文档库 最新最全的文档下载
当前位置:文档库 › 电动汽车驱动装置测试与仿真系统软件的研究

电动汽车驱动装置测试与仿真系统软件的研究

电动汽车驱动装置测试与仿真系统软件的研究
电动汽车驱动装置测试与仿真系统软件的研究

收稿日期:2001 04 04

资助项目:电动汽车驱动装置重点实验室项目

作者简介:罗立元(1976 ),男,99级硕士研究生,主要研究方向为电力电子与电力传动.

电动汽车驱动装置测试与仿真系统软件的研究

罗立元,何鸿肃,王鸿贵,梁秀玲,姚震,刘方铭

(广东工业大学信息工程学院,广东广州510643)

摘要:本测试系统实现了电动汽车驱动装置性能特性的实时测量,以及在实验室模拟电动汽车实地行驶的仿真控制功能,系统是针对电动汽车驱动装置的性能测试而设计的,同时它也可应用于各种交直流电机的性能测试,并可实现电机的低转速下的转矩脉动特性的检测 具有一定的实用价值

关键词:电动汽车;驱动装置;测试系统;仿真

中图分类号:TM351;TP316 文献标识码:A 文章编号:1007 7162(2001)04 0014 06

高性能、高效率的驱动装置是电动汽车的一个核心部件,它包括高性能电机、控制器以及励磁装置 作为以蓄电池供电的一种路面交通工具,电动汽车的连续行驶能力是衡量它的实用性能的一个重要指标 目前改进电动汽车连续行驶能力的技术有三种,即减小汽车的摩擦阻力系数、提高单位体积电池电能的含蓄量以及提高电能的转换效率 由于单位体积蓄电池的储能是有限的,提高电能的转换效率就显得尤为重要 电动汽车的能量转换效率主要取决于电池的供电效率和驱动装置的工作效率 电动汽车的运行特点决定了其工作电机的特定要求,汽车行驶时电机的工作点是不断地改变的,一般来说,在不同的工作点,其电能利用效率差别是很大的 因此有必要对电机的各不同的工作点的效率进行精确的分析测量 由于电动汽车驱动电机运行工作状态的复杂性和不稳定性,仅仅通过手工调节来对其稳定工作点的性能进行测试并不能精确地反映电机的特性 要精确的反映它的工作性能,一是要能对大量的工作点的特性进行分析,二是要能对变工作点状态下电机的性能特性进行测量 本系统中采用高性能的A/D 、D/A 转换器实现了对电机性能参数的实时采集及精确的给定驱动系统的控制信号,配合相应的软件算法,可以完成对大批量工作点性能参数信号进行检测和处理,从而精确地反映出电机不同工作点状态下的性能 由于待测参数的波形变化是随着电机工作点的变化而周期脉动的信号,数据采集的精度关系到系统的成败 下面围绕测试系统软件的开发设计对测试系统进行介绍 1 测试系统结构

测试系统由硬件与软件两大部分组成,硬件部分包括计算机、参数检测传感器(由扭矩仪、电压电流传感器组成)、发电机、打印机等组成 测试对象是电动汽车驱动装置 图1是测试系统的硬件连接原理图 测试软件的设计遵循模块化设计的原理,软件的功能模块结构框图如图2所示 2 测试系统功能模块

2 1 A 821PGL/PGH 多功能板原理与数据采集

数据采集模块是本软件系统的核心 测试系统的可靠性和精确度都直接取决于采集的数第18卷第4期

2001年12月广东工业大学学报Journal o f Guangdong University of Technology Vol 18No 4 December 2001

据的准确性和精度,各功模块的

功能的实现都是建立在数据分析

的基础上的 本系统采用A -

821PCL/PCH 多功能板实现对传

感器检测参数的A/D 转换 A821

-PCL/PC H 是一种可编程控制

的多功能数据采集卡,内置有一

个12位的ADC 、一个12位的

DAC 及三个定时/计数器 通过

设置跳线开关,可以选择16路共

地模拟信号输入通道或者8路分

接地模拟信号输出通道,另外还有16

路TTL 数字信号输入/输出通道及一

路模拟输出通道 板卡通过ISA 总

线占用计算机提供的从0x220到

0x23f 之间连续的16个I/O 端口,其

中首I/O 地址可以通过跳线设置,计

算机通过向这些端口发送命令字节

对其编程,可以控制它工作在不同的

工作模式 A/D 转换分两个阶段,触

发阶段和转换阶段,根据触发方式和

转换方式的不同(见图3),可以分成

四种工作模式,限于篇幅,不做更多

的介绍 触发方式

软件检测中断方式

软件触发

转换方式定时触发图3A/D 转换工作模式

在测试系统中,数据采集包括参数信号检测、A/D 转换、数据通讯及数据处理四个部分 信号检测部分实现系统要求的四路参数信号,即输出转矩、输出转速、输入电流、输入电压信号的检出、放大,形成ADC 可以直接做转换处理的电压信号 这部分是由硬件实现的,系统中采用了高精度的传感器及相应的测量仪器 具体硬件结构可参照前文的硬件连接图 其中输出转矩和输出转速在电机运行状态稳定时波动很小,而输入电流、输入电压即使是电机处于稳定运行状态,也可能是周期性波动的 如图4实验过程中电压电流的实际波形图 该图为示波器波形的直接拷贝,图形的标定说明以示波器示值表达方式为准

由图4可见空载时输入电压基本是恒定不变的,而在负载较大时则呈现锯齿波形状 在空载输出状态,电机端电流很小,驱动装置前端大电容以及直流电源后端的大电容两端的电压基本上维持不变,而在负载逐渐增大的情况下,电机端电流随之增大,该电流实质是靠电容的充放

15第4期罗立元,等:电动汽车驱动装置测试与仿真系统软件的研究

(a)空载输出 (b)负载较大时输出

图4 电机不同状态下电流电压波形图(其中C H2为电流、C H4为电压)

电来维持的,这就是锯齿形电压波形产生的直接原因 在实际操作时,电压的波动的明显程度也和输入电压大小直接相关,在输入电压较大时,即使负载较大时,电压的波动也不是很显著的,而在负载输入电压较小的情况下,即使是较小的负载状态也将出现显著的电压波动 A/D 转换和数据通讯是集成在一起实现的,通过对A821 PC L/PC H 进行编程控制,可以实时的对输入采集卡的模拟信号进行采集,并存放在内存单元中,供CPU 进一步处理 系统除了要直接检测的四路信号外,还需要求出相应的输入/输出功率,系统的功率因数,电机的效率,以方便全面的表征驱动装置的特性 下面是计算各参数的公式

U =1

T T 0(u(t) u(t))d t ,(1)[1]

I =1T T 0(i(t) i(t ))d t,(2)[1]

P in =1T T 0(u (t) i(t))d t,(3)[2]

P out =2 M n/60,(4)[3]

cos =

P in U I ,(5)[4] =P out P in

(6)[3]

式(5)没有除3是因为对于永磁无刷直流电机驱动装置并不是三相交流输入,而是脉动的直流电压、电流输入 计算公式中的积分运算采用复化梯形求积的算法[5]来实现,复化梯形求积算法的精度取决于步长的选择,步长取得越小,则运算精度越高 在对时间积分的实时采集系统中步长的选择必须考虑A/D 转换的速度,步长时间必然大于一次A/D 转换所需要的时间 所以A/D 转换以越快越好 在本系统中所采用的ADC 的转换时间是8!s,跟电源的20ms 的周期相比,足以保证数据的精度 以上计算值得注意的是计算P in 时应保持电压、电流采集的同步,且采样周期必须是供电源的周期的整数倍,否则将引起很大的误差,导致效率计算的不准确 下面给出了对采集卡输入通道0进行数据采集的一段程序

port=BaseAddr+0x0A; //选择通道0outportb(port,0);

