文档库 最新最全的文档下载
当前位置:文档库 › 2把十进制数x(+12875)2-10写成浮点表示的机器数

2把十进制数x(+12875)2-10写成浮点表示的机器数

2把十进制数x(+12875)2-10写成浮点表示的机器数
2把十进制数x(+12875)2-10写成浮点表示的机器数

1.已知:x=0.1011,y=-0.0101,求:[(1/2)x]

补,[(1/4)x]

,[-x]

,[(1/2)y]

补,[(1/4)y]

,[-y]

2.把十进制数x=(+128.75)×2-10写成浮点表示的机器数,阶码、尾数分别用

原码、反码和补码表示。设阶码4位,阶符1位,尾数15位,尾数符号1位。

3.设机器字长位16位,定点表示时,尾数15位,数符1位;浮点表示时,阶码5位,阶符1位,数符1位,尾数9位。

(1)定点原码整数表示时,最大正数为多少?最小负数为多少?

(2)定点原码小数表示时,最大正数为多少?最小负数为多少?

(3)浮点原码表示时,最大浮点数为多少?最小浮点为多少?

4.设用补码表示的二进制浮点数,阶符1位,阶码2位,尾数5位(包含1位符号位)。算出:

(1)最大正数是多少?

(2)最小正数是多少?

(3)最大负数是多少?

(4)最小负数是多少?

注:零除外,用十进制表示结果。

5.某浮点数基值为2(即阶码的底),阶符1位,阶码3位,数符1位,尾数7位,阶码和尾数均用补码表示,且尾数采用规格化表示。它所能表示的最大正数真值是多少?非零最小正数真值是多少?绝对值最大的负数真值是多少?绝对值最小的负数真值是多少?

6.定点整数字长8位,当采用原码表示时[x]

的最大正值是多少?最小负数是多

少?若采用补码表示,则[x]

的最大正数是多少?最小负数是多少?

7.已知三个十进制数:x=-41,y=+101,z=-101。试以8位二进制数的形式(最高位为符号位)写出它们的原码、反码和补码,用补码计算x+y和x+z,并讨论结果的正确性。

8.已知x和y,采用单符号位求[x+y]

,指出结果是否溢出。

(1)x=0.11001,y=0.00111。

(2)x=0.11001,y=-0.10111。

9.已知x和y,采用单符号位求[x-y]

,指出结果是否溢出。

(1)x=0.11011,y=-0.10010。

(2)x=-0.01111,y=0.00101。

10.用补码运算方法求x+y=?

(1)x=0.1001,y=0.1100。

(2)x=-0.0100,y=0.1001。

11.用补码运算方法求x-y=?

(1)x=-0.0100,y=0.1001。

(2)x=-0.1011,y=-0.1010。

12.已知x=+0.1101,y=-0.1011。用原码一位乘法求x*y=?并估算乘法总时间。

13.已知x=0.1010,y=-0.0110。用补码一位乘法步骤计算x*y=?并估算乘法总时间。

14.已知x=0.10110,y=0.11111,用原码加减交替法计算x÷y=?并估算除法总时间。

15.已知x=0.10110,y=0.11111,用补码加减交替法计算x÷y=?并估算除法总时间。

16.设有两个十进制数:x=-0.875×21,y=0.625×22。

(1)将x,y的尾数转换为二进制补码形式。

(2)设阶码2位,阶符1位,数符1位,尾数3位。通过补码运算规则求出z=x-y 的二进制浮点规格化结果。

17.设有两个浮点数x=2Ex×S

x ,y=2Ev×S

y

,E

x

=(-10)

2

,S

x

=(+0.1001)

2

,若尾数4

位,数符1位,阶码2位,阶符1位,求x+y=?并写出运算步骤及结果。

18.设有两个浮点数N

1=2j1×S

1

,N

2

=2j2×S

2

,其中阶码2位,阶符1位,尾数4位。

数符1位,设

j 1=(-10)

2

,S

1

=(+0.1001)

2

j 2=(+10)

2

,S

2

=(+0.1011)

2

求:N

1×N

2

,写出运算步骤及结果,积的尾数占4位,要规格化结果,用原码一位

乘法求尾数之积。

19.已知两个浮点数:

x=0011,01001

y=1111,01011

阶码用以2为基的4位补码表示,其中最高位为阶符。尾数用6位原码表示,其中最高位为数符。列出求x/y 的运算步骤,并对结果进行规格化及舍入处理。

20.已知x=11011011,y=00101100。求:

(1)x y=? (2)x ∧y=?

(3)x ∨y=?

(4 ) =?

x y

数的定点表示和浮点表示

计算机处理的数值数据多数带有小数,小数点在计算机常有两种表示方法,一种是约定所有数值数据的小数点隐含在某一个固定位置上,称为定点表示法,简称定点数;另一种是小数点位置可以浮动,称为浮点表示法,简称浮点数。 1. 定点数表示法(fixed-point) 所谓定点格式,即约定机器中所有数据的小数点位置是固定不变的。在计算机常采用两种简单的约定:将小数点的位置固定在数据的最高位之前,或者是固定在最低位之后。一般常称前者为定点小数,后者为定点整数。 定点小数是纯小数,约定的小数点位置在符号位之后、有效数值部分最高位之前。若数据x的形式为x=x0.x1x2… xn(其中x0为符号位,x1~xn是数值的有效部分,也称为尾数,x1为最高有效位),则在计算机中的表示形式为: 一般说来,如果最末位xn= 1,前面各位都为0,则数的绝对值最小,即|x|min= 2-n。如果各位均为1,则数的绝对值最大,即|x|max=1-2-n。所以定点小数的表示围是:

2-n≤|x|≤1 -2-n 定点整数是纯整数,约定的小数点位置在有效数值部分最低位之后。若数据x的形式为x=x0x1x2…xn(其中x0为符号位,x1~xn是尾数,xn为最低有效位),则在计算机中的表示形式为: 定点整数的表示围是: 1≤|x|≤2n-1 当数据小于定点数能表示的最小值时,计算机将它们作0处理,称为下溢;大于定点数能表示的最大值时,计算机将无法表示,称为上溢,上溢和下溢统称为溢出。 计算机采用定点数表示时,对于既有整数又有小数的原始数据,需要设定一个比例因子,数据按其缩小成定点小数或扩大成定点整数再参加运算,运算结果,根据比例因子,还原

数的产生、十进制计数法.doc

数的产生、十进制计数法 教学内容: 人教版小学数学四年级上册课本第16---18页内容。 教学目标: 1.让学生认识“数”的产生和发展历史。 2.让学生体会“数”是随着人类生活、生产及社会的发展逐步发展和完善 的过程。 3.认识自然数的概念与特点,感受数学文化的内涵。 4.认识亿级的计数单位,以及相邻两个计数单位之间的关系。 5.让学生“扩建”数位顺序表,总结出“十进制计数法”。 教学重点: 1.认识自然数的概念与特点。 2.认识计数单位与数位、数级的知识,及相邻两个计数单位之间的关系。 3.了解“十进制计数法”的意义。 教学难点: 理解“十进制计数法”的意义。 教学模式: 导、学、议、练 教法学法: 先学后教,当堂训练 教学过程: 一、导 1.谈话导入 师:同学们,通过前几节课的学习,我们认识了生活中的大数,看来有关“数”的知识真不少,我们的生活也和数字密不可分。今天,我们就来研究数是怎样产生的和有关数的其他知识。 (板书课题:数的产生和十进制计数法) 2.出示学习目标 (1)认识“数”的产生和发展历史。

(2)认识自然数的概念与特点。 (3)理解十进制记数法。 二、学、议 1.出示自学提示(一) 师:请同学们带着以下问题自学课本 16 页。 (1)数是何时产生的? (2)对于古人用这样的方法记数你有什么想法? (3)各个国家曾采用什么样的符号记数,有哪些好处和不足? (4)现在通用的数字是什么? 2.议 师:同学们,这些内容是不是很有趣,你找到答案了吗? 谁来跟大家讲一讲你了解的内容。 (1)学生汇报问题 1: 古时候,人们在生产劳动中,逐渐有了记数的需要,所以产生了数。 师追问:古时候有什么记数的方法? 学生回答:用实物记数结绳记数刻道记数 师:你觉得这些方法怎么样? (2)学生汇报问题 2: 用起来不方便,记录小数还可以,较大的数就很麻烦了。 师:所以各个国家都有了自己的记数方法,你觉得他们的方法都怎么样? (3)学生汇报问题 3: 没有统一的方法也不方便互相交流。 师:那现在呢? (4)学生汇报问题 4: 经过很长时间才逐步统一成现在用的阿拉伯数字。就像我们现在用的: 1、2、3、4 师小结:同学们真棒,我们了解了数的产生,那你觉得阿拉伯数字用着方便吗?(方便)它有什么特点你想知道吗? 3.出示自学提示(二) 课本第 17 页有我们想知道的秘密:

C语言的数据类型→浮点型数据

C语言的数据类型→浮点型数据 一、浮点型常量的表示方法: C语言中的浮点数(floating point unmber)就是平常所说的实数。 浮点数有两种表示形式: (1)、十进制小数形式。它由数字和小数点组成(注意必须有小数点)。 如:0.123 、 123.、123.0、0.0 都是十进制小数形式。 (2)、指数形式。 如:123e3或123E3都代表123*103。 注意字母e(或E)之前必须有数字,且e后面的指数必须为整数,如e3、 2.1e 3.5、 e3、 e 等都不是合法的指数形式。 一个浮点数可以有多种指数表示形式。例如123.456e0、 12.3456e1、1.23456e2 、 0.123456e3 、 0.0123456e4 、 0.00123456e5等。其中的1.23456e2称为“规范化的指数形式”。即在字母e(或E)之前的小数部分中,小数点左边应有一位(且只能有一位)非零的数字。例如2.3478e2 、 3.099E5 、 6.46832E12都属于规范化的指数形式,而

12.908e10 、0.4578E3 、 756e0则不属于规范化的指数形式。一个浮点数在用指数形式输出时,是规范化的指数形式输出的。例如。若指定将实数5689.65按指数形式输出。输出的形式是5.68965e+003,而不会是0.568965e+004或56.8965e+002。 二、浮点型变量 一个浮点型数据一般在内存中4个字节(32位)。与整型数据的存储方式不同,浮点型数据是按照指数形式存储的。系统把一个浮点型数据分成小数部分和指数部分,分别存放。指数部分采用规范化的指数形式。例如:实数3.14159在内存中的存放形式可以用下图来表示: 1、浮点型变量在内存中的存放形式。 上图使用十进制数来表示的,实际上在计算机中是用二进制数来表示小数部分以及用2的幂次来表示指数部分的。

浮点数的表示和基本运算

浮点数的表示和基本运算 1 浮点数的表示 通常,我们可以用下面的格式来表示浮点数 S P M 其中S是符号位,P是阶码,M是尾数 对于IBM-PC而言,单精度浮点数是32位(即4字节)的,双精度浮点数是64位(即8字节)的。两者的S,P,M所占的位数以及表示方法由下表可知 S P M表示公式偏移量 1823(-1)S*2(P-127)*1.M127 11152(-1)S*2(P-1023)*1.M1023 以单精度浮点数为例,可以得到其二进制的表示格式如下 S(第31位)P(30位到 23位) M(22位到 0位) 其中S是符号位,只有0和1,分别表示正负;P是阶码,通常使用移码表示(移码和补码只有符号位相反,其余都一样。对于正数而言,原码,反码和补码都一样;对于负数而言,补码就是其绝对值的原码全部取反,然后加1.) 为了简单起见,本文都只讨论单精度浮点数,双精度浮点数也是用一样的方式存储和表示的。 2 浮点数的表示约定 单精度浮点数和双精度浮点数都是用IEEE754标准定义的,其中有一些特殊约定。 (1) 当P = 0, M = 0时,表示0。 (2) 当P = 255, M = 0时,表示无穷大,用符号位来确定是正无穷大还是负无穷大。

