文档库 最新最全的文档下载
当前位置:文档库 › 课堂功放前置电路原理与检修

课堂功放前置电路原理与检修

课堂功放前置电路原理与检修
课堂功放前置电路原理与检修

音频功放保护电路分析与维修

音频功放保护电路分析与维修 https://www.wendangku.net/doc/606726724.html,/ 2008-1-7 19:59:43 音频功放保护电路分析与维修 在音频放大器中一般都设有功能完善的保护电路,可以在功放输出管过载、输出端电位偏移时进行可靠的保护,还可以在开机时延迟接通扬声器,避免开机损坏扬声器和开机“嘭”声,关机时瞬时断开扬声器,可避免关机时的冲击。 一、分离元件保护电路 图1所示是湖山BK2X100JMKⅡ-95型纯后级功率放大器功放保护电路。放大器刚接通电源时,+56V电压通过R143对C116充电,约延迟4s,C116上电压充到9.5V左右时,稳压管V126导通而使V124、V125导通,继电器K101吸合,才能接通扬声器,避免开机时的电流冲击而保护扬声器。 v126、v129组成功放输出端的电位检测电路,当输出端的电位偏移时,通过一51k电阻R144,使V126或V129导通。当输出端的电位是正偏移时,V129导通。反之,当输出端的电位是负偏移时V126导通。无论v126或V129中哪一个导通,C116正端电位为0V,稳压管V126截止,V124、V125截止,使继电器释放,断开扬声器,这样就完成了输出端电位偏移保护。 当功放因输出短路或负载过重时,输出管V134、v135射极电流大增,在R132、R133上产生的压降增大经R134、R135分压加至V118基极,使V118导通,使V127基极电位降低,v127导通,稳压管V126截止,V124、V125截止,继电器释放,断开扬声器,这样就完成了输出管的过载保护。

图2所示是天逸AD-5100A型AV放大器功放保护电路。J1、J2为接在功放输出端的继电器。刚开机时,+56V电压经R57、R58对c29充电,几秒后,当C29充电到一定电压时,IC2(uPC1237)⑥脚内的开关电路接通,输出低电平,使J1、J2吸合,接通扬声器,实现开机延时保护功能。当功放输出端直流电压因某种原因发生偏移,使IC2 2脚电压超过+0.7V,或低于-0.23V时,⑥脚内开关电路截止,输出高电平,使J1、J2释放,断开扬声器,实现功放输出端的直流电压偏移保护。 当功放输出极短路或负载过重时,使功放输出级的电流过大(超过8A),R67或R70两端电压达到约2V时,可使Q29或Q30导通,Q31也随之导通,使IC2 1脚输入一电压值,使J1、J2释放,断开扬声器,实现功放末级电流过载保护。电源变压器交流40V绕组的一端,经D32、R59加至IC2 4脚,关机时,交流电压瞬时消失,而其他直流供电暂没消失,J1、J2瞬时释放,扬声器断开,以避免关机时的冲击。

一个简单功放设计制作与电路图分析

一个简单功放设计制作与电路图分析|电路图 - dickmoore的日志 - 网易博客 默认分类 2009-11-09 19:01 阅读32 评论0 字号:大中小 一个简单功放设计制作与电路图分析|电路图 电子资料 2009-11-06 11:15 功放电路图 一个简单功放设计制作与电路图分析 我的电脑音响坏了快一年了,每次看电影都用耳机,每次用的耳朵都痛,很不爽.因此就想亲手做一个小功放用用,前几天又去了趟电子市场发现有LM386,很便宜,所以干脆用386做了一个单声道的功放先用着,有时间把另外一个声道也加上.在这里把功放设计到调试基本完成的过程写写,纪念这个过程. 1.设计 我们是听听就算的门外汉,对20~20K的音域也不是完全敏感.所以幅频特性不用考虑太多,但是自己要用得爽声音一定要大,因此LM386一般的输出功率肯定是不够拉(好像极限功率也就1W左右,具体还是看芯片资料吧),所以就浪费些多加个LM386做成BTL电路,提高一倍再说.设计出来的电路就是这个样子,原理很简单,就不说了 2.调试 a. 两个104的电容本来是用来隔直的,不过好像电脑主板和声卡上出来的音频都不带直流成份,而且用104时输入电平 比较高的时候声音有失真,(估计是低频过滤在输入电平高的时候人听起来比较明显).于是去掉两个104的电容. b. 在这个时候上电(我用的是12V),接上我的MP3一听,嗯!还不错,可是就是杂声比较厉害,调了调R1的大小,当R1被 调到最大的时候杂声没有了,最小的时候也没有了(这不是废话么,最小的时候输入都没有了 .把连接到功放的音频线拔了也没杂音了,原因可能有两个音频线上有电容在输入电阻R1比较小的时候,和LM386自激产生杂音,一放大就不得了了.于是决定R1就直接调到50K,音量就让MP3调去吧. c. 好像一切都没有问题了,拿到电脑上吧,刚接上去,嗯声音停大,不错!!刚以为要完事,电脑里一首歌就放完了,本来该是安静的却听见喇叭里噼噼啪啪,这个噪声奇了怪了,开始还是以为是R1的问题,索性就把R1去掉(反正LM386也不希罕从前级得到能量),噪音仍然存在,怀疑是主板上的高频噪声,于是在输入端并上一个102的电容---不起作用.这个电容也不敢并大了,大了要影响高频特性.又怀疑是功率大了C1吃不消,于是又在电源上并了一个100uF的电容,还是不行....... d. 就在这个时候用手一抓我的功放输入端的焊点,好了!没杂音了,仔细一想,原来是这样:我从电脑接出来的线是一个声