16广东工业大学学报第18卷

for(j=0;j<10000;j++) //对10000次采集的数据求平均

{

port=BaseAddr+0x0c;//置A/D 转换标志

outportb(port,0x00);

port=BaseAddr+0x05;

while(k==0){

word=inportb(port);//检测并等待A/D 转换是否完成

if((word&0x10)==0x00)k=1;

}

k=0;

port--;

t1=inportb(port); //A/D 转换低位送t1

port++;

t2=inportb(port); //A/D 转换高位送t2

temp=(t2&0x0f)*256+t1;

temp1=te mp+temp1;

port=BaseAddr+0x08;

outportb(port,0x00);

}

temp1=(temp1/10000);

return temp1;

2 2 实时测量模块

这个部分实现了电机性能参数的在线检测,通过调用数据采集功能模块,将参量的示值送至计算机,并以直观曲线方式及表格数据的形式进行显示 实验的记录数据以文件方式保存,可以通过历史回放的方式再现实时测量的过程 从软件处理的角度来看,实际上测量所得的参数是经过大批量数据取平均值求得的,这里采取的是10000个数的平均值表示,以一次数据采集8!s 计算,完成一个数据量的采集需要80ms 的时间,即4个输入电压周期(以工频周期计算) 实时测量的特性可以使电机一些很重要的特性如低转速下转矩脉动能够很方便地检测出来,这一点对于永磁无刷直流电机来说是很重要的[6]

2 3 实验模块

实验模块的设计既考虑到传统电机实验的基本原理和步骤,完成电机实验的基本任务,同时也针对传统电机实验的缺陷加以改进 传统的电机实验存在调速、加载难以精确定位的缺陷,需同步测量参数众多、数据记录不便的不足,同时由于电机模型本身的复杂性,实验后数据处理很烦琐,实验结果的精确性也取决于测量点的多少以及选取有关 特别是对于那些需要由实验曲线来估算的参数 如衡量额定转速、额定功率下负载电流 完整的电机实验一般包括空载实验、加载实验、堵转实验、温升实验、定子电阻实验等一系列实验组成,相应地实验模块包括三个部分,即加载实验、空载实验、堵转实验三个子模块 软件中没有包括定子电阻实验和温升实验,因为定子电阻的测量很方便,而且精确度也完全可以满足实验的要求,所以在实验模块中没有包括直流电阻实验,而是在软件处理时直接将定子电阻做为一个外部给定的参数直接引用 17第4期罗立元,等:电动汽车驱动装置测试与仿真系统软件的研究

对于各种不同的实验,均可由软件配合相应的硬件开关设定为自动或手动工作模式 在手动模式下,对转速调节、负载调节是完全由人控制的,测试系统按照一定的时间间隔对实验数据进行采集、处理,同时绘制出相应的特性曲线,实验数据以文件存档的方式保存,可以随时打印或调出以表格或曲线的方式进行显示 在自动工作模式下,系统通过接受键盘输入的工作点数据,自动给出控制信号,控制电机按实验要求的模式运转,并完成相应的数据处理任务

2 3 仿真控制模块

该模块的功能通过软硬件结合的方法来模拟电动汽车的运行实况 通过控制电机按实际行驶时的运转状态转动,模拟电动汽车的运行实况,并实时地记录各相关性能参数,可以全面的衡量电机及其驱动装置的性能 汽车行驶状态和电机运转状态间存在着一定的关系 如图5所示 为了处理的方便,对于路面状态,只考虑水平路面和坡道,而将路面的摩擦的变化折合成坡度电动汽车电机刹车制动减速

加速电动汽车

升速电机速度

降速加载大小

转速图5相关参数对应关系

坡度的变化来考虑,即兼顾了一般性,又简化了处理 考虑到路面状态的随机性,我们在软件中设计了一个方便的人机接口 在仿真模拟之前,可以通过鼠标操作进行规程给定,将电机周期性运转的一个周期的速度轨迹及反应坡道倾斜度的负载大小的轨迹曲线给出来 其中周期的大小是通过一个周期时间设定给出的 规程给定的操作界面见图6,图6(a)的y 坐标代表速度,x 坐标代表时间,轨迹曲线的斜率代表相应的加速度 图6(b)的y 坐标代表坡道的倾斜角,x 为时间 实验时可根据电动汽车要运行的实际路况修改规程 在规程给定之后,将系统的硬件开关打到自动档,软件也设成自动工作方式,运行仿真模块,计算机即可根据规程给出控制信号,控制电机按规程的给定开始运转

计算机同时进行参数的实时采集,以曲线和表格数据的方式直观的展示电动汽车运行过程中各性能参数的动态变化过程 由于对于不同控制器类型,控制电压与电机实际端电压之间的比例关系是不一样的,即使是针对某一特定的控制器,两者之间也不是绝对的比例关系 具体的函数关系表现起来很复杂,在软件中利用计算机运算速度快、精度高的特点,将给定的控制信号和实际采集到的参数值不断的进行比较,同时根据算法调整控制信号量直到得到的参数值与希望的量之间的误差满足控制精度的要求 由于计算机处理的高速性,这种处理方法不会影响仿真的实时特征

18广东工业大学学报第18卷

2 4 分析模块

分析模块的功能可以完成对两种数据来源的处理,即存档的数据和实时测量的数据 所以它即有实时分析的功能,也有对历史数据的分析的功能 从软件结构图可知,它主要是完成电机及控制器的一些性能参数曲线的绘制,如机械特性曲线、转矩特性曲线等

3 结束语

本测试系统是专为实现电动汽车驱动电机及其驱动装置的实时检测以及电动汽车的仿真运行控制而设计的,但也能作为其它各种交流电机或直流电机的性能测试用的工具,具有一定的通用性 参考文献:

[1]张永根,刘振起,杨林跃等.电子测量技术基础[M].西安:西安电子科技大学出版社,1994.120 180

[2]邱关源.电路原理[M].上海:高等教育出版社.1982

[3]贾大义,艾高烈.常用电机原理与设计[M].北京:中国轻工业出版社.1996.201 209

[4]杨长能.电机学[M].重庆:重庆大学出版社.1994.163

[5]邓建中,葛仁杰,程正兴.计算方法[M].西安:西安交通大学出版社.1985.154 155

[6]唐任远.现代永磁电机理论与设计[M].北京:机械工业出版社.1997.143

Development of Software System for

Test and Simulation of Motor of Electrical Vehical

LUO Li yuan,HE Hong su,WANG Hong gui,LIANG Xiu ling,YAO Zhen,LI U Fang ming

(Faculty of Information Engineeri ng ,GDUT,Guan gzhou 510643,China)

Abstract:The test system is performed to reflect the specialties of motor of elec trical vehicle in real time and the function of simulating the running state of electrical vehicle.The design is based on the testing of motor of electrical vehicle,but it can also be used for other types of motor.It is easy to detect the torque pulsation in low speed when the test system is used to evaluate the performance of the motor.

