文档库 最新最全的文档下载
当前位置:文档库 › 实验三:存储管理

实验三:存储管理

实验三:存储管理
实验三:存储管理

一、实验名称

实验三:存储管理

[1]Windows Server 2003内存结构

[2] Windows Server 2003虚拟内存

二、 [1]实验目的

1)通过实验了解windows Server 2003内存的使用,学习如何在应用程序中管理内存、体会Windows应用程序内存的简单性和自我防护能力。

2)了解windows Server 2003的内存结构和虚拟内存的管理,进而了解进程堆和windows为使用内存而提供的一些扩展功能。

三、 [1]实验内容

1. 使用任务管理器终止进程

2. 显示其他进程计数器

3. 更改正在运行的程序的优先级

四、 [1]实验步骤

Windows提供了一个API即GetSystemInfo() ,以便用户能检查系统中虚拟内存的一些特性。程序5-1显示了如何调用该函数以及显示系统中当前内存的参数。

步骤1:登录进入Windows Server 2003 。

步骤2:在“开始”菜单中单击“程序”-“Microsoft Visual Studio 6.0”–“Microsoft Visual C++ 6.0”命令,进入Visual C++窗口。

步骤3:在工具栏单击“打开”按钮,在“打开”对话框中找到并打开实验源程序5-1.cpp。

程序5-1:获取有关系统的内存设置的信息

步骤4:单击“Build”菜单中的“Compile 5-1.cpp”命令,并单击“是”按钮确认。系统对4-1.cpp进行编译。

步骤5:编译完成后,单击“Build”菜单中的“Build 5-1.exe”命令,建立5-1.exe可执行文件。

操作能否正常进行?如果不行,则可能的原因是什么?

答:操作能正常进行。_____________________________________________________ 步骤6:在工具栏单击“Execute Program”(执行程序) 按钮,执行5-1.exe程序。

运行结果(分行书写。如果运行不成功,则可能的原因是什么?) :

1) 虚拟内存每页容量为: 4.00KB

2) 最小应用地址:0x00010000

3) 最大应用地址为:0x7ffeffff

4) 当前可供应用程序使用的内存空间为: 3.92GB

5) 当前计算机的实际内存大小为: 1.99GB

阅读和分析程序5-1,请回答问题:

1)理论上每个windows应用程序可以独占的最大存储空间是:____4GB____

2)在程序5-1中,用于检索系统中虚拟内存特性的API函数是:DWORD

提示:可供应用程序使用的内存空间实际上已经减去了开头与结尾两个64KB的保护区。虚拟内存空间中的64KB保护区是防止编程错误的一种Windows方式。任何对内存中这一区域的访问 (读、写、执行) 都将引发一个错误陷井,从而导致错误并终止程序的执行。也就是说,假如用户有一个NULL指针 (地址为0) ,但仍试图在此之前很近的地址处使用另一个指针,这将因为试图从更低的保留区域读写数据,从而产生意外错误并终止程序的执行。

五、 [1]实验结论

通过本次实验我了解windows Server 2003内存的使用,同时学习了如何在应用程

序中管理内存。在实验的过程中,体会到了Windows应用程序内存的简单性和自我防护能力。对于Windows sever 2003的内存结构有了一定的了解。

二、[2]实验目的

1)通过实验了解Windows Server 2003内存的使用,学习如何在应用程序中管理内存,体会Windows应用程序内存的简单性和自我防护能力。

2)学习检查虚拟内存空间或对其进行操作。

3)了解Windows Server 2003的内存结构和虚拟内存的管理,进而了解进程堆和Windows为使用内存而提供的一些扩展功能。

三、[2]实验内容与实验步骤

1. 虚拟内存的检测

清单5-2所示的程序使用VirtualQueryEX()函数来检查虚拟内存空间。

步骤1:登录进入Windows Server 2003。

步骤2:在“开始”菜单中单击“程序”-“Microsoft Visual Studio 6.0”–“Microsoft Visual C++ 6.0”命令,进入Visual C++窗口。

步骤3:在工具栏单击“打开”按钮,在“打开”对话框中找到并打开实验源程序5-2.cpp。

清单5-2 检测进程的虚拟地址空间

清单5-2中显示一个walkVM()函数开始于某个进程可访问的最低端虚拟地址处,并在其中显示各块虚拟内存的特性。虚拟内存中的块由VirsualQueryEX()API定义成连续快或具有相同状态(自由区,已调配区等)的内存,并分配以一组统一的保护标志(只读、可执行等)。

步骤4:单击“Build”菜单中的“Compile 5-2.cpp”命令,并单击“是”按钮确认。系统对5-2.cpp进行编译。

步骤5:编译完成后,单击“Build”菜单中的“Build 5-2.exe”命令,建立5-2.exe可执行文件。

操作能否正常进行?如果不行,则可能的原因是什么?

答:操作能正常运行。___________________________________________________

步骤6:在工具栏单击“Execute Program”(执行程序) 按钮,执行5-2.exe程序。

1)分析运行结果(如果运行不成功,则可能的原因是什么)

按committed,reserved,free等三种虚拟地址空间分别记录实验数据,其中“描述”是对该组数据的简单描述,例如,对下列一组数据:

00010000-00012000<8.00KB>Committed,READWRITE,Private可描述为:具有READWRITE 权限的已调配私有内存区。

将系统当前的自由区(Free)虚拟地址空间填入表3-3中。

答:该程序从主函数Main()出发,调用void WalkVM(HANDLE hProcess)函数,void WalkVM(HANDLE hProcess)函数获得系统信息,分配应用程序内存地址空间。然后开始做循环,从函数运行开始每次获得下一个虚拟程序内存块的信息,之后计算块的结尾及大小,然后再显示块的大小与位置,状态,显示保护方式(void ShowProtection(DWORD dwTarget)),将文件名显示出来,移动块指针获得下一块,依次这样循环下去,直至结束。

2. 虚拟内存的分配与释放

能正确使用系统函数GetMeoryStatus()和数据结构MEMORY_STATUS了解系统内存和虚拟存储空间使用情况,会使用VirsualAlloc()函数和VirsualFree()函数分配和释放虚拟内存空间。

步骤1:在VC 6.0环境下选择Win32 Console Application建立一个控制台工程文件,选择An application that Supports MFC。

步骤2:编辑并编译完成后,单击“Build”菜单中的“Build GetMemoryStatus.exe”命令,建立GetMemoryStatus.exe可执行文件。

操作能否正常进行?如果不行,则可能的原因是什么?

答:操作能正常进行。______________________________________________________ 步骤3:在工具栏单击“Execute Program”按钮,执行GetMemoryStatus.cpp.exe程序。

分析程序GetMemoryStatus.cpp的运行结果

1) 请描述运行结果(如果运行不成功,则可能的原因是什么?) :

答:运行结果如下:

Current Memory Status is :

Total Physical Memory is 2047 MB

Available Physical Memory is 2047 MB

Total Page File is 4095 MB

Available Page File is 4095 MB

Total Virtual Memory is 2047 MB

Available Virsual memory is 2031 MB

Memory Load is 22 %

Now Allocate 32MVirsual Memory and 2M Physical Memory

Current Memory Status is :

Total Physical Memory is 2047 MB

Available Physical Memory is 2047 MB

Total Page File is 4095 MB

Available Page File is 4095 MB

Total Virtual Memory is 2047 MB

Available Virsual memory is 1997 MB

Memory Load is 22 %

Now Release 32MVirsual Memory and 2M Physical Memory

Current Memory Status is :

Total Physical Memory is 2047 MB

Available Physical Memory is 2047 MB

Total Page File is 4095 MB

Available Page File is 4095 MB

Total Virtual Memory is 2047 MB

Available Virsual memory is 2031 MB

Memory Load is 22 %

Press any key to continue

2) 根据运行输出结果,若要改变分配和回收的虚拟内存和物理内存的大小,要改变程序代码的语句,分别为:

答:要改变的分配虚拟内存的程序代码语句为:

if (BaseAddr==NULL) printf("Virsual Allocate Fail.\n");

str=(char *)malloc(1024*1024*2);

GetMemSta();

要改变的回收虚拟内存的程序代码语句为:

if (::VirtualFree(BaseAddr,0,MEM_RELEASE)==0)

printf("Release Allocate Fail.\n");

free(str);

3) 根据运行输出结果,对照分析5-2程序,可以看出程序运行的流程吗?请简单描述:

答:程序开始运行,分配虚拟内存为32M,物理内存为2M,后进行虚拟内存释放,释放了32M虚拟内存,2M物理内存。

四、 [2]实验结论

通过本次实验了解windows Server 2003的内存结构和虚拟内存的管理,较为清楚的理解了在windows sever 2003中虚拟内存的检测以及其内存分配和内存释放的运行过程。进而了解进程堆和windows为使用内存而提供的一些扩展功能。在程序运行的过程中,首先会检测到需要使用的虚拟内存,其次通过调用函数去分配当前部分所需要的虚拟内存大小,之后进行虚拟内存的分配,最后,运行结束,释放虚拟内存。在这整个过程中,能够节约内存的使用,增加了处理事务的效率。

附录:

5-2.cpp运行结果

00010000-00012000 (8.00 KB) Committed, READWRITE, Private

00012000-00020000 (56.0 KB) Free, NOACCESS

00020000-00021000 (4.00 KB) Committed, READWRITE, Private

00021000-00030000 (60.0 KB) Free, NOACCESS

00030000-0012c000 (0.98 MB) Reserved, READONLY, Private

0012c000-0012d000 (4.00 KB) Committed, GUARD, READWRITE, Private 0012d000-00130000 (12.0 KB) Committed, READWRITE, Private

00130000-00135000 (20.0 KB) Committed, READONLY, Mapped

00135000-00140000 (44.0 KB) Free, NOACCESS

00140000-00147000 (28.0 KB) Committed, READWRITE, Private

00147000-00240000 ( 996 KB) Reserved, READONLY, Private

00240000-00243000 (12.0 KB) Committed, READWRITE, Mapped

00243000-00250000 (52.0 KB) Reserved, READONLY, Mapped

00250000-00266000 (88.0 KB) Committed, READONLY, Mapped

00266000-00270000 (40.0 KB) Free, NOACCESS

00270000-002b1000 ( 260 KB) Committed, READONLY, Mapped

002b1000-002c0000 (60.0 KB) Free, NOACCESS

002c0000-00301000 ( 260 KB) Committed, READONLY, Mapped

00301000-00310000 (60.0 KB) Free, NOACCESS

00310000-00316000 (24.0 KB) Committed, READONLY, Mapped

00316000-00320000 (40.0 KB) Free, NOACCESS

00320000-00361000 ( 260 KB) Committed, READONLY, Mapped

00361000-00370000 (60.0 KB) Free, NOACCESS

00370000-00373000 (12.0 KB) Committed, READWRITE, Private

00373000-00380000 (52.0 KB) Reserved, READONLY, Private

00380000-00383000 (12.0 KB) Committed, READONLY, Mapped

00383000-00390000 (52.0 KB) Free, NOACCESS

00390000-00398000 (32.0 KB) Committed, READWRITE, Private

00398000-003a0000 (32.0 KB) Reserved, READONLY, Private

003a0000-003a1000 (4.00 KB) Committed, READWRITE, Private

003a1000-003b0000 (60.0 KB) Free, NOACCESS

003b0000-003b1000 (4.00 KB) Committed, READWRITE, Private

003b1000-003c0000 (60.0 KB) Free, NOACCESS

003c0000-003c5000 (20.0 KB) Committed, READWRITE, Private

003c5000-003d0000 (44.0 KB) Reserved, READONLY, Private

003d0000-003d6000 (24.0 KB) Committed, READWRITE, Private

003d6000-003e0000 (40.0 KB) Reserved, READONLY, Private

003e0000-00400000 ( 128 KB) Free, NOACCESS

00400000-00401000 (4.00 KB) Committed, READONLY, Image, Module: 5-2.exe

00401000-0046d000 ( 432 KB) Committed, EXECUTE_READ, Image

0046d000-00475000 (32.0 KB) Committed, READONLY, Image

00475000-0047c000 (28.0 KB) Committed, READWRITE, Image

0047c000-00480000 (16.0 KB) Committed, READONLY, Image

00480000-00487000 (28.0 KB) Committed, EXECUTE_READ, Mapped

00487000-00540000 ( 740 KB) Reserved, READONLY, Mapped

00540000-00542000 (8.00 KB) Committed, EXECUTE_READ, Mapped

00542000-00548000 (24.0 KB) Reserved, READONLY, Mapped

00548000-00550000 (32.0 KB) Free, NOACCESS

00550000-00653000 (1.01 MB) Committed, READONLY, Mapped

00653000-00660000 (52.0 KB) Free, NOACCESS

00660000-006e1000 ( 516 KB) Committed, EXECUTE_READ, Mapped

006e1000-00960000 (2.49 MB) Reserved, READONLY, Mapped

00960000-00968000 (32.0 KB) Committed, READWRITE, Private

00968000-00a60000 ( 992 KB) Reserved, READONLY, Private

00a60000-74ae0000 (1.81 GB) Free, NOACCESS

74ae0000-74ae1000 (4.00 KB) Committed, READONLY, Image, Module: USP10.dll

74ae1000-74b25000 ( 272 KB) Committed, EXECUTE_READ, Image

74b25000-74b28000 (12.0 KB) Committed, WRITECOPY, Image

74b28000-74b2a000 (8.00 KB) Committed, READWRITE, Image

74b2a000-74b2e000 (16.0 KB) Committed, WRITECOPY, Image

74b2e000-74b2f000 (4.00 KB) Committed, READWRITE, Image

74b2f000-74b45000 (88.0 KB) Committed, READONLY, Image

74b45000-76180000 (22.2 MB) Free, NOACCESS

76180000-76181000 (4.00 KB) Committed, READONLY, Image, Module: IMM32.DLL

76181000-76196000 (84.0 KB) Committed, EXECUTE_READ, Image

76196000-76197000 (4.00 KB) Committed, READWRITE, Image

76197000-7619d000 (24.0 KB) Committed, READONLY, Image

7619d000-76eb0000 (13.0 MB) Free, NOACCESS

76eb0000-76eb1000 (4.00 KB) Committed, READONLY, Image, Module: Secur32.dll

76eb1000-76ec0000 (60.0 KB) Committed, EXECUTE_READ, Image

76ec0000-76ec1000 (4.00 KB) Committed, READWRITE, Image

76ec1000-76ec3000 (8.00 KB) Committed, READONLY, Image

76ec3000-77b70000 (12.6 MB) Free, NOACCESS

77b70000-77b71000 (4.00 KB) Committed, READONLY, Image, Module:

msvcrt.dll

77b71000-77bbf000 ( 312 KB) Committed, EXECUTE_READ, Image

77bbf000-77bc1000 (8.00 KB) Committed, WRITECOPY, Image

77bc1000-77bc2000 (4.00 KB) Committed, READWRITE, Image

77bc2000-77bc3000 (4.00 KB) Committed, WRITECOPY, Image

77bc3000-77bc6000 (12.0 KB) Committed, READWRITE, Image

77bc6000-77bca000 (16.0 KB) Committed, READONLY, Image

77bca000-77bd0000 (24.0 KB) Free, NOACCESS

77bd0000-77bd1000 (4.00 KB) Committed, READONLY, Image, Module: GDI32.dll

77bd1000-77c14000 ( 268 KB) Committed, EXECUTE_READ, Image

77c14000-77c16000 (8.00 KB) Committed, READWRITE, Image

77c16000-77c19000 (12.0 KB) Committed, READONLY, Image

77c19000-77c20000 (28.0 KB) Free, NOACCESS

77c20000-77c21000 (4.00 KB) Committed, READONLY, Image, Module: RPCRT4.dll

77c21000-77cba000 ( 612 KB) Committed, EXECUTE_READ, Image

77cba000-77cbb000 (4.00 KB) Committed, READWRITE, Image

77cbb000-77cc1000 (24.0 KB) Committed, READONLY, Image

77cc1000-77e10000 (1.30 MB) Free, NOACCESS

77e10000-77e11000 (4.00 KB) Committed, READONLY, Image, Module: USER32.dll

77e11000-77e71000 ( 384 KB) Committed, EXECUTE_READ, Image

77e71000-77e72000 (4.00 KB) Committed, READWRITE, Image

77e72000-77e73000 (4.00 KB) Committed, WRITECOPY, Image

77e73000-77ea0000 ( 180 KB) Committed, READONLY, Image

77ea0000-77eb0000 (64.0 KB) Free, NOACCESS

77eb0000-77eb1000 (4.00 KB) Committed, READONLY, Image, Module: SHLWAPI.dll

77eb1000-77efb000 ( 296 KB) Committed, EXECUTE_READ, Image

77efb000-77efc000 (4.00 KB) Committed, READWRITE, Image

77efc000-77efd000 (4.00 KB) Committed, WRITECOPY, Image

77efd000-77f02000 (20.0 KB) Committed, READONLY, Image

77f02000-77f30000 ( 184 KB) Free, NOACCESS

77f30000-77f31000 (4.00 KB) Committed, READONLY, Image, Module: ADVAPI32.dll

77f31000-77fa1000 ( 448 KB) Committed, EXECUTE_READ, Image

77fa1000-77fa3000 (8.00 KB) Committed, READWRITE, Image

77fa3000-77fa5000 (8.00 KB) Committed, WRITECOPY, Image

77fa5000-77fdc000 ( 220 KB) Committed, READONLY, Image

77fdc000-7c800000 (72.1 MB) Free, NOACCESS

7c800000-7c801000 (4.00 KB) Committed, READONLY, Image, Module: kernel32.dll

7c801000-7c88b000 ( 552 KB) Committed, EXECUTE_READ, Image

7c88b000-7c88e000 (12.0 KB) Committed, READWRITE, Image

7c88e000-7c890000 (8.00 KB) Committed, WRITECOPY, Image

7c890000-7c92b000 ( 620 KB) Committed, READONLY, Image

7c92b000-7c930000 (20.0 KB) Free, NOACCESS

7c930000-7c931000 (4.00 KB) Committed, READONLY, Image, Module: ntdll.dll

7c931000-7c9ba000 ( 548 KB) Committed, EXECUTE_READ, Image

7c9ba000-7c9bd000 (12.0 KB) Committed, READWRITE, Image

7c9bd000-7c9be000 (4.00 KB) Committed, WRITECOPY, Image

7c9be000-7c9bf000 (4.00 KB) Committed, READWRITE, Image

7c9bf000-7c9c0000 (4.00 KB) Committed, WRITECOPY, Image

7c9c0000-7ca03000 ( 268 KB) Committed, READONLY, Image

7ca03000-7f000000 (37.9 MB) Free, NOACCESS

7f000000-7f001000 (4.00 KB) Committed, READONLY, Image, Module:

LPK.DLL

7f001000-7f006000 (20.0 KB) Committed, EXECUTE_READ, Image 7f006000-7f007000 (4.00 KB) Committed, READWRITE, Image

7f007000-7f009000 (8.00 KB) Committed, READONLY, Image

7f009000-7f6f0000 (6.90 MB) Free, NOACCESS

7f6f0000-7f6f7000 (28.0 KB) Committed, EXECUTE_READ, Mapped 7f6f7000-7f7f0000 ( 996 KB) Reserved, READONLY, Mapped

7f7f0000-7ffa0000 (7.68 MB) Free, NOACCESS

7ffa0000-7ffd3000 ( 204 KB) Committed, READONLY, Mapped

7ffd3000-7ffda000 (28.0 KB) Free, NOACCESS

7ffda000-7ffdb000 (4.00 KB) Committed, READWRITE, Private 7ffdb000-7ffdf000 (16.0 KB) Free, NOACCESS

7ffdf000-7ffe0000 (4.00 KB) Committed, READWRITE, Private 7ffe0000-7ffe1000 (4.00 KB) Committed, READONLY, Private

7ffe1000-7fff0000 (60.0 KB) Reserved, NOACCESS, Private

Press any key to continue

存储管理实验报告

实验三、存储管理 一、实验目的: ? 一个好的计算机系统不仅要有一个足够容量的、存取速度高的、稳定可靠的主存储器,而且要能合理地分配和使用这些存储空间。当用户提出申请存储器空间时,存储管理必须根据申请者的要求,按一定的策略分析主存空间的使用情况,找出足够的空闲区域分配给申请者。当作业撤离或主动归还主存资源时,则存储管理要收回作业占用的主存空间或归还部分主存空间。主存的分配和回收的实现虽与主存储器的管理方式有关的,通过本实验理解在不同的存储管理方式下应怎样实现主存空间的分配和回收。 在计算机系统中,为了提高主存利用率,往往把辅助存储器(如磁盘)作为主存储器的扩充,使多道运行的作业的全部逻辑地址空间总和可以超出主存的绝对地址空间。用这种办法扩充的主存储器称为虚拟存储器。通过本实验理解在分页式存储管理中怎样实现虚拟存储器。 在本实验中,通过编写和调试存储管理的模拟程序以加深对存储管理方案的理解。熟悉虚存管理的各种页面淘汰算法通过编写和调试地址转换过程的模拟程序以加强对地址转换过程的了解。 二、实验题目: 设计一个可变式分区分配的存储管理方案。并模拟实现分区的分配和回收过程。 对分区的管理法可以是下面三种算法之一:(任选一种算法实现) 首次适应算法 循环首次适应算法 最佳适应算法 三.实验源程序文件名:cunchuguanli.c

执行文件名:cunchuguanli.exe 四、实验分析: 1)本实验采用可变分区管理,使用首次适应算法实现主存的分配和回收 1、可变分区管理是指在处理作业过程中建立分区,使分区大小正好适合作业的需求,并 且分区个数是可以调整的。当要装入一个作业时,根据作业需要的主存量查看是否有足够的空闲空间,若有,则按需要量分割一个分区分配给该作业;若无,则作业不能装入,作业等待。随着作业的装入、完成,主存空间被分成许多大大小小的分区,有的分区被作业占用,而有的分区是空闲的。 为了说明那些分区是空闲的,可以用来装入新作业,必须有一张空闲说明表 ? 空闲区说明表格式如下:? 第一栏 第二栏 其中,起址——指出一个空闲区的主存起始地址,长度指出空闲区的大小。 长度——指出从起始地址开始的一个连续空闲的长度。 状态——有两种状态,一种是“未分配”状态,指出对应的由起址指出的某个长度的区域是空闲区;另一种是“空表目”状态,表示表中对应的登记项目是空白(无效),可用来登记新的空闲区(例如,作业完成后,它所占的区域就成了空闲区,应找一个“空表目”栏登记归还区的起址和长度且修改状态)。由于分区的个数不定,所以空闲区说明表中应有适量的状态为“空表目”的登记栏目,否则造成表格“溢出”无法登记。 2、当有一个新作业要求装入主存时,必须查空闲区说明表,从中找出一个足够大的空闲区。 有时找到的空闲区可能大于作业需要量,这时应把原来的空闲区变成两部分:一部分分

