文档库 最新最全的文档下载
当前位置:文档库 › 数据挖掘中的软计算方法及应用综述(1)

数据挖掘中的软计算方法及应用综述(1)

数据挖掘中的软计算方法及应用综述(1)
数据挖掘中的软计算方法及应用综述(1)

摘要文章对数据挖掘中软计算方法及应用作了综述。对模糊逻辑、遗传算法、神经网络、粗集等软计算方法,以及它们的混合算法的特点进行了分析,并对它们在数据挖掘中的应用进行了分类。

关键词数据挖掘;软计算;模糊逻辑;遗传算法;神经网络;粗集

1 引言

在过去的数十年中,随着计算机软件和硬件的发展,我们产生和收集数据的能力已经迅速提高。许多领域的大量数据集中或分布的存储在数据库中[1][2],这些领域包括商业、金融投资业、生产制造业、医疗卫生、科学研究,以及全球信息系统的万维网。数据存储量的增长速度是惊人的。大量的、未加工的数据很难直接产生效益。这些数据的真正价值在于从中找出有用的信息以供决策支持。在许多领域,数据分析都采用传统的手工处理方法。一些分析软件在统计技术的帮助下可将数据汇总,并生成报表。随着数据量和多维数据的进一步增加,高达109的数据库和103的多维数据库已越来越普遍。没有强有力的工具,理解它们已经远远超出了人的能力。所有这些显示我们需要智能的数据分析工具,从大量的数据中发现有用的知识。数据挖掘技术应运而生。

数据挖掘就是指从数据库中发现知识的过程。包括存储和处理数据,选择处理大量数据集的算法、解释结果、使结果可视化。整个过程中支持人机交互的模式[3]。数据挖掘从许多交叉学科中得到发展,并有很好的前景。这些学科包括数据库技术、机器学习、人工智能、模式识别、统计学、模糊推理、专家系统、数据可视化、空间数据分析和高性能计算等。数据挖掘综合以上领域的理论、算法和方法,已成功应用在超市、金融、银行[4]、生产企业[5]和电信,并有很好的表现。

软计算是能够处理现实环境中一种或多种复杂信息的方法集合。软计算的指导原则是开发利用那些不精确性、不确定性和部分真实数据的容忍技术,以获得易处理、鲁棒性好、低求解成本和更好地与实际融合的性能。通常,软计算试图寻找对精确的或不精确表述问题的近似解[6]。它是创建计算智能系统的有效工具。软计算包括模糊集、神经网络、遗传算法和粗集理论。

2 数据挖掘中的软计算方法

目前,已有多种软计算方法被应用于数据挖掘系统中,来处理一些具有挑战性的问题。软计算方法主要包括模糊逻辑、神经网络、遗传算法和粗糙集等。这些方法各具优势,它们是互补的而非竞争的,与传统的数据分析技术相比,它能使系统更加智能化,有更好的可理解性,且成本更低。下面主要对各种软计算方法及其混合算法做系统性的阐述,并着重强调它们在数据挖掘中的应用情况。

2.1 模糊逻辑

模糊逻辑是1965年由泽德引入的,它为处理不确定和不精确的问题提供了一种数学工具。模糊逻辑是最早、应用最广泛的软计算方法,模糊集技术在数据挖掘领域也占有重要地位。从数据库中挖掘知识主要考虑的是发现有兴趣的模式并以简洁、可理解的方式描述出来。模糊集可以对系统中的数据进行约简和过滤,提供了在高抽象层处理的便利。同时,数据挖掘中的数据分析经常面对多种类型的数据,即符号数据和数字数据。nauck[7]研究了新的算法,可以从同时包含符号数据和数字数据中生成混合模糊规则。数据挖掘中模糊逻辑主要应用于以下几个方面:

(1)聚类。将物理或抽象对象的集合分组成为由类似的对象组成的多个类的过程被称为聚类。聚类分析是一种重要的人类行为,通过聚类,人能够识别密集的和稀疏的区域,因而发现全局的分布模式,以及数据属性之间有趣的关系。模糊集有很强的搜索能力,它对发现的结构感兴趣,这会帮助发现定性或半定性数据的依赖度。在数据挖掘中,这种能力可以帮助

阻止搜到无用和微不足道的知识。研究者为此发展了模糊聚类算法,并得到了广泛应用[8]。在高维数据挖掘中有太多的属性要考虑,因此知识简约就非常的必要。属性聚类的实质就是知识简约,所谓知识约简,就是在保持知识库的分类或者决策能力不变的条件下,删除不重要的或冗余的知识,最小约简(含有最小属性)是人们所期望的,且约简结果是不确定的。所以模糊聚类成为知识简约的有力工具。

(2)关联规则。数据挖掘重要的一点是关联规则的发现,关联规则挖掘是寻找给定数据集中属性间的关联。其中,布尔关联规则考虑的是关联的属性在与不在的二维特征,概化关联规则描述的是属性的分层关系,量化关联规则描述的是量化的属性(既离散化的属性)间的关联[9]。由于使用模糊概念表示的规则更符合人的思维和表达习惯,增强了规则的可理解性,所以模糊技术已成为数据挖掘系统中的关键技术。文献[10]中用模糊分类开拓了概化关联规则。

(3)数据概化。概化发现是数据挖掘重要部分之一。它将大的数据集从较低的概念层抽象到较高的概念层,用可理解的信息来表达数据库中最重要的部分,并提供给用户。

大数据集的语言概化通过有效的程度来获得,参考的标准内容在挖掘任务中。系统由概述、一致性程度真实和有效性组成。已经发现的最有兴趣的语言概化并不琐碎,却很人性化。实际上,它并不能自动地进行概化,需要人的操作。kacprzyk和zadrozny[11]发展了功能依赖度,语言概化使用了自然和可理解性的词汇,它支持模糊元素,包括属性间模糊的、重要的相互作用。首先,用户必须制定概化兴趣度,然后系统从数据库中获得记录,并计算每个概化的有效性,最后,选择最适合的语言概化。此方法通过网络浏览器已用在因特网上。模糊值、模糊联系和语言量都通过java来定义。