(3) 当P = 255, M != 0时,表示NaN(Not a Number,不是一个数)。 当我们使用.Net Framework的时候,我们通常会用到下面三个常量 Console.WriteLine(float.MaxValue); // 3.402823E+38 Console.WriteLine(float.MinValue); //-3.402823E+38 Console.WriteLine(float.Epsilon); // 1.401298E-45 //如果我们把它们转换成双精度类型,它们的值如下 Console.WriteLine(Convert.ToDouble(float.MaxValue)); // 3.40282346638529E+38 Console.WriteLine(Convert.ToDouble(float.MinValue)); //-3.40282346638529E+38 Console.WriteLine(Convert.ToDouble(float.Epsilon)); // 1.40129846432482E-45 那么这些值是如何求出来的呢? 根据上面的约定,我们可以知道阶码P的最大值是11111110(这个值是254,因为255用于特殊的约定,那么对于可以精确表示的数来说,254就是最大的阶码了)。尾数的最大值是11111111111111111111111。 那么这个最大值就是:0 11111110 11111111111111111111111。 也就是 2(254-127) * (1.11111111111111111111111)2 = 2127 * (1+1-2-23) = 3.40282346638529E+38 从上面的双精度表示可以看出,两者是一致的。最小的数自然就是- 3.40282346638529E+38。 对于最接近于0的数,根据IEEE754的约定,为了扩大对0值附近数据的表示能力,取阶码P = -126,尾数 M = (0.00000000000000000000001)2 。此时该数的二进制表示为:0 00000000 00000000000000000000001 也就是2-126 * 2-23 = 2-149 = 1.40129846432482E-45。这个数字和上面的Epsilon 是一致的。 如果我们要精确表示最接近于0的数字,它应该是 0 00000001 00000000000000000000000 也就是:2-126 * (1+0) = 1.17549435082229E-38。 3 浮点数的精度问题 浮点数以有限的32bit长度来反映无限的实数集合,因此大多数情况下都是一个近似值。同时,对于浮点数的运算还同时伴有误差扩散现象。特定精度下看似

浮点算法转换成硬件定点算法中的问题

浮点算法转换成硬件定点算法中的问题 回北京航空航天大学唐清贵夏宇闻 引言 DSP和FPGA是信号处理工程设计领域发展最快的两个分支G目前9它们的应用非常普及9但是要开发出占用资源少9运行速度快的高质量硬件体系结构比较困难G 在通常情况下9算法的硬件实现都需要采用定点运算并考虑并行结构G 但是在实际的许多应用中9比如图像处理\语音压缩等9需要进行大量复杂的数据运算9而且对数据的精度及动态范围都要求比较高9所以9算法模型大多都以浮点数为基础G另一方面9浮点算法在硬件实现上有相当大的难度9不仅占用的系统资源较多9而且硬件运行的速度也较慢9在很多场合下不能很好地满足系统实时性的要求G因此9电子工程师为了提高系统的性能9一般都会先对浮点算法进行仔细的分析9结合工程的实际要求9综合考虑诸多因素9然后再将其转化为定点算法并通过硬件来实现G 因此9如何使转化后的算法在硬件上能正确地运行是设计开发人员特别关心的问题G解决该问题的唯一途径就是使处理后的数据保持系统要求的精度和动态范围9否则就会因为数据处理不当9使系统产生莫名奇妙的故障9从而导致系统的失败G在遇到此类问题时9务必要谨慎对待9以免造成不可估量的损失G 1浮点与定点运算的比较 在开发过程中9必须要对应用的数据精度及动态范围有清楚的认识9并在开始设计硬件结构前9先进行算法定点化的研究工作9严格按照工程设计的实际需求在数学运算上对算法进行数字定点化处理并计算验证G只有这样9才能保证最终设计的硬件体系结构产生的运算结果符合设计需求G 为了更好的说明如何成功的完成浮点算法向定点算法的转化9首先对浮点数和定点数进行简要回顾G 浮点数由三部分组成C指数部分\尾数部分和符号位9如图l所示G图l中T\l分别为指数和尾数的位宽9浮点 数据的数值U f p 表示为C U f p =(_l)S"U s"Z U e 其中9S为符号位的值9U s为尾数的数值9U e是指数的数值G在I EEE754标准中9单精度浮点指数位数为89尾数位数为Z39还有l位符号位G数据绝对值最小可以是Z.O>l O-389最大可以是Z.O>l O+389双精度浮点指数位数为l l9尾数位数为5Z9同样也有l位符号位G数据绝对值最小可以是Z.O>l O-3O89最大可以是Z.O>l O+3O8G 定点数的表示方法和浮点数相对应9数据直接用二进制表示9且小数点在数据的位置固定G和浮点数相比9它的运算简单9没有浮点数尾数对齐和归一化问题G因此9在硬件上实现以定点数为基础的算法占用的面积少\性能高9故定点运算是信号处理硬件实现中最常用的一种方式G但是9由于定点数表示的范围远远小于浮点数9所以在实现过程可能会有许多的隐患9如在运算过程中9经常会碰到溢出问题和病态方程等问题G 2精度处理策略 根据上面的分析9可以看到9浮点算法与定点算法主要的不同之处在于算法中的数据精度和动态范围G因此9只要解决了转化后由于数据的精度和动态范围减小引起的问题9那就等于解决了算法的转化问题G 目前9为了保证转化后的算法能正确地实现系统功能9对数据精度处理的方法主要有舍弃最低位和采用最大字长等G前者以损失精度来保证计算中的无溢出9但是得到的结果往往与实际值有一定的差距9从而使系统在很多情况下不能稳定地运行S后者通过应用分析找出所需数据的最大字长(该字长为运算中精度无损失条件下数据的长度)9然后再以最大字长的方式进行算法中所有数据的运算9该方法虽然保证了计算结果的正确和精度9但是它的缺点在于造成了资源的巨大浪费9限制了硬件运行速度的提高9因为实现算法中的某些运算所需的字长远远小于最大字长G最佳的转化应该是使处理后算法中的数据既能 图 1 Z OO5.lZ M icrocontrollers Embedded S y ste ms75