实验三存储管理实验

实验三存储管理实验 Pleasure Group Office【T985AB-B866SYT-B182C-BS682T-STT18】

实验三存储管理实验 一. 目的要求: 1、通过编写和调试存储管理的模拟程序以加深对存储管理方案的理解。熟悉虚存管理的各种页面淘汰算法。 2、通过编写和调试地址转换过程的模拟程序以加强对地址转换过程的了解。二.实验内容: 1、设计一个固定式分区分配的存储管理方案,并模拟实现分区的分配和回收过程。 可以假定每个作业都是批处理作业,并且不允许动态申请内存。为实现分区的分配和回收,可以设定一个分区说明表,按照表中的有关信息进行分配,并根据分区的分配和回收情况修改该表。 算法描述: 本算法将内存的用户区分成大小相等的四个的分区,设一张分区说明表用来记录分区,其中分区的表项有分区的大小、起始地址和分区的状态,当系统为某个作业分配主存空间时,根据所需要的内存容量,在分区表中找到一个足够大的空闲分区分配给它,然后将此作业装入内存。如果找不到足够大的空闲分区,则这个作业暂时无法分配内存空间,系统将调度另一个作业。当一个作业运行结束时,系统将回收改作业所占据的分区并将该分区改为空闲。 算法原程序 #include "" #include "" #include <>

#include <> #define PCB_NUM 5 行程序."); printf("\n\t\t\t0.退出程序."); scanf("%d",&m); switch(m) { case1: break; case0: system("cls"); menu(); break; default: system("cls"); break; } } void paixu(struct MemInf* ComMem,int n) { int i,j,t; for(j=0; jComMem[i+1].size) { t=ComMem[i].size; ComMem[i].size=ComMem[i+1].size; ComMem[i+1].size=t; } } void paixu2() { int i,j,t; for(j=0; j<4; j++) for(i=0; i<4-j; i++) if(pcbList[i].size>pcbList[i+1].size) { t=pcbList[i].size; pcbList[i].size=pcbList[i+1].size; pcbList[i+1].size=t; } } void main() { DD: menu();

实验三:存储管理

实验三:存储管理 IMB standardization office【IMB 5AB- IMBK 08- IMB 2C】

一、实验名称 实验三:存储管理 [1]Windows Server 2003内存结构 [2] Windows Server 2003虚拟内存 二、 [1]实验目的 1)通过实验了解windows Server 2003内存的使用,学习如何在应用程序中管理内存、体会Windows应用程序内存的简单性和自我防护能力。 2)了解windows Server 2003的内存结构和虚拟内存的管理,进而了解进程堆和windows为使用内存而提供的一些扩展功能。 三、 [1]实验内容 四、 [1]实验步骤 Windows提供了一个API即GetSystemInfo() ,以便用户能检查系统中虚拟内存的一些特性。程序5-1显示了如何调用该函数以及显示系统中当前内存的参数。 步骤1:登录进入Windows Server 2003 。 步骤2:在“开始”菜单中单击“程序”-“Microsoft Visual Studio 6.0”–“Microsoft Visual C++ 6.0”命令,进入Visual C++窗口。 步骤3:在工具栏单击“打开”按钮,在“打开”对话框中找到并打开实验源程序。 程序5-1:获取有关系统的内存设置的信息 步骤4:单击“Build”菜单中的“Compile ”命令,并单击“是”按钮确认。系统对进行编译。 步骤5:编译完成后,单击“Build”菜单中的“Build ”命令,建立可执行文件。 操作能否正常进行如果不行,则可能的原因是什么 答:操作能正常进行。 _____________________________________________________ 步骤6:在工具栏单击“Execute Program” (执行程序) 按钮,执行程序。 运行结果 (分行书写。如果运行不成功,则可能的原因是什么?) : 1) 虚拟内存每页容量为: 2) 最小应用地址: 0x00010000 3) 最大应用地址为: 0x7ffeffff 4) 当前可供应用程序使用的内存空间为: 5) 当前计算机的实际内存大小为: 阅读和分析程序5-1,请回答问题:

存储管理实验报告.doc

存储管理实验报告

北方工业大学 《计算机操作系统》实验报告 实验名称存储管理实验序号 2 实验日期2013.11.27实验人 一、实验目的和要求 1.请求页式存储管理是一种常用的虚拟存储管理技术。本实验目的 是通过请求页式存储管理中页面置换算法的模拟设计,了解虚拟存储 技术的特点,掌握请求页式存储管理的页面置换算法。 二、相关背景知识 1.随机数产生办法 关于随机数产生办法, Linux 或 UNIX 系统提供函数 srand() 和 rand() ,分 别进行初始化和产生随机数。 三、实验内容 (1).通过随机数产生一个指令序列,共320条指令。指令的地址按下述原则生成: 1.50% 的指令是顺序执行的; 2.25% 的指令是均匀分布在前地址部分; 3.25% 的指令是均匀分布在后地址部 分;具体的实施方法是: 1.在[0, 319]的指令地址之间随机选取一起点 m; 2.顺序执行一条指令,即执行地址为 m+1 的指令; 3.在前地址[0,m+1]中随机选取一条指令并执行,该指令的地址为m’; 4.顺序执行一条指令,其地址为 m’+1; 5.在后地址 [m ’+2, 319]中随机选取一条指令并执行; 6.重复上述步骤 1~5,直到执行 320 次指令。 (2)将指令序列变换成页地址流,设 1.页面大小为 1K ; 2.用户内存容量为 4 页到 32 页; 3.用户虚存容量为 32K 。 在用户虚存中,按每 K 存放 10 条指令排列虚存地址,即 320 条指令在虚存 中存放的方式为: 第 0 条至第 9 条指令为第 0 页(对应虚存地址为 [0, 9]); 第 10 条至第 19 条指令为第 1 页(对应虚存地址为 [10, 19]); 第 310 条至第 319 条指令为第 31 页(对应虚存地址为 [310,319]); 按以上方式,用户指令可以组成 32 页。 (3)计算并输出下述各种算法在不同内存容量下的命中率。

实验三动态分区存储管理方式的主

实验三动态分区存储管理方式的主存分配回收 一、实验目的 深入了解动态分区存储管理方式主存分配回收的实现。 二、实验预备知识 存储管理中动态分区的管理方式。 三、实验内容 编写程序完成动态分区存储管理方式的主存分配回收的实现。实验具体包括: 首先确定主存空间分配表;然后采用最优适应算法完成主存空间的分配和回收;最后编写主函数对所做工作进行测试。 四、提示与讲解 动态分区管理方式预先不将主存划分成几个区域,而把主存除操作系统占用区域外的空间看作一个大的空闲区。当作业要求装入主存时,根据作业需要主存空间的大小查询主存内各个空闲区,当从主存空间中找到一个大于或等于该作业大小的主存空闲区时,选择其中一个空闲区,按作业需求量划出一个分区装入该作业。作业执行完后,它所占的主存分区被收回,成为一个空闲区。如果该空闲区的相邻分区也是空闲区,则需要将相邻空闲区合并成一个空闲区。 实现动态分区的分配和回收,主要考虑的问题有三个: 第一,设计记录主存使用情况的数据表格,用来记录空闲区和作业占用的区域;第二,在设计的数据表格基础上设计主存分配算法;第三,在设计的数据表格基础上设计主存回收算法。 首先,考虑第一个问题: 设计记录主存使用情况的数据表格,用来记录空闲区和作业占用的区域。 由于动态分区的大小是由作业需求量决定的,故分区的长度是预先不固定的,且分区的个数也随主存分配和回收变动。总之,所有分区情况随时可能发生变化,数据表格的设计必须和这个特点相适应。由于分区长度不同,因此设计的表格应该包括分区在主