(5)图像检索。随着近来由多种媒体数据构成的多媒体信息仓库数据的增加,基于内容的图像检索开始活跃在这个领域。和传统数据库中基于精确匹配的关键字来检索信息不同,基于内容的图像检索系统的信息是一个图像的可视特征。如颜色、纹理、形状等。由于检索中查询要求往往是根据人的主观性所决定,因此很大程度上带有模糊性。对于图像纹理,习惯于用“很粗”、“中等”、“弱”这样的一些模糊概念来描述;形状一般用“几何形的”、“立体形的”或“似长方形的”、“正方形的”等概念描述;颜色特征通常用“很艳”、“一般”、“暗淡”或“大红”、“紫红”、“红”这样的模糊概念来描述。所以基于内容是图像检索是基于图像的相似特征来检索的。

2.2 神经网络

数据挖掘的困难主要存在于三个方面:首先,巨量数据集的性质往往非常复杂,非线性、时序性与噪音普遍存在;其次,数据分析的目标具有多样性,而复杂目标无论在表述还是在处理上均与领域知识有关;第三,在复杂目标下,对巨量数据集的分析,目前还没有现成的且满足可计算条件的一般性理论与方法。研究者们主要是将符号型机器学习方法与数据库技术相结合,但由于真实世界的数据关系相当复杂,非线性程度相当高,而且普遍存在着噪音数据,因此这些方法在很多场合都不适用。

因为神经网络的黑箱问题,在数据挖掘的初期并不看好,然而,神经网络由于本身良好的鲁棒性、自组织自适应性、并行处理、分布存储和高度容错等特性,以及它对未经训练的数据分类模式的能力,非常适合解决数据挖掘中存在的以上问题,因此近年来越来越受到人们的关注。

规则抽取方法是解决“黑箱问题”的有效手段。神经网络规则抽取的研究最早开始于80年代末。1988年,gallant[13]设计了一个可以用if-then规则解释推理结论的神经网络专家系统。根据设计思想的不同,目前的规则提取方法大致可以分成两大类,即基于结构分析的方法和基于性能分析的方法。

基于结构分析的神经网络规则抽取方法把规则抽取视为一个搜索过程,其基本思想是把已训

练好的神经网络结构映射成对应的规则。由于搜索过程的计算复杂度和神经网络输入分量之间呈指数级关系,当输入分量很多时,会出现组合爆炸。因此,此类算法一般采用剪枝聚类等方法来减少网络中的连接以降低计算复杂度。rx算法[14]首先用权衰减方法构造bp网络(该网络中连接权的大小反映了连接的重要程度),然后对网络进行修剪,在预测精度不变的情况下删除次要连接,在对网络进行充分简化的条件下,对隐藏层结点的激活值进行聚类,根据不同的隐藏层结点激活值用穷举搜索的办法来寻找从输入层到隐藏层和从隐藏层到输出层的规则.

与基于结构分析的方法不同,基于性能分析的神经网络规则抽取方法并不对神经网络结构进行分析和搜索,而是把神经网络作为一个整体来处理,这类方法更注重的是抽取出的规则在功能上对网络的重现能力,即产生一组可以替代原网络的规则。较有代表性的算法是sestito 等人提出的相似权值法[15],这种方法将输出节点添加到输入层去与输入节点进行比较。1994年,craven和shavlik[16]为神经网络规则抽取任务下了一个定义:给定一个训练好的神经网络以及用于其训练的训练集,为网络产生一个简洁而精确的符号描述。在文献[16]的基础上,1996年,craven和shavlik[17]提出了trepan算法。该算法首先用训练好的神经网络对示例集进行分类,然后将该集合作为训练集提供给决策树学习算法,从而构造出一棵与原网络功能接近的、使用mofn表达式作为内部划分的决策树。trepan的计算量较低。1997年,craven和shavlik[18]将trepan用于一个噪音时序任务,即美元–马克汇率预测,取得了比现有方法更好的效果。

2.3 遗传算法

遗传算法是一种基于生物自然选择与遗传机理的随机搜索算法,是一种仿生全局优化方法。它是美国 michigan大学的holland教授于1975年首先提出的。遗传算法中包含了5个基本要素:①参数编码;②初始群体的设定;③适应度函数的设计;④遗传操作设计;⑤控制参数设定。遗传算法具有十分顽强的鲁棒性、自适应性,其在解决大空间、多峰值、非线性、全局优化等复杂度高的问题时具有独特的优势。因此,遗传算法在数据挖掘技术越来越显示出其重要的地位。

数据挖掘研究现状综述

数据挖掘 引言 数据挖掘是一门交叉学科,涉及到了机器学习、模式识别、归纳推理、统计学、数据库、高性能计算等多个领域。 所谓的数据挖掘(Data Mining)指的就是从大量的、模糊的、不完全的、随机的数据集合中提取人们感兴趣的知识和信息,提取的对象一般都是人们无法直观的从数据中得出但又有潜在作用的信息。从本质上来说,数据挖掘是在对数据全面了解认识的基础之上进行的一次升华,是对数据的抽象和概括。如果把数据比作矿产资源,那么数据挖掘就是从矿产中提取矿石的过程。与经过数据挖掘之后的数据信息相比,原始的数据信息可以是结构化的,数据库中的数据,也可以是半结构化的,如文本、图像数据。从原始数据中发现知识的方法可以是数学方法也可以是演绎、归纳法。被发现的知识可以用来进行信息管理、查询优化、决策支持等。而数据挖掘是对这一过程的一个综合性应用。