共源极放大器电路及原理

共源极放大器电路及原理 1)静态工作点的测试 上图为场效应管共源极放大器实验电路图。该电路采用的自给偏压的方式为放大器建立静态工作点,栅极通过R1接地,因R1中无电流流过,所以栅极与地等电位。即VG=0,可用万用表测出静态工作点IDQ和VDSQ值。 2)输入输出阻抗的测试 (1)输入阻抗的测量 上图是伏安法测试放大电路的连接图。其在输入回路中串接一取样电阻R,输入信号调整在放大电路用晶体管毫对地的交流电压VS与Vi,这样求得两端的电压为VR=VS-Vi,流过电阻R的电流实际就是放大电路的输入电流Ii。

根据输入电阻的定义得 2)输出阻抗的测量 放大器输出阻抗的大小,说明该放大器带负载的能力。用伏安法测试放大电路的输出阻抗的测试电路如下图所示。放大器输出阻抗的大小,说明该放大器带负载的能力。用伏安法测试放大电路的输出阻抗的测试电路如下图所示。 输入信号的频率仍选择在放大电路的中频段,输入信号的大小仍调整到确保输出信号不失真为条件,因此仍须用示波器监视输出信号的波形。 第一步在不接负载RL的情况下,用毫伏表测得输出电压V01。 第二步在接上负载RL的情况下,用毫伏表测得输出电压V02。则 3)高输入阻抗Zi的测试. 前面讲了一般放大器输入阻抗的测量方法,下面以场效应管源极跟随器为例,介绍高输入放大器的输入阻抗的测试方法。 类似于源极跟随器这样的高输入阻抗放大器的输入阻抗.往往可以等效成一个输入电阻Zi和一个输入电容Ci的并联形式,因此,必须分辨测出Ri和Ci的值才能确定输入阻抗Zi的值。 测量Ri,由于被测电路的输入阻抗很高,可以和毫伏表的输入阻抗相比拟,若将毫

OCL功放电路详解与维修

OCL功放电路调试与维修总结 本功放采用最简洁的单差分OCL功放电路。 输入级Q1、Q2按惯例采用差分放大级,但与一般常见电路稍不同的是采用PNP管,这与采用NPN管相比,两管配对容易且一致性好,噪声较低。 第二级Q3为主电压放大级,它提供大部分电压增益。但未采用常见的“自举”电路,大功率放大器采用“自举”电路,对增大输出功率意义不大,且能省去一个对音质有影响的电解电容,并有利于减少元件简化电路,C12为相位补偿电容。 IC1、R12、D4、C14、R13、Q8、K1 等组成功放过载保护电路,当负载发生短路时,继电器动作切断功放电源,保护功放电路避免故障扩大化。当负载 短路故障排除自动恢复 OCL电路常见故障现象及 原因 电路板上搭锡,线路明显 损坏引起的故障可以直接排 查解决。 1、现象:无电; 解决方案:查找变压器有 无电压输出;无,查看保险丝 是否损坏;未损坏,则查找变 压器有无市电输入;无,察看 保险丝管是否接触不良或未 接触,查电源线是否损坏。 2、现象:输出小 解决方案:查看电阻是否 装错,分别查(常见错装为, 100K,10K等),100K(常见错 装为10K,);电阻阻值正确的 情况下,检查差动放大电路后 的C2383是否良好。 3、现象:输出大 解决方案:察看电阻是否 装错,如100K装为150K等。 4、现象:波形失真 解决方案:察看电阻是否 装错,如电阻装错,10K电阻 装错。电位器阻值无限大(半波)等。 5、现象:无声音输出 解决方案:检查有无管子损坏,输入短路、断路,0欧姆电阻缺失、损坏等。

6、现象:开码后不断自保护 解决方案:查有无2N4007虚焊,装反,检测电路板铜线有无断开,5W水泥电阻有无损坏等。 7、现象:开码后,功率瞬时达到最大,又逐渐减小 解决方案:查缺电容。 8、现象:交付使用后,出现半夜机鸣,不定时开机 解决方案:查功放板缺电容两个。 9、现象:输出声音有电流声 解决方案:查7805输出电压波动,将其供电端的1000uF电容更换为2200uF电容(较少出现)。 10、现象:在元器件都正确无损的情况下,输出略微大或小 解决方案:可以对100K电阻进行其它阻值代替。 11、现象:波峰略有失真 解决方案:查2N5408有一脚虚焊。

BTL功放电路

BTL电路 OCL和OTL电路负载上获得的最大电压分别是UCC和UCC/2,而它们的电源电压则分别是±UCC和UCC/2。虽然它们的效率都不低,但电源的利用率却不高。其原因是在输入正弦信号的每半个周期中,电路只有一个晶体管和一半的电源在工作,若用两组对称和互补电路组成BTL电路,则输出功率可增大好几倍。BTL电路如图3-17所示。此电路的工作情况如下。 静态时由于四个三极管对称,UA=UB=UCC/2,因此uo=0。当输入正弦信号ui为正半周时,在两路反相输入信号ui、-ui的作用下,VT1和VT4同时导通,RL上获得正半周信号;ui为负半周时,VT2和VT3同时导通,RL上获得负半周信号。理想情况下,设管子的UCES=0,则uo的峰值为UCC,输出的最大功率为 是OTL电路的4倍。 实现两路输入信号反相可以有多种方案,例如可利用差动放大电路的两个输出端获得,也可以利用单管放大电路从集电极和发射极获得两个极性相反的信号,或者从两个运放的同相和返乡输入端输入信号,或者从一个运放的输出端反馈回来的信号衰减后再输入另一个同相输入端。 BTL电路综合了OTL和OCL接法的优点,汲取了OCL无输出电容的优点,避免了电容对信号频率特性的影响,BTL电路可以使用单电源也可以使用双电源。这些改进的措施使它逐渐成为当代功放电路的主流,并为功率放大电路的集成化创造了条件。 目前常用的功放电路有OCL、OTL和BTL电路,它们是当代功放电路的主流,且为功率放大电路的集成化奠定了基础。 BTL功放实例:

1 (a)两个集成功放5G37组成BTL电路。 (b)Ui倒相电路利用3DG6晶体管的集电极和发射极相位相反来实现的。 (c)该电路输出功率3W。要注意电路的散热条件。 (d)在调节时要使静态时扬声器无直流电流。可通过分别调节R6和R10使两电路输出均为6V。若电路增益不够大可改变反馈电阻R8和R12。 2 这个耳聋助听器由TDA2822双功放集成电路加上少量外围元件组成,它与市场上的普及机相比具有输出功率大、电压范围宽等特点,工作电压为1.8—15V,适合中、轻度耳聋患者使用。

LM386 电路原理 音频放大器

LM386 电路原理 LM386是一种音频集成功放,具有自身功耗低、电压增益可调整、电源电压范围大、外接元件少和总谐波失真小等优点,广泛应用于录音机和收音机之中。 一、 LM386内部电路 LM386内部电路原理图如图所示。与通用型集成运放相类似,它是一个三级放大电路。 第一级为差分放大电路,T1和T3、T2和T4分别构成复合管,作为差分放大电路的放大管;T5和T6组成镜像电流源作为T1和T2的有源负载;T3和T4信号从管的基极输入,从T2管的集电极输出,为双端输入单端输出差分电路。使用镜像电流源作为差分放大电路有源负载,可使单端输出电路的增益近似等于双端输出电容的增益。 第二级为共射放大电路,T7为放大管,恒流源作有源负载,以增大放大倍数。 第三级中的T8和T9管复合成PNP型管,与NPN型管T10构成准互补输出级。二极管D1和D2为输出级提供合适的偏置电压,可以消除交越失真。

引脚2为反相输入端,引脚3为同相输入端。电路由单电源供电,故为OTL电路。输出端(引脚5)应外接输出电容后再接负载。 电阻R7从输出端连接到T2的发射极,形成反馈通路,并与R5和R6构成反馈网络,从而引入了深度电压串联负反馈,使整个电路具有稳定的电压增益。 二、 LM386的引脚图 LM386的外形和引脚的排列如右图所示。引脚 2为反相输入端,3为同相输入端;引脚5为 输出端;引脚6和4分别为电源和地;引脚1 和8为电压增益设定端;使用时在引脚7和地 之间接旁路电容,通常取10μF。 LM386的外形和引脚的排列如右图所示。引脚2为反相输入端,3为同相输入端;引脚5为输出端;引脚6和4分别为电源和地;引脚1和8为电压增益设定端;使用时在引脚7和地之间接旁路电容,通常取10μF。 查LM386的datasheet,电源电压4-12V或5-18V(LM386N-4);静态消耗电流为4mA;电压增益为20-200dB;在1、8脚开路时,带宽为300KHz;输入阻抗为50K;音频功率0.5W。 尽管LM386的应用非常简单,但稍不注意,特别是器件上电、断电瞬间,甚至工作稳定后,一些操作(如插拔音频插头、旋音量调节钮)都会带来的瞬态冲击,在输出喇叭上会产生非常讨厌的噪声 查LM386的datasheet,电源电压4-12V或5-18V(LM386N-4);静态消耗电流为4mA;电压增益为20-200dB;在1、8脚开路时,带宽为300KHz;输入阻抗为50K;音频功率0.5W。 尽管LM386的应用非常简单,但稍不注意,特别是器件上电、断电瞬间,甚至工作稳定后,一些操作(如插拔音频插头、旋音量调节钮)都会带来的瞬态冲击,在输出喇叭上会产生非常讨厌的噪声。 1、通过接在1脚、8脚间的电容(1脚接电容+极)来改变增益,断开时增益为20dB。因此用不到大的增益,电容就不要接了,不光省了成本,还会带来好处--噪音减少,何乐而不为? 2、PCB设计时,所有外围元件尽可能靠近LM386;地线尽可能粗一些;输入音频信号通路尽可能平行走线,输出亦如此。这是死理,不用多说了吧。 3、选好调节音量的电位器。质量太差的不要,否则受害的是耳朵;阻值不要太大,10K最合适,太大也会影响音质,转那么多圈圈,不烦那! 4、尽可能采用双音频输入/输出。好处是:“+”、“-”输出端可以很好地抵消共模信号,故能有效抑制共模噪声。 5、第7脚(BYPASS)的旁路电容不可少!实际应用时,BYPASS端必须外接一个电解电容到地,起滤除噪声的作用。工作稳定后,该管脚电压值约等于电源电压的一半。增大这个电容

高保真胆机功放电路的原理及制作

高保真胆机功放电路的原理及制作 目前,电脑声卡音频、MP3、MP4以及CD、SACD、DVD甚至蓝光碟等多媒体音源,多为解压缩数模转换流,通常用晶体管或集成电路音频放大器放音,虽然具备一定的优点外,但音质略显直白生硬,缺泛韵味,少有临场感,即通常称之为数码声。而用胆管(电子管)制作的音频放大器,播放多媒体音源,能够有效地改善音质,可获得良好的听感,有效克服多媒体音源音色冷板生硬,缺泛情调之嫌,使人声乐曲充满活力,久听不厌! 为了解决这一问题,使后级重放乐声更传神,音色更美好,近些年来,流行用胆管(电子管)音频放大器,播放电脑等数码音源,以获得良好的听感,有效克服数码音源音色冷板生硬,使乐曲声充满活力,久听不厌!由于采用胆管这一器件,对基于数模转换音频这一脉冲信号波形的前沿后跌具有一种时滞作用,极大地改善了音响效果。胆管音频放大器对音频信号具有独特的表现力,一些LP黑胶烧友也十分钟情于胆机,认为胆机是LP唱机的绝配。 单端胆机音质醇美剔透,十分迷人,尤其在表现音乐人声方面情感丰富,魅力独特。为了进一步提高单端胆机的性能,增强对乐曲的表现力,使音质更好听,音色更完美!试制一部6C16电感直耦FU50单端机,在不悖电路原理的前提下,坚持简洁至上原则,多一个元件,多一份失真,能减的元件尽量减。制作成功后的胆机功放保真度极高,有兴趣的话不妨一试。 电路原理 整机电路如图所示,电压放大采用高跨导低噪声宽频带单三极管6C16担任,6C16与FU50之间采用电感直耦,既保证良好的幅频特性又能领略电磁耦合的魅力,电感直耦较阻容耦合、电感电容耦合及变压器耦合在性能上要好得多,可有效地克服数码声,增强乐声讨胆味。为了提高线性减小失真,FU50采用三极管接法。6C16系高跨导中屏流三极管,加之感性负载,在屏压150V电压下能输出80V左右推动电压,足以推动FU50,此管用于电压放大线性好失真小,音质醇美剔透,色彩斑斓,加之单管封装,声底清净,音场定位准

