文档库 最新最全的文档下载
当前位置:文档库 › 参数方程8

参数方程8

的点的个数为

极坐标和参数方程基础知识及重点题型word版本

高中数学回归课本校本教材24 (一)基础知识 参数极坐标 1.极坐标定义:M 是平面上一点,ρ表示OM 的长度,θ是MOx ∠,则有序实数实数对(,)ρθ,ρ叫极径,θ叫极角;一般地,[0,2)θπ∈,0ρ≥。 2.常见的曲线的极坐标方程 (1)直线过点M 00(,)ρθ,倾斜角为α常见的等量关系: 正弦定理 sin sin OP OM OMP OPM =∠∠,0OMP παθ∠=-+OPM αθ∠=-; (2)圆心P 00(,)ρθ半径为R 的极坐标方程的等量关系:勾股定理或余弦定理; (3)圆锥曲线极坐标:1cos ep e ρθ = -,当1e >时,方程表示双曲线;当1e =时,方程表示抛物线;当01 e <<时,方程表示椭圆.提醒:极点是焦点,一般不是直角坐标下的坐标原点。极坐标方程3 24cos ρθ =-表示的曲线 是 双曲线 3.参数方程:(1)圆222()()x a x b r -+-=的参数方程:cos ,sin x a r x b r θθ-=-= (2)椭圆22 221x y a b +=的参数方程:cos ,sin x a x b θθ== (3)直线过点M 00(,)x y ,倾斜角为α的参数方程:00tan y y x x α-=-即00 cos sin x x y y t θθ --==, 即00cos sin x x t y y t α α =+?? =+?注:0cos x x t θ-= ,0 sin y y t θ-=据锐角三角函数定义,T 几何意义是有向线段MP u u u r 的数量00000()00. t l M M x y M M M M M M t M M t >? =?=抛物线的参数方程为:为参数.由于,因此参数的几何意义是抛物线上的点与抛物线的顶点连线的斜率的倒数.

高考数学极坐标与参数方程(基础精心整理)教师版

第7讲 极坐标与参数方程(教师版 ) 【基础知识】 一.平面直角坐标系中的伸缩变换:设点(,)P x y 在变换?://,(0) ,(0) x x y y λλμμ?=>??=>??的作用下对应到点 ///(,)P x y ,则称?为平面直角坐标系中的坐标伸缩变换,简称伸缩变换。 二.极坐标知识点 1.极坐标系的概念:在平面内取一个定点O ,从O 引一条射线Ox ,选定一个单位长度以及计算角度的正 方向(通常取逆时针方向为正方向),这样就建立了一个极坐标系,O 点叫做极点,射线Ox 叫做极轴. ①极点;②极轴;③长度单位;④角度单位和它的正方向,构成了极坐 标系的四要素,缺一不可. 2.极坐标与直角坐标的互化: 三.参数方程知识点 1.参数方程的概念:在平面直角坐标系中,若曲线C 上的点满足,该方程叫曲 线C 的参数方程,变量t 是参变数,简称参数。相对于参数方程而言,直接给出点的坐标间关系的方程叫做普通方程。 2.曲线的参数方程 (1)圆的参数方程可表示为. (2)椭圆的参数方程可表示为. (3)抛物线的参数方程可表示为. (4)经过点,倾斜角为的直线的参数方程可表示为(为参数). 注意:t 的几何意义 3.在建立曲线的参数方程时,要注明参数及参数的取值范围。在参数方程与普通方程的互化中,必须使的取值范围保持一致. 规律方法指导: 1.把参数方程化为普通方程,需要根据其结构特征,选取适当的消参方法. 常见的消参方法有: (,)P x y () () x f t y f t =?? =?2 2 2 )()(r b y a x =-+-)(.sin , cos 为参数θθθ? ??+=+=r b y r a x 122 22=+b y a x )0(>>b a )(. sin ,cos 为参数??????==b y a x px y 22 =)(.2, 22为参数t pt y pt x ? ? ?==),(o o O y x M αl ? ? ?+=+=.sin , cos o o ααt y y t x x t y x , ) 0(n t , sin , cos , 222≠===+=x x y a y x y x θθρθρρ

高考数学参数方程和普通方程的互化练习

【参数方程和普通方程的互化】 例1求曲线(为参数)与曲线(为参数)的交点. 解:把代入 得:两式平方相加可得 ∴(舍去) 于是即所求二曲线的交点是(,-). 说明:在求由参数方程所确定的两曲线的交点时,最好由参数方程组求解,如果化为普通方 程求交点时要注意等价性.如该例若化为普通方程求解时要注意点(-,)是增解. 例2化直线的普通方程为参数方程(其中倾斜角满足且 ) 解法一:因,,故 ∴ 设。取为参数,则得所求参数方程 解法二:如图,()为直线上的定点,为直线上的动点.因动点M与 的数量一一对应(当M在的向上方向或正右方时,;当M在的下 方或正左方时,;当M与重合时,),故取为参数.