汇编指令与机器码

一、状态寄存器 PSW(Program Flag)程序状态字寄存器,是一个16位寄存器,由条件码标志(flag)和控制标志构成,如下所示: 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0 OF DF IF TF SF ZF AF PF CF 条件码: ①OF(Overflow Flag)溢出标志。溢出时为1,否则置0。 ②SF(Sign Flag)符号标志。结果为负时置1,否则置0. ③ZF(Zero Flag)零标志,运算结果为0时ZF位置1,否则置0. ④CF(Carry Flag)进位标志,进位时置1,否则置0. ⑤AF(Auxiliary carry Flag)辅助进位标志,记录运算时第3位(半个字节)产生的进位置。有进位时1,否则置0. ⑥PF(Parity Flag)奇偶标志。结果操作数中1的个数为偶数时置1,否则置0. 控制标志位: ⑦DF(Direction Flag)方向标志,在串处理指令中控制信息的方向。 ⑧IF(Interrupt Flag)中断标志。 ⑨TF(Trap Flag)陷井标志。 二、直接标志转移(8位寻址) 指令格式机器码测试条件如...则转移 JC 72 C=1 有进位 JNC 73 C=0 无进位 JZ/JE 74 Z=1 零/等于 JNZ/JNE 75 Z=0 不为零/不等于 JS 78 S=1 负号 JNS 79 S=0 正号 JO 70 O=1 有溢出 JNO 71 O=0 无溢出 JP/JPE 7A P=1 奇偶位为偶 JNP/IPO 7B P=0 奇偶位为奇 三、间接标志转移(8位寻址) 指令格式机器码测试格式如...则转移 JA/JNBE(比较无符号数) 77 C或Z=0 > 高于/不低于或等于 JAE/JNB(比较无符号数) 73 C=0 >=高于或等于/不低于 JB/JNAE(比较无符号数) 72 C=1 < 低于/不高于或等于

浮点转定点计算

一DSP定点算数运算 1 数的定标 在定点DSP芯片中,采用定点数进行数值运算,其操作数一般采用整型数来表示。一个整型数的最大表示范围取决于DSP芯片所给定的字长,一般为16位或24位。显然,字长越长,所能表示的数的范围越大,精度也越高。如无特别说明,本书均以16位字长为例。 DSP芯片的数以2的补码形式表示。每个16位数用一个符号位来表示数的正负,0表示数值为正,l则表示数值为负。其余15位表示数值的大小。因此, 二进制数0010000000000011b=8195 二进制数1111111111111100b= -4 对DSP芯片而言,参与数值运算的数就是16位的整型数。但在许多情况下,数学运算过程中的数不一定都是整数。那么,DSP芯片是如何处理小数的呢?应该说,DSP芯片本身无能为力。那么是不是说DSP芯片就不能处理各种小数呢?当然不是。这其中的关键就是由程序员来确定一个数的小数点处于16位中的哪一位。这就是数的定标。 通过设定小数点在16位数中的不同位置,就可以表示不同大小和不同精度的小数了。数的定标有Q表示法和S表示法两种。表1.1列出了一个16位数的16种Q表示、S表示及它们所能表示的十进制数值范围。 从表1.1可以看出,同样一个16位数,若小数点设定的位置不同,它所表示的数也就不同。例如, 16进制数2000H=8192,用Q0表示 16进制数2000H=0.25,用Q15表示 但对于DSP芯片来说,处理方法是完全相同的。 从表1.1还可以看出,不同的Q所表示的数不仅范围不同,而且精度也不相同。Q越大,数值范围越小,但精度越高;相反,Q越小,数值范围越大,但精度就越低。例如,Q0 的数值范围是一32768到+32767,其精度为1,而Q15的数值范围为-1到0.9999695,精度为1/32768=0.00003051。因此,对定点数而言,数值范围与精度是一对矛盾,一个变量要想能够表示比较大的数值范围,必须以牺牲精度为代价;而想精度提高,则数的表示范围就相应地减小。在实际的定点算法中,为了达到最佳的性能,必须充分考虑到这一点。 浮点数与定点数的转换关系可表示为: 浮点数(x)转换为定点数(xq):xq=(int)x* 2Q 定点数(xq)转换为浮点数(x):x=(float)xq*2-Q 例如,浮点数x=0.5,定标Q=15,则定点数xq=[0.5*32768]=16384,式中[]表示下取整。反之,一个用Q=15表示的定点数16384,其浮点数为16384/2e15=16384/32768=0.5。浮点数转换为定点数时,为了降低截尾误差,在取整前可以先加上0.5。 表1.1 Q表示、S表示及数值范围 Q表示 S表示十进制数表示范围 Q15 S0.15 -1≤x≤0.9999695 Q14 S1.14 -2≤x≤1.9999390 Q13 S2.13 -4≤x≤3.9998779 Q12 S3.12 -8≤x≤7.9997559 Q11 S4.11 -16≤x≤15.9995117 Q10 S5.10 -32≤x≤31.9990234 Q9 S6.9 -64≤x≤63.9980469 Q8 S7.8 -128≤x≤127.9960938 Q7 S8.7 -256≤x≤255.9921875