目录 引言 (1) 第一章绪论 (3) 1.1 数据挖掘技术的任务 (3) 1.2 数据挖掘技术的研究现状及发展方向 (3) 第二章数据挖掘理论与相关技术 (5) 2.1数据挖掘的基本流程 (5) 2.2.1 关联规则挖掘 (6) 2.2.2 .Apriori算法:使用候选项集找频繁项集 (7) 2.2.3 .FP-树频集算法 (7) 2.2.4.基于划分的算法 (7) 2.3 聚类分析 (7) 2.3.1 聚类算法的任务 (7) 2.3.3 COBWEB算法 (9) 2.3.4模糊聚类算法 (9) 2.3.5 聚类分析的应用 (10) 第三章数据分析 (11) 第四章结论与心得 (14) 4.1 结果分析 (14) 4.2 问题分析 (14) 4.2.1数据挖掘面临的问题 (14) 4.2.2 实验心得及实验过程中遇到的问题分析 (14) 参考文献 (14)

总结报告-数据挖掘技术论文开题报告 精品

数据挖掘技术论文开题报告 毕业都是需要进行论文的写作,数据挖掘技术论文的开题报告怎么写?下面是数据挖 掘技术论文开题报告,欢迎阅读! 数据挖掘技术综述 数据挖掘(Data Mining)是一项较新的数据库技术,它基于由日常积累的大量数据所 构成的数据库,从中发现潜在的、有价值的信息——称为知识,用于支持决策。数据 挖掘是一项数据库应用技术,本文首先对数据挖掘进行概述,阐明什么是数据挖掘, 数据挖掘的技术是什么,然后介绍数据挖掘的常用技术,数据挖掘的主要过程, 如何 进行数据挖掘,主要应用领域以及国内外现状分析。 一. 研究背景及意义 近十几年来,随着数据库系统的广泛流行以及计算机技术的快速发展,人们利用信息 技术生产和搜集数据的能力大幅度提高。千万个数据库被用于商业管理、政府办公、 科学研究和工程开发等,特别是网络系统的流行,使得信息爆炸性增长。这一趋势将 持续发展下去。大量信息在给人们带来方便的同时也带来了一大堆的问题:第一是信 息过量,难以消化;第二是信息真假难以辨认;第三是信息安全难以保证;第四是信 息形式不一致,难以统一处理。面对这种状况,一个新的挑战被提出来:如何才能不 被信息的汪洋大海所淹没,从中及时发现有用的知识,提高信息利用率呢?这时出现 了新的技术——数据挖掘(Data Mining)技术便应用而生了。 面对海量的存储数据,如何从中发现有价值的信息或知识,成为一项非常艰巨的任务。数据挖掘就是为迎合这种要求而产生并迅速发展起来的。数据挖掘研究的目的主要是 发现知识、使数据可视化、纠正数据。 二. 概述 1,数据挖掘 数据挖掘(Data Mining)就是从大量的、不完全的、有噪声的、模糊的、随机的数据中,提取隐含在其中的、人们事先不知道的、但又是潜在有用的信息和知识的过程。这些 数据可以是结构化的,如关系数据库中的数据,也可以是半结构化的,如文本,图形, 图像数据,甚至是分布在网络上的异构型数据。发现知识的方法可以是数学的,也可 以是非数学的,可以是演绎的,也可以是归纳的。发现了的知识可以被用于信息管理、查询优化、决策支持、过程控制等,还可以进行 数据自身的维护。数据挖掘借助了多年来数理统计技术和人工智能以及知识工程等领 域的研究成果构建自己的理论体系,是一个交叉学科领域,可以集成数据数据库、人 工智能、数理统计、可视化、并行计算等技术。 2,数据挖掘技术

文献综述_数据挖掘

数据挖掘简介 数据挖掘的任务 数据挖掘的任务就是从实例集合中找出容易理解的规则和关系。这些规则可以用于预测未来趋势、评价顾客、评估风险或简单地描述和解释给定的数据。通常数据挖掘的任务包括以下几个部分: 数据总结目的是对数据进行浓缩,给出它的紧凑描述。传统的也是最简单的数据总结方法是计算出数据库的各个字段上的求和值、平均值、方差值等统计值,或者用直方图、饼图等图形方式表示。数据挖掘主要关心从数据泛化的角度来讨论数据总结。数据泛化是一种把数据库中的有关数据从低层次抽象到高层次上的过程。数据泛化目前主要有两种技术:多维数据分析方法和面向属性的归纳方法。 多维数据分析方法是一种数据仓库技术,也称作联机分析处理(OLAP,onLineAnalysisProeess)。数据仓库是面向决策支持的、集成的、稳定的、不同时间的历史数据集合。决策的前提是数据分析。在数据分析中经常要用到诸如求和、总计、平均、最大、最小等汇集操作,这类操作的计算量特别大。因此一种很自然的想法是,把汇集操作结果预先计算并存储起来,以便于决策支持系统使用。存储汇集操作结果的地方称作多维数据库。多维数据分析技术已经在决策支持系统中获得了成功的应用,如著名的SAS数据分析软件包、Businessobject公司的决策支持系统Businessobjeet,以及IBM公司的决策分析工具都使用了多维数据分析技术。 采用多维数据分析方法进行数据总结,它针对的是数据仓库,数据仓库存储的是脱机的历史数据。为了处理联机数据,研究人员提出了一种面向属性的归纳方法。它的思路是,直接对用户感兴趣的数据视图(用一般的SQL查询语言即可获得)进行泛化,而不是像多维数据分析方法那样预先就存储好了泛化数据。方法的提出者对这种数据泛化技术称之为面向属性的归纳方法。原始关系经过泛化操作后得到的是一个泛化关系,它从较高的层次上总结了在低层次上的原始关系。有了泛化关系后,就可以对它进行各种深入的操作而生成满足用户需要的知识,如在泛化关系基础上生成特性规则、判别规则、分类规则,以及关联规则等。数据挖掘的分类 数据挖掘所能发现的知识有如下几种: .广义型知识,反映同类事物共同性质的知识; .特征型知识,反映事物各方面的特征知识; .差异型知识,反映不同事物之间属性差别的知识; .关联型知识,反映事物之间依赖或关联的知识; .预测型知识,根据历史的和当前的数据推测未来数据; .偏离型知识。揭示事物偏离常规的异常现象。 所有这些知识都可以在不同的概念层次上被发现,随着概念树的提升,从微观到中观再到宏观,以满足不同用户、不同层次决策的需要。例如,从一家超市的数据仓库中,可以发现的一条典型关联规则可能是“买面包和黄油的顾客十有八九也买牛奶”,也可能是“买食品的顾客几乎都用信用卡”,这种规则对于商家开发和实施客户化的销售计划和策略是非常有用的。 数据挖掘的方法 数据挖掘并非一个完全自动化的过程。整个过程需要考虑数据的所有因素和其预定的效用,然后应用最佳的数据挖掘方法。数据挖掘的方法很重要。在数据挖掘的领域里.有一点已经被广泛地接受,即不管你选择哪种方法,总存在着某种协定。因此对实际情况,应该具体分析,根据累积的经验和优秀的范例选择最佳的方法。数据挖掘中没有免费的午餐,也没

