮转角变化量的算出方法 这里对前轮目标转角变化量(?δ)的算出方法作简要说明,横方向控制采用预见控制,可以从现在汽车的状态预测经过时间t p秒后的汽车位置,由t p秒后的预测位置和目标路径

自动小车往复运动控制

自动小车往复运动控制 1.单流程的步进顺控设计法 (1)单流程顺控结构 一个控制过程可以分为若干个阶段,这些阶段称为状态或者步。状态与状态之间由转换条件分隔。当相邻两状态之间的转换条件得到满足时,就实现状态转换。 所谓单流程,是指状态转移只可能有一种顺序。像自动小车的控制过程就只有一种顺序:S0→S20→S21→S22→S23→S0,没有其他可能,所以叫单流程顺控结构。 (2)状态元件 上述的每一个状态或者步用一个状态元件表示,S0为初始步,也称为准备步,表示初始准备是否到位。其它为工作步。 状态元件是构成状态转移图的基本元素,是可编程控制器的软元件之一。FX2N 共有1000个状态元件,其分类、编号、数量及用途如表1所示。

注:①状态的编号必须在指定范围内选择。 ②各状态元件的触点,在PLC 内部可自由使用,次数不限。 ③在不用步进顺控指令时,状态元件可作为辅助继电器在程序中使用。 ④通过参数设置,可改变一般状态元件和掉电保持状态元件的地址分配。 (3) 状态转移图(SFC ) 的画法 状态转移图(SFC )也称功能表图。用于描述控制系统的控制过程,具有简单、直观的特点,是设计PLC 顺控程序的一种有力工具。状态转移图中的状态有驱 动动作、指定转移目标和指定转移条件三个要素。其中转移目标和转移条件是必不可少的,而驱动动作则视具体情况而定,也可能没有实际的动作。如图6所示,在初始步S0,没有驱动动作,S20为其转移目标,X0、X1为串联的转移条件;在S20步, Y1为其驱动动作,S21为其转移目标,X2为其转移条件。 步与步之间的有向连线表明流程的方向,其中向下和向右的箭头可以省略。图6中流程方向始终向下,因而省略了箭头。 (4) 状态转换的实现

语音控制小车毕业设计论文

NO:毕业设计题目: 语音控制小车

毕业设计(论文)原创性声明和使用授权说明 原创性声明 本人郑重承诺:所呈交的毕业设计(论文),是我个人在指导教师的指导下进行的研究工作及取得的成果。尽我所知,除文中特别加以标注和致谢的地方外,不包含其他人或组织已经发表或公布过的研究成果,也不包含我为获得及其它教育机构的学位或学历而使用过的材料。对本研究提供过帮助和做出过贡献的个人或集体,均已在文中作了明确的说明并表示了谢意。 作者签名:日期: 指导教师签名:日期: 使用授权说明 本人完全了解大学关于收集、保存、使用毕业设计(论文)的规定,即:按照学校要求提交毕业设计(论文)的印刷本和电子版本;学校有权保存毕业设计(论文)的印刷本和电子版,并提供目录检索与阅览服务;学校可以采用影印、缩印、数字化或其它复制手段保存论文;在不以赢利为目的前提下,学校可以公布论文的部分或全部内容。 作者签名:日期:

学位论文原创性声明 本人郑重声明:所呈交的论文是本人在导师的指导下独立进行研究所取得的研究成果。除了文中特别加以标注引用的内容外,本论文不包含任何其他个人或集体已经发表或撰写的成果作品。对本文的研究做出重要贡献的个人和集体,均已在文中以明确方式标明。本人完全意识到本声明的法律后果由本人承担。 作者签名:日期:年月日 学位论文版权使用授权书 本学位论文作者完全了解学校有关保留、使用学位论文的规定,同意学校保留并向国家有关部门或机构送交论文的复印件和电子版,允许论文被查阅和借阅。本人授权大学可以将本学位论文的全部或部分内容编入有关数据库进行检索,可以采用影印、缩印或扫描等复制手段保存和汇编本学位论文。 涉密论文按学校规定处理。 作者签名:日期:年月日 导师签名:日期:年月日