数的定点表示和浮点表示

计算机处理的数值数据多数带有小数,小数点在计算机中通常有两种表示方法,一种是约定所有数值数据的小数点隐含在某一个固定位置上,称为定点表示法,简称定点数;另一种是小数点位置可以浮动,称为浮点表示法,简称浮点数。 1. 定点数表示法(fixed-point) 所谓定点格式,即约定机器中所有数据的小数点位置是固定不变的。在计算机中通常采用两种简单的约定:将小数点的位置固定在数据的最高位之前,或者是固定在最低位之后。一般常称前者为定点小数,后者为定点整数。 定点小数是纯小数,约定的小数点位置在符号位之后、有效数值部分最高位之前。若数据x的形式为x=x0.x1x2… xn(其中x0为符号位,x1~xn是数值的有效部分,也称为尾数,x1为最高有效位),则在计算机中的表示形式为: 一般说来,如果最末位xn= 1,前面各位都为0,则数的绝对值最小,即|x|min= 2-n。如果各位均为1,则数的绝对值最大,即|x|max=1-2-n。所以定点小数的表示范围是:

2-n≤|x|≤1 -2-n 定点整数是纯整数,约定的小数点位置在有效数值部分最低位之后。若数据x的形式为x=x0x1x2…xn(其中x0为符号位,x1~xn是尾数,xn为最低有效位),则在计算机中的表示形式为: 定点整数的表示范围是: 1≤|x|≤2n-1 当数据小于定点数能表示的最小值时,计算机将它们作0处理,称为下溢;大于定点数能表示的最大值时,计算机将无法表示,称为上溢,上溢和下溢统称为溢出。 计算机采用定点数表示时,对于既有整数又有小数的原始数据,需要设定一个比例因子,数据按其缩小成定点小数或扩大成定点整数再参加运算,运算结果,根据比例因子,还原

浮点转定点方法总结

浮点转定点方法总结 —孔德琦

目录 定点运算方法................................................ 错误!未定义书签。 数的定标 ............................................... 错误!未定义书签。 C语言:从浮点到定点 ................................. 错误!未定义书签。 加法.................................................... 错误!未定义书签。 乘法..................................................... 错误!未定义书签。 除法..................................................... 错误!未定义书签。 三角函数运算............................................ 错误!未定义书签。 开方运算................................................ 错误!未定义书签。 附录...................................................... 错误!未定义书签。 附录1:定点函数库...................................... 错误!未定义书签。 附录2:正弦和余弦表..................................... 错误!未定义书签。

数的产生和十进制计数法教案

数的产生和十进制计数法 一、教学目标 1.通过介绍数的产生,给学生建立自然数的概念,并了解自然数的一些性质和特点;理解掌握十进制计数法的含义,认识含有三级数位的数位顺序表及相应的计数单位。 2.通过探索、思考、总结等活动,让学生体验数的产生过程。 3.使学生了解中国古代数学的伟大成就,激发学生的民族自豪感。 二、教学重点 让学生体验数的产生过程。 三、教学难点 理解掌握十进制计数法的意义。 四、教学用具 计数器、课件。 五、教学过程 (一)教学数的产生动画:数字的产生和演变 1.数的产生。【课件演示】(图片) 教师:很久以前,人们在生产劳动中就有了计数的需要。例如,人们出去打猎的时候,要数一数共出去了多少人,拿了多少件武器;回来的时候,要数一数捕获了多少只野兽等等,这样就产生了数。 2.计数符号、计数方法的产生。 教师出示第19页的主题图让学生看,进一步说明:在远古时代人们虽然有计数的需要,但是开始还不会用一、二、三……这些数词来数物体的个数。只知道“同样多”、“多”或“少”。那时人们只能借助一些其他物品,如在地上摆小石子、在木条上刻道、在绳上打结等方法来计数。比如,出去放牧时,每放出一只羊,就摆一个石子,一共出去了多少只羊,就摆多少个小石子;放牧回来时,再把这些小石子和羊一一对应起来,如果回来的羊的只数和小石子同样多,就说明放牧时羊没有丢。再如,出去打猎时,每拿一件武器,就在木棒上刻一道,一共拿了多少件就在木棒上刻多少道;打猎回来时,再把拿回来的武器和木棒上刻的道一一对应起来,看武器和刻道是不是同样多,如果是,就说明武器没有丢失。结绳计数的道理也是这样。这些计数的基本思想就是把要数的实物和用来

浮点数表示方法的分析研究

浮点数表示方法的分析研究.txt13母爱是迷惘时苦口婆心的规劝;母爱是远行时一声殷切的叮咛;母爱是孤苦无助时慈祥的微笑。 浮点数表示方法的分析研究 [日期:2006-06-10] 来源:作者: [字体:大中小] 摘要:在《计算机组成原理》课程的教学中,浮点数的表示与运算是一个重点,也是难点。本文对浮点数的一般表示及标准表示的方法、范围、存储格式等进行了比较深入地比较、分析和研究,力求给读者一个清晰的概述。 关键词:浮点数,表示方法,符号,尾数,阶码,范围 《计算机组成原理》课程是计算机科学与技术专业的一门必修专业基础课,主要是讲述计算机系统几大硬件的组成结构和工作原理。在其核心部件——运算器(Arithmetician)的运算机制中,浮点数(Floating-point)的表示与运算方法是一个重点,也是难点,笔者在查阅了大量中外文文献的基础上,根据多年的教学实践经验,对浮点数的表示方法、规格化处理方法、表示范围进行了比较详细地分析研究,以方便学生的学习,共同行们参考。 1、浮点数的一般表示方法 在数学中,表示一个浮点数需要三要素:尾数(mantissa)、指数(exponent,又称阶码)和基数(base),都用其第一个字母来表示的话,那么任意一个浮点数N可以表示成下列形式:N=M×BE,例如N1=1.234×10-6, N2= -0.001011×2011等,同样的数字对于不同的基数是不相同的,移动小数点的位置,其指数相应地跟着变化。在计算机中,表示一个浮点数,同样需要以上三要素,只是阶码与尾数一同存储,基数常有2、8、16等数值,下面的讨论以2为基数进行。 将浮点数放在计算机中存储时,尾数M用定点(Fixed-point)小数的形式,阶码E用有符号整数形式,改变M中小数点的位置,同时需要修改E的值,可以给出有效数字(significant number)的位数,因此M和E决定了浮点数的精度(precision),E指明小数点在B进制数据中的位置,因而E和B决定了浮点数的表示范围(range),浮点数的符号(Sign)是单独考虑,设阶码有m+1位,尾数有n+1位,则一般浮点数的表示方法如图1所示,其中,下标s代表符号位,下标数字代表数字所处的位数,尾数的小数点默认最高数字位M1之前。图(b)是将尾数的符号位提在最前面,其它部分与图(a)一样,是目前常用的一种表示形式。 图1 浮点数的一般表示形式 在这种表示方法中,阶码的二进制编码(binary code)一般是原码(sign magnitude)、补码(twos complement)或移码(bias),尾数的编码一般是原码或补码。 2、浮点数的规格化处理 在浮点数系统中,小数点的浮动使数值的表示不能惟一,从而给数据处理带来困难,因此有必要使浮点数的表示与存储有一定的标准,考虑到阶码、尾数之间的关系,常将尾数的最高数字位是有效值的数值称为规格化(normalization),由于尾数可以是原码或补码,所以有两种规格化的形式,如表1所示。