数据挖掘算法综述

数据挖掘方法综述 [摘要]数据挖掘(DM,DataMining)又被称为数据库知识发现(KDD,Knowledge Discovery in Databases),它的主要挖掘方法有分类、聚类、关联规则挖掘和序列模式挖掘等。 [关键词]数据挖掘分类聚类关联规则序列模式 1、数据挖掘的基本概念 数据挖掘从技术上说是从大量的、不完全的、有噪声的、模糊的、随机的数据中提取隐含在其中的、人们事先不知道的、但又是潜在的有用的信息和知识的过程。这个定义包括好几层含义: 数据源必须是真实的、大量的、含噪声的、发现的是用户感兴趣的知识, 发现的知识要可接受、可理解、可运用, 并不要求发现放之四海皆准的知识, 仅支持特定的发现问题, 数据挖掘技术能从中自动分析数据进行归纳性推理从中发掘出潜在的数据模式或进行预测, 建立新的业务模型帮助决策者调整策略做出正确的决策。数据挖掘是是运用统计学、人工智能、机器学习、数据库技术等方法发现数据的模型和结构、发现有价值的关系或知识的一门交叉学科。数据挖掘的主要方法有分类、聚类和关联规则挖掘等 2、分类 分类(Classification)又称监督学习(Supervised Learning)。监

督学习的定义是:给出一个数据集D,监督学习的目标是产生一个联系属性值集合A和类标(一个类属性值称为一个类标)集合C的分类/预测函数,这个函数可以用于预测新的属性集合(数据实例)的类标。这个函数就被称为分类模型(Classification Model),或者是分类器(Classifier)。分类的主要算法有:决策树算法、规则推理、朴素贝叶斯分类、支持向量机等算法。 决策树算法的核心是Divide-and-Conquer的策略,即采用自顶向下的递归方式构造决策树。在每一步中,决策树评估所有的属性然后选择一个属性把数据分为m个不相交的子集,其中m是被选中的属性的不同值的数目。一棵决策树可以被转化成一个规则集,规则集用来分类。 规则推理算法则直接产生规则集合,规则推理算法的核心是Separate-and-Conquer的策略,它评估所有的属性-值对(条件),然后选择一个。因此,在一步中,Divide-and-Conquer策略产生m条规则,而Separate-and-Conquer策略只产生1条规则,效率比决策树要高得多,但就基本的思想而言,两者是相同的。 朴素贝叶斯分类的基本思想是:分类的任务可以被看作是给定一个测试样例d后估计它的后验概率,即Pr(C=c j︱d),然后我们考察哪个类c j对应概率最大,便将那个类别赋予样例d。构造朴素贝叶斯分类器所需要的概率值可以经过一次扫描数据得到,所以算法相对训练样本的数量是线性的,效率很高,就分类的准确性而言,尽管算法做出了很强的条件独立假设,但经过实际检验证明,分类的效果还是

模糊数学在数据挖掘领域综述

模糊数学在数据挖掘研究综述 一、模糊数学 关于数学的分类,根据所研究对象的确定性可以分为经典数学、随机数学以及模糊数学。三者的关系如图1所示。经典数学建立在集合论的基础上,一个对象对于一个集合要么属于,要么不属于,两者必居其一,且仅居其一,绝不可模棱两可,由于这个要求,大大限制了数学的应用范围,使它无法处理日常生活中大量的不明确的模糊现象与概念。随着发展,过去那些与数学毫无关系或关系不大的学科如生物学,心理学,等都迫切要求定量化和数学化。 图1依照研究对象是否确定的数学分类 在日常生活中,我们经常会遇到一些模糊不清的概念。例如,“高个子”、“矮个子”等。如果把1.80米的人算高个子,那么,身高1.76米的人算不算高个子呢?这就很难说,因为“高个子”,“矮个子”并没有二者明确的标准,因而这些概念就显得模糊不清。为了适应这些学科自身的特点,只有通过改造数学,使它应用的面更为广泛。模糊数学就是研究事物这种模糊性质的一门数学学科。 模糊数学诞生于1965年,创始人是美国自动控制专家查德,他最早提出了模糊集合的概念,引入了隶属函数。自诞生之日起,就与电子计算机息息相关。今天精确的数学计算当然是不可少的,然而,当我们要求脑功能的时候,精确这个长处反而成了短处。例如,我们在判别走过的人是谁时,总是将来人的高矮,胖瘦、走路姿势与大脑存储的样子进行比较,从而作出判断。一般说来,这不是件难事,即使是分别多年的老友,也会很快地认出他来,但是若让计算机做这件事,使用精确数学就太复杂了。得测量来人的身高、体重、手臂摆的角度以及鞋底对地面的正压力、磨擦力、速度、加速度等数据,而且非要精确到后几十位才肯罢休。如果有位熟人最近稍为瘦了或胖了一些,计算机就“翻脸不认了”。显然,这样的“精确”容易使人糊涂。由此可见,要使计算机能模拟人功能,一定程度的模糊是必要的。模糊数学就是在这样的背景下诞生的。 随机数学与模糊数学都是对不确定性量的研究,但与模糊数学不同的是,随机数学是研究随机现象统计规律性的一个数学分支,涉及四个主要部分:概率论、随机过程、数理统计、随机运筹。随机数学更强调对数据的统计规律;而模糊数学强调的是变量的定义的模糊性。 模糊数学是一门新兴学科,过去那些与数学毫不相关或关系不大的学科(如生物学、心理学、语言学、社会科学等)都有可能用定量化和数学化加以描述和处理,从而使数学的应用范围大大扩展。它已初步应用于模糊控制、模糊识别、模糊聚类分析、模糊决策、模糊评判、系统理论、信息检索、医学、生物学等各个方面,并且在气象、结构力学、控制、心理学等方面已有具体的研究成果。模糊数学最重要的应用领域是计算机职能,它与新一代计算机的研制有密切的联系。 二、模糊计算