2.4G放大器电路原理图

2.4G 射频双向功放的设计与实现 在两个或多个网络互连时,无线局域网的低功率与高频率限制了其覆盖范围,为了扩大覆盖范围,可以引入蜂窝或者微蜂窝的网络结构或者通过增大发射功率扩大覆盖半径等措施来实现。前者实现成本较高,而后者则相对较便宜,且容易实现。现有的产品基本上通信距离都比较小,而且实现双向收发的比较少。本文主要研究的是距离扩展射频前端的方案与硬件的实现,通过增大发射信号功率、放大接收信号提高灵敏度以及选择增益较大的天线来实现,同时实现了双向收发,最终成果可以直接应用于与IEEE802.11b/g兼容的无线通信系统中。 双向功率放大器的设计 双向功率放大器设计指标: 工作频率:2400MHz~2483MHz 最大输出功率:+30dBm(1W) 发射增益:≥27dB 接收增益:≥14dB 接收端噪声系数:< 3.5dB 频率响应:<±1dB 输入端最小输入功率门限:

基于LM386的功放电路设计

基于LM386的简单功放系统设计 一、系统概述、设计思路 功率放大器的作用是给音响放大器的负载(扬声器)提供一定的输出概率。当负载一定时,希望输出的功率尽可能大,输出的信号的非线性失真尽可能小,效率尽可能高。 LM386是美国的国家半导体公司生产的音频功率放大器,主要应用于低电压消费类产品。为使外围元件最少,电压增益内置为20,但在1脚和8脚之间增加一只外接电阻或电容,便可将电压增益调为任意值,直至200。输入端以地为参考,同时输出端被自动地偏置到电源电压的一半,工作电压范围宽,4~12V 或5~18V,在6V电源电压下,它的静态功耗仅为24mV,且外围元件少。 二、系统组成及工作原理 (1)外形与引脚功能 LM386是8引脚双排直插式塑料封装结构,其外形与引脚排列如图所示, 2脚为反向输入端,3脚为同向输入端,5脚为输出端,6脚与4脚分别为电源和地端,1脚和8脚为电压增益设定端;使用时,引脚7和地之间接旁路电容,通常为10uf。 (2)其内部电路如下 由图可知,该集成OTL型功放电路的常见类型,与通用型集成运放的特性相似,是一个三级放大电路:第一级为差分放大电路;第二级为共射放大电路;第三级

为准互补输出级功放电路。 第一级为差分放大电路,T1和T3、T2和T4分别构成复合管,作为差分放大电路的放大管;T5和T6组成镜像电流源作为T1和T2的有源负载;T3和T4信号从管的基极输入,从T2管的集电极输出,为双端输入单端输出差分电路。使用镜像电流源作为差分放大电路有源负载,可使单端输出电路的增益近似等于双端输出电容的增益。 第二级为共射放大电路,T7为放大管,恒流源作有源负载,以增大放大倍数。第三级中的T8和T9管复合成PNP型管,与NPN型管T10构成准互补输出级。二极管D1和D2为输出级提供合适的偏置电压,可以消除交越失真。 引脚2为反相输入端,引脚3为同相输入端。电路由单电源供电,故为OTL电路。输出端(引脚5)应外接输出电容后再接负载。 电阻R7从输出端连接到T2的发射极,形成反馈通路,并与R5和R6构成反馈网络,从而引入了深度电压串联负反馈,使整个电路具有稳定的电压增益。 当1脚和8脚之间开路时,电压增益为26db;若在1脚和8脚之间接阻容串联元件,则增益可达46DB,改变阻容值则增益可在26db-46db之间任意选取。电阻值越小增益越大。 (3)功能框图 LM386集成功放属于直接耦合的多级放大器结构,它是一个三级放大电路,如下图所示。 输入级由差分放大器组成,它可以克服直接耦合产生的零漂现象,使电路工作稳定。中间放大要求有较高的电压增益,因此由共射放大电路组成,它为输出级提供足够大的信号电压。输出级要驱动负载,所以要求输出电阻小,输出电压幅度高,输出功率大,因此采用互补对称功放电路。 (4)设计电路图

NE5532与TDA7057组成功放电路原理与维修

功放电路原理与维修 一;功放电路的构成; 功放电路的构成以捕鱼机功放为例,也是多数机台常用到的功放,故障率也比较多,该功放主要由前置放大集成块NE5532和功放块 TDA7057构成 1;NE5532。

NE5532外围电路 2;TDA7057

TDA7057AQ为BTL立体声(双声道)音频功率放大器,具有较宽的电源电压范围(4.5V~18V),它也可用在多功能的音响设备及电视机中。TDA7057AQ的额定电压增益为40dB。TDA7057AQ内部具有按对数曲线变化的直流音量控制电路,控制范围可达73dB,当直流控制电压低于0.4V时,放大器静音。 TDA7057AQ功放电路图 TDA7057引脚功能及参考电压:1脚:0~1V—直流音量控制1;2脚:0V—空;3脚:2V—输入1;4脚:19V—电源;5脚:2V—输入2;6脚:0V—信号地;7脚:0~1V—直流音量控制2;8脚:8.6V—正向输出2;9脚:0V—功放地2;10脚:8.6V—负向输出2;11脚:8.6V—负向输出1;12脚:0V—功放地1;13脚:8.6V—正向输出1。