对汽车控制系统建模与仿真

对汽车控制系统建模与仿真 摘要:PID 控制是生产过程中广泛使用的一种最基本的控制方法,本文分别采用用简单的比例控制法和用PID控制来控制车速,并用MATLAB对系统进行了动态仿真,具有一定的通用性和实用性。 关键词:MATLAB 仿真;比例控制;PID 控制 1 MATLAB和PID概述 MATLAB是matrix和laboratory两个词的组合,意为矩阵工厂(矩阵实验室)。是由美国mathworks公司发布的主要面对科学计算、可视化以及交互式程序设计的高科技计算环境。它将数值分析、矩阵计算、科学数据可视化以及非线性动态系统的建模和仿真等诸多强大功能集成在一个易于使用的视窗环境中,为科学研究、工程设计以及必须进行有效数值计算的众多科学领域提供了一种全面的解决方案,并在很大程度上摆脱了传统非交互式程序设计语言(如C、Fortran)的编辑模式,代表了当今国际科学计算软件的先进水平。 在工程实际中,应用最为广泛的调节器控制规律为比例、积分、微分控制,简称PID控制,又称PID调节。PID控制器问世至今已有近70年历史,它以其结构简单、稳定性好、工作可靠、调整方便而成为工业控制的主要技术之一。当被控对象的结构和参数不能完全掌握,或得不到精确的数学模型时,控制理论的其它技术难以采用时,系统控制器的结构和参数必须依靠经验和现场调试来确定,这时应用PID控制技术最为方便。即当我们不完全了解一个系统和被控对象,或不能通过有效的测量手段来获得系统参数时,最适合用PID控制技术。PID控制,实际中也有PI和PD控制。PID控制器就是根据系统的误差,利用比例、积分、微分计算出控制量进行控制的。 2车辆行驶过程车速的数学模型 对行驶在斜坡上的汽车的车速进行动态研究,可以分析车辆的性能,指导车辆的设计。MATLAB软件下的SIMULILNK模块是功能强大的系统建模和动态仿真的软件,为车辆行驶过程车速控制分析提供了一种有效的手段。 汽车行驶如图7.4.1所示的斜坡上,通过受力分析可知在平行于斜面的方向上有三个力作用于汽车上:发动机的力、空气阻力和重力沿斜面的分量下滑力。

语音控制的智能小车设计

?语音控制的智能小车设计 ?发布时间:2009-8-3阅读次数:318字体大小: 【】【】【】 根据美国玩具协会的调查统计,近年来全球玩具销量增幅与全球平均GDP增幅大致相当。而全球玩具市场的内在结构比重却发生了重大变化:传统玩具的市场比重正在逐步缩水,高科技含量的电子玩具则蒸蒸日上。美国玩具市场的高科技电子玩具的年销售额2004年较2003年增长52%,而传统玩具的年销售额仅增长3%。英国玩具零售商协会选出的2001年圣诞最受欢迎的十大玩具中,有七款玩具配有电子元件。从这些数字可以看出,高科技含量的电子互动式玩具已经成为玩具行业发展的主流。本文设计一个具有语音识别功能的智能遥控小车。该小车对传统的手动遥控小车的机械部分做了改进,使之可以实现任意角度转向和以任意速度前进,而不象一般的小车 那样只能以固定角度转向和以固定速度前进,因此更加接近真实的车辆。本文还在小车的控制系统中采用语音识别系统,使控制者可以用语音对小车进行控制,产生相应的动作,而且小车和控制者还具有一定的交互功能。 1 智能小车总体结构框图 智能小车主要由转向机构、驱动机构、转向控制模块、驱动控制模块、遥控模块和语音控制模块六大部分组成,如图1所示。 2 机械本体结构及工作原理 小车为轮式结构,如图2所示。机械部分分为转向机构(图中椭圆内的部分)和驱动机构(图中椭圆外部分)。转向机构主要由转向电机、转向架和两个前轮组成。驱动机构采用玩具小车常用的双电机驱动方案,包括两个减速电机和两个后轮。转向机构工作原理为:转向时由控制者向小车发出转向信号,转向电机根据转向信号正向或反向旋转一定角度,电机通过齿轮、齿条系统带动转向架摆动一定角度,最终带动与转向架固定在一起的前轮偏摆一定角度。小车在转向时由于内、外侧的车轮的转弯半径不同,所以内外侧车轮的转速也不相同。前轮为从动轮,会根据转弯角度的大小自动调节内、外侧车轮的转速;而后轮为主动轮,其转速分别由两个电机独立驱动,不会根据转弯半径自动调节转速。因此小车转弯时,控制系统在控制转向电机的同时还需要根据转向角度的大小向两个驱动电机发出控制信号,调节两个驱动电机的转速使之产生特定的转速比,从而使转弯顺利进行。在这里,转弯的角度、转速比与小车的尺寸及转弯半径有关。 3 控制系统 控制系统包括两大部分,一部分位于遥控器内,用于识别控制者的命令并将响应的控制信号发送出去;一部分位于小车上,用于接收遥控器发出的控制信号,并根据控制信号控制转向机构和驱动机构,使小车实现预期的动作。 遥控器 遥控器主要由语音识别模块和无线发送模块(编码芯片、射频发送模块)组成,如图3所示。遥控器的工作原理为:控制者通过麦克风发出控制命令,该命令经过语音识别模块识别后,根据控制信号的类型产生一个8位的控制码,语音识别模块通过其P1端口将控制码输出至无线发送模块,然后语音识别模块发出控制信号,控制无线发送模块将该控制码以无线电波形式发送出去,车载控制部分接收到后便控制小车产生预期的动作。 3.1.1 语音控制模块 语音控制模块主要由Sensory公司的集成语音识别芯片 RSC-364组成。该芯片是专门为语音控制家电产品而设计的,外围辅助器件少,采用典型应用电路时只需要一个麦克风、一个晶体振荡器、一个小场声器和几个电阻、电容即可。该芯片内部集成了语音识别、语音合成、语音身份识别、录音回放功能。芯片内部采用的是神经网络的语音识别算法,和说话者无关的语音识别准确率可以达到97%,和说话者相关的语音识别准确率可以达到99%。该芯片的功能框图如图4所示。该芯片内部集成了一个八位的可编程微处理器,对外有 16个可编程控制的I/O口,16位地址总线和8位数据总线及相应的控制信号,可方便地扩展外部ROM以及与外部器件通讯。本文中对RSC-364的资源使用情况为:其P1口用于传输与控制命令相应的控制码,口用于启动无线发送模块发送数据。