过点M作y轴的平行线,过点作轴的平行线,两直线相交于点Q(如图).则有 ∴ 即为所求的参数方程。 说明:①在解法二中,不必限定,,即不必限定,.由 此可知,无论中任意值时,所得方程都是经过(),倾斜角为的直线的参数方程.可称它是直线参数方程的“点角式”或“标准式”. ②要充分理解解法二所示的参数的几何意义,这对解决某些问题较为方便. ③如果取为参数,则得直线参数方程 一般地,直线的参数方程的一般形式是 (,为参数) 但只有当且仅当,且时,这个一般式才是标准式,参数才具有上述的几何意义. 例3求椭圆的参数方程. 分析一:把与对比,不难发现,可设,也可设

解法一:设(为参数),则 ∴ 故 因此,所得参数方程是 (Ⅰ)或(Ⅱ) 由于曲线(Ⅱ)上的点(,),就是曲线(Ⅰ)上的点(, ),所以曲线(Ⅱ)上的点都是曲线(Ⅰ)上的点. 显然.椭圆的参数方程是 分析二:借助于椭圆的辅助圆,可明确椭圆参数方程中的几何意义. 解法二:以原点O为圆心,为半径作圆,如图.设以轴正半轴为始边,以动半径OA为 终边的变角为,过点A作轴于N,交椭圆于M,取为参数,则点M()的横坐标(以下同解法一). 由解法二知,参数是点M所对应的圆半径OA的转角,而不是OM的转角,因而称为椭圆 的离角.(如果以O为圆心,为半径作圆,过M作,交圆于B,由可知 也是半径OB的转角). 例4用圆上任一点的半径与x轴正方向的夹角为参数,把圆化为参数方程。 分析:由圆的性质及三角函数的定义可把圆上任意一点化为的参数形式。 解:如图所示,圆方程化为,设圆与x轴正半轴交于A,为圆上 任一点,过P作轴于B,OP与x轴正半轴所成角为,,则:

参数方程题型大全

参数方程 1.直线、圆、椭圆的参数方程 (1)过点M (x 0,y 0),倾斜角为α的直线l 的参数方程为????? x =x 0+t cos α, y =y 0+t sin α(t 为参数). (2)圆心在点M 0(x 0,y 0),半径为r 的圆的参数方程为????? x =x 0+r cos θ, y =y 0+r sin θ(θ为参数). (3)椭圆x 2a 2+y 2 b 2=1(a >b >0)的参数方程为? ???? x =a cos φ,y =b sin φ (φ为参数). (4)双曲线x 2 a 2-y 2 b 2=1(a >0,b >0)的参数方程为????? x =a 1cos θ,y =b tan θ (θ为参数). (5)抛物线px y 22 =的参数方程可表示为)(. 2, 22为参数t pt y pt x ?? ?==. 基础练习 1.在平面直角坐标系中,若曲线C 的参数方程为?? ? x =2+22t , y =1+2 2 t (t 为参数),则其普通方程为 ____________. 2.椭圆C 的参数方程为? ???? x =5cos φ, y =3sin φ(φ为参数),过左焦点F 1的直线l 与C 相交于A ,B 两点, 则|AB |min =________. 3.曲线C 的参数方程为? ???? x =sin θ, y =cos 2θ+1(θ为参数),则曲线C 的普通方程为____________. 4.在平面直角坐标系xOy 中,已知直线l 的参数方程为??? x =1+1 2t , y =3 2t (t 为参数),椭圆C 的方程 为x 2 +y 2 4 =1,设直线l 与椭圆C 相交于A ,B 两点,则线段AB 的长为_______________

参数方程化普通方程

参数方程化普通方程 [重点难点]掌握参数方程化普通方程的方法,理解参数方程和消去参数后所得的普通方程的等价性;应明确新旧知识之间的联系,提高综合运用所学知识解决数学问题能力。 [例题分析] 1.把参数方程化为普通方程(1)(θ∈R,θ为参数) 解:∵y=2+1-2sin2θ, 把sinθ=x代入,∴y=3-2x2, 又∵|sinθ|≤1, |cos2θ|≤1, ∴|x|≤1, 1≤y≤3∴所求方程为y=-2x2+3 (-1≤x≤1, 1≤y≤3) (2)(θ∈R,θ为参数) 解:∵x2=(sinθ+cosθ)2=1+2sinθcosθ,把y=sinθcosθ代入,∴x2=1+2y。 又∵x=sinθ+cosθ=sin(θ+)y=sinθcosθ=sin2θ ∴|x|≤,|y|≤。∴所求方程为x2=1+2y (|x|≤, |y|≤) 小结:上述两个例子可以发现,都是利用三角恒等式进行消参。消参过程中都应注意等价性,即应考虑变量的取值范围,一般来说应分别给出x, y的范围。在这过程中实际上是求函数值域的过程,因而可以综合运用求值域的各种方法。 (3)(t≠1, t为参数) 法一:注意到两式中分子分母的结构特点,因而可以采取加减消参的办法。 x+y==1,又x=-1≠-1,y=≠2, ∴所求方程为x+y=1 (x≠-1, y≠2)。 法二:其实只要把t用x或y表示,再代入另一表达式即可。由x=, ∴x+xt=1-t, ∴(x+1)t=1-x,即t=代入y==1-x,∴x+y=1,(其余略)这种方法称为代入消参,这是非常重要的消参方法,其它不少方法都可以看到代入消参的思想。

极坐标与参数方程题型及解题方法

Ⅰ复习提问 1、 极坐标系和直角坐标系有什么区别?学校老师课堂如何讲解极坐标参数方程的? 2、 如何把极坐标系转化为直角坐标系? 答:将极坐标的极点O 作为直角坐标系的原点,将极坐标的极轴作为直角坐标系x 轴的正半轴。如果点P 在直角坐标系下的坐标为(x ,y ),在极坐标系下的坐标为),(θρ, 则有下列关系成立: ρθρ θy sin x cos = = 3、 参数方程{ cos sin x r y r θθ ==表示什么曲线? 4、 圆(x-a)2+(y-b)2=r2的参数方程是什么? 5、 极坐标系的定义是什么? 答:取一个定点O ,称为极点,作一水平射线Ox ,称为极轴,在Ox 上规定单位长度,这样就组成了一个极坐标系设OP=ρ,又∠xOP=θ. ρ和θ的值确定了,则P 点的位置就 确定了。ρ叫做P 点的极半径,θ叫做P 点的极角,),(θρ叫做P 点的极坐标(规定ρ写在前,θ写在后)。显然,每一对实数),(θρ决定平面上一个点的位置 6、参数方程的意义是什么?