汇编指令机器码总结

汇编指令机器码总结与验证 摘要:本文介绍了汇编指令机器码的含义与作用,并讨论了指令的组成结构即操作码与地址码。然后全面总结了机器码中的单字节操作码,并利用Debug工具进行了详细的验证。 关键词:指令;机器码 一、机器码概述[1] 机器语言是用二进制代码表示的计算机能直接识别和执行的一种机器指令的集合。这种指令集就称为机器码,它是电脑的CPU可直接解读的数据。一条指令是机器语言的一个语句,是一组有意义的二进制代码。计算机通过执行指令来处理各种数据。 为了指出数据的来源、操作结果的去向及所执行的操作,一条指令必须包含下列信息: a) 操作码 b) 操作数的地址 c) 操作结果的存储地址 d) 下条指令的地址 一条指令实际上包括两种信息即操作码和地址码。操作码用来表示该指令所要完成的操作(如加、减、乘、除、数据传送等),其长度取决于指令系统中的指令条数。地址码用来描述该指令的操作对象,它或者直接给出操作数,或者指出操作数的存储器地址或寄存器地址(即寄存器名)。 二、机器码详解[2] 由上文已知,一条指令一般由操作码和地址码组成。其中,操作码是指明CPU对内存或寄存器中的数据进行什么样的操作,地址码给出这些数据对象。下面我们就将指令分为两部分进行研究。1.操作码 操作码一般占用1个字节(8位)或2个字节(16位)。其中最低比特(记作W)在很多指令中表示目标操作数的位宽,W=0表示字节长(8位)操作数,W=1表示双字节长(16位)操作数。例如,操作码00000000B(W=0)表示“ADD 8位寄存器,8位寄存器”,而00000001B(W=1)表示“ADD 16位寄存器,16位寄存器”。 2.地址码 地址码一般占用1个字节,其中的8个比特位可分为三组,形式一般为“oommmrrr”。这些分组大致可分为以下四个类型: 1) “oo”——表示指令的地址偏移量类型 a) 00:如果mmm=110,那么指令后紧跟一个地址偏移量;否则未使用地址偏移量 b) 01:指令后紧跟一个8比特无符号地址偏移量 c) 10:指令后紧跟一个16比特无符号地址偏移量 d) 11:此时mmm表示一个寄存器而不是地址

IEEE浮点数表示法

IEEE浮点数表示法 ------------------------------------------------- float 共计32位(4字节) 由最高到最低位分别是第31、30、29、 0 31位是符号位,1表示该数为负,0反之 30~23位,一共8位是指数位(-128~127) 22~ 0位,一共23位是尾数位 每8位分为一组,分成4组,分别是A组、B组、C组、D组 每一组是一个字节,在内存中逆序存储,即: DCBA 31 30 23 22 0 |-|--------|-----------------------| | | || |-|--------|-----------------------| 注: 尾数的存储位为23位,由于没有存储最高位的1,所以实际有效位为24位。如果其中20位都用来表示小数部分,能表示的最大值为0.999999 我们先不考虑逆序存储的问题,因为那样会把读者彻底搞晕,所以我先按照顺序的来讲,最后再把他们翻过来就行了。

纯整数的表示方法 ------------------------------------------------- 现在让我们按照IEEE浮点数表示法,一步步的将float型浮点数123456.0f转换为十六进制代码。在处理这种不带小数的浮点数时,直接将整数部转化为二进制表示: 1 11100010 01000000 也可以这样表示: 1 11100010 01000000.0 然后将小数点向左移,一直移到离最高位只有1位: 1.11100010 01000000 一共移动了16位,在布耳运算中小数点每向左移一位就等于在以2为底的科学计算法表示中指数+1,所以原数就等于这样 1 11100010 01000000 = 1.11100010 01000000 * (2^16) 现在我们要的尾数和指数都出来了。显而易见,最高位永远是1,因为你不可能把买了16个鸡蛋说成是买了0016个鸡蛋吧?(呵呵,可别拿你买的臭鸡蛋甩我),所以这个1我们还有必要保留他吗?(众:没有!)好的,我们删掉他。这样尾数的二进制就变成了: 11100010

数的产生和十进制计数法教案

数的产生和十进制计 数法教案 Revised on November 25, 2020

《数的产生和十进制计数法》教学设计 一、教学目标 1.通过介绍数的产生,给学生建立自然数的概念,并了解自然数的一些性质和特点;理解掌握十进制计数法的含义,认识含有三级数位的数位顺序表及相应的计数单位。 2.通过探索、思考、总结等活动,让学生体验数的产生过程。 3.使学生了解中国古代数学的伟大成就,激发学生的民族自豪感。 二、教学重点 让学生体验数的产生过程。 三、教学难点 理解掌握十进制计数法的意义。 四、教学用具 计数器、课件。 五、教学过程 (一)教学数的产生 1.数的产生。【课件演示】(图片) 教师:很久以前,人们在生产劳动中就有了计数的需要。例如,人们出去打猎的时候,要数一数共出去了多少人,拿了多少件武器;回来的时候,要数一数捕获了多少只野兽等等,这样就产生了数。 2.计数符号、计数方法的产生。