二,原理图分析

1;电源供电; 该供电12v电通过插头接入功放电路,通过D1整流,c1滤波,送到功放开关K-01。 当开关闭合后,由c2滤波后,12v电压分3路,一路通过R1 限流为LED等提供电压,LED点亮..一路由R 限流后,送入功放前置放大块NE5532,8脚,给NE5532提供稳定电压,另一路给功放块TDA7057,4脚提供工作电压。 2;信号流程; R声道信号流程,R声道的信号流程是;当插入从主机送来得R信号后,通过电容C04旁路,WR01音量调节电位器中心插头取出,电容C05 耦合,送到前置放大NE5532的3脚。在NE5532内部处理放大后,由1脚输出;通过电容C09耦合后分2路,一路由电容C11耦合后,送到高音调节电位器,另一路由电阻R08送到低音调节电位器,中心抽头取出,经过电阻R09与高音调节混合后通过电容C 16耦合后,送入TDA7057的3脚,在TDA7057内部处理放大后由11脚,13脚输出,推动扬声器工作。 L声道信号流程,L声道的信号流程是;当插入从主机送来得L信号后,通过电容旁路,R音量调节电位器中心插头取出,电容耦合,送到前置放大NE5532的5脚。在NE5532内部处理放大后,由7脚输出;通过电容耦合后分2路,一路由电容耦合后,送到高音调节电位器,另一路由电阻R送到低音调节电位器,中心抽头取出,经过电阻R与高音调节

音频放大电路的组成及原理

第二章高保真电路的组成及基本原理 2.1电路整体方案的确定 音频功率放大器的基本功能是把前级送来的声频信号不失真地加以放大,输出足够的功率去驱动负载(扬声器)发出优美的声音。放大器一般包括前置放大和功率放大两部分,前者以放大信号振幅为目的,因而又称电压放大器;后者的任务是放大信号功率,使其足以推动扬声器系统。 功率放大电路是一种能量转换电路,要求在失真许可的范围内,高效地为负载提供尽可能大的功率,功放管的工作电流、电压的变化范围很大,那么三极管常常是工作在大信号状态下或接近极限运用状态,有甲类、乙类、甲乙类等各种工作方式。为了提高效率,将放大电路做成推挽式电路,功放管的工作状态设置为甲乙类,以减小交越失真。常见的音频功放电路在连接形式上主要有双电源互补推挽功率放大器OCL(无输出电容)、单电源互补推挽功率放大器OTL(无输出变压器)、平衡(桥式)无变压器功率放大器BTL等。由于功放管承受大电流、高电压,因此功放管的保护问题和散热问题也必须要重视。 OCL电路由于性能比较好,所以广泛地应用在高保真扩音设备中。本课题输出级选用OCL功率放大器,偏置电路选用甲乙类功放电路。为了使电路简单,信号失真小,本电路选用反馈型音调控制电路。为了不影响音调控制电路,要求前置输入阻抗比较高,输出阻抗低,本级电路选用场效应管共源放大器和源级跟随器组成。 高保真音频放大器组成框图 2.2 OCL功率放大器的原理 OCL功率放大器电路通常可分成:功率输出级、推动级和输入级三部分。根据给定技术指标,选择下图所示电路 功率输出级是由四个三极管组成的复合管准互补对称电路,可以得到较大的输出功率。再用一些电阻来减小复合管的穿透电流,增加电路的稳定性。前置电路用NPN型三极管组成恒压电路,保证功率输出管有合适的初始电流,以克服交越失真。 推动级采用普通共射放大电路。 输入级部分由三极管组成差动放大电路,减小电路直流漂移。 2.3音调控制电路的原理 常用的音调控制电路有三种:一种是衰减式RC音调控制电路,其调节范围

各类功放原理图及原理介绍

D类功放的原理 在音响领域里人们一直坚守着A类功放的阵地。认为A类功放声音最为清新透明,具有很高的保真度。但是,A类功放的低效率和高损耗却是它无法克服的先天顽疾。B 类功放虽然效率提高很多,但实际效率仅为50%左右,在小型便携式音响设备如汽车功放、笔记本电脑音频系统和专业超大功率功放场合,仍感效率偏低不能令人满意。所以,效率极高的D类功放,因其符合绿色革命的潮流正受着各方面的重视。 由于集成电路技术的发展,原来用分立元件制作的很复杂的调制电路,现在无论在技术上还是在价格上均已不成问题。而且近年来数字音响技术的发展,人们发现D类功放与数字音响有很多相通之处,进一步显示出D类功放的发展优势。 D类功放是放大元件处于开关工作状态的一种放大模式。无信号输入时放大器处于截止状态,不耗电。工作时,靠输入信号让晶体管进入饱和状态,晶体管相当于一个接通的开关,把电源与负载直接接通。理想晶体管因为没有饱和压降而不耗电,实际上晶体管总会有很小的饱和压降而消耗部分电能。这种耗电只与管子的特性有关,而与信号输出的大小无关,所以特别有利于超大功率的场合。在理想情况下,D类功放的效率为100%,B类功放的效率为78.5%,A类功放的效率才50%或25%(按负载方式而定)。 D类功放实际上只具有开关功能,早期仅用于继电器和电机等执行元件的开关控制电路中。然而,开关功能(也就是产生数字信号的功能)随着数字音频技术研究的不断深入,用与Hi-Fi音频放大的道路却日益畅通。20世纪60年代,设计人员开始研究D 类功放用于音频的放大技术,70年代Bose公司就开始生产D类汽车功放。一方面汽车用蓄电池供电需要更高的效率,另一方面空间小无法放入有大散热板结构的功放,两者都希望有D类这样高效的放大器来放大音频信号。其中关键的一步就是对音频信号的调制。