运动控制系统仿真---实验讲义

《运动控制系统仿真》实验讲义 谢仕宏 xiesh@https://www.wendangku.net/doc/6e6653780.html, 实验一、闭环控制系统及直流双闭环调速系统仿真 一、实验学时:6学时 二、实验内容: 1.已知控制系统框图如图所示:

图1-1单闭环系统框图 图中,被控对象G(S) 10e-150s,GC(S)为PID控制器,试整定PID控制器 300s + 1 参数,并建立控制系统Simulink仿真模型。再对PID控制子系统进行封装,要求可通过封装后子系统的参数设置页面对KP、Ti、Td进行设置。 2.已知直流电机双闭环调速系统框图如图1-2所示。试设计电流调节器ACR和转速调 节器ASR并进行SimUIink建模仿真。 图1-2直流双闭环调速系统框图 三、实验过程: 1、建模过程如下: (1)PID控制器参数整顿 根据PID参数的工程整定方法(Z-N法),如下表所示,KP= 伯=0.24,Ti= 2 =300, Kτ Td= 0. 5 =75。 表1-1 Z-N法整定PID参数

PI 0.9T -K T3τ无0.4K c0.8TC无 PID 1.2T K I 2τ0?5τ0.6K C 0.5TC0.12TC (2) Simulink仿真模型建立 建立SimUIink仿真模型如下图1-3所示,并进行参数设置: 图1-3中,SteP模块"阶跃时间”改为 O, Transport Delay模块的"时间延迟”设置为 150,仿真时间改为1000s,如下图1-4所示: 图1-3 PID控制参数设置 运行仿真,得如下结果:

IP 回 Gaml Integrator du'dl S S □ VieW Simulation FOrmat ToOlS C? I ∣-CaΛtel 5 0.5 O 500 IPlD ≠ I ≡ ?希刊 3片令Uy 卜I IlOOo J?orΛal 三爭 E Φ I- F 過应? 图1-7 PID 子系统 Tim& offset. 0 (3) PID 子系统的创建 首先将参数 Gain 、Gain1、Gain 三个模块的参数进行设置,如下图所示: 再对PID 子系统进行圭寸装,选中"SUbSyStem ”后,单击鼠标右键,选择" MaSk SUbSyStem ”,弹 图1-5 PID 控制运行结果 Garn WO O ≡ a [^: P 刃盹逼圖0 ■垢 G I airl2 Deirivativ? W FUnCtlOn BlaCk PararrleterS- Gain 图1-6 PID 参数设置 然后建立PID 控制器子系统,如下图 1-7所示: TranSier FCn Transport Delay SietLal AttrLbU EiElIerrt-UriSe g ,aiιι (y =, Je-IaIi 吕 FUnCtiOn BIoCk Paranneters≡ Gain2 Signal Att ribut SaJliJJIe tine (-1 for i≡< P a,E ≥τ∣e i t 6r AttElbules Hlenent 5?jιple txι≡c (-1 fur Ieih Knlt ipLicat iαι∏LS EleMrtt -vise (K. *u) Sanple tune Ii-I for inketLtθd) i Elenent-Wije g 自丄n (y = .)LAU) _OE j??tn? ??LΠ Jy ± K ÷ α Or u^K}a V? FUnCtiOn Block Parameters : GainI K?LΓi (T) IlU I ltiPIICatiOn5 EIenI l eT SUbSyStem 10 300s+1