Ⅱ 题型与方法归纳 1、 题型与考点(1) { 极坐标与普通方程的互相转化极坐标与直角坐标的互相转化 (2) { 参数方程与普通方程互化 参数方程与直角坐标方程互化 (3) { 利用参数方程求值域参数方程的几何意义 2、解题方法及步骤 (1)、参数方程与普通方程的互化 化参数方程为普通方程的基本思路是消去参数,常用的消参方法有代入消去法、加减消去法、恒等式(三角的或代数的)消去法;化普通方程为参数方程的基本思路是引入参数,即选定合适的参数t ,先确定一个关系()x f t =(或()y g t =,再代入普通方程 (),0F x y =,求得另一关系()y g t =(或()x f t =).一般地,常选择的参数有角、有向 线段的数量、斜率,某一点的横坐标(或纵坐标) 例1、方程2222 t t t t x t y --?=-? ?=+??(为参数)表示的曲线是( ) A. 双曲线 B.双曲线的上支 C.双曲线的下支 D.圆 解析:注意到2t t 与2t -互为倒数,故将参数方程的两个等式两边分别平方,再相减,即可消去含t 的项,()() 2 2 2222224t t t t x y ---=--+=-, 即有22 4y x -=,又注意到 202222t t t y ->+≥=≥,,即,可见与以上参数方程等价的普通方程为 2242y x y -=≥().显然它表示焦点在y 轴上,以原点为中心的双曲线的上支,选B

(完整)高中数学参数方程大题(带答案)

参数方程极坐标系 解答题 1.已知曲线C:+=1,直线l:(t为参数) (Ⅰ)写出曲线C的参数方程,直线l的普通方程. (Ⅱ)过曲线C上任意一点P作与l夹角为30°的直线,交l于点A,求|PA|的最大值与最小值. 考点:参数方程化成普通方程;直线与圆锥曲线的关系. 专题:坐标系和参数方程. 分析:(Ⅰ)联想三角函数的平方关系可取x=2cosθ、y=3sinθ得曲线C的参数方程,直接消掉参数t得直线l的普通方程; (Ⅱ)设曲线C上任意一点P(2cosθ,3sinθ).由点到直线的距离公式得到P到直线l的距离,除以 sin30°进一步得到|PA|,化积后由三角函数的范围求得|PA|的最大值与最小值. 解答: 解:(Ⅰ)对于曲线C:+=1,可令x=2cosθ、y=3sinθ, 故曲线C的参数方程为,(θ为参数). 对于直线l:, 由①得:t=x﹣2,代入②并整理得:2x+y﹣6=0; (Ⅱ)设曲线C上任意一点P(2cosθ,3sinθ). P到直线l的距离为. 则,其中α为锐角. 当sin(θ+α)=﹣1时,|PA|取得最大值,最大值为. 当sin(θ+α)=1时,|PA|取得最小值,最小值为. 点评:本题考查普通方程与参数方程的互化,训练了点到直线的距离公式,体现了数学转化思想方法,是中档题.2.已知极坐标系的极点在直角坐标系的原点处,极轴与x轴的正半轴重合,直线l的极坐标方程为: ,曲线C的参数方程为:(α为参数). (I)写出直线l的直角坐标方程; (Ⅱ)求曲线C上的点到直线l的距离的最大值. 考点:参数方程化成普通方程. 专题:坐标系和参数方程. 分析:(1)首先,将直线的极坐标方程中消去参数,化为直角坐标方程即可; (2)首先,化简曲线C的参数方程,然后,根据直线与圆的位置关系进行转化求解. 解答: 解:(1)∵直线l的极坐标方程为:, ∴ρ(sinθ﹣cosθ)=,

参数方程的概念

参数方程的概念 参数方程的概念: 一般地,在给定的平面直角坐标系中,如果曲线上任意一点的坐标x,y都是某个变数t 的函数且对于t的每一个允许值,由这个方程组所确定的点M(x,y)都在这条曲线上,那么这个方程组称为这条曲线的参数方程,联系x、y之间关系的变数t称为参变数,简称参数。相对于参数方程而言,直接给出点的坐标间关系的方程叫做普通方程. 参数方程和普通方程的互化: 在参数方程与普通方程的互化中,必须使x,y的取值范围保持一致.否则,互化就是不等价的。 (1)参数方程化为普通方程的过程就是消参过程,常见方法有三种: ①代入法:利用解方程的技巧求出参数t,然后代入消去参数; ②三角法:利用三角恒等式消去参数; ③整体消元法:根据参数方程本身的结构特征,从整体上消去. (2)普通方程化为参数方程需要引入参数. 如:①直线的普通方程是2x-y+2=0,可以化为参数方程 ②在普通方程xy=1中,令可以化为参数方程 关于参数的几点说明: (1)参数是联系变数x,y的桥梁,可以是一个有物理意义或几何意义的变数,也可以是没有明显实际意义的变数. (2)同一曲线选取参数不同,曲线参数方程形式也不同. (3)在实际问题中要确定参数的取值范围. 参数方程的几种常用方法:

方法1参数方程与普通方程的互化:将曲线的参数方程化为普通方程的方法应视题目的特点而定,要选择恰当的方法消参,并要注意由于消参后引起的范围限制消失而造成的增解问题.常用的消参技巧有加减消参,代人消参,平方消参等. 方法2求曲线的参数方程:求曲线的参数方程或应用曲线的参数方程,要熟记曲线参数方程的形式及参数的意义. 方法3参数方程问题的解决方法:解决参数方程的一个基本思路是将其转化为普通方程,然后利用在直角坐标系下解决问题的方式进行解题. 方法4利用圆的渐开线的参数方程求点:利用参数方程求解点时只需将参数代入方程就可求得。 方法5求圆的摆线的参数方程:根据圆的摆线的参数方程的表达式 ,可知只需求出其中的r,也就是说,摆线的参数方程由圆的半径唯一确定,因此只需把点代人参数方程求出r值再代人参数方程的表达式. 柱坐标系与球坐标系 柱坐标系的定义: 建立空间直角坐标系Oxyz,设P(x,y,z)是空间任意一点,它在Oxy平面上的射影为Q,Q点的极坐标为(ρ,θ),则P的位置可用有序数组(ρ,θ,z)表示,(ρ,θ,z)叫做点P的柱坐标。 (1)柱坐标转化为直角坐标: (2)直角坐标转化为柱坐标:。 球坐标系的定义: 建立空间直角坐标系Oxyz,设P(x,y,z)是空间任意一点,记|OP|=r,OP与Oz轴正向所夹的角为j,点P在Oxy平面上的射影为Q,Ox轴按逆时针方向旋转到OQ时所转过的最小正角为θ,则P的位置可用有序数组(r,j,θ)表示,(r,j,θ)叫做点P的球坐标。

参数方程化普通方程练习题有答案

参数方程化普通方程 1.参数方程? ????x =cos 2 θ y =sin 2 θ,(θ为参数)表示的曲线是( ) A .直线 B .圆 C .线段 D .射线 解析:选=cos 2 θ∈[0,1],y =sin 2 θ∈[0,1],∴x +y =1,(x ,y ∈[0,1])为线段. 2.(1)参数方程? ????x =2t y =t (t 为参数)化为普通方程为____________. (2)参数方程? ????x =1+cos θ y =1-sin θ,(θ为参数)化为普通方程为____________. 解析:(1)把t =12x 代入y =t 得y =1 2x . (2)参数方程变形为??? ? ?x -1=cos θ,y -1=-sin θ, 两式平方相加,得(x -1)2+(y -1)2 =1. 答案:(1)y =12 x (2)(x -1)2+(y -1)2 =1 3.曲线C :?????x =12t y =t 2 ,(t 为参数)的形状为____________. 解析:因为t =2x ,代入y =t 2 ,得y =4x 2 ,即x 2 =1 4 y ,所以曲线C 为抛物线. 答案:抛物线 4.将下列参数方程化为普通方程: (1)???x =t +1 y =1-2t ,(t 为参数); (2)? ????x =5cos θy =4sin θ-1,(θ为参数); (3)?????x =1+3 2t y =2-1 2t ,(t 为参数); (4)?????x =2t 1+t 2y =1-t 21+t 2 ,(t 为参数). [解] (1)由x =t +1≥1,有t =x -1, 代入y =1-2t , 得y =-2x +3(x ≥1). (2)由?????x =5cos θ y =4sin θ-1得?????cos θ=x 5sin θ=y +14 , ① ② ①2 +②2 得x 2 25+(y +1) 2 16 =1. (3)由?????x =1+32t y =2-12t 得?????x -1=3 2t y -2=-12t , ① ② ②÷①得 y -2x -1=-33,∴y -2=-3 3 (x -1)(x ≠1) ∴3x +3y -6-3=0, 又当t =0时x =1,y =2也适合,故普通方程为3x +3y -6-3=0. (4)由???? ?x =2t 1+t 2y =1-t 21+t 2得? ??? ?x 2=4t 2 (1+t 2)2 y 2=1+t 4-2t 2(1+t 2) 2 , ① ② ①+②得x 2+y 2 =1.

极坐标和参数方程题型及解题方法

一、复习提问 1、 极坐标系和直角坐标系有什么区别?学校老师课堂如何讲解极坐标参数方程的? 2、 如何把极坐标系转化为直角坐标系? 答:将极坐标的极点O 作为直角坐标系的原点,将极坐标的极轴作为直角坐标系x 轴的正半轴。如果点P 在直角坐标系下的坐标为),(y x ,在极坐标系下的坐标为),(θρ,则有下列关系成立:ρ θx = cos ,ρ θy = sin , 3、 参数方程?? ?==θ θ sin cos r y r x 表示什么曲线? 4、 圆2 2 2 )()(r b y a x =-+- 的参数方程是什么? 5、 极坐标系的定义是什么? 答:取一个定点O ,称为极点,作一水平射线Ox ,称为极轴,在Ox 上规定单位长度,这样就组成了一个极坐标系设ρ=OP OP ,又θ=∠xOP . ρ和θ的值确定了,则P 点的位置就确定了。ρ叫做P 点的极半径,θ叫做P 点的极角,),(θρ叫做P 点的极坐标(规定ρ写在前,θ写在后)。显然,每一对实数),(θρ决定平面上一个点的位置. 6、参数方程的意义是什么? 二、题型与方法归纳 1、 题型与考点(1) { 极坐标与普通方程的互相转化 极坐标与直角坐标的互相转化 (2) { 参数方程与普通方程互化 参数方程与直角坐标方程互化