新型定压输出功率放大器电路分析与维修图解

新型定压输出功率放大器电路分析与维修图解 定压输出的功放过去叫扩音机,在农村和企业常作广播系统使用,近年来在宾馆、饭店、广场播放背景音乐也得到广泛应用。目前流行的定压功放一改过去推挽输出的功率放大电路,而是采用如彩页附图REESOUND MA-300这种新型功放电路。如ET-5350、MP-600P等机型都采用了这种电路。- 从电路图中可看出这种功放电路与普通OCL功率放大器有很大区别。普通的家用或专业功放电路功率管均采用发射极输出形式,功率输出由中点通过负载到公共地构成回路。此电路功率管却是集电极输出方式,PNP和NPN不同极性的功率管集电极直接连在一起,输出中点与信号输入地连接。电源变压器B1次级单绕组120V经桥式整流后通过C1、C2、R1、R2分压形成正负电源(±60V)和悬浮地。作为负载的输出变压器B2的初级绕组就跨接在输入地和悬浮地之间。有资料把这种电路形式叫电流源激励共射输出放大电路。功率管不在大环路反馈环之内,克服了功率管温度特性不稳定的缺点,并充分发挥了集电极输出电压增益高的优点ZD1、ZD2两个3V稳压管相对着跨接在输入端与地之间,可防止输入信号过强。T1、T2、T3、T4组成双差分放大电路,反馈信号不象普通电路取自中点而是取自悬浮地。送往下级的信号不是由输入管集电极取出,而是从反向输入管集电极取出,这也是与传统OCL电路的不同之处。T5、T6和T7、T8组成共射共基电压放大电路,用D1、D2,D3、D4发光二极管给T6、T7基极提供稳定的电压可减小因电压波动而引起的

非线性失真。T9是恒压偏置管,热敏电阻Rt并联在T9基极的上偏置电路里,安装在散热片上,起到温度补偿的功能。ZD3、ZD4两个12V稳压管和电阻电容给前两级提供稳定电压,有效的隔离了功率输出引起的电压波动。T10、T11,T12、T13构成复合电流放大级,ZD5、ZD6的加入可防止信号过强时引起对功率管的过激励,是一种新颖的保护电路。T14-T23是五对功率管(原电路板有六对位置只装五对),因采用这种新电路使功率管安装很方便,不用云母片而直接固定在方桶型散热片上(配有风机)。C3、R3是茹贝尔补偿网络,克服输出变压器纯感性负载造成的高频移相自激。T24、T25组成过流检测电路,T26是悬浮地直流检测电路。当电路过流或悬浮地直流偏移严重时两个检测电路就会使继电器驱动电路截止,释放继电器起到保护作用。T27、T28是继电器J驱动电路,温度继电器Jt是常闭型,安装在散热片上。当散热片温度过高时,Jt由常闭转为打开状态,T28失去偏置而截止,继电器J释放,触点JK打开而停止功率输出。因扬声器是通过线间变压器和输出变压器与直流电路隔离,不存在开机电流冲击现象,因此继电器不需要延迟闭合,开机就吸和。也有机型采用继电器常态不吸和,利用常闭触点接通负载,在有故障时继电器吸和断开负载。输出变压器B2次级设置有20V、70V、100V三档,其中20V可直接配接16Ω25W号筒喇叭。100V输出需经过定压式线间变压器再连接号筒喇叭或吸顶扬声器、室外音柱。为适应饭店多套客房背景音乐的控制,有的机型面板还设置了四个选择开关,背后增加了四组接线柱,按下某个选择开关相应一路就接入100V输出端。

简单音响电路的设计与实验

简单音响电路的设计与实验 一.设计任务 1.音响放大器设计 1)输出小信号进行放大扩音。 2.主要指标要求: 1.最大输出功率 02 P W 2.负载R L=8Ω。 3.频率变化范围f=20HZ-20KHZ 二. 实验目的 1.掌握模拟电路系统设计的基本方法。 2.掌握功率放大器的特性和质量参数的测试方法。 3.通过实验加深互补对称功率放大电路的理解。 4.学习电压放大倍数及最大不失真输出电压幅度的测试方法 三、实验说明 1、音响系统的组成框图 2、音响系统简介 1)功率放大器 功率放大器可采用分立元器件组成,也可以使用集成功率放大器,前者常用于大功率或要求较高的音响系统中,后者常用于小功率或要求不太高的音响系统中,使用集成功率放大器应注意:在任何情况下,集成功率放大器都不能工作在超过极限参数或绝对额定值所规定的工作条件下。 2)前置放大器 前置放大器属于小信号低噪声放大器。可采用分离元件电路,也可采用低

噪声运算放大器。采用分离元件电路时,为了减少噪声,一般静态工作点选取较低。 四、实验仪器 1、实验箱(TPE-A2) 2、.示波器(V212) 3、函数信号发生器(DF1642A ) 4、双通道交流毫伏表(AS2294D ) 5、台式数字万用表(VC8045) 6、扬声器 五、实验原理 1)前置放大器的设计 前置放大器实际就是对一个小信号进行放大的作用。因为功率放大器对输入信号有一定的要求,太弱的功率放大器“不理睬”,所以功率放大器之前需要增加一至数级的放大器。将小信号逐步放大到功率放大器需要的信号幅度。而反相比例放大电路使用比较方便,所以本实验采用了反相比例放大电路。如下图 1 R R U U A f i O uf - == 2)功率放大器的设计 功率放大器任务是将音频放大到足够推动扬声器,不同于前置放大器,功率放大器不仅对信号进行放大,而且放大了电流信号,以满足外接负载的功率要求。功率放大器还应具有频率特性平坦、高信噪比和优良的动态特性等功能。经过对比 采用互补对称功率放大电如上图