Key words:electrical vehicle;controller;test system;simulation 19第4期罗立元,等:电动汽车驱动装置测试与仿真系统软件的研究

电动汽车充电桩检测评价系统的设计与分析

电动汽车充电桩检测评价系统的设计与分析 发表时间:2019-07-09T15:27:07.180Z 来源:《电力设备》2019年第6期作者:景琦吴冬张建东宋波张亚萍田振清 [导读] 摘要:现如今,国家政策推动了电动汽车产业的迅猛发展。 (天津平高智能电气有限公司天津 300300) 摘要:现如今,国家政策推动了电动汽车产业的迅猛发展。不少企业、科研院所、高校纷纷投入相当大的精力研发交流充电桩控制系统,并且设计出了多种类型的充电桩控制系统。本课题也对此进行了深入研究,并设计出了一款电动汽车交流充电桩智能控制系统。文章主要研究了面向互联网的电动汽车智能充电系统的设计和应用,并结合应用实例供相关部门参考。 关键词:互联网;电动汽车;智能充电系统 引言 随着汽车工业的快速发展以及汽车保有量不断增长,我国的能源和环境面临的挑战也越来越严峻,为了确保我国能源安全与低碳经济转型,应重视电动汽车的推广应用,未来电动汽车必将成为最主要的交通工具之一。目前,随着对电动汽车重视程度的快速提升,推进了电动汽车技术的发展,而且很好地控制了成本,装备了动力电池的一批电动汽车已经投入市场进行销售。所以,随着大批量电动汽车的产业化,作为电动汽车的核心技术,充电技术变得尤为重要,面向互联网建立健全的智能充电服务系统,存在较大的社会意义。 1设计面向互联网的电动汽车智能充电服务系统 1.1云服务器 1.1.1设计架构 云服务器基于spring开源架构,采用分层处理,并将数据处理压力逐层分解,实现了系统整体稳定性与性能的提高。总体技术架构包括业务层、网络层及应用层。业务层统一表达了各环节数据,构造统一信息模型,使网络层接入的数据规范化,优化了云服务器架构;网络层屏蔽了不同的通信技术,根据统一通信规约传送数据;应用层采用云服务器体系架构,统一管理多种数据信息,并向外提供数据统一服务,对各类业务应用进行支撑。 1.1.2设计功能 (1)监控。监管针对交、直流充电桩,以高效、准确的定位和可视化为基础,监测充电设备的状态、控制充电设备运行。 (2)交易。交易管理是指管理充电交易中的费用流转、账单及明细等,确保电费账目的准确与明晰。 (3)信息采集。采集管理在线实时监测充电设备,包括采集任务与档案管理。 (4)运营工况。运营工况是指通过分析地区、区域及客户的充电数据,得出推广电动汽车的走势,有助于宏观方案的制定,包括充电、财务及工况等分析。 (5)系统。系统管理为系统管理员所用,包括系统用户、角色、菜单、权限、日志、参数和系统消息等的管理。 1.2智能充电桩 交、直流充电是智能充电桩的两种充电形式。在电动汽车外安装交流充电装置,它和交流电网连接,提供交流电源,而且具有计量、计费及通信等功能。直流充电除了具有上述功能外,还可以变换电源、监测汽车状态及管理电池等。相较于传统充电桩,智能充电桩设置了Wi-Fi通信模块,借助Wi-Fi路由器和云服务器进行连接。智能交流充电桩主要包括微控制单元、Wi-Fi通信模块、保护单元及电源转换模块等。 (1)微控制单元。作为充电控制装置的核心,微控制单元进行指令控制和分发信息,利用功耗低、性价比高的芯片,借助串行或串口外围设备的总线接口和Wi-Fi通信模块进行通信,借助485总线和数字电表进行通信,借助I2C总线和Flash存储单元进行通信,微控制单元借助相连的驱动电路和接触器,控制充电电能的通断。 (2)Wi-Fi通信模块。借助功耗低的Wi-Fi模块,和无线网关数据进行通信,上报充电开关的远程控制以及电流、功率和电能信息。(3)保护单元。防雷器与漏电保护器是保护单元,借助防雷器可以避免雷电或内部过电压损坏设备;在设备漏电或有致命危险时,借助漏电保护器可以保护人身安全。 (4)电源转换模块。借助该模块实现交流电向直流电的转换,并提供电压等级不同的直流电,为其他电路供电。 1.3 App客户端 (1)视图层。该界面与用户交互,对用户的请求产生响应,借助业务逻辑层来处理逻辑,以不同的形式将结果展现给用户。地图与状态显示、控制与查询界面及支付结算组成了视图层。 (2)业务逻辑层。它主要对视图层业务提供逻辑支撑,包括地图、支付、控制、查询及状态显示等功能。判断和运算业务逻辑,包括请求服务器的数据和读取本地数据库。 (3)业务实体层。它包括业务实体对网关与平台服务器数据的请求、解析及对数据库的维护。借助App客户端软件,按照用户所选的功能,对相应的业务逻辑层模块进行调用,该层负责组织业务流程,调用业务实体层中的模块,借助网关(或平台)服务器接口与网关(或平台)服务器交换信息。主要包括:地图、状态显示、支付、控制及查询等功能。App客户端的充电服务模式包括:定电量、定时间、定金额和自动(充满为止)的充电模式。 1.4 APP应用 通过专用APP在手机等移动终端上通过客户端实时查找附近的充电站和车位余量,为车主推荐最近的充电站并规划最优路线。 1.5车辆管理 由于电动汽车充电站系开放性结构设计,一般无法设置卡口或道闸,需通过摄像机来抓拍识别车牌号码。所以系统可以通过在充电岛的每个停车车位部署高清检测摄像机,对每辆停车充电的汽车车牌进行抓拍分析,和供电公司充电卡关联的车牌库进行比对(条件允许可单向接入当地车管所车辆信息管理系统),对非电动汽车占用车位行为进行警告。 2实例应用 2.1站端监控系统设计 充电站主要分为高速快充站、城市快充站和充电桩站,按照现场实际情况及用户需求,系统的部署也有一定的差异,以8个充电车位设

电动汽车安全测试方案

Charles Ma Product Manager T&M c.ma@https://www.wendangku.net/doc/6a6757897.html,

目录
? GMC-I International简介 ? 新能源汽车关键零部件测试
ü ü ü 电机及控制系统测试 车载电池测试 充电系统测试
? 新能源汽车整车测试
Klaus Leibold
11.04.2014
?page 2

德国 GMC-Instruments: 历史与传承
纽伦堡街景
Metrawatt GmbH, 德国 纽伦堡 Gossen GmbH, 德国 爱尔兰根
Gossen MetraWatt GmbH
Camillebauer AG, 瑞士 苏黎世/沃伦 Dranetz, 美国电力士 N.J. GMC-I 欧洲各国销售子公司
纽伦堡教堂
GMCInstrument GmbH
德国纽伦堡
1906
1919
1944
1957
1962
1993
2007

GMC-IInternational
遍布全球90多个国家
Klaus Leibold
11.04.2014
?page 4

德国 GMC-Instrument:关键词
总部位于德国巴伐利亚州纽伦堡市, 全球员工约 600 人
r 公司标识与形象色:
与绿色 - 安全与可靠
r 产品研发生产基地分别位于: 德国, 瑞士, 英国和美国 r 百年历史, 欧洲知名电量测量测试仪器品牌 r ‘Gossenmetrawatt’, ‘GMC-I’, ‘Dranetz’(电力士), ‘Camillebauer ’
‘Kainos’ , ‘ProSyS’ 等品牌商标持有者
r 2013年度净销售额: 8,500 万 欧元 r Internet: https://www.wendangku.net/doc/6a6757897.html, r Email: info@https://www.wendangku.net/doc/6a6757897.html,
纽伦堡冬夜