大数据时代的空间数据挖掘综述

第37卷第7期测绘与空间地理信息 GEOMATICS &SPATIAL INFORMATION TECHNOLOGY Vol.37,No.7收稿日期:2014-01-22 作者简介:马宏斌(1982-),男,甘肃天水人,作战环境学专业博士研究生,主要研究方向为地理空间信息服务。 大数据时代的空间数据挖掘综述 马宏斌1 ,王 柯1,马团学 2(1.信息工程大学地理空间信息学院,河南郑州450000;2.空降兵研究所,湖北孝感432000) 摘 要:随着大数据时代的到来,数据挖掘技术再度受到人们关注。本文回顾了传统空间数据挖掘面临的问题, 介绍了国内外研究中利用大数据处理工具和云计算技术,在空间数据的存储、管理和挖掘算法等方面的做法,并指出了该类研究存在的不足。最后,探讨了空间数据挖掘的发展趋势。关键词:大数据;空间数据挖掘;云计算中图分类号:P208 文献标识码:B 文章编号:1672-5867(2014)07-0019-04 Spatial Data Mining Big Data Era Review MA Hong -bin 1,WANG Ke 1,MA Tuan -xue 2 (1.Geospatial Information Institute ,Information Engineering University ,Zhengzhou 450000,China ; 2.Airborne Institute ,Xiaogan 432000,China ) Abstract :In the era of Big Data ,more and more researchers begin to show interest in data mining techniques again.The paper review most unresolved problems left by traditional spatial data mining at first.And ,some progress made by researches using Big Data and Cloud Computing technology is introduced.Also ,their drawbacks are mentioned.Finally ,future trend of spatial data mining is dis-cussed. Key words :big data ;spatial data mining ;cloud computing 0引言 随着地理空间信息技术的飞速发展,获取数据的手 段和途径都得到极大丰富,传感器的精度得到提高和时空覆盖范围得以扩大,数据量也随之激增。用于采集空间数据的可能是雷达、红外、光电、卫星、多光谱仪、数码相机、成像光谱仪、全站仪、天文望远镜、电视摄像、电子 显微镜、CT 成像等各种宏观与微观传感器或设备,也可能是常规的野外测量、人口普查、土地资源调查、地图扫描、 地图数字化、统计图表等空间数据获取手段,还可能是来自计算机、 网络、GPS ,RS 和GIS 等技术应用和分析空间数据。特别是近些年来,个人使用的、携带的各种传感器(重力感应器、电子罗盘、三轴陀螺仪、光线距离感应器、温度传感器、红外线传感器等),具备定位功能电子设备的普及,如智能手机、平板电脑、可穿戴设备(GOOGLE GLASS 和智能手表等),使人们在日常生活中产生了大量具有位置信息的数据。随着志愿者地理信息(Volunteer Geographic Information )的出现,使这些普通民众也加入到了提供数据者的行列。 以上各种获取手段和途径的汇集,就使每天获取的 数据增长量达到GB 级、 TB 级乃至PB 级。如中国遥感卫星地面站现在保存的对地观测卫星数据资料达260TB ,并以每年15TB 的数据量增长。比如2011年退役的Landsat5卫星在其29年的在轨工作期间,平均每年获取8.6万景影像,每天获取67GB 的观测数据。而2012年发射的资源三号(ZY3)卫星,每天的观测数据获取量可以达到10TB 以上。类似的传感器现在已经大量部署在卫 星、 飞机等飞行平台上,未来10年,全球天空、地空间部署的百万计传感器每天获取的观测数据将超过10PB 。这预示着一个时代的到来,那就是大数据时代。大数据具有 “4V ”特性,即数据体量大(Volume )、数据来源和类型繁多(Variety )、数据的真实性难以保证(Veracity )、数据增加和变化的速度快(Velocity )。对地观测的系统如图1所示。 在这些数据中,与空间位置相关的数据占了绝大多数。传统的空间知识发现的科研模式在大数据情境下已经不再适用,原因是传统的科研模型不具有普适性且支持的数据量受限, 受到数据传输、存储及时效性需求的制约等。为了从存储在分布方式、虚拟化的数据中心获取信息或知识,这就需要利用强有力的数据分析工具来将

数据挖掘课程论文综述

海南大学 数据挖掘论文 题目:股票交易日线数据挖掘 学号:20100602310002 姓名: 专业:10信管 指导老师: 分数:

目录 目录 (2) 1. 数据挖掘目的 (3) 2.相关基础知识 (3) 2.1 股票基础知识 (3) 2.2 数据挖掘基础知识 (4) 2.2.2数据挖掘的任务 (5) 3.数据挖掘方案 (6) 3.1. 数据挖掘软件简介 (6) 3.2. 股票数据选择 (7) 3.3. 待验证的股票规律 (7) 4. 数据挖掘流 (8) 4.1数据挖掘流图 (8) 4.2规律验证 (9) 4.2.2规律2验证 (10) 4.2.3规律三验证 (12) 4.3主要节点说明 (14) 5.小结 (15)