功放电路图教学教材

功放电路图

功放维修图解 目前流行的功率放大器除采用集成电路功放外几乎都是用分立元件构成的OCL电路。基本电路由差动输入级、电压放大级、电流放大级(推动级)、功率输出级和保护电路组成。附图A是结构框、图B是实用电路例图,有结构简单的基本电路形式,也有增加了辅助电路和补偿电路的复杂电路形式。 本文把常见的OCL电路分解成几块,从电路的简单原理,常见的电路构成,检查时电路的识别,维修的基本方法逐个进行介绍。认识了局部电路拼出整个电路图时功放的维修就相对容易多了。C是电压分布图。电压测量是功放检修中基本方法,电压分布是以输入端到输出端为0V中轴线,越向上红色越深表示正电压越高,越向下蓝色越深表示负电压越低。图B这种全对称电路电压也正负对称,是检

修测量的主要依据。 一、差动输入级 图1是最基本的差动(差分)输入级电路,它由两个完全对称的单管放大器组合而成,两个管的基极分别是正负输入端。一个输入端作为信号输入用,另一个输入端为反向输入末端负反馈用。因其能有效地抑制输出端的零点漂移而成为OCL电路的输入门户。输入级有单差动和双差动之别,单差动电路简洁,双差动对称性好。从前级送来的信号通过一个电容和电

阻所连接的三极管就是差动输入级,相邻的同型号管子就是差动的另一 半。输入端接的是一个管的基极则是单差动,如接着两个管的基极,就是双差动。为克服电源波动对电路的影响,图2在差动放大器的发射极增加了恒流源。有的在集电极增加了镜流源如图3,保证了差动两管静态电流的一致性。图4是既有恒流源又有镜流源的高挡机采用的差动输入电路。 图5、6、7 是常见的三种恒流源电路,尤其是图6这种利用二极管箝位方式用的最多,两个二极管将三极管基极稳定在1.4V左右,在电源电压波动时,差动级的静态电流保持不变,提高了放大器的稳定性。图8、9镜流源中两个三极管基极相连,发射极电阻相同,流过两管的电流一样,像照镜子一样确保差动两个管的静态电流一致性。这两部分电路的识别方法是差动管两发射极电阻归到一点后所连接的三极管就是恒流源,它最明显的特点就是基极上接有二极管或稳

一个LM386简单功放电路图

LM386简单功放电路图 a. 两个104的电容本来是用来隔直的,不过好像电脑主板和声卡上出来的音频都不带直流成份,而且用104时输入电平比较高的时候声音有失真,(估计是低频过滤在输入电平高的时候人听起来比较明显).于是去掉两个104的电容. b. 在这个时候上电(我用的是12V),接上我的MP3一听,嗯!还不错,可是就是杂声比较厉害,调了调R1的大小,当R1被调到最大的时候杂声没有了,最小的时候也没有了(这不是废话么,最小的时候输入都没有了 .把连接到功放的音频线拔了也没杂音了,原因可能有两个音频线上有电容在输入电阻R1比较小的时候,和LM386自激产生杂音,一放大就不得了了.于是决定R1就直接调到50K,音量就让MP3调去吧. c. 好像一切都没有问题了,拿到电脑上吧,刚接上去,嗯声音停大,不错!!刚以为要完事,电脑里一首歌就放完了,本来该是安静的却听见喇叭里噼噼啪啪,这个噪声奇了怪了,开始还是以为是R1的问题,索性就把R1去掉(反正LM386也不希罕从前级得到能量),噪音仍然存在,怀疑是主板上的高频噪声,于是在输入端并上一个102的电容---不起作用.这个电容也不敢并大了,大了要影响高频特性.又怀疑是功率大了C1吃不消,于是又在电源上并了一个100uF的电容,还是不行....... d. 就在这个时候用手一抓我的功放输入端的焊点,好了!没杂音了,仔细一想,原来是这样:我 从电脑接出来的线是一个声道和一个地,现在将这两个都悬浮起来接到功放上,两边没有共地,电脑主板上情况有复杂,所有有点噼噼啪啪的声音也正常,于是用了一个104的电容将电脑地和功放地一共起来,问题解决!效果很好,于是图就定成这样:

OCL功放电路原理及维修方法

OCL功放电路原理及维修方法 2010年11月29日 11:20 本站整理作者:佚名用户评论(0) 关键字:OCL(3) 由于OCL助放电路优越的性能、较高的稳定性和可靠性,长期以来被各生产厂家广泛采用。但在使用中由于种种原因经常出现烧毁功放管、复合管及电阻等元件的问题。因OCL龟路是直接耦合,电路前后相互牵扯,在维修判断故障时存在一些难度。经常造成反复烧管的现象,给维修工带来不必要的损失,使不少维修工望而却步。下面是我多年来维修功放的经验总结,写出来供大家参考,希望能对同行们有所帮助,并为你减少不必要的经济损失。 常见的OCL功放电路如附图所示。OCL电路的工作原理在许多文章中都有介绍,这里就不再叙述了,只讲一下具体的维修方法与技巧。 1.检查Q1Q2的射极电阻R4,R5是否变质。 2.检查Q6是否变质。造成零点漂移过大。 3.可调电位器W1是否开路,或调整增加W1的阻值。