电动汽车用动力蓄电池技术要求及试验方法

《电动客车安全要求》 征求意见稿编制说明 一、工作简况 1、任务来源 为引导和规范我国电动客车产业健康可持续发展,提高电动客车安全技术水平,落实工业和信息化部建设符合电动客车特点的整车、电池、电机、高压线束等系统的安全条件及测试评价标准体系的要求,全国汽车标准化技术委员会于2016年8月启动了本强标的立项和编制工作。 2、主要工作过程 根据有关部门对电动客车安全标准制定工作的要求,全国汽车标准化技术委员会电动车辆分技术委员会组织成立“电动客车安全要求工作组”(以下简称工作组),系统开展电动客车安全要求标准的制定工作。 (1)GB《电动客车安全要求》于2016年底完成立项(计划号20160968-Q-339),2016年12月29日在南充电动汽车整车标准工作组会议上组建了标准制定的核心工作组,启动了强标制定工作,并由起草组代表介绍了标准的背景、编制思路、以及与相关标准的协调性关系。 (2) 2017年2月-3月,基于已开始执行的《电动客车安全技术条件》(工信部装[2016]377号,以下简称《条件》)的工作基础,工作组向电动客车行业主要企业、检测机构等16家单位征求《条件》的实施情况反馈与强制性国标制定建议。 (3) 2017年4月18日,工作组在重庆组织召开标准制定讨论会,会议对《条件》制定情况进行了回顾,对收集到的《条件》执行情况进行了分析讨论。根据讨论结果,针对共性问题形成了专项征求意见表。 (4) 2017年5月-6月,工作组根据重庆会议讨论结果向行业进行强标制定专项意见征求意见。 (5) 2017年6月6日,在株洲召开工作组会议,会议对专项征求意见期间收集的反馈意见进行研究讨论。 (6)2017年6月-10月,工作组依据意见反馈情况和会议讨论结果进行标

纯电动汽车动力系统及驱动技术

纯电动汽车动力系统及驱动技术 一、电动汽车简介及现状 电动汽车就是指以车载电源为动力,用电机驱动车轮行驶,符合道路交通、安全法规各项要求的车辆,电动汽车可分为三种:蓄电池式纯电动车、燃料电池电动汽车与混合动力电动汽车。电动汽车历史悠久,世界上的第一辆电动汽车于1834年诞生,比1886年问世的世界上第一辆内燃机汽车还要早半个世纪。 大力发展新能源汽车从而实现世界交通及能源结构的转型已经成为当代汽车行业实现可持续发展的重要趋势。与传统燃油汽车相比,电动汽车尽管目前技术不太成熟,但凭借其能源效率高、环境污染小、能源多样化的优点已经成为汽车行业发展的必然选择,其发展也得到世界各国政府的重视与支持。 1、1 国内电动汽车发展现状 我国的电动汽车研究大约开始于上个世纪60年代,自“八五”以来,通过大量人力、物力与财力在纯电动汽车研究上的投入,正式把电动汽车的研究列入攻关计划,并在在北京、杭州等城市开展了不同形式的小规模示范运行。 2001年我国正式启动了“十五”国家高新技术研究发展计划(863),电动汽车被列入其中并投资数亿,确立了以燃料电池汽车、混合动力汽车与纯电动汽车为“三纵”,以多能源动力总成、驱动电机与动力蓄电池共性关键技术为“三横”的“三纵三横”研发布局川,具体分工如下:承担电动大客车项目的有北方车辆厂与北京理工大学,承担纯电动轿车研发的就是上海汽车、上海交通大学、天津汽车集团等。 自2009年以来,国家陆续出台《汽车产业调整振兴规划》、电动汽车“十城千辆”项目,这表明在低碳经济的政策背景下,国家对于纯电动汽车的扶持力度正在不断加大。 1、2 国外电动汽车发展现状 在电动汽车的发展进程中,各国与各地区都依据自己的国情与特点择了不同的技术路线,而处在技术领先位置的仍然就是日本、美国与欧洲,她们在电动汽车的车速、续驶里程、加速性能、动力蓄电池、基础设施等方面都有较大的优势。纯电动汽车已经在欧洲各国中拥有大量的用户,特别就是在当地政府部门。但就是由于没有成功地解决电动汽车续驶里程问题,商业化进程缓慢。各大汽车厂商发展电动汽车的热情明显不如日本与美国,所以其注意力更多地转向了其它清洁能源车的开发。下表就是国外几种电动汽车的技术指标。

新能源电动汽车驱动器可靠性试验规范V2.0(2018)

新能源汽车驱动器环境可靠性试验规范 目录 一.目的和范围 (4) 二.引用标准 (4) 三.试验设备要求 (5) 四.术语定义 (5) 1.标准大气条件 (5) 2.高温贮存试验 (5) 3.低温贮存试验 (5)

4.高温运行试验 (5) 5.低温运行试验 (6) 6.恒定湿热试验 (6) 7.温度循环试验 (6) 8.高温极限试验 (6) 9.低温极限试验 (6) 10.冷启动试验 (6) 11.冷热冲击试验 (6) 12.盐雾试验 (7) 13.粉尘试验 (7) 14.防水试验 (7) 15.符号定义 (7) 16.正弦振动 (7) 17.随机振动 (7) 18.跌落 (7) 19.HALT(Highly Accelerated Life Test) (8) 20.加速寿命试验 (8) 21.绝缘电阻 (8) 五.规范内容 (8) 1.一般试验步骤 (8) 2.试验应力 (9) 2.1高温贮存 (9)

2.2低温贮存 (10) 2.3高温运行 (11) 2.4低温运行 (12) 2.5恒定湿热试验 (13) 2.6温度循环试验 (14) 2.7交变湿热试验 (15) 2.8低温极限测试 (17) 2.9高温极限测试 (18) 2.10盐雾试验 (19) 2.11冷热冲击 (20) 2.12正弦振动试验 (21) 2.13粉尘试验 (22) 2.14防水试验 (22) 2.15包装随机振动试验 (23) 2.16包装跌落试验 (23) 2.17 HALT试验 (24) 2.18 随机振动寿命试验 (24) 六.顺序应力测试 (25) 七.附录 (26) 1. 附录一:不同环境应力对应的失效模式 (26) 2. 附录二:IPXX(防尘等级&防水等级),参考如下 (27) 八.注意事项 (28)

电动客车安全技术条件

电动客车安全技术条件 1 范围 本文件规定了电动客车的安全技术要求和试验方法。 本文件适用于车长大于等于6m的单层电动客车,包括纯电动客车、混合动力客车(含插电式混合动力客车)、燃料电池电动客车。 2 规范性引用文件 下列文件对于本文件的应用是必不可少的。凡是注日期的引用文件,仅所注日期的版本适用于本文件。凡是不注日期的引用文件,其最新版本(包括所有的修改单)适用于本文件。 GB/T 2408—2008 塑料燃烧性能的测定水平法和垂直法 GB/T 4208—2008 外壳防护等级(IP代码) GB 8410—2006 汽车内饰材料的燃烧特性 GB 8624 建筑材料及制品燃烧性能分级 GB/T 10297-2008 非金属固体材料导热系数的测定热线法 GB 13094 客车结构安全要求 GB/T 18384.3—2015 电动汽车安全要求第3部分:人员触电防护 GB/T 19596 电动汽车术语 GB 24407—2012 专用校车安全技术条件 GB/T 28046.2-2011 道路车辆电气及电子设备的环境条件和试验第2部分:电气负荷 GB/T 31467.3—2015 电动汽车用锂离子动力蓄电池包和系统第3部分:安全性要求与测试方法GB/T 31498—2015 电动汽车碰撞后安全要求 QC/T 413 汽车电气设备基本技术条件 QC/T 417.1 车用电线束插接器第1部分定义,试验方法和一般性能要求(汽车部分) QC/T 417.3 车用电线束插接器第3部分单线片式插接件的尺寸和特殊要求 QC/T 417.4 车用电线束插接器第4部分多线片式插接件的尺寸和特殊要求 QC/T 897—2011 电动汽车用电池管理系统技术条件 QC/T 1037—2016 道路车辆用高压电缆 QC/T 29106—2014 汽车电线束技术条件 3 术语和定义 GB 13094、GB/T 18384.3、GB/T 19596确立的及下列术语和定义适用于本文件。 3.1 热失控thermal runaway 单体蓄电池放热连锁反应引起电池自温升速率急剧变化的过热、起火、爆炸现象。

电动汽车驱动控制系统设计.