教师出示第19页的主题图让学生看,进一步说明:在远古时代人们虽然有计数的需要,但是开始还不会用一、二、三……这些数词来数物体的个数。只知道“同样多”、“多”或“少”。那时人们只能借助一些其他物品,如在地上摆小石子、在木条上刻道、在绳上打结等方法来计数。比如,出去放牧时,每放出一只羊,就摆一个石子,一共出去了多少只羊,就摆多少个小石子;放牧回来时,再把这些小石子和羊一一对应起来,如果回来的羊的只数和小石子同样多,就说明放牧时羊没有丢。再如,出去打猎时,每拿一件武器,就在木棒上刻一道,一共拿了多少件就在木棒上刻多少道;打猎回来时,再把拿回来的武器和木棒上刻的道一一对应起来,看武器和刻道是不是同样多,如果是,就说明武器没有丢失。结绳计数的道理也是这样。这些计数的基本思想就是把要数的实物和用来计数的实物一个对一个地对应起来,也就是现在所说的一一对应。以后,随着语言的发展逐渐出现了数词,随着文字的发展又发明了一些记数符号,也就是最初的数字。各个国家和地区的记数符号是不同的。 【课件演示】(阿拉伯数字产生) 阿拉伯数字,其实并不是阿拉伯人发明的,而是由印度人发明的,公元八世纪前后,由印度传入阿拉伯,公元十二世纪又从阿拉伯传入欧洲,人们就误认为这些数字是阿拉伯人发明的,后来就叫做“阿拉伯数字”。随着社会的发展,人们的交流也越来越多,但各个地区数学不同,交流起来很不方便,以后就逐渐统一成现行的阿拉伯数字。后来人类对数的认识逐渐增加,数认得也越来越大,如

浮点数的表示和计算

《计算机组成原理》实验报告

sw $aO, O($fp) #calculate the first nu mber andi $s2, $s0, 0x80000000 # s2 is the sig n srl $s2, $s2, 31 andi $s3, $s0, 0x7f800000 # s3 is the exp onent srl $s3, $s3, 23 andi $s4, $s0, 0x007fffff # s4 is the fractio n addi $s4, $s4, 0x00800000 #calculate the seco nd number andi $s5, $s1, 0x80000000 # s5 is the sig n srl $s5, $s5, 31 andi $s6, $s1, 0x7f800000 # s6 is the exp onent srl $s6, $s6, 23 andi $s7, $s1, 0x007fffff # s7 is the fractio n addi $s7, $s7, 0x00800000 sub $t0, $s3, $s6 bit $t0, 0, sumL1 # add sub bgt $t0, 0, sumL2 # sub add beq $t0, 0, sumL3 2.减法指令如下: mysub: subu $sp, $sp, 32 sw $ra, 20($sp) sw $fp, 16($sp) addiu $fp, $sp, 28 sw $a0, 0($fp) #calculate the first nu mber andi $s2, $s0, 0x80000000 # s2 is the sig n srl $s2, $s2, 31 andi $s3, $s0, 0x7f800000 # s3 is the exp onent srl $s3, $s3, 23 andi $s4, $s0, 0x007fffff # s4 is the fractio n addi $s4, $s4, 0x00800000 #calculate the seco nd number xori $s5, $s1, 0x80000000 # s5 is the sig n srl $s5, $s5, 31 andi $s6, $s1, 0x7f800000 # s6 is the exp onent srl $s6, $s6, 23 andi $s7, $s1, 0x007fffff # s7 is the fractio n addi $s7, $s7, 0x00800000 sub $t0, $s3, $s6 blt $t0, 0, subL1 # +,- bgt $t0, 0, subL2 # -,+ beq $t0, 0, subL3 # +,+ or -,- 3.乘法指令如下: mutilStart: srl $t2, $s0, 31 srl $t3, $s1, 31 sll $t4, $s0, 1

浮点数表示方法与运算

在计算机系统的发展过程中,曾经提出过多种方法表达实数,典型的比如定点数。在定点数表达方式中,小数点位置固定,而计算机字长有限,所以定点数无法表达很大和很小的实数。最终,计算机科学发展出了表达范围更大的表达方式——浮点数,浮点数也是对实数的一种近似表达。 1.浮点数表达方式 我们知道任何一个R 进制数N 均可用下面的形式表示:N R =±S ×R ±e 其中,S—尾数,代表N 的有效数字; R—基值,通常取2、8、16;e—阶码,代表N 的小数点的实际位置(相当于数学中的指数)。 比如一个十进制数的浮点表达1.2345×102,其中1.2345为尾数,10为基数,2为阶码。一个二进制数的浮点表达0.001001×25,0.001001为尾数,2为基数,5为阶码;同时0.001001×25也可以表示成0.100100×23,0.100100为尾数,2为基数,3为阶码。浮点数就是利用阶码e 的变化达到浮动小数点的效果,从而灵活地表达更大范围的实数。 2.浮点数的规格化 一个数用浮点表示时,存在两个问题:一是如何尽可能多得保留有效数字;二是如何保证浮点表示的唯一。 对于数0.001001×25,可以表示成0.100100×23、0.00001001×27等等,所以对于同一个数,浮点有多种表示(也就是不能唯一表示)。另外,如果规定尾数的位数为6位,则0.00001001×27会丢掉有效数字,变成0.000010×27。因此在计算机中,浮点数通常采用规格化表示方法。 当浮点数的基数R 为2,即采用二进制数时,规格化尾数的定义为:1/2<=|S|<1。若尾数采用原码(1位符号位+n 位数值)表示,[S]原=S f S 1S 2S 3…S n (S f 为符号位的数符),则满足S 1=1的数称为规格化数。即当尾数的最高有效位S 1=1,[S]原=S f 1S 2S 3…S n ,表示该浮点数为规格化数。对0.001001×25进行规格化后,表示为0.100100×23。 3.浮点数的表示范围 求浮点数的表示范围,实质是求浮点数所能表示的最小负数、最大负数、最小正数和最大正数。