1.数据挖掘目的 数据挖掘的目的就是得出隐藏在数据中的有价值的信息,发现数据之间的内在联系与规律。对于本次数据挖掘来说,其目的就是学会用clementine对股票的历史数据进行挖掘,通过数据的分析,找出存在股票历史数据中的规律,或者验证已存在的股票规律。同时也加深自己对股票知识的了解和对clementine软件的应用能力。为人们决策提供指导性信息,为公司找出其中的客户为公司带来利润的规律,如二八原则、啤酒与尿布的现象等。 2.相关基础知识 2.1 股票基础知识 2.1.1 股票 是一种有价证券,是股份公司在筹集资本时向出资人公开或私下发行的、用以证明出资人的股本身份和权利,并根据持有人所持有的股份数享有权益和承担义务的凭证。股票代表着其持有人(股东)对股份公司的所有权,每一股同类型股票所代表的公司所有权是相等的,即“同股同权”。股票可以公开上市,也可以不上市。在股票市场上,股票也是投资和投机的对象。对股票的某些投机炒作行为,例如无货沽空,可以造成金融市场的动荡。 2.1.2 开盘价 开盘价又称开市价,是指某种证券在证券交易所每个交易日开市后的第一笔买卖成交价格。世界上大多数证券交易所都采用成交额最大原则来确定开盘价。 2.1.3 收盘价 收盘价是指某种证券在证券交易所一天交易活动结束前最后一笔交易的成交价格。如当日没有成交,则采用最近一次的成交价格作为收盘价,因为收盘价是当日行情的标准,又是下一个交易日开盘价的依据,可据以预测未来证券市场行情;所以投资者对行情分析时,一般采用收盘价作为计算依据。

数据挖掘文献综述

湘潭大学 本科生专业文献综述 题目: 数据挖掘文献综述 姓名: 林勇 学院: 信心工程学院学院 专业: 自动化 班级: 一班 学号: 2010550113 指导教师: 张莹

0前言 随着计算机技术的迅猛发展,人类正在步入信息社会。面对今天浩如烟海的信息,如何帮助人们有效地收集和选择所感兴趣的信息,更关键的是如何帮助用户在日益增多的信息中自动发现新的概念并自动分析它们之间的关系,使之能够真正地做到信息处理的自动化,这已成为信息技术领域的热点问题。数据挖掘就是为满足这种要求而产生并迅速发展起来的,可用于开发信息资源的一种新的数据处理技术。 1什么是数据挖掘 数据挖掘(Data Mining),也叫数据开采,数据采掘等,是按照既定的业务目标从海量数据中提取出潜在、有效并能被人理解的模式的高级处理过程。在较浅的层次上,它利用现有数据库管理系统的查询、检索及报表功能,与多维分析、统计分析方法相结合,进行联机分析处理,从而得出可供决策参考的统计分析数据。在深层次上,则从数据库中发现前所未有的、隐含的知识。OLAF'的出现早于数据挖掘,它们都是从数据库中抽取有用信息的方法,就决策支持的需要而言两者是相辅相成的。OLAP可以看作一种广义的数据挖掘方法,它旨在简化和支持联机分析,而数据挖掘的目的是便这一过程尽可能自动化。数据挖掘基于的数据库类型主要有:关系型数据库、面向对象数据库、事务数据库、演绎数据库、时态数据库、多媒体数据库、主动数据库、空间数据库、遗留数据库、异质数据库、文本型、Internet信息库以及新兴的数据仓库(Data Warehouse)等。而挖掘后获得的知识包括关联规则、特征规则、区分规则、分类规则、总结规则、偏差规则、聚类规则、模式分析及趋势分析等。 1.1 数据挖掘的任务 数据挖掘的两个高层目标是预测和描述。前者指用一些变量或数据库的若干已知字段预测其它感兴趣的变量或字段的未知的或未来的值;后者指找到描述数据的可理解模式。根据发现知识的不同,我们可以将数据挖掘任务归纳为以下几类: (1)特征规则。从与学习任务相关的一组数据中提取出关于这些数据的特征式,这些特征式表达了该数据集的总体特征.例如可以从某种疾病的症状中提取

可视化空间数据挖掘研究综述

可视化空间数据挖掘研究综述 贾泽露1,2 刘耀林2 (1. 河南理工大学测绘与国土信息工程学院,焦作,454000;2. 武汉大学资源与环境科学学院,武汉,430079)摘要:空间数据挖掘针对的是更具有可视化要求的地理空间数据的知识发现过程,可视化能提供同用户对空间目标心理认知过程相适应的信息表现和分析环境,可视化与空间数据挖掘的结合是该领域研究发展的必然,并已成为一个研究热点。论文综述了空间数据挖掘和可视化的研究现状,重点阐述了空间数据挖掘中的可视化化技术及其应用,并对可视化空间数据挖掘的发展趋势进行了阐述。 关键词:数据挖掘;空间数据挖掘;数据可视化;信息可视化;GIS; 空间信息获取技术的飞速发展和各种应用的广泛深入,多分辨率、多时态空间信息大量涌现,以及与之紧密相关的非空间数据的日益丰富,对海量空间信息的综合应用和处理技术提出了新的挑战,要求越来越高。空间数据挖掘技术作为一种高效处理海量地学空间数据、提高地学分析自动化和智能化水平、解决地学领域“数据爆炸、知识贫乏”问题的有效手段,已发展成为空间信息处理的关键技术。然而,传统数据挖掘“黑箱”作业过程使得用户只能被动地接受挖掘结果。可视化技术能为数据挖掘提供直观的数据输入、输出和挖掘过程的交互探索分析手段,提供在人的感知力、洞察力、判断力参与下的数据挖掘手段,从而大大地弥补了传统数据挖掘过程“黑箱”作业的缺点,同时也大大弥补了GIS重“显示数据对象”轻“刻画信息结构”的弱点,有力地提高空间数据挖掘进程的效率和结果的可信度[1]。空间数据挖掘中可视化技术已由数据的空间展现逐步发展成为表现数据内在复杂结构、关系和规律的技术,由静态空间关系的可视化发展到表示系统演变过程的可视化。可视化方法不仅用于数据的理解,而且用于空间知识的呈现。可视化与空间数据挖掘的结合己成为必然,并已形成了当前空间数据挖掘1与知识发现的一个新的研究热点——可视化空间数据挖掘(Visual Spatial Data Mining,VSDM)。VSDM技术将打破传统数据挖掘算法的“封闭性”,充分利用各式各样的数据可视化技术,以一种完全开放、互动的方式支持用户结合自身专业背景参与到数据挖掘的全过程中,从而提高数据挖掘的有效性和可靠性。本文将对空间数据挖掘、可视化的研究概况,以及可视化在空间数据挖掘中的应用进行概括性回顾总结,并对未来发展趋势进行探讨。 一、空间数据挖掘研究概述 1.1 空间数据挖掘的诞生及发展 1989年8月,在美国底特律市召开的第一届国际联合人工智能学术会议上,从事数据库、人工智能、数理统计和可视化等技术的学者们,首次出现了从数据库中发现知识(knowledge discovery in database,KDD)的概念,标志着数据挖掘技术的诞生[1]。此时的数据挖掘针对的 作者1简介:贾泽露(1977,6-),男,土家族,湖北巴东人,讲师,博士,主要从事空间数据挖掘、可视化、土地信息系统智能化及GIS理论、方法与应用的研究和教学工作。 作者2简介:刘耀林(1960,9- ),男,汉族,湖北黄冈人,教授,博士,博士生导师,武汉大学资源与环境科学学院院长,现从事地理信息系统的理论、方法和应用研究和教学工作。