电动汽车驱动控制系统设计 摘要 驱动系统是电动汽车的心脏,也是电动汽车研制的关键技术之一,它直接决定电动汽车的性能,本文根据异步电动机矢量控制理论,结合电动汽车的实际要求,研究设计基于无速度传感器矢量控制的电动汽车驱动系统。矢量控制通过坐标变换将定子电流矢量分解为转子磁场定向的两个直流分量并分别加以控制,从而实现异步电动机磁通和转矩的解耦控制,已达到直流电动机的控制效果。最后,在Matlab环境中建立了仿真系统,验证了无速度传感器矢量控制系统原理应用于电动汽车驱动系统的可行性。 关键词:电动汽车;驱动系统;异步电动机;无速度传感器矢量控制

ABSTRACT Driving system is the heart of EV and one of the key parts of the vehicle that determines the performance of the EV directly. According to the control technique、the method of induction motor drive system and based on the factual requirement of EV, the speed sensorless vector control was designed in this article. By transforming coordinate, the stator current is decomposing two DC parts which orientated as the rotator magnetic field and controlled respectively, So magnetic flux and torque are decoupled. It controls the asynchronous motor as a synchronous way. Finally, intimation system is established in the environment of Matlab to validate these control arithmetic. The system proved its enormous practical value of application. Key words: EV; Drive system; Induction motor; speed sensorless vector control

电动汽车后部碰撞试验的电安全研究

电动汽车后部碰撞试验的电安全研究 本文将对比分析国际成熟的电动汽车碰撞标准法规,并结合我国电动汽车后部碰撞中电安全技术研究的现状和发展需求,研究制定相关试验流程及方法,通过严苛的实车碰撞试验进行方法验证与分析,探讨电动汽车后部碰撞的电安全问题。鉴于此,本文是对电动汽车后部碰撞试验的电安全进行研究,仅供参考。 标签:电动汽车;后部碰撞试验;电安全 一、标准法规比对分析 目前国际上关于电动汽车碰撞安全的标准有ISO6469—4、SAEJ1766—2014;法规主要有美国FMVSS305,欧洲ECER12、R94、R95,日本Attachment111以及中國GB/T31498—2015。对于碰撞形式,ISO6469—4没有指定特定的碰撞形式,使用其标准时参考各国已有的传统汽车碰撞法规进行试验;SAEJ1766—2014、FMVSS305以及Attachment111明确提出电动汽车需开展正面碰撞、侧面碰撞和后部碰撞,SAEJ1766—2014和FMVSS305还规定每次碰撞后须进行静态翻转试验;欧洲法规和GB/T31498—2015对正面碰撞和侧面碰撞进行了规定,但不涉及后部碰撞和静态翻转的测试要求。 然而,据公安部交通管理局发布的历年交通事故统计数据显示,汽车后部碰撞一直是典型的碰撞型式,事故量、人员伤亡和财产损失居高不下(图1)。 其中2015年,车辆后部碰撞的事故量为14397起,死亡人数5497人,受伤人数16019人,直接经济损失达19228万余元。电动汽车在整车设计中,为了提高续驶里程,往往在车辆后部增设了动力电池及电路配置,当车辆发生后部碰撞事故时,车辆高压电部件存在较大的碰撞冲击隐患和安全性能考验。为此,我国的安全法规有必要规定对电动汽车进行后部碰撞测试。 虽然GB/T31498—2015暂未提出对静态翻转的测试要求,但增加该项目的考核,对于提高我国电动汽车安全整体水平,无疑将起到积极作用。关于电安全测试项目,各标准法规的关注点主要集中在防触电保护、电解液泄漏和电池位置移动三个方面。防触电保护方面,除FMVSS305只关注绝缘电阻(含绝缘监测)以外,其它标准法规还对碰撞后的安全电压限值、电能量限值、物理接触防护等项目进行了规定。同时,GB/T31498—2015还增加了碰撞后车辆不得爆炸、起火的要求,各测试项目及指标要求见表1。 由表1可知,我国暂未将碰撞后电池电压和温度的监测列入考核项目。然而,电动汽车动力电池因碰撞可能导致短路,电池电压将出现较大波动。同时,内部材料发生热化学反应,将产生大量热和气体,引起电池热失控、温度大幅升高,诱发起火、爆炸事故。2011年,美国NHTSA进行雪佛兰V olt碰撞测试后未进行电池监控和险情排查,3周后因电池损坏导致电池起火,引燃本车及其它3辆汽车。此后,美国IIHS特别规定碰撞试验后实施电池温度的监测,监测结果直

纯电动汽车的结构分析和驱动系统性能比较

纯电动汽车的结构分析和驱动系统性能比较 摘要 纯电动汽车驱动形式有很多种,为了选择最合适的驱动系统,我们对不同驱动系统的结构特征进行了分析,在纯电动汽车上匹配不同的驱动系统后比较其动力性;以城市驾驶循环为例建立车辆能耗模型来比较其经济性。结果显示:单电机直接驱动系统虽然最简单,但其性能最差;装配两速变速器后,动力性显著改善,汽车行驶里程增加3.6%,但自动变速的功能难以解决;采用轮毂电机驱动系统可以改善汽车的动力性,但实际行驶效率不高;而双电机耦合驱动系统可以实现高效率行驶,其行驶里程比单电机直驱增加了7.79%,并且因为其具有结构简单,行驶效率高等特点,所以适用于现在的纯电动汽车。 绪论 作为核心部件,电力驱动系统的技术水平直接制约纯电动汽车的整体性能。如今,有多种驱动系统可以使用。根据车轮驱动扭矩的动力源,驱动系统的模式可分为整体式驱动和分布式驱动。整体式驱动系统的驱动扭矩由主减速器或次级减速器或差速器来调节,主要包括单电机直驱和主副电机耦合系统。在分布式驱动中,每个驱动轮都有一个单独的驱动系统,轮毂电机驱动系统是分布式驱动的主要形式。 整体式驱动的技术相对比较成熟,但驱动力通过差速器被大致平均分配到左、右半轴,单个驱动轮的转矩在大多数车辆中不能独立地调节。因此不安装其他的传感器和控制器,我们很难对汽车的运动和动力进行控制[1]。分布式驱动近几年飞速发展,由于大多数车轮和电动机之间的机械部件被替换,因此分布式驱动系统具有结构紧凑和传动效率高的优点[2]。 为了选取最适合纯电动汽车的驱动方式,本文对不同驱动系统的结构特征和动力性经济性比较进行了比较说明。本文结构如下:第二部分为驱动系统的结构特征分析,第三部分介绍驱动系统的参数和部件性能,第四部分比较不同驱动系统的动力性,第五部分比较不同驱动系统的经济性,第六部分得出结论。 结构分析 整体式驱动 整体式驱动系统被广泛应用于各类电动车辆,其主要结构如图1所示。其中M是电动机,R是固定速比减速器,T是变速器,D是主减速器,W是车轮。图1 a是单电机直驱系统,其扭矩由主减速器调节,通常称为直驱系统。图1 b和直驱系统十分相似,除了扭矩由变速器调节。因为驱动电机的速比调节范围比内燃机的更大,所以能以较少的齿轮数目的传动来满足在任何工况下的电动汽车需求。图1 c是另外一种整体式驱动形式,其采用两个驱动电机和主减速器,其中一个电机在大多数工况下作为汽车的动力来源,另外一个电机只有在需要附加功率时才会工作。