(3) { 利用参数方程求值域参数方程的几何意义 2、解题方法及步骤 (1)、参数方程与普通方程的互化 化参数方程为普通方程的基本思路是消去参数,常用的消参方法有代入消去法、加减消去法、恒等式(三角的或代数的)消去法;化普通方程为参数方程的基本思路是引入参数,即选定合适的参数t ,先确定一个关系()x f t =(或()y g t =,再代入普通方程 (),0F x y =,求得另一关系()y g t =(或()x f t =).一般地,常选择的参数有角、有向 线段的数量、斜率,某一点的横坐标(或纵坐标) 例1、方程?????+=-=--t t t t y x 2 22 2(t 为参数)表示的曲线是( ) A. 双曲线 B.双曲线的上支 C.双曲线的下支 D.圆 解析:注意到2t t 与2t -互为倒数,故将参数方程的两个等式两边分别平方,再相减,即可 消去含t 的项,4)22()22(2222-=+--=---t t t t y x ,即有42 2=+y x ,又注意到 02>t ,222222=?≥+--t t t t ,即2≥y ,可见与以上参数方程等价的普通方程为)2(422≥=-y y ,显然它表示焦点在y 轴上,以原点为中心的双曲线的上支,选B. 练习1、与普通方程2 10x y +-=等价的参数方程是( )(t 为能数) 解析:所谓与方程2 10x y +-=等价,是指若把参数方程化为普通方程后不但形式一致而且,x y 的变化范围也对应相同,按照这一标准逐一验证即可破解. 对于A 化为普通方程为[][]2 101101x y x y +-=∈-∈,,,,; 对于B 化为普通方程为2 10(1]x y x R y +-=∈∈-∞,,,; 对于C 化为普通方程为2 10[0)(1]x y x y +-=∈+∞∈-∞,, ,,; 对于D 化为普通方程为[][]2101101x y x y +-=∈-∈,,,,. 而已知方程为2 10(1]x y x R y +-=∈∈-∞,,,,显然与之等价的为B . 练习2、设P 是椭圆2 2 2312x y +=上的一个动点,则2x y +的最大值是 ,最小值为 . 分析:注意到变量),(y x 的几何意义,故研究二元函数2x y +的最值时,可转化为几何问题.若设2x y t +=,则方程2x y t +=表示一组直线,(对于t 取不同的值,方程表示不同的直线),显然),(y x 既满足2 2 2312x y +=,又满足2x y t +=,故点),(y x 是方程组 222312 2x y x y t ?+=? +=?的公共解,依题意得直线与椭圆总有公共点,从而转化为研究消无后的一???==t y t x A 2cos sin ???-==t y t x B 2tan 1tan ???=-=t y t x C 1???==t y t x D 2sin cos

参数方程的概念(教学设计)

曲线的参数方程(孙雷) 教材人民教育出版社高中数学选修4-4第二讲第一节 授课教师孙雷 教学目标 1、理解曲线参数方程的概念,能选取适当的参数建立参数方程; 2、通过对圆和直线的参数方程的研究,了解某些参数的几何意义和物理意义; 3、初步了解如何应用参数方程来解决某些具体问题,在问题解决的过程中,形 成数学抽象思维能力,初步体验参数的基本思想。 教学重点 曲线参数方程的概念。 教学难点 曲线参数方程的探求。 教学过程 (一)曲线的参数方程概念的引入 引例: 当两个齿轮接触时,蓝色齿轮会带动红色齿轮转动,当两个齿轮没有接触时,蓝齿轮要带动红色齿轮转动,有一种方法是加入一个新的齿轮,使之与红蓝两个齿轮同时接触。 (上述过程让学生感受中间变量的作用,为参数方程中的参变量的引出作铺垫。) 思考1: 若齿轮A、B、C的半径相等,他们转动时的角速度分别是x、y、t,方向忽略不计 (1)第一组图中,A与B角速度之间的关系是_______________; (2)第二组图中,A与C角速度之间的关系是_______________; B与C角速度之间的关系是________________; 思考2: 思考: 若齿轮A、B、C的半径分别为4、1、2,他们转动时的角速度分别是x、y、t,方向忽略不计 (1) 第一组图中,它们角速度之间的关系是_________________;