存中的起始地址和长度。由于分配时空闲区有时会变成两个分区: 空闲区和已分分区,回收主存分区时,可能会合并空闲分区,这样如果整个主存采用一张表格记录已分分区和空闲区,就会使表格操作繁琐。主存分配时查找空闲区进行分配,然后填写已分配区表,主要操作在空闲区;某个作业执行完后,将该分区变成空闲区,并将其与相邻的空闲区合并,主要操作也在空闲区。 由此可见,主存的分配和回收主要是对空闲区的操作。这样为了便于对主存空间的分配和回收,就建立两张分区表记录主存使用情况,一张表格记录作业占用分区的 “已分配区表”;一张是记录空闲区的“空闲区表”。这两张表的实现方法一般有两种,一种是链表形式,一种是顺序表形式。在实验中,采用顺序表形式,用数组模拟。由于顺序表的长度必须提前固定,所以无论是“已分配区表”还是“空闲区 表”都必须事先确定长度。它们的长度必须是系统可能的最大项数,系统运行过程中才不会出错,因而在多数情况下,无论是“已分配区表”还是“空闲区表”都有空闲栏目。已分配区表中除了分区起始地址、长度外,也至少还要有一项“标志”,如果是空闲栏目,内容为“空”,如果为某个作业占用分区的登记项,内容为该作业的作业名;空闲区表中除了分区起始地址、长度外,也要有一项“标志”,如果是空闲栏目,内容为“空”,如果为某个空闲区的登记项,内容为“未分配”。在实际系统中,这两表格的内容可能还要多,实验中仅仅使用上述必须的数据。为此, “已分配区表”和“空闲区表”在实验中有如下的结构定义。 已分配区表的定义: #define n 10// 假定系统允许的最大作业数量为n struct {float address;// 已分分区起始地址 float length; // 已分分区长度,单位为字节 int flag;// 已分配区表登记栏标志, “0表”示空栏目,实验中只支持一个字符的作业名}used_table[n];// 已分配区表 空闲区表的定义:

网络存储实验报告

湖北文理学院《网络存储》 实验报告 专业班级:计科1211 姓名:*** 学号:*** 任课教师:李学峰 2014年11月16日

实验01 Windows 2003的磁盘阵列技术 一、实验目的 1.掌握在Windows 2003环境下做磁盘阵列的条件和方法。 2.掌握在Windows 2003环境下实现RAID0的方法。 3. 掌握在Windows 2003环境下实现RAID1的方法。 4. 掌握在Windows 2003环境下实现RAID5的方法。 5. 掌握在Windows 2003环境下实现恢复磁盘阵列数据的方法。 二、实验要求 1.在Windows 2003环境下实现RAID0 2.在Windows 2003环境下实现RAID1 3.在Windows 2003环境下实现RAID5 4.在Windows 2003环境下实现恢复磁盘阵列数据 三、实验原理 (一)磁盘阵列RAID技术的概述 RAID是一种磁盘容错技术,由两块以上的硬盘构成冗余,当某一块硬盘出现物理损坏时,换一块同型号的硬盘即可自行恢复数据。RAID有RAID0、RAID1、RAID5等。RAID 技术是要有硬件来支持的,即常说的RAID卡,如果没RAID卡或RAID芯片,还想做RAID,那就要使用软件RAID技术,微软Windows系统只有服务器版本才支持软件RAID技术,如Windows Server 2003等。 (二)带区卷(RAID0) 带区卷是将多个(2-32个)物理磁盘上的容量相同的空余空间组合成一个卷。需要注意的是,带区卷中的所有成员,其容量必须相同,而且是来自不同的物理磁盘。带区卷是Windows 2003所有磁盘管理功能中,运行速度最快的卷,但带区卷不具有扩展容量的功能。它在保存数据时将所有的数据按照64KB分成一块,这些大小为64KB的数据块被分散存放于组成带区卷的各个硬盘中。 (三)镜像卷(RAID1) 镜像卷是单一卷的两份相同的拷贝,每一份在一个硬盘上。它提供容错能力,又称为RAID1技术。 RAID1的原理是在两个硬盘之间建立完全的镜像,即所有数据会被同时存放到两个物理硬盘上,当一个磁盘出现故障时,系统仍然可以使用另一个磁盘内的数据,因此,它具备容错的功能。但它的磁盘利用率不高,只有50%。 四、实验设备 1.一台装有Windows Server 2003系统的虚拟机。 2.虚拟网卡一块,类型为“网桥模式”。 3.虚拟硬盘五块。 五、实验步骤 (一)组建RAID实验的环境 (二)初始化新添加的硬盘 (三)带区卷(RAID0的实现)

实验三 存储管理指导

实验三存储管理 实验目的 1) 加深对存储管理的理解; 2) 掌握几种页面置换算法; 3) 通过实验比较各种置换算法的优劣。 实验要求 1) 编写程序完成实验内容; 2) 对测试数据进行分析; 3) 撰写实验报告。 实验内容 1) 定义为进程分配的物理块数; 2)定义进程运行所需访问的页面号; 3)定义页的结构; 4)模拟两种页面置换算法; 5)计算页面置换算法的命中率; 6)比较两种算法的优劣。 实验原理 1.虚拟存储 基于局部性原理,应用程序在运行之前,没有必要全部装入内存,仅须将那些当前要运行的少数页面或段先装入内存便可运行,其余部分暂留在盘上。程序在运行时,如果它所要访问的页(段)已调入内存,便可继续执行下去;但如果程序所要访问的页(段)尚未调入内存(称为缺页或缺段),此时程序应利用OS所提供的请求调页(段)功能,将它们调入内存,以使进程能继续执行下去。如果此时内存已满,无法再装入新的页(段),则还须再利用页(段)

的置换功能,将内存中暂时不用的页(段)调至盘上,腾出足够的内存空间后,再将要访问的页(段)调入内存,使程序继续执行下去。 2.页面置换算法 1)最佳(Optimal)置换算法 最佳置换算法是由Belady于1966年提出的一种理论上的算法。其所选择的被淘汰页面,将是以后永不使用的,或许是在最长(未来)时间内不再被访问的页面。采用最佳置换算法,通常可保证获得最低的缺页率。但由于人们目前还无法预知一个进程在内存的若干个页面中,哪一个页面是未来最长时间内不再被访问的,因而该算法是无法实现的,但可以利用该算法去评价其它算法。 2)最近最久未使用(LRU)置换算法 FIFO置换算法性能之所以较差,是因为它所依据的条件是各个页面调入内存的时间,而页面调入的先后并不能反映页面的使用情况。最近最久未使用(LRU)的页面置换算法,是根据页面调入内存后的使用情况进行决策的。由于无法预测各页面将来的使用情况,只能利用“最近的过去”作为“最近的将来”的近似,因此,LRU置换算法是选择最近最久未使用的页面予以淘汰。该算法赋予每个页面一个访问字段,用来记录一个页面自上次被访问以来所经历的时间t,当须淘汰一个页面时,选择现有页面中其t值最大的,即最近最久未使用的页面予以淘汰。 LRU置换算法虽然是一种比较好的算法,但要求系统有较多的支持硬件。为了了解一个进程在内存中的各个页面各有多少时间未被进程访问,以及如何快速地知道哪一页是最近最久未使用的页面,须有两类硬件之一的支持:寄存器或栈。 a)寄存器 为了记录某进程在内存中各页的使用情况,须为每个在内存中的页面配置一个移位寄存器,可表示为R=R n-1R n-2R n-3… R2R1R0当进程访问某物理块时,要将相应寄存器的R n-1位置成1。此时,定时信号将每隔一定时间(例如100 ms)将寄存器右移一位。如果我们把n位寄存器的数看做是一个整数,那么,具有最小数值的寄存器所对应的页面,就是最近最久未使用的页面。 b)栈 可利用一个特殊的栈来保存当前使用的各个页面的页面号。每当进程访问某页面时,便将该页面的页面号从栈中移出,将它压入栈顶。因此,栈顶始终是最新被访问页面的编号,而栈底则是最近最久未使用页面的页面号。