电动汽车用锂离子动力蓄电池包和系统测试规程

电动汽车用锂离子动力蓄电池包和系统测 试规程 电动汽车用锂离子动力电池包和系统测试规程 1范围 本标准规定了电动汽车用锂离子动力电池包和系统基本性能、可靠性和安全性的测试方法。 本标准适用于高功率驱动用电动汽车锂离子动力电池包和电池系统。 2规范性引用文件(其中的一部分) 下列文件对于本文件的应用是必不可少的。凡是注日期的引用文件,仅所注日期的版本适用于本文件。凡是不注日期的引用文件,其最新版本(包括所有的修改单)适用于本文件。 GB/T 2423.4-2008电工电子产品环境试验第2部分:试验方法试验Db交变湿热(12h+ 12h循环)(IEC 60068-2- 30:2005,IDT )

GB/T 2423.43-2008电工电子产品环境试验第2 部分:试验方法振动、冲击和类似动力学试验样品的安装(IEC 60068-2-47:2005,IDT) GB/T 2423.56-2006电工电子产品环境试验第2 部分:试验方法试验Fh:宽带随机振动(数字控制)和导则(IEC 60068-2-64:1993,IDT) GB/T 18384.1-2001电动汽车安全要求第1部分: 车载储能装置(ISO/DIS 6469-1:2000,EQV ) GB/T 18384.3-2001电动汽车安全要求第3部分: 人员触电防护(ISO/DIS 6469-3:2000,EQV ) GB/T 19596-2004 电动汽车术语 (ISO 8713:2002,NEQ) GB/T xxxx.1- xxxx 道路车辆电气及电子设备的环境条件和试验第1部分:一般规定(Road vehicles - En vir onmen tal con diti ons and testi ng for electrical and electronic equipment Part 1: Gen eral,MOD) GB/T xxxx.3- xxxx 道路车辆电气及电子设备的环境条件和试验第3部分:机械负荷(Road vehicles - En vir onmen tal con diti ons and testi ng for electrical and electronic equipment Part 3: Mecha ni cal loads,MOD) GB/T xxxx.4- xxxx 道路车辆电气及电子设备的环境条

新能源电动汽车电驱动系统

新能源电动汽车电驱动 系统 标准化工作室编码[XX968T-XX89628-XJ668-XT689N]

现代电动汽车电驱动系统主要由四大部分组成:驱动电机、变速器、功率变换器和控制器。驱动电机是电气驱动系统的核心,其性能和效率直接影响电动汽车的性能。驱动电机和变速器的尺寸、重量也会影响到汽车的整体效率。功率变换器和控制器则对电动汽车的安全可靠运行有很大关系。 电驱动系统的由以下几个部分组成: 1.电动汽车驱动电机 选用小型轻量的高效电机,对目前电池容量较小、续驶里程较短的电动汽车现状显得尤为重要。早期电动汽车驱动电机大部分采用他励直流电机(DCM)。直流电机驱动系统改变输入电压或电流就可以实现对其转矩的独立控制,进行平滑调速,具有良好的动态特性,并且有成本低、技术成熟等优点。但是,直流电机的绝对效率低,体积、质量大,碳刷和换向器维护量大,散热困难等缺陷,使其在现代电动汽车中应用越来越少。随着电力电子技术、大规模集成电路和计算机技术的发展以及新材料的出现和现代控制理论的应用,机电一体化的交流驱动系统显示了它的优越性,如效率高、能量密度大、驱动力大、有效的再生制动、工作可靠和几乎无需维护等,使得交流驱动系统开始越来越多地应用于电动汽车中。目前在电动汽车中,主要采用永磁同步电机(PMSM)驱动系统、开关磁阻电机(SRM)驱动系统和异步感应电机(肼)驱动系统。 永磁同步电机(PMSM)是一种高性能的电机,具有体积小、重量轻、结构简单、效率高、控制灵活的优点,在电动汽车上得到了广泛的应用,是当前电动汽车用电动机的研发热点,是异步感应电机的最有力的竞争对手。目前,由日本研制的电动汽车主要采用这种电机,如Honda公司的EV Plus、Nissan公司的Altra和Toyota公司的RAV4及Prius车型等。但是,永磁电机的磁钢价格较高,磁性能受温度振动等因素的影响,有高温退磁等问题。 开关磁阻电机(SRM)是由磁阻电机和开关电路控制器组成的机电一体化新型调速电机。开关磁阻电机工作时,依次使定子线圈中的电流导通或截止,电流变化形成的磁场吸引转子的凸出磁极从而产生转矩。开关磁阻电机结构简单,成本较低,可靠性高,起动性能和调速性能好,控制装置也比较简单。然而在实际应用中,开关磁阻电动机存在着转矩波动大、噪声大、需要位置检测器等缺点,所以目前应用开关磁阻电机的驱动系统仍然很少,主要以Chloride公司的“Lucas”电动汽车为代表。 异步感应电机(M)具有结构简单、坚固、成本低、可靠性高、转矩脉动小、噪声小、转速极限高、无需位置传感器及免维护等特点,因而在电动汽车驱动电机领域里,是应用很广泛的一种无换向器电机。近年来,由IM驱动的电动汽车几乎都采用矢量控制和直接转矩控制。美国以及欧洲研制的电动汽车多采用这种电动机。 异步电机的矢量控制调速技术也比较成熟,其电驱动系统具有良好的性能,因此被较早地应用于电动汽车,目前仍然是电动汽车驱动系统的主流产品。迄今为止,美国“Impact’’系列、“ETX.2”型,日本“Cedric"、“OTwn"、“FEV"型,德国 “T4”、“190’’型等电动汽车均采用异步感应电机。异步电机的最大缺点是驱动电路复杂,效率比永磁电机和开关磁阻电机低,特别是在轻载运行时效率更低。因此,如何进一步提高异步电机的运行效率,己经成为人们关注的重要课题。 2.变速器