(2) 第二组图中,它们角速度之间的关系是_________________; 引导学生建立平面直角坐标系,把实际问题抽象到数学问题,并加以解决 (1、通过生活中的实例,引发学生研究的兴趣;2、通过引例明确学习参数方程的现实意义;3、通过对问题的解决,使学生体会到仅仅运用一种方程来研究往往难以获得满意的结果,从而了解学习曲线的参数方程的必要性;4、通过具体的问题,让学生找到解决问题的途径,为研究圆的参数方程作准备。) (二)曲线的参数方程 例1、圆的参数方程的推导 (1)一般的,设⊙O 的圆心为原点,半径为r ,0OP 所在直 线为x 轴,如图,以0OP 为始边绕着点O 按逆时针方向绕原点以 匀角速度ω作圆周运动,则质点P 的坐标与时刻t 的关系该如 何建立呢?(其中r 与ω为常数,t 为变数) 结合图形,由任意角三角函数的定义可知: ),0[sin cos +∞∈???==t t r y t r x ωω t 为参数 ① (2)点P 的角速度为ω,运动所用的时间为t ,则角位移t ωθ=,那么方程组①可以改写为何种形式? 结合匀速圆周运动的物理意义可得:),0[sin cos +∞∈???==θθ θr y r x θ为参数 ② (在引例的基础上,把原先具体的数据一般化,为圆的参数方程概念的形成作准备,同时也培养了学生数学抽象思维能力) (3)方程①、②是否是圆心在原点,半径为r 的圆方程?为什么? 由上述推导过程可知:对于⊙O 上的每一个点),(y x P 都存在变数t (或θ)的值,使t r x ωcos =,t r y ωsin =(或θsin r y =,θcos r x =)都成立。 对于变数t (或θ)的每一个允许值,由方程组所确定的点),(y x P 都在圆上; (1、对曲线的方程以及方程的曲线的定义进行必要的复习;2、学生从曲线的方程以及方程的曲线的定义出发,可以说明以上由变数t (或θ)建立起来的方程是圆的方程;) (4)若要表示一个完整的圆,则t 与θ的最小的取值范围是什么呢? ? )2,0[sin cos ωπωω∈???==t t r y t r x , )2,0[sin cos πθθ θ∈???==r y r x (5)圆的参数方程及参数的定义 我们把方程①(或②)叫做⊙O 的参数方程,变数t (或θ)叫做参数。 (6)圆的参数方程的理解与认识 (ⅰ)参数方程)2,0[sin 3cos 3πθθ θ∈???==y x 与]2,0[sin 3cos 3πθθθ∈???==y x 是否表示同一曲线?为什么?

坐标系与参数方程(文科基础)-学生版

吴老师2015一对一辅导教案 学生姓名 年级 高三 上课时间 学科 数学 教学课题 坐标系与参数方程(4-4) 教学目标 1. 掌握定义及应用公式 教学重点与难点 结合考点特点,灵活应用 1.直角坐标与极坐标的互化 把直角坐标系的原点作为极点,x 轴正半轴作为极轴,并在两坐标系中取相同的长度单位.设M 是平面内任 意一点,它的直角坐标是(x ,y ),极坐标是(ρ,θ),则? ?? ?? x =ρcos θ, y =ρsin θ,? ??? ? ρ2=x 2+y 2,tan θ=y x (x ≠0). 2.圆的极坐标方程 若圆心为M (ρ0,θ0),半径为r ,则圆的方程为:ρ2-2ρ0ρcos(θ-θ0)+ρ20 -r 2=0. 几个特殊位置的圆的极坐标方程: (1)当圆心位于极点,半径为r :ρ=r ; (2)当圆心位于M (a,0),半径为a :ρ=2a cos θ; (3)当圆心位于M ??? ?a ,π 2,半径为a :ρ=2a sin θ.

(1)将参数方程化为普通方程,再利用相关知识解决,注意消参后x ,y 的取值范围. (2)观察参数方程有什么几何意义,利用参数的几何意义解题. 2.已知直线l 的参数方程为? ???? x =4-2t ,y =t -2(t 为参数),P 是椭圆x 24+y 2 =1上任意一点,求点P 到直线l 的距 离的最大值. [例3] (2013·辽宁高考)在直角坐标系xOy 中,以O 为极点,x 轴正半轴为极轴建立极坐标系.圆C 1,直线C 2的极坐标方程分别为ρ=4sin θ,ρcos ??? ?θ-π 4=2 2. (1)求C 1与C 2交点的极坐标; (2)设P 为C 1的圆心,Q 为C 1与C 2交点连线的中点.已知直线PQ 的参数方程为???? ? x =t 3+a ,y =b 2t 3+1(t ∈R 为参数), 求a ,b 的值. 3.在直角坐标系xOy 中,曲线C 1的参数方程为??? x =3cos α, y =sin α (α为参数),以原点O 为极点,以x 轴正半 轴为极轴建立极坐标系,曲线C 2的极坐标方程为ρsin ??? ?θ+π 4=4 2. (1)求曲线C 1的普通方程与曲线C 2的直角坐标方程; (2)设P 为曲线C 1上的动点,求点P 到C 2上点的距离的最小值,并求此时点P 的坐标. 一、解答题 1 1 .已知直线l 的参数方程为?? ?=+=t y t x 32 (t 为参数),曲线C 的极坐标方程为12cos 2 =θρ (1)求曲线C 的普通方程;(2)求直线l 被曲线C 截得的弦长.