图中Q6~010及R12~R14经常同时烧毁。在维修时不要盲目更换上述元件后就通电,因为此时若故障未彻底排查清楚,可能会再次烧毁。应仔细检查前面的管子及电阻等元件是否损坏,W1是否开路或阻值变大等。然后再采取下面的方法更安全稳妥。 将新的测量过的Q6、07、Q9、R12~R14焊好,而Q8和Q10功放管集电般先不要焊接(这一点非常重要),只焊接基极和发射极,保证直流负反馈构成回路(否则差分对管Q1、Q2不能正常工作),或用二极管代替功放管发射结,防止由于输出不平衡时烧毁功放管。这时一定不要接扬声器。通电检测输出端的静态对地电压。正常值为0V±40mV,正负误差越小越好。如偏差较大应立即关机,重新仔细检查。若测得输出电压正常时,再测量Q7和Q9基极间的电压,预调W1使其在1.5~2V之间。确认上述电压全都符合要求后,再将功率管Q7、Q9焊好,通电调整W1测量功放电路部允的总电流应为25~30mA(或功率管集电极电流J5~20mA)。电流符合要求后即可接上扬声器试机(注意在接扬声器前要仔细检查扬声器是否损坏,以免再次烧毁),至此这台功放就修好了。 另外。当输出端的静态电压偏差大于±50mV时,要重点检查Q1、Q2是否配对(两管放大系数应基本相等,误差要小于5%),R4、R5是否变值,重新配对和更换电阻后即可排除故障。 有些功放经常莫名其妙的烧毁,几次修复后都使用不了多长时间。其原因大多是印刷电路布线不合理,电源线没有按照由后向前的原则布线,使电路在大音量输出时产生寄生振荡,产重时就会烧毁功放。应按布线原则予以纠正,后面的线要尽量粗短。之后才可照上述方法进行修复。

几种运算放大器比较器与经典电路的简单分析报告

运算放大器组成的电路五花八门,令人眼花瞭乱,是模拟电路中学习的重点。在分析它的工作原理时倘没有抓住核心,往往令人头大。为此本人特搜罗天下运放电路之应用,来个“庖丁解牛”,希望各位从事电路板维修的同行,看完后有所斩获。 遍观所有模拟电子技朮的书籍和课程,在介绍运算放大器电路的时候,无非是先给电路来个定性,比如这是一个同向放大器,然后去推导它的输出与输入的关系,然后得出Vo=(1+Rf)Vi ,那是一个反向放大器,然后得岀Vo=- Rf*Vi……最后学生往往得岀这样一个印象:记住公式就可以了!如果我们将电路稍稍变换一下,他们就找不着北了!偶曾经面试过至少100个以上的大专以上学历的电子专业应聘者,结果能将我给岀的运算放大器电路分析得一点不错的没有超过10个人!其它专业毕业的更是可想而知了。 今天,芯片级维修教各位战无不胜的两招,这两招在所有运放电路的教材里都写得明白,就是“虚短”和 “虚断”,不过要把它运用得岀神入化,就要有较深厚的功底了。 虚短和虚断的概念 由于运放的电压放大倍数很大,一般通用型运算放大器的开环电压放大倍数都在80 dB以上。而运放的输 出电压是有限的,一般在10 V~ 14 V。因此运放的差模输入电压不足 1 mV,两输入端近似等电位,相 当于“短路”。开环电压放大倍数越大,两输入端的电位越接近相等。 “虚短”是指在分析运算放大器处于线性状态时,可把两输入端视为等电位,这一特性称为虚假短路,简称虚短。显然不能将两输入端真正短路。 由于运放的差模输入电阻很大,一般通用型运算放大器的输入电阻都在1M Q以上。因此流入运放输入端 的电流往往不足1uA,远小于输入端外电路的电流。故通常可把运放的两输入端视为开路,且输入电阻 越大,两输入端越接近开路。“虚断”是指在分析运放处于线性状态时,可以把两输入端视为等效开路,这一特性称为虚假开路,简称虚断。显然不能将两输入端真正断路。 在分析运放电路工作原理时,首先请各位暂时忘掉什么同向放大、反向放大,什么加法器、减法器,什么差动输入……暂时忘掉那些输入输岀关系的公式……这些东东只会干扰你,让你更糊涂;也请各位暂时不要理会输入偏置电流、共模抑制比、失调电压等电路参数,这是设计者要考虑的事情。我们理解的就是理想放大器(其实在维修中和大多数设计过程中,把实际放大器当做理想放大器来分析也不会有问题)。好了,让我们抓过两把“板斧”------“虚短”和“虚断”,开始“庖丁解牛”了。 (原文件名:1.jpg) 引用图片

简易音频功放电路原理图分析

简易音频功放电路原理图分析 简易音频功放电路原理图电路原理:两路声音信号(R和L)加到芯片TDA2822M的输入端6和7脚,经过放大后经C2和C3加到两个扬声器上,5和8脚是内部放大器的反向输入端,接上两个电容后使电路只对交流信号进行放大。R1和R2是为了在输入端没信号时将6和7脚电压拉低,减小无信号时的噪声。C2和C3滤去直流分量并且匹配阻抗。 元件选择:两个扬声器选用8欧、0.5w到1w的扬声器,其他元件无特殊要求。 电路调试:该电路使用TDA2822M功放集成电路,TDA 的好处就是外围元件少,使得电路大大简化,该电路连接无误后,加上电后几乎不用调试就可以使用。 TDA2822的简要参数: 电源电压:1.8V到15V 静态电流:9mA 输出功率:最大1W

电子制作是非常注重实践的,有些初学者总是问我该 看哪些书的时候,我总是感觉很诧异。从来没有谁是看书把电子制作看会的,看书只是对电子制作的一个辅助。 电子制作要以实践为主,只有不断的实践也就是做东西才能提高能力并且巩固所学的知识。 所以,我建议初学者最好从简单的制作开始,也许刚开始你做的东西没什么用。但第一次的成功是一个很好的开始,它会激励你不断走下去。在玩了电子制作一段时间后,你会可能你没怎么系统的学习过书本的知识,但你的能力会有很大的提高。 还有就是要脚踏实地,工程实践就是这样,好高骛远是没有用的。刚开始就想做很高级的东西,到头来你会发现你什么也不会,你的设想也就停留在设想的阶段。工程界没有天才,只有脚踏实地的实干家。

当然,我这也不是说不需要看书,借鉴别人的经验也是很重要的。在学习电子制作的过程中我比较倾向于实践和理论学习循环学习的方法,也就是先做东西,碰到了什么问题就去查找相应的资料,然后再回过头来实践,这样一来,你每做出来一个东西也就掌握了与之相关的各种理论知识。 当你掌握了一定的电子制作的技术以后,今后学单片机什么的会比别人快很多。

相关文档