电动汽车四轮独立驱动技术

电动汽车四轮独立驱动技术 一、引言 内燃机汽车自20世纪初出现至今,在其自身随人类科技的进步经历了巨大的变的过程中也给人类生活和生产带来了巨大方便,为人类社会的进步做出了巨大的贡献,但其消耗日益紧缺的石油并产生大量污染物也使人类赖以生存的环境恶化。因此近年来由于环境恶化及能源紧张等问题,迫切需要开发低能耗,无污染的汽车。因此,电动汽车成为21世纪汽车技术研究的热点。 混合动力汽车与纯电动汽车是电动汽车研究的两个分支。经过近些年的发展,电动汽车技术日趋成熟,部分产品已进入商业化应用如ToyotaPrius。目前,电动汽车传动系统多数在传统内燃机汽车的传动系基础上进行一些改变,进而将电动机及电池等部件加入总布置中。这种布置难以充分发挥电动汽车的优势。为使电动汽车对传统内燃机汽车形成更大的竞争优势,设计出适合电动汽车的底盘系统势在必行。而四轮独立驱动技术则可使电动汽车底盘实现电子化,主动化,大大提高电动汽车的性能。使电动汽车与传统汽车相比具有更强的竞争力。 二、四轮独立驱动技术的特点 电动汽车四轮独立驱动系统是利用四个独立控制的电动机分别驱动汽车的四个车轮,车轮之间没有机械传动环节。其电动机与车轮之间可以是轴式联接也可以将电动机嵌入车轮成为轮式电机,车轮一般带有轮边减速器。这种驱动系统与传统汽车驱动系统相比有以下特点: 1.传动系统得到减化,整车质量大大减轻。由电动机直接驱动车轮甚至两者集成为一体。这样省掉了离合器、变速器及传动轴等传动环节,传动效率得到提高,也更便于实现机电一体化。传动系质量在汽车整车质量中占有很大比重,机械传动系的消失,使汽车很好的实现了轻量化目标。另外,由于动力传动的中间环节减少,传动系的振动及噪声得到改善。甚至在采用纯电力驱动时,可实现无声行驶。这是美国海军的"RST-V"侦察车及其新一代军用"悍马"汽车采用四轮独立驱动技术的重要原因。 2.与传统汽车相比,四轮独立驱动系统可通过电动机来完成驱动力的控制而不需要其他附件,容易实现性能更好的、成本更低的牵引力控制系统(TCS)、防抱死制动系统(ABS)及动力学控制系统(VDC)。传统汽车的TCS与ABS系统均须对发动机与制动系进行联合控制才能达到较好性能,由于机械系统的响应较慢,且受制动器,液压管路及电磁阀的延迟等因素影响,传统内燃机汽车的ABS系统与TCS系统的实际时间延迟达50~100ms。限制了TCS系统与ABS系统的性能提高,而且增加能耗。与内燃机相比,无论在加速还是减速,电动机转矩响应都非常快且容易获得其准确值,这对TCS、ABS、VDC系统来说是非常重要的。因此电动机作为ABS、TCS及VDC 系统的执行器是非常理想的。 3.对各车轮采用制动能量回收系统,则可大大提高汽车能量利用效率,且与采用单电动机驱动的电动汽车相比,其能量回收效率也获得显著增加。这对提高电动汽车续驶里程是很重要的。 4.实现汽车底盘系统的电子化、主动化。现代汽车驱动系统布置分为前驱动、后驱动或全驱动。这两种驱动型式各有优缺点,而且对汽车行驶工况的适应性也不同。如前驱动轿车在高

几种常用电动汽车的驱动系统的比较及永磁同步电动机的相对优势

几种常用电动汽车的驱动系统的比较及永磁同步电动机的相对优势 2012年1月30日 电动汽车用永磁同步电机的发展分析 彭海涛,何志伟,余海阔 (华南理工夫学电力学院,广州510640) 摘要:简要的比较了几种常用电动汽车的驱动系统,并指出了永磁同步电动机的优势。在各类驱动电机中,永磁同步电机能量密度高,效率高、体积小、惯性低、响应快,有很好的应用前景,介绍了电动车驱动用永磁同步电机的目前研究状况以及目前的研究热点和发展趋势。关键词:电动汽车;永磁同步电机;弱磁控制;控制策略;应用 中圈分类号:TM351, TM341 文献标志码:A 文章编号:1001—6848[2010)06-0078-04 O引言 电动汽车具有低噪声、零排放、高效、节能及能源多样他和综合利用等显著优点,成为各国开发的主流。电动汽车的发展有赖于技术的进步,尤其是需要进一步提高其驱动系统的性能。电动汽车对其驱动系统的要求是转矩控制能力良好,转矩密度高,运行可靠性及在整个调速范围内的效率尽可能高,从而保证车辆具有良好的动力性能和操控性,同时在车载动力电池未能取得突破的情况下,延长车辆的续驶里程。研究并开发出高水平的电机驱动控制系统,对提高我国电动汽车驱动系统水平及电动汽车的产业化具有重要意义[2]。 随着永磁材料性能的提高和成本的降低,永磁同步电动机以其高效率、高功率因数和高功率密度等优点,正逐渐成为电动汽车驱动系统的主流电机之一。 1电动汽车用电动机及驱动系统比较 电气驱动系统作为现代电动汽车的核心,主要包括:电动机、功率电子元器件及控制部分。评价电动车的电气驱动系统实质上主要就是对不同电动机及其控制方式进行比较和分析。目前正在应用或开发的电动车用电动机主要有直流电动机(DCM)、感应电动机(IM)、永磁电动机(PM)、开关磁阻电动机(SRM)网类。下面分别对几种电气驱动系统进行简要分析和说明,其总体比较见表l。 1.1直流电动机驱动系统 在电动汽车领域最早使用的就是直流电动机。直流电动机结构简单,易于控制,具有良好的电磁转矩控制特性,但是由于采用机械换向结构,维护困难,并产生火花,容易对无线电产

电动汽车工况测试

电动汽车工况测试 作为实现能源革命的重要手段之一,电动汽车已然成为最热门的交通工具,而作为电动汽车核心部件的电驱部分,其性能和稳定性决定了一台电动汽车的品质。电池测试、电机测试、充电桩测试共同构成新能源汽车领域的三大测试项目,今天我们重点聊一聊电机测试。 传统的电机测试主要考察电机的效率及可靠性,常见的测试包括转速测试、扭矩测试、效率测试、温升曲线、堵转以及耐久度测试等。电动汽车电机测试项目与上述测试项目基本一致,新增的重要测试项目为“工况实验”。所谓工况实验就是给电机施加变化的力矩,以模拟电动汽车在实际道路中的运行状况,此过程中测试相关数据最能反映电机性能。长时间工况循环实验也是耐久测试的过程,与传统耐久测试区别在于电机工作在稳态还是非稳态。 电动汽车工况测试参考什么标准呢?国标《GBT 18488.1-2006 电动汽车用电机及其控制器第1部分:技术条件》已明确提到工况实验的测试标准,并且给出工况加载曲线。通过加载和控制扭矩的方式在模拟标准中规定测试中包含的工况,有停车、加速、匀速、减速、上坡、下坡6个工况。让电机工作在额定工况下,测取记录电机转矩、转速随时间的变化曲线。图1、图2是国标《GBT 18488.1-2006 电动汽车用电机及其控制器第1部分:技术条件》提到的相关曲线。 图1市郊循环 图2基本城市循环