操作系统实验四存储管理

宁德师范学院计算机系 实验报告 (2014—2015学年第二学期) 课程名称操作系统 实验名称实验四存储管理 专业计算机科学与技术(非师)年级2012级 学号B2012102147 姓名王秋指导教师王远帆 实验日期2015-05-20

2) 右键单击任务栏以启动“任务管理器”。 3) 在“Windows任务管理器”对话框中选定“进程”选项卡。 4) 向下滚动在系统上运行的进程列表,查找想要监视的应用程序。 请在表4-3中记录: 表4-3 实验记录 映像名称PID CPU CPU时间内存使用 WINWORD.EXE 5160 00 0:00:10 22772k 图1 word运行情况 “内存使用”列显示了该应用程序的一个实例正在使用的内存数量。 5) 启动应用程序的另一个实例并观察它的内存需求。 请描述使用第二个实例占用的内存与使用第一个实例时的内存对比情况: 第二个实例占用内存22772K,比第一个实例占用的内存大很多 4:未分页合并内存。 估算未分页合并内存大小的最简单方法是使用“任务管理器”。未分页合并内存的估计值显示在“任务管理器”的“性能”选项卡的“核心内存”部分。 总数(K) :________220___________ 分页数:__________167___________ 未分页(K) :_________34__________

图2核心内存 还可以使用“任务管理器”查看一个独立进程正在使用的未分页合并内存数量和分页合并内存数量。操作步骤如下: 1) 单击“Windows任务管理器”的“进程”选项卡,然后从“查看”菜单中选择“选择列”命令,显示“进程”选项卡的可查看选项。 2) 在“选择列”对话框中,选定“页面缓冲池”选项和“非页面缓冲池”选项旁边的复选框,然后单击“确定”按钮。 返回Windows “任务管理器”的“进程”选项卡时,将看到其中增加显示了各个进程占用的分页合并内存数量和未分页合并内存数量。 仍以刚才打开观察的应用程序(例如Word) 为例,请在表4-4中记录: 表4-4 实验记录 映像名称PID 内存使用页面缓冲池非页面缓冲池 WINWORD.EXE 2964 37488 951 42 从性能的角度来看,未分页合并内存越多,可以加载到这个空间的数据就越多。拥有的物理内存越多,未分页合并内存就越多。但未分页合并内存被限制为256MB,因此添加超出这个限制的内存对未分页合并内存没有影响。 5:提高分页性能。 在Windows 2000的安装过程中,将使用连续的磁盘空间自动创建分页文件(pagefile.sys) 。用户可以事先监视变化的内存需求并正确配置分页文件,使得当系统必须借助于分页时的性能达到最高。 虽然分页文件一般都放在系统分区的根目录下面,但这并不总是该文件的最佳位置。要想从分页获得最佳性能,应该首先检查系统的磁盘子系统的配置,以了解它是否有多个物理硬盘驱动器。 1) 在“开始”菜单中单击“设置”–“控制面板”命令,双击“管理工具”图标,再双击“计算机管理”图标。 2) 在“计算机管理”窗口的左格选择“磁盘管理”管理单元来查看系统的磁盘配置。 如果系统只有一个硬盘,那么建议应该尽可能为系统配置额外的驱动器。这是因为:Windows 2000最多可以支持在多个驱动器上分布的16个独立的分页文件。为系统配置多个分页文件可以实现对不同磁盘I/O请求的并行处理,这将大大提高I/O请求的分页文件性能。 请在表4-5中记录: 表4-5 实验记录

存储管理实验报告

综合性实验报告 一、实验目的 通过请求页式存储管理中页面置换算法模拟设计,了解虚拟存储技术的特点,掌握请求页式管理的页面置换算法。 页面置换算法是虚拟存储管理实现的关键,通过本次实验理解内存页面调度的机制,在模拟实现FIFO、LRU、OPT、LFU、NUR几种经典页面置换算法的基础上,比较各种置换算法的效率及优缺点,从而了解虚拟存储实现的过程。 二、总体设计 1、编写函数计算并输出下述各种算法的命中率 ①OPT页面置换算法 OPT所选择被淘汰的页面是已调入内存,且在以后永不使用的,或是在最长时间内不再被访问的页面。因此如何找出这样的页面是该算法 的关键。可为每个页面设置一个步长变量,其初值为一足够大的数,对 于不在内存的页面,将其值重置为零,对于位于内存的页面,其值重置 为当前访问页面与之后首次出现该页面时两者之间的距离,因此该值越 大表示该页是在最长时间内不再被访问的页面,可以选择其作为换出页 面。 ②FIFO页面置换算法 FIFO总是选择最先进入内存的页面予以淘汰,因此可设置一个先进先出的忙页帧队列,新调入内存的页面挂在该队列的尾部,而当无空闲 页帧时,可从该队列首部取下一个页帧作为空闲页帧,进而调入所需页 面。 ③LRU页面置换算法 LRU是根据页面调入内存后的使用情况进行决策的,它利用“最近的过去”作为“最近的将来”的近似,选择最近最久未使用的页面予以 淘汰。该算法主要借助于页面结构中的访问时间time来实现,time记

录了一个页面上次的访问时间,因此,当须淘汰一个页面时,选择处于 内存的页面中其time值最小的页面,即最近最久未使用的页面予以淘 汰。 ④LFU页面置换算法 LFU要求为每个页面配置一个计数器(即页面结构中的counter),一旦某页被访问,则将其计数器的值加1,在需要选择一页置换时,则 将选择其计数器值最小的页面,即内存中访问次数最少的页面进行淘 汰。 ⑤NUR页面置换算法 NUR要求为每个页面设置一位访问位(该访问位仍可使用页面结构中的counter表示),当某页被访问时,其访问位counter置为1。需要 进行页面置换时,置换算法从替换指针开始(初始时指向第一个页面) 顺序检查处于内存中的各个页面,如果其访问位为0,就选择该页换出, 否则替换指针下移继续向下查找。如果内存中的所有页面扫描完毕未找 到访问位为0的页面,则将替换指针重新指向第一个页面,同时将内存 中所有页面的访问位置0,当开始下一轮扫描时,便一定能找到counter 为0的页面。 2、在主函数中生成要求的指令序列,并将其转换成页地址流;在不同 的内存容量下调用上述函数使其计算并输出相应的命中率。 三、实验步骤(包括主要步骤、代码分析等) 主要步骤: 、通过随机数产生一个指令序列,共320条指令。其地址按下述原则生成: ①50%的指令是顺序执行的; ②25%的指令是均匀分布在前地址部分; ③25%的指令是均匀分布在后地址部分; 具体的实施方法是: A.在[0,319]的指令地址之间随机选区一起点M; B.顺序执行一条指令,即执行地址为M+1的指令; C.在前地址[0,M+1]中随机选取一条指令并执行,该指令的地址为M’; D.顺序执行一条指令,其地址为M’+1; E.在后地址[M’+2,319]中随机选取一条指令并执行;