DSP编程技巧之22详解浮点运算的定点编程

DSP编程技巧之22详解浮点运算的定点编程 我们使用的处理器一般情况下,要么直接支持硬件的浮点运算,比如某些带有FPU的器件,要么就只支持定点运算,此时对浮点数的处理需要通过编译器来完成。在支持硬件浮点处理的器件上,对浮点运算的编程最快捷的方法就是直接使用浮点类型,比如单精度的float来完成。但是在很多情况下,限于成本、物料等因素,可供我们使用的只有一个定点处理器时,直接使用float类型进行浮点类型的运算会使得编译器产生大量的代码来完成一段看起来十分简单的浮 点数学运算,造成的后果是程序的执行时间显著加长,且其占用的资源量也会成倍地增加,这就涉及到了如何在定点处理器上对浮点运算进行高效处理的问题。本文引用地址:https://www.wendangku.net/doc/6b7068728.html,/article/263475.htm 既然是定点处理器,那么其对定点数,或者说字面意义上的“整数”进行处理的效率就会比它处理浮点类型的运算要高的多。所以在定点处理器上,我们使用定点的整数来代表一个浮点数,并规定整数位数和小数位数,从而方便地对定点数和浮点数进行转换。以一个32位的定点数为例,假设转换因子为Q,即32位中小数的位数为Q,整数位数则为31-Q(有符号数的情况),则定点数与浮点数的换算关系为:定点数=浮点数×2^Q例如,浮点数-2.0转换到Q为30的定点数时,

结果为:定点数=-2×2^30=-2147483648 32位有符号数的表示范围是:-2147483648到2147483647。如果我们把有符号定点数的最大值2147483647转换为Q为30对应的浮点数,则结果为:浮点数 2147483647/2^30=1.999999999 从上面的两个计算例子中也可以看出,在Q30格式的情况下,最大的浮点数只能表示到1.999999999,如果我们想把浮点数2.0转换为Q30的定点数,则产生了溢出,即造成了1e-9的截断误差。在此我们列出Q0到Q30对应的范围和分辨率如下表所示:如果你嫌自己计算麻烦的话,可以借助Matlab的命令来求取它们的转换,例如,在Matlab的命令窗口中输入:q = quantizer('fixed', 'ceil', 'saturate', [32 30]); FixedNum=bin2dec(num2bin(q,1.999999999)); 回车之后就可以看到1.999999999转成Q30之后的定点数了。 弄清楚了单个浮点数和定点数之间的转换关系,接下来就需要了解一下两个定点数所代表的浮点数进行运算时,是如何转换的了。根据乘法的结合律、分配率,浮点数转换之后的定点数是可以直接运算的,例如: 1. 不同Q格式的转换设有定点数Fixed1=Float1*2^Q1,如果把它用为Q2这个不同精度/表示范围的定点数来表示,则有 Fixed2=Float1*2^Q2。所以不同的Q格式直接的转换为:Fixed2=Fixed1*2^Q2/2^Q1=Fixed1*2^(Q2-Q1) 因为

浮点数表示法-C语言

浮点数表示法 任何数据在内存中都是以二进制(1或着0)顺序存储的,每一个1或着0被称为1位,而在x86CPU上一个字节是8位。比如一个16位(2字节)的short int型变量的值是1156,那么它的二进制表达就是:00000100 10000100。 由于Intel CPU的架构是Little Endian(请参照计算机原理相关知识),所以它是按字节倒序存储的,那么就应该是这样:10000100 00000100,这就是定点数1156在内存中的结构。 对于一个数0x1122 使用Little Endian方式时,低字节存储0x22,高字节存储0x11 而使用Big Endian方式时, 低字节存储0x11, 高字节存储0x22 浮点数是如何存储的呢?目前已知的所有的C/C++编译器都是按照IEEE(国际电子电器工程师协会)制定的IEEE 浮点数表示法来进行运算的。这种结构是一种科学表示法,用符号(正或负)、指数和尾数来表示,底数被确定为2,也就是说是把一个浮点数表示为尾数乘以2的指数次方再加上符号。 下面来看一下具体的float的规格: float:32位,4字节 由最高到最低位分别是第31、30、29、 0 31位是符号位,1表示该数为负,0反之。 30-23位,一共8位是指数位。 22-0位,一共23位是尾数位。 每8位分为一组,分成4组,分别是A组、B组、C组、D组。 每一组是一个字节,在内存中逆序存储,即:DCBA 我们先不考虑逆序存储的问题,所以先按照顺序的来讲,最后再把他们翻过来就行了。 现在让我们按照IEEE浮点数表示法,一步步将float型浮点数123456.0f转换为十六进制代码。 在处理这种不带小数的浮点数时,直接将整数部转化为二进制表示: 1 11100010 01000000也可以这样表示:11110001001000000.0然后将小数点向左移,一 直移到离最高位只有1位,就是最高位的1:1.11100010010000000一共移动了16位,在布耳运算中小数点每向左移一位就等于在以2为底的科学计算法表示中指数+1,所以原数就等于这样:1.11100010010000000 * ( 2 ^ 16 )好了,现在我们要的尾数和指数都出来了。显而易见,最高位永远是1,不能把16说成是0016。 所以这个1也保留,删掉。这样尾数的二进制就变成了:11100010010000000最后在尾数的后面补0,一直到补够23位:11100010010000000000000

相关文档
相关文档 最新文档