但是等我们真正去测试时,翻开最新的2015国标发现上述要求不存在了!其实现在的工况实验这么玩:使用报文记录设备采集车辆在真是路况下的转速、转矩数据,再将此数据输入到电机测试台架中,使负载电机按照此数据进行参数输出。毫无疑问,这种工况测试更加真实。 MPT电机测试系统如何完美解决电动汽车电机工况实验?MPT电机测试系统采用专业的电机测试软件MotoTest,针对工况测试一键化操作,并且支持测试报表导出。功率、效率运算采用致远电子高性能功率分析仪,以保证测试精度。工况实验中,用户只需要配置道路状况,包含平路、上坡、下坡的各项参数,如坡面长度、坡度等,配置汽车参数,如后桥减速比、档位、轮胎半径、重力加速度、风阻系数、截面积等。上位机软件通过数学建模将汽车参数换算出,应该给被测电机所需加载阻力以及转速。控制被测电机按照设置的档位运行,稳定后加载路面文件,模拟道路运行,记录各项数据。除了根据国标进行工况测试,MPT电机测试系统还支持自定义工况实验。实际测试效果如图3、图4。 图3实际软件测试效果界面 图4路面波形和当前扭矩波形 致远电子针对电动汽车电驱部分的核心:逆变器和电机,基于MPT混合型电机测试系统设计出电动汽车电机试验平台解决方案,为电动汽车电机及其逆变器的研发、生产提供专业化的测试系统。有关此测试系统更多信息请登录致远电子官网,致远电子与您共同成长。

EV-TEST电动汽车主观评价管理规则

EV-TEST 主观评价管理规则 (2018年版) 中国汽车技术研究中心有限公司

目录前言 第一章总则 1.宗旨 2.管理机构 3.车辆分组说明 4.EV-TEST主观评价项目 5.EV-TEST特有标记 6. 声明 第二章运行管理 1.评价车型选取 2.车辆购买 3.评价 4.评价结果发布 5.经费 6.评价数据的处理 7.EV-TEST评价结果及相关标志的使用 第三章评分方法 1.EV-TEST主观评价评分方法 第四章试验方法 1.范围 2.规范性引用文件 3.EV-TEST主观评价评分依据 4.动力性能主观评价方法 5.驾驶品质性能主观评价方法

6.制动性能主观评价方法 7.转向性能主观评价方法 8.操稳性能主观评价方法 9.NVH性能主观评价方法 10.乘坐舒适性能主观评价方法 11.空间、座椅舒适性能主观评价方法 12.操作便利性能主观评价方法 13.视野主观评价方法 14.静态品质性能主观评价方法 附件 EV-TEST主观评价结果公布样式

前言 近年来新能源汽车产品和技术快速发展,同时在国家对新能源汽车采取的政府补贴等多种政策激励下,我国电动汽车逐步进入了寻常百姓家。为了给消费者更科学的购车参考,引导企业以产品品质为导向提升电动汽车技术水平,进一步普及绿色消费,2017年EV-TEST管理中心发布了《EV-TEST(电动汽车测评)管理规则》,通过多维度的客观测试,对电动汽车整车性能进行综合的客观评价。 2017年下半年开始,EV-TEST管理中心进一步展开EV-TEST电动汽车主观评价规程的制定。主观评价,即以人的主观判断为基础,不借助客观设备,通过人体的主观感受,由评价人员按照评价规程对车辆的各项主要性能进行评价,将评价结果进行分析量化,给出每项指标的评分。主观评价能够快速感知车辆的整体性能水平,补充客观评价无法评价的内容,为消费者提供更完善的性能参考。 EV-TEST从“动力性能、驾驶品质性能、制动性能、转向性能、操稳性能、NVH性能、乘坐舒适性能、空间和座椅舒适性能、操作便利性能、视野、静态品质性能”11个维度对电动汽车整车进行“标准严格、试验规范、独立公正”的主观性能评价,最终评价结果以直观量化的评价总分数和单项性能评分的形式(11个维度的雷达图)给出。 随着电动汽车技术不断进步和消费者对电动汽车性能需求的提高,EV-TEST主观评价将会不断完善和修订,以电动汽车产品用户满意度的提升为目标,推动新能源汽车企业不断提升技术水平和产品品质,促进汽车行业健康可持续发展。

新能源电动汽车安规测试方案

新能源电动汽车测试解决方案 在全球新能源汽车发展热潮推动下,随着汽车传统技术与先进的电子技术、信息技术和智能化技术的深度融合,新能源汽车这一高科技产品必将成为代表汽车工业技术研发和工业制造高水平的重要标志。在这种趋势下,所有车用与相关电子关键零组件除了不断的强化本身技术能力与持续研发创新产品外,更注重研发与最终生产阶段的品质维护。 IDI仪迪电子致力于提供汽车行业与车用电子产业全方位的高品质完整测试方案,可针对车用产业上下游不同需求提供完整的电动汽车安规测试方案,确保从零组件到车子整体、从研发到生产过程的所有安全测试,让最终用户拥有安全、创新、高质量与高性能的产品。例如:整车测试方案包含交流耐压/直流耐压、交流接地/直流接地、绝缘电阻、泄漏电流、充电功能检测以及充电过程中各项数据(包括电压、电流、充电量、SOC、电池温度变化等)的收集,并识别测试过程中充电枪是否连接良好,更好地保证操作人员的安全;汽车零部件测试方案包含交流耐压/直流耐压、交流接地、绝缘电阻、电位均衡、电池包绝缘等功能检测,并搭配专用的测试工装实现不同客户的个性化需求。 安规测试仪:新能源汽车专用安规测试系统NE6808H,新能源汽车补给系统安规测试仪 NE6811,安全性能综测测试仪MN428X/MN429X,耐压绝缘测试仪IDI616X,交流耐压测试仪 IDI610X,绝缘电阻测试仪IDI613X,交流接地电阻测试仪IDI611X,直流接地电阻测试仪 IDI6115D,泄漏电流测试仪IDI6121 交流电源:单相交流变频电源81/91系列,三相交流变频电源83系列 功率分析仪:高精度功率分析仪ID93,交直流功率测量仪IDI9921X

电动汽车动力电池系统国标最详细讲解读

电动汽车动力电池系统国标最详解读 来源:第一电动网发布时间:2015-08-28 09:56 设置字体:大中小 关注度:4791 次 分享到: 摘要:国标针对动力电池系统,建立了常规性能和功能要求——容量、能量、功率、效率、标准循环寿命、工况循环寿命、存储、荷电保持、容量恢复、倍率性能、高低温性能等。 【高工锂电综合报道】国标针对动力电池系统,建立了常规性能和功能要求--容量、能量、功率、效率、标准循环寿命、工况循环寿命、存储、荷电保持、容量恢复、倍率性能、高低温性能等,建立了安全防护要求--操作安全、故障防护、人员触电防护、滥用防护、环境适应性、事故防护、用户手册和特殊说明等,范围覆盖了电芯、模组、动力电池包、动力电池系统这4个层级,产品类型包括混合动力、插电式/增程式混合动力、纯电动乘用车和商用车,已基本上了构成了一个完整的体系。 一、构建标准体系 电动汽车早期的发展过程中,GB或GB/T国家标准的缺失在一定程度上造成了行业的良莠不齐和鱼龙混杂。仅依靠汽车行业的QC/T推荐标准作为一种参考,并不具有权威性和广泛性,整车企业和电池企业要么茫无头绪,要么各行其是、各执一词,缺乏一个统一的衡量标准。 随着2015年新版GB/T国家推荐标准的陆续发布,我国电动汽车产业围绕动力电池系统已基本上构建了完整的标准体系,形成了行业的准入门槛,有利于行业的规范发展和优胜劣汰。 新国标在2015年5月颁布(部分标准将在10月份或年底颁布),与旧标准之间有一年的过渡期,从2016年开始,相关企业都将遵循新的标准进行相关检测。新国标与工信部2015年3月发布的《汽车动力蓄电池行业规范条件》一起,将加速动力电池行业的洗牌,提高行业集中度水平。

相关文档
相关文档 最新文档