实验四 操作系统存储管理实验报告

实验四 操作系统存储管理实验报告 一、实验目的 存储管理的主要功能之一是合理地分配空间。请求页式管理是一种常用的虚拟存储管理技术。 本实验的目的是通过请求页式管理中页面置换算法模拟设计,了解虚拟存储技术的特点,掌握请求页式存储管理的页面置换算法。 二、实验内容 (1) 通过计算不同算法的命中率比较算法的优劣。同时也考虑了用户内存容量对命 中率的影响。 页面失效次数为每次访问相应指令时,该指令所对应的页不在内存中的次数。 在本实验中,假定页面大小为1k ,用户虚存容量为32k ,用户内存容量为4页到32页。 (2) produce_addstream 通过随机数产生一个指令序列,共320条指令。 A 、 指令的地址按下述原则生成: 1) 50%的指令是顺序执行的 2)25%的指令是均匀分布在前地址部分 3) 25%的指令是均匀分布在后地址部分 B 、 具体的实施方法是: 1) 在[0,319]的指令地址之间随机选取一起点m ; 2) 顺序执行一条指令,即执行地址为m+1的指令; 3) 在前地址[0,m+1]中随机选取一条指令并执行,该指令的地址为m ’; 4) 顺序执行一条指令,地址为m ’+1的指令 5) 在后地址[m ’+2,319]中随机选取一条指令并执行; 6) 重复上述步骤1)~5),直到执行320次指令 页地址流长度页面失效次数命中率- =1

C、将指令序列变换称为页地址流 在用户虚存中,按每k存放10条指令排列虚存地址,即320条指令在虚存中 的存放方式为: 第0条~第9条指令为第0页(对应虚存地址为[0,9]); 第10条~第19条指令为第1页(对应虚存地址为[10,19]); 。。。。。。 第310条~第319条指令为第31页(对应虚存地址为[310,319]); 按以上方式,用户指令可组成32页。 (3)计算并输出下属算法在不同内存容量下的命中率。 1)先进先出的算法(FIFO); 2)最近最少使用算法(LRU); 3)最佳淘汰算法(OPT); 4)最少访问页面算法(LFR); 其中3)和4)为选择内容

《操作系统》存储管理实验报告

____大学____学院实验报告 课程名称:计算机操作系统实验名称:存储管理实验实验日期: 班级:姓名:学号:仪器编号:XX 实验报告要求:1.实验目的 2.实验要求 3.实验步骤 4.程序清单 5.运行情况 6.流程图7.实验体会 1、实验目的 ①通过编写和调试存储管理的模拟程序以加深对存储管理方案的理解,熟悉虚存管理的各种页面淘汰法。 ②通过编写和调试地址转换过程的模拟程序以加强对地址转换过程的了解。 2、实验要求 ①设计一个固定式分区分配的存储管理方案,并模拟实现分区的分配和回收过程。 可以假定每个作业都是批处理作业,并且不允许动态申请内存。为实现分区的分配和回收,可以设定一个分区说明表,按照表中的有关信息进行分配,并根据分区的分配和回收情况修改该表。 ②设计一个可变式分区分配的存储管理方案,并模拟实现分区的分配和回收过程。 对分区的管理法可以是下面三种算法之一:首次适应算法;最坏适应算法;最佳适应算法。 ③编写并调试一个段页式存储管理的地址转换的模拟程序。 首先设计好段表、页表,然后给出若干个有一定代表性的地址,通过查找段表页表后得到转换的地址。要求打印转换前的地址,相应的段表,页表条款及转换后的地址,以便检查。 3、实验步骤 (1)理解实验要求,联系所学知识;(2)根据要求编写调度算法;(3)编写完整的实验代码并在VC++ 6.0环境下编译运行;(4)调试程序直至得出结果。 4、程序清单 ① #include #include #include #include #define NUM 4 #define alloMemory(type) (type*)malloc(sizeof(type)) struct partiTab { int no; int size; int firstAddr; char state; }parTab[NUM];

兰州大学操作系统实验七存储管理题目和答案

实验七实验报告 实验名称:7 存储管理 实验目的: 1.观察系统存储器使用情况 2.观察进程使用存储器的情况 3.掌握通过内存映像文件提高性能的方法 4.掌握动态内存分配技术 实验时间 3学时 预备知识: 1.存储相关的命令 free 显示系统使用和未被使用的内存数量(可以实时执行) 输出包含的标题有 3 行信息: Mem。此行包含了有关物理内存的信息。包括以下详细内容: total。该项显示可用的物理内存总量,单位为KB。该数字小于安装的物理内存的 容量,是因为内核本身也要使用一小部分的内存。 used。该项显示了用于应用程序超速缓存数据的内存容量。 free。该项显示了此时未使用且有效的内存容量。 Shared/buffers 缓冲区/cached。这些列显示了有关内存如何使用的更为详细的信息。 -/+ buffers/cache。Linux 系统中的部分内存用来为应用程序或设备高速缓存数据。这部分内存在需要用于其他目的时可以释放。 free列显示了调整的缓冲区行,显示释放缓冲区或高速缓存时可以使用的内存容量。 Swap。该行显示有关交换内存利用率的信息。该信息包含全部、已使用和释放的可用内存容量。 vmstat 报告进程、内存、分页、IO等多类信息(使用手册页) size 列出目标文件段大小和总大小(使用手册页)

2./proc文件系统(使用手册页man 5 proc) /proc/meminfo 内存状态信息 /proc/stat 包含内存页、内存对换等信息。 /proc/$pid/stat 某个进程的信息(包含内存使用信息) /proc/$pid/maps某个进程的内存映射区信息,包括地址范围、权限、偏移量以及主次设备号和映射文件的索引节点。 /proc/$pid/statm 某个进程的内存使用信息,包括内存总大小、驻留集大小、共享页面数、文本页面数、堆栈页面数和脏页面数。 3.内存映像文件 内存映像文件是指把一个磁盘文件映像到内存中,二者存在逐字节的对应关系。这样做可以加速I/O操作,并可以共享数据。 3.1 mmap(建立内存映射) 表头文件#include #include 定义函数void *mmap(void *start,size_t length,int prot,int flags,int fd,off_t offsize); 函数说明mmap()用来将某个文件内容映射到内存中,对该内存区域的存取即是直接对该文件内容的读写。参数start指向欲对应的内存起始地址,通常设为NULL,代表让系统自动选定地址,对应成功后该地址会返回。参数length代表将文件中多大的部分对应到内存。 参数prot代表映射区域的保护方式有下列组合 PROT_EXEC 映射区域可被执行 PROT_READ 映射区域可被读取 PROT_WRITE 映射区域可被写入 PROT_NONE 映射区域不能存取 参数flags会影响映射区域的各种特性 MAP_FIXED 如果参数start所指的地址无法成功建立映射时,则放弃映射,不 对地址做修正。通常不鼓励用此旗标。 MAP_SHARED对映射区域的写入数据会复制回文件内,而且允许其他映射该 文件的进程共享。 MAP_PRIV A TE 对映射区域的写入操作会产生一个映射文件的复制,即私人的

实验三 存储管理实验2014012622沈桂江

实验三存储管理实验2014012622沈桂江西北农林科技大学信息工程学院实习报告课程计算机操作系统学院信息工程专业年级软件141 学号 2014012622 姓名沈桂江 周次 10 交报告时间成绩 实验三存储管理实验 一. 目的要求: 1、通过编写和调试存储管理的模拟程序以加深对存储管理方案的理解。熟悉虚存管理的各种页面淘汰算法。 2、通过编写和调试地址转换过程的模拟程序以加强对地址转换过程的了解。二( 实习内容: 1、设计一个固定式分区分配的存储管理方案,并模拟实现分区的分配和回收过程。 可以假定每个作业都是批处理作业,并且不允许动态申请内存。为实现分区的分配和回收,可以设定一个分区说明表,按照表中的有关信息进行分配,并根据分区的分配和回收情况修改该表。 2、设计一个可变式分区分配的存储管理方案。并模拟实现分区的分配和回收过程。 对分区的管理法可以是下面三种算法之一: 首次适应算法 循环首次适应算法 最佳适应算法 3、编写并调试一个段页式存储管理的地址转换的模拟程序。