数据挖掘综述

数据挖掘综述 1、产生背景 随着计算机的产生和大量数字化的存储方法的出现,我们借助计算机来收集和分类各种数据资料,但是不同存储结构存放的大量数据集合很快被淹没,便导致了结构化数据库以及DBMS的产生。 但是随着信息时代的到来,信息量远远超过了我们所能处理的范围,从商业交易数据、科学资料到卫星图片、文本报告和军事情报,以及生活中各种信息,这也就是“数据爆炸但知识贫乏”的网络时代,面对巨大的数据资料,出现了新的需求,希望能够更好的利用这些数据,进行更高层次的分析,从这些巨大的数据中提取出对我们有意义的数据,这就是知识发现(KDD,Knowledge Discovery in Databases),数据挖掘应运而生。 2、数据库系统技术的演变 1)20世纪60年代和更早 这个时期是数据收集和数据库创建的过程,原始文件的处理2)20世纪70年代---80年代初期 有层次性数据库、网状数据库、关系数据库系统 3)20世纪80年代中期—现在 高级数据库系统,可以应用在空间、时间的、多媒体的、主动的、流的和传感器的、科学的和工程的。 4)20世纪80年代后期—现在

高级数据分析:数据仓库和数据挖掘 5)20世纪90年代—现在 基于web的数据库,与信息检索和数据信息的集成6)现在---将来 新一代的集成数据域信息系统 3、数据挖掘概念 数据挖掘(Data Mining),就是从大量数据中获取有效的、新颖的、潜在的有用的,最终可以理解的模式的非平凡过程。数据挖掘,又称为数据库中知识发现(KDD,Knowledge Discovery in Databases),也有人把数据挖掘作为数据库中知识发现过程的一个基本步骤。 数据挖掘基于的数据库类型主要有:关系型数据库、面向对象数据库、事务数据库、演绎数据库、时态数据库、多媒体数据库、主动数据库、空间数据库、遗留数据库、异质数据库、文本型、Internet信息库以及新兴的数据仓库等。 4、数据挖掘特点和任务 4.1数据挖掘具有以下几个特点: 1)处理的数据规模十分庞大,达到GB,TB数量级,甚至更大2)查询一般是决策制定者(用户)提出的即时随机查询,往往不能形成精确的查询要求,需要靠系统本身寻找其可能感兴 趣的东西。 3)在一些应用(如商业投资等)中,由于数据变化迅速,因此

数据挖掘中的文本挖掘的分类算法综述

数据挖掘中的文本挖掘的分类算法综述 摘要 随着Internet上文档信息的迅猛发展,文本分类成为处理和组织大量文档数据的关键技术。本文首先对数据挖掘进行了概述包括数据挖掘的常用方法、功能以及存在的主要问题;其次对数据挖掘领域较为活跃的文本挖掘的历史演化、研究现状、主要内容、相关技术以及热点难点问题进行了探讨;在第三章先分析了文本分类的现状和相关问题,随后详细介绍了常用的文本分类算法,包括KNN 文本分类算法、特征选择方法、支持向量机文本分类算法和朴素贝叶斯文本分类算法;;第四章对KNN文本分类算法进行深入的研究,包括基于统计和LSA降维的KNN文本分类算法;第五章对数据挖掘、文本挖掘和文本分类的在信息领域以及商业领域的应用做了详细的预测分析;最后对全文工作进行了总结和展望。 关键词:数据挖掘,文本挖掘,文本分类算法 ABSTRACT With the development of Web 2.0, the number of documents on the Internet increases exponentially. One important research focus on how to deal with these great capacity of online documents. Text classification is one crucial part of information management. In this paper we first introduce the basic information of data mining, including the methods, contents and the main existing problems in data mining fields; then we discussed the text mining, one active field of data mining, to provide a basic foundation for text classification. And several common algorithms are analyzed in Chapter 3. In chapter 4 thorough research of KNN text classification algorithms are illustrated including the statistical and dimension reduction based on LSA and in chapter 5 we make some predictions for data mining, text mining and text classification and finally we conclude our work. KEYWORDS: data mining, text mining, text classification algorithms,KNN 目录 摘要 (1) ABSTRACT (1) 目录 (1)