小车循环运动PLC控制 三菱

目录 摘要 (1) 第一章概述....................................................... (2) 第二章硬件设计 (3) 1.主电路图 (3) 2.I/O地址分配 (4) 3.I/O接线图 (4) 4.元件列表 (5) 第三章软件设计 (6) 1.程序流程图 (6) 2.功能图 (7) 3.梯形图 (8) 4.指令表 (9) 5.程序分析 (11) 第四章结论 (12) 第五章设计感想 (13) 第六章参考文献 (15)

摘要 P LC的定义有许多种。国际电工委员会(IEC)对PLC 的定义是:可编程控制器是一种数字运算操作的电子系统,专为在工业环境下应用而设计。它采用可编程序的存贮器,用来在其内部存贮执行逻辑运算、顺序控制、定时、计数和算术运算等操作的指令,并通过数字的、模拟的输入和输出,控制各种类型的机械或生产过程。其应按易于与工业控制系统形成一个整体,易于扩充其功能的原则设计。PLC具有通信联网的功能,它使PLC与PLC 之间、PLC与上位计算机以及其他设备之间能够交换信息,形成一个统一的整体,实现分散集中控制。 本设计是基于PLC编程的生产流水线小车循环运动控制 设计。论述了小车控制系统的软硬件设计方案及其控制原理。采用的是步进指令,因而比较简洁。小车在一个周期内的运动由四段组成。设小车最初在左端,当按下启动按钮,则小车自动循环地工作,当按下停止按钮时,则小车完成本次循环工作后,停止在初始位置。 关键词:PLC 步进指令循环控制

第一章:概述 可编程序控制器(PLC)是在电气控制技术和计算机技术的基础上以微处理器为核心,将自动化技术、计算机技术、通信技术融为一体的新型工业控制装置,以其编程简单、可靠性高、功能完善,体积小、重量轻的特有优势,广泛应用于各个行业。该生产流水线上的小车自动控制系统是冶金、有色金属、煤矿、车站、港口、码头仓库、矿井等行业的主要设备之一。本文介绍了一种基于三菱PLC控制的生产流水线自动控制小车系统设计方案。利用PLC 控制技术,可实现小车相关运动,小车在一个周期内的运动由四段组成。设小车最初在左端,当按下启动按钮,则小车自动循环地工作,若按下停止按钮,则小车完成本次循环工作后,停止在最初位置。

基于语音控制的智能小车商业计划书精编

基于语音控制的智能小车商业计划书精编 Document number:WTT-LKK-GBB-08921-EIGG-22986

2012年第六届美新杯 中国大学生物联网创新创业大赛 商业计划书 作品题目:基于语音控制的智能小车 作品成员:莫邵文赖伟玮代贺苏静怡

学校:东北大学秦皇岛分校 目录 2 3 3 3.品牌战略 (9) 4.企业文化 (10) 5.管理战略 (10) 6.科技创新 (10) 1.产品营销 (13) 2.产品推广 (14) 3.制造计划 (14) 1.股本结构 (15)

2.主要财务假定 (16) 3.未来五年主要财务报表 (17) 4.财务指标分析 (26) 5.投资收益与风险分析 (27) 28 一、作品摘要 随着我国科学技术的进步,智能化和自动化技术越来越普及,各种高科技也广泛应用于智能小车和机器人玩具制造领域,使智能机器人越来越多样化。智能小车是一个多种高薪技术的集成体,它融合了机械、电子、传感器、计算机硬件、软件、人工智能等许多学科的知识,可以涉及到当今许多前沿领域的技术。 本小车设计主要由单片机控制系统模块、稳压电源模块、舵机驱动模块、红外传感器模块和射频模块组成,系统以STC89c52单片机为核心,对外设进行控制,利用线性稳压芯片对电压进行稳定控制,使用两节18650锂电池为单片机及其他外设进行稳定供电,利用红外对管模块实现自动避障功能,利用nrf24l01射频模块和ld3320语音模块的结合,对小车进行变速、角度转变、启动和终止的实现。 下为小车成品图

图1-1小车成品图 二、作品介绍 在机械结构上,对普通的玩具小车做了改进,使小车的转向更加灵活,并且在设计范围内可以实现多角度和多档速度移动;而在控制系统部分,则采用语音控制方式,使小车可以“听懂”人的命令,娱乐性和互动性更强。 经调查,近年来全球玩具市场的内在结构比重却发生了重大变化:传统玩具的市场比重下在逐步缩水,高科技含量的电子玩具则蒸蒸日上。高科技含量的电子互动式玩具已经成为玩具行业发展的主流。我们设计了具有语音识别功能的智能遥控小车。该小车的传统的手动遥控小车的机械部分做了改进,使之可以实现固定角度转向和切换速度档位前进,而不像一般的小车那样只能以固定角度转向和以固定速度前进,因此更加接近真实的车辆。本文还在小车的控制系统中采用语音识别系统,使控制者可以用

相关文档
相关文档 最新文档