首先设计好段表、页表,然后给出若干个有一定代表性的地址,通过查找段表页表后得到转换的地址。 要求打印转换前的地址,相应的段表,页表条款及转换后的地址,以便检查。三(实习任务及完成情况: 1.设计存储算法流程图: 图1-1

图1-2 段表、页表和内存的关系 2.第一道题:设计一个固定式分区分配的存储管理方案,并模拟实现分区的分配和回收过程。 (1)编写程序源代码: #include #define N 5 struct freearea /*定义一个空闲区说明表结构,并初始化变量*/ { int startaddress;/*空闲区地址*/ int size;/*空闲区大小*/ int state;/*空闲区状态:0为空表目,1为可用空闲块*/ } freeblock[N]= {{20,20,1},{80,50,1},{150,100,1},{300,30,0},{600,100,1}}; /*定义为作业分配主存空间的函数alloc()*/ int alloc(int applyarea) /*applyarea为作业申请量*/ { int i,tag=0;/*tag为检查是否有满足作业若需要的空闲区的标志*/ for(i=0; iapplyarea) { startaddress=freeblock[i].startaddress+applyarea; freeblock[i]. freeblock[i].size=freeblock[i].size-applyarea;

计算机操作系统实验三 存储管理

南京信息工程大学实验(实习)报告 实验(实习)名称存储管理实验(实习)日期 20131130 得分指导教师 系计算机系专业计科年级 2011 班次 1 姓名汤建洋学号 20112308018 1. 实验目的 本实验的目的是通过请求页式存储管理中页面置换算法模拟设计,了解虚拟存储技术的 特点,掌握请求页式存储管理的页面置换算法,此外通过实验了解HASH表数据结构的使用。 2. 实验准备 ⑴数据结构HASH表查找方式。 ⑵操作系统相关内存交换知识。 ⑶阅读Linux系统的msg.c、sem.c和shm.c等源码文件,掌握几个LINUX函数getpid ( )、srand (int a)和int rand ( )的使用方法。 3. 实验内容 设计一个虚拟存储区和内存工作区,并分别编程实现使用先进先出置换算法(FIFO) 和最近最少使用页面置换算法(LRU)计算访问命中率。 4. 实验指导 拥有页面交换机制的操作系统总是把当前进程中急需处理的部分页面换入到内存当中,而把更多暂时不需处理的页面放置在外存当中,由于进程需要处理页面的顺序不同,而需要 在内存与外存之间进行页面交换,交换算法也就应运而生。 本实验并没有进入系统空间对实际进程页面进行控制,而是在用户空间用线性表的连续 存储方式对进程页面交换进行的模拟。 ⑴ FIFO算法实现 <原理描述> 在分配内存页面数(AP)小于进程页面数(PP)时,当然是最先的AP个页面放入 内存; 这时有需要处理新的页面,则将原理在内存中的AP个页面中最先进入的调出,然 后放入新页面; 以后如果有新页面需要调入,按(2)之规则进行。 算法特点:所使用的内存页面构成一个队列。 <算法实现提示> 要得到“命中率”,必然应该有一个常量total_instruction记录页面总共使用次数;此外需 要一个变量记录总共换入页面的次数(需要换出页面,总是因为没有命中而产生的)diseffect。利用公式(1-diseffect/total_instructiong)×100%可以得到命中率。 [步骤1] 初始化。设置两个数组page[ap]和pagecontrol[pp]分别表示进程页面数和内存分 配的页面数,并产生一个的随机数序列main[total_instruction](当然这个序列由page[]的下标 随机构成),表示待处理的进程页面顺序,diseffect置零。 [步骤2] 看main[]中是否有下一个元素,有就由main[]中获取该页面下标,并转到⑶; 没有,就转到⑺。 [步骤3] 如果该page业已在内存中,就转到⑵;否则就到⑷,同时未命中的diseffect加1。

实验三 存储管理实验

实验三存储管理实验 一. 目的要求: 1、通过编写和调试存储管理的模拟程序以加深对存储管理方案的理解。熟悉虚存管理的各种页面淘汰算法。 2、通过编写和调试地址转换过程的模拟程序以加强对地址转换过程的了解。二.实验内容: 1、设计一个固定式分区分配的存储管理方案,并模拟实现分区的分配和回收过程。 可以假定每个作业都是批处理作业,并且不允许动态申请内存。为实现分区的分配和回收,可以设定一个分区说明表,按照表中的有关信息进行分配,并根据分区的分配和回收情况修改该表。 算法描述: 本算法将内存的用户区分成大小相等的四个的分区,设一张分区说明表用来记录分区,其中分区的表项有分区的大小、起始地址和分区的状态,当系统为某个作业分配主存空间时,根据所需要的内存容量,在分区表中找到一个足够大的空闲分区分配给它,然后将此作业装入内存。如果找不到足够大的空闲分区,则这个作业暂时无法分配内存空间,系统将调度另一个作业。当一个作业运行结束时,系统将回收改作业所占据的分区并将该分区改为空闲。 算法原程序 #include "stdio.h" #include "windows.h" #include #include #define PCB_NUM 5 //模拟进程数量 #define INT 800//内存分区数量 struct MemInf { int addr;//分区起始地址 int size;//分区大小 int state;//0表示空闲,>0时表示已分配,存储的是进程ID }; struct PCB { int pcbID;//进程ID int size;//进程大小

内存管理实验报告

信息科学与技术学院实验报告 课程名称: 实验项目: 实验地点:指导教师: 日期: 实验类型:(验证性实验综合性实验设计性实验) 专业: 计算机外包班级: 14外三姓名: 周鹏飞学号: 1414104033 一、实验目的及要求 通过此次实验,加深对内存管理的认识,进一步掌握内存的分配,回收算法的思想。 二、实验仪器、设备或软件 Windows操作系统PC一台;VC++6.0 三、实验内容及原理 原理:设计程序模拟内存的动态分区内存管理方法。内存空闲区使用空闲分区表进行管理,采用最先适应算法从空闲分区表中寻找空闲区进行分配,内存回收时不考虑与相邻空闲分区的合并。 假定系统的内存共640k,初始状态为操作系统本身占用40k.t1时刻,为作业A,B,C分配80k,60k,100k的内存空间;t2时刻作业B完成;t3时刻为作业D分配50k的内存空间;t4时刻作业C,A完成;t5时刻作业D完成。要求编程序分别输出t1,t2,t3,t4,t5时刻内存的空闲区的状态。 实验内容: #include #include #define maxPCB 6 //最大进程数 #define maxPart 6 //最大空闲分区数 #define size 10 //不再切割剩余分区的大小

typedef struct PCB_type { char name;//进程名 int address;//进程所占分区首地址 int len;//进程所占分区的长度 int valid;//PCB标识符(有效,无效) }PCB; Typedef struct seqlist //进程信息队列 { PCB PCBelem[maxPCB];// maxPCB为为系统中允许的最多进程数 int total; //系统中实际的进程数 }PCBseql;//分区类型的描述 typedef struct Partition { int address;//分区起址 int len;//分区的长度 int valid;//有标识符(有效,无效) }Part;//内存空闲分区表(顺序表)描述 typedef struct Partlist //空白分区链 { Part Partelem[maxPart];//maxPart为系统中可能的最多空闲分区数 int sum;//系统中世纪的分区数 }Partseql;//全局变量 PCBseql *pcbl;//进程队列指针 Partseql *part1;//空闲队列指针 #intclude “MainManager.h” void initpcb() //初始化进程表vpcb1 { int i; pcb1->PCBelem[0].address=0; pcb1->PCBelem[0].len=0; pcb1->PCBelem[0].name=’s’; pcb1->PCBelem[0].valid=1; pcb1->total=0; for(i=1;i

相关文档