参数方程

(一)参数方程的概念 1.1参数方程的定义及用途 1.2参数方程化为普通方程 1.3普通方程化为参数方程 (二)直线的参数方程 2.1直线的参数方程化为标准参数方程 2.2直线的标准参数方程的三种应 用 (三)圆锥曲线参数方程 3.1圆锥曲线的参数方程及参数的几何意义 3.2圆锥曲线参数方程应用于表示曲线上一点坐标 (四)参数法求动点轨迹方程 (五)同步练习 (一)参数方程的概念 1.1参数方程的定义及用途 (1)参数方程的定义:一般来说参数方程是指:在直角坐标系中,一动点的坐标x 和y 同时可以独立地表示成第三个变量t 的函数。即 且满足(1)对于[a ,b]中的任何一个t 1,则①得到的(x 1,y 1)点都在曲线l 上;(2)曲线上的任意一点P(x 0,y 0)的坐标x 0,y 0通过①在[a ,b]上可求得一个t.那么上述方程叫曲线l 的参数方程。相对参数方程而言,过去的方程就叫做曲线l 的直角坐标方程,简称普通方程。 (2)参数方程定义的几点说明:①在曲线的参数方程中,应明确参数t 的取值 范围,它往往决定了方程和曲线能不能对应。如方程 θ为参数, θ∈[0,2π),是表示中心在原点,焦点在x 轴上,长轴8的椭圆;而方程 θ为参数,θ∈[0,π],只是表示上述椭圆的x 轴上方的部分。在 没有明确注明参数的取值范围时,可由参数的物理或几何意义,或由两个函数x=f(t),y=g(t)的定义域的交集点去确定;②一个参数方程只对应一条曲线,但一条曲线的参数方程则可以是多个。当我们选择的参数不同时,一条曲线的参数

方程可以是多个;③一条曲线可能存在参数方程,但不一定存在普通方程。课本 中圆的渐开线的参数方程是,其普通方程很难得出,不会理它。 (3)参数方程的用途:引进曲线参数方程有何用处?其用途主要有下列几个方面: ①有些曲线在实际应用中用途非常广,如圆的渐开线在齿轮制造中必不可少,可它的普通方程没法直接表示,而参数方程很容易得出; ②有些动点(x,y)的轨迹,坐标x、y的关系不好找,我们引入参变量t 后,很容易找到x与t和y与t的等量关系式,消去参变量后即得动点轨迹方程。此时参数方程在求动点轨迹中起桥梁作用。本讲第四部分专讲参变量此功能; ③可以用曲线的参数方程表示曲线上的一点坐标,这样把二元问题化为一元问题来解决。圆锥曲线的参数方程主要功能就是它。本讲第三个问题就要再次阐明此用途。 ④有些曲线参数方程的参变量t有几何意义。若能利用参变量的几何意义解题,经常取得想不到的效果。若利用直线标准参数方程中t的几何意义解题,会使很多难题化易,繁题化简。若不信请看此讲第二个部分。 总之,我们引进参数方程才能更广泛地研究曲线。 1.2参数方程化普通方程消去参数是参数方程化普通方程的根本途径。参化普要注意两个问题:(1)参化普的方法和技巧。通常常用方法有代入消元法(包括集团代入法)、加减消元法、参数转化法和媒介恒等法(又称三角代换法)等。参化普是较灵活的,要多研究,多总结。(2)参化普的等价性。在参数方程中的x,y含有的限制条件在转化过程中消失了,所以在普通方程中应加上这种限制条件才能保持其等价性。这种条件实质上就是函数y=f(t),y=g(t)的值域问题。 例1.化参数方程普通方程,并画出方程的曲线. 解法一:由①得③,代入②得2x+3y-4=0 由③得x≠-1 ∴化为普通方程2x+3y-4=0(x≠-1)

巩固练习_参数方程_基础

【巩固练习】 一、选择题 1.将参数方程222sin ()sin x y θθθ ?=+??=??为参数化为普通方程为( ) A .2y x =- B .2y x =+ C .2(23)y x x =-≤≤ D .2(01)y x y =+≤≤ 2.已知某条曲线的参数方程为2232(05)1 x t t y t ?=+?≤≤?=-??,则该曲线是( ) A .线段 B .圆弧 C .双曲线的一支 D .射线 3.下列在曲线sin 2()cos sin x y θθθθ=??=+? 为参数上的点是( ) A .1(,2 B .31(,)42 - C . D . 4.若点P (4,a )在曲线?????t y t x 2=2=(t 为参数)上,点F (2,0),则|PF |等于( ) A .4 B .5 C .6 D .7 5 .与参数方程为)x t y ?=??=??为参数等价的普通方程为( ) A .214y +=2 x B .2 1(01)4y x +=≤≤2x C .21(02)4y y +=≤≤2 x D .2 1(01,02)4y x y +=≤≤≤≤2x 6.若x 、y 满足(x -1)2+(y -1)2 =4,则s=x+y 的最小值为( ) A .2- .2-+ .2-- .2+ 7.直线y =kx +2与曲线?????ααsin 3= 2cos y x =至多一个交点的充要条件是( ) A .k ∈[- 21,21] B .k ∈(-∞,-21]∪[21,+∞) C .k ∈[-22,22] D .k ∈(-∞,-22]∪[2 2,+∞) 8.已知点P (x ,y )在曲线2cos sin x y θθ =-+??=?(θ为参数)上,则y x 的取值范围为( ) A .???? B .?????? C .???? D .? ?? 二、填空题

参数方程化成普通方程

参数方程化成普通方程,这类高考数学题,难不难? 极坐标和参数方程是高中数学当中重要的知识点,也是高考数学考查的一个重要对象。在平时的数学学习过程中,我们要学会对极坐标和参数方程内容在高考中的考查和应用,进行了一个全面总结,让自己对相关考点和题型做到心里有数。 如在解析几何试题中,与圆锥曲线的同一焦点弦的两焦半径的长的有关问题是极为常见的,此类问题的多种解法中,用圆锥曲线的统一定义(极坐标)求焦半径长入手最简单椭圆、双曲线、抛物线可以统一定义为:平面上与一定点F(焦点)的距离和一条定直线l的距离比为定值e的点的轨迹。 用极坐标方程去解决数学问题具有独特的优势,在极坐标(P,θ)中,P表示线段长度,灵活方便,并且能从极坐标方程中求出;θ表示角度,可使有关运算转化为三角函数式,计算有公式可循,因此它与直角坐标相比,有独特的功能,特别在处理圆锥曲线的弦、半径等问题中,极坐标具有一定的优越性。 典型例题分析1:

考点分析: 参数方程化成普通方程. 题干分析: (I)直线C1(t为参数),消去参数t化为普通方程:y=(x﹣1)tanα+2,把点(2,3)代入,解得tanα,即可得出直线C1的普通方程.由圆C2(α为参数),利用cos2α+sin2α=1消去参数α化为普通方程,把点(2,2)代入解得t2,即可得出圆C2的普通方程. (II)由题意可得:|OP|max=|OC2|+|t|,代入解得t即可得出. 典型例题分析2:

考点分析:

摆线在刻画行星运动轨道中的作用;参数方程化成普通方程. 题干分析: (1)求出曲线C的普通方程,直线的普通方程,利用圆的到直线的距离距离与半径比较,即可得到结果. (2)利用圆心到直线的距离与已知条件列出关系式,即可得到结果

坐标与参数方程题型解题方法

极坐标与参数方程题型及解题方法 Ⅰ复习提问 1、 极坐标系和直角坐标系有什么区别?学校老师课堂如何讲解极坐标参数方程的? 2、 如何把极坐标系转化为直角坐标系? 答:将极坐标的极点O 作为直角坐标系的原点,将极坐标的极轴作为直角坐标系x 轴的正半轴。如果点P 在直角坐标系下的坐标为(x ,y ),在极坐标系下的坐标为),(θρ, 则有下列关系成立: ρθρ θy sin x cos = = 3、 参数方程 { cos sin x r y r θθ ==表示什么曲线? 4、 圆(x-a)2+(y-b)2=r2的参数方程是什么? 5、 极坐标系的定义是什么? 答:取一个定点O ,称为极点,作一水平射线Ox ,称为极轴,在Ox 上规定单位长度,这样就组成了一个极坐标系设OP=ρ,又∠xOP=θ. ρ和θ的值确定了,则P 点的位置就确定了。ρ叫做P 点的极半径, θ叫做P 点的极角,),(θρ叫做P 点的极坐标(规定ρ写在前,θ写在后)。显然,每一对实数) ,(θρ决定平面上一个点的位置 6、参数方程的意义是什么?

Ⅱ 题型与方法归纳 1、 题型与考点(1) { 极坐标与普通方程的互相转化极坐标与直角坐标的互相转化 (2) { 参数方程与普通方程互化 参数方程与直角坐标方程互化 (3) { 利用参数方程求值域参数方程的几何意义 2、解题方法及步骤 (1)、参数方程与普通方程的互化 化参数方程为普通方程的基本思路是消去参数,常用的消参方法有代入消去法、加减消去法、恒等式(三角的或代数的)消去法;化普通方程为参数方程的基本思路是引入参数,即选定合适的参数t ,先确定一个关系()x f t =(或()y g t =,再代入普通方程(),0F x y =,求得另一关系()y g t =(或()x f t =).一般地,常选择的参数有角、有向线段的数量、斜率,某一点的横坐标(或纵坐标) 例1、方程22 22 t t t t x t y --?=-??=+??(为参数)表示的曲线是( ) A. 双曲线 B.双曲线的上支 C.双曲线的下支 D.圆 解析:注意到2t t 与2t -互为倒数,故将参数方程的两个等式两边分别平方,再相减,即可消去含t 的项, ()()2 2 2222224t t t t x y ---=--+=-, 即有 224 y x -=,又注意到 202222t t t y ->+≥=≥,,即,可见与以上参数方程等价的普通方程为2242y x y -=≥().显然它表示焦点在y 轴上,以原点为中心的双曲线的上支,选B 练习1、与普通方程210x y +-=等价的参数方程是( )(t 为能数) 222 sin cos ....cos 1sin x t x tgt x t x A B C D y t y tg t y t y t ===????=?????==-==????? 解析:所谓与方程2 10x y +-=等价,是指若把参数方程化为普通方程后不但形式一致而且,x y 的变 化范围也对应相同,按照这一标准逐一验证即可破解. 对于A 化为普通方程为[][]2 101101x y x y +-=∈-∈,,,,; 对于B 化为普通方程为2 10(1]x y x R y +-=∈∈-∞,,,; 对于C 化为普通方程为2 10[0)(1]x y x y +-=∈+∞∈-∞,,,,; 对于D 化为普通方程为[][]2101101x y x y +-=∈-∈,,,,. 而已知方程为2 10(1]x y x R y +-=∈∈-∞,,,, 显然与之等价的为B. 练习2、设P 是椭圆2 2 2312x y +=上的一个动点,则2x y +的最大值是 ,最小值为 . 分析:注意到变量(),x y 的几何意义,故研究二元函数2x y +的最值时,可转化为几何问题.若设 2x y t +=,则方程2x y t +=表示一组直线,(对于t 取不同的值,方程表示不同的直线),显然(),x y 既满足2 2 2312x y +=,又满足2x y t +=,故点(),x y 是方程组2223122x y x y t ?+=?+=? 的公共解,依题意得直线

相关文档
相关文档 最新文档