数据挖掘中的软计算方法及应用综述

摘要文章对数据挖掘中软计算方法及应用作了综述。对模糊逻辑、遗传算法、神经网络、粗集等软计算方法,以及它们的混合算法的特点进行了分析,并对它们在数据挖掘中的应用进行了分类。 关键词数据挖掘;软计算;模糊逻辑;遗传算法;神经网络;粗集 1 引言 在过去的数十年中,随着计算机软件和硬件的发展,我们产生和收集数据的能力已经迅速提高。许多领域的大量数据集中或分布的存储在数据库中[1][2],这些领域包括商业、金融投资业、生产制造业、医疗卫生、科学研究,以及全球信息系统的万维网。数据存储量的增长速度是惊人的。大量的、未加工的数据很难直接产生效益。这些数据的真正价值在于从中找出有用的信息以供决策支持。在许多领域,数据分析都采用传统的手工处理方法。一些分析软件在统计技术的帮助下可将数据汇总,并生成报表。随着数据量和多维数据的进一步增加,高达109的数据库和103的多维数据库已越来越普遍。没有强有力的工具,理解它们已经远远超出了人的能力。所有这些显示我们需要智能的数据分析工具,从大量的数据中发现有用的知识。数据挖掘技术应运而生。 数据挖掘就是指从数据库中发现知识的过程。包括存储和处理数据,选择处理大量数据集的算法、解释结果、使结果可视化。整个过程中支持人机交互的模式[3]。数据挖掘从许多交叉学科中得到发展,并有很好的前景。这些学科包括数据库技术、机器学习、人工智能、模式识别、统计学、模糊推理、专家系统、数据可视化、空间数据分析和高性能计算等。数据挖掘综合以上领域的理论、算法和方法,已成功应用在超市、金融、银行[4]、生产企业 [5]和电信,并有很好的表现。 软计算是能够处理现实环境中一种或多种复杂信息的方法集合。软计算的指导原则是开发利用那些不精确性、不确定性和部分真实数据的容忍技术,以获得易处理、鲁棒性好、低求解成本和更好地与实际融合的性能。通常,软计算试图寻找对精确的或不精确表述问题的近似解[6]。它是创建计算智能系统的有效工具。软计算包括模糊集、神经网络、遗传算法和粗集理论。 2 数据挖掘中的软计算方法 目前,已有多种软计算方法被应用于数据挖掘系统中,来处理一些具有挑战性的问题。软计算方法主要包括模糊逻辑、神经网络、遗传算法和粗糙集等。这些方法各具优势,它们是互补的而非竞争的,与传统的数据分析技术相比,它能使系统更加智能化,有更好的可理解性,且成本更低。下面主要对各种软计算方法及其混合算法做系统性的阐述,并着重强调它们在数据挖掘中的应用情况。 2.1 模糊逻辑 模糊逻辑是1965年由泽德引入的,它为处理不确定和不精确的问题提供了一种数学工具。模糊逻辑是最早、应用最广泛的软计算方法,模糊集技术在数据挖掘领域也占有重要地位。从数据库中挖掘知识主要考虑的是发现有兴趣的模式并以简洁、可理解的方式描述出来。模糊集可以对系统中的数据进行约简和过滤,提供了在高抽象层处理的便利。同时,数据挖掘中的数据分析经常面对多种类型的数据,即符号数据和数字数据。nauck[7]研究了新的算法,可以从同时包含符号数据和数字数据中生成混合模糊规则。数据挖掘中模糊逻辑主要应用于以下几个方面: (1)聚类。将物理或抽象对象的集合分组成为由类似的对象组成的多个类的过程被称为聚类。聚类分析是一种重要的人类行为,通过聚类,人能够识别密集的和稀疏的区域,因而发现全局的分布模式,以及数据属性之间有趣的关系。模糊集有很强的搜索能力,它对发现的结构感兴趣,这会帮助发现定性或半定性数据的依赖度。在数据挖掘中,这种能力可以帮助

数据挖掘分类算法研究综述终板

数据挖掘分类算法研究综述 程建华 (九江学院信息科学学院软件教研室九江332005 ) 摘要:随着数据库应用的不断深化,数据库的规模急剧膨胀,数据挖掘已成为当今研究的热点。特别是其中的分类问题,由于其使用的广泛性,现已引起了越来越多的关注。对数据挖掘中的核心技术分类算法的内容及其研究现状进行综述。认为分类算法大体可分为传统分类算法和基于软计算的分类法两类。通过论述以上算法优缺点和应用范围,研究者对已有算法的改进有所了解,以便在应用中选择相应的分类算法。 关键词:数据挖掘;分类;软计算;算法 1引言 1989年8月,在第11届国际人工智能联合会议的专题研讨会上,首次提出基于数据库的知识发现(KDD,Knowledge DiscoveryDatabase)技术[1]。该技术涉及机器学习、模式识别、统计学、智能数据库、知识获取、专家系统、数据可视化和高性能计算等领域,技术难度较大,一时难以应付信息爆炸的实际需求。到了1995年,在美国计算机年会(ACM)上,提出了数据挖掘[2](DM,Data Mining)的概念,由于数据挖掘是KDD过程中最为关键的步骤,在实践应用中对数据挖掘和KDD这2个术语往往不加以区分。 基于人工智能和信息系统,抽象层次上的分类是推理、学习、决策的关键,是一种基础知识。因而数据分类技术可视为数据挖掘中的基础和核心技术。其实,该技术在很多数据挖掘中被广泛使用,比如关联规则挖掘和时间序列挖掘等。因此,在数据挖掘技术的研究中,分类技术的研究应当处在首要和优先的地位。目前,数据分类技术主要分为基于传统技术和基于软计算技术两种。 2传统的数据挖掘分类方法 分类技术针对数据集构造分类器,从而对未知类别样本赋予类别标签。在其学习过程中和无监督的聚类相比,一般而言,分类技术假定存在具备环境知识和输入输出样本集知识的老师,但环境及其特性、模型参数等却是未知的。 2.1判定树的归纳分类 判定树是一个类似流程图的树结构,其中每个内部节点表示在一个属性上的测试,每个分支代表一个测试输出,而每个树叶节点代表类或类分布。树的最顶层节点是根节点。由判定树可以很容易得到“IFTHEN”形式的分类规则。方法是沿着由根节点到树叶节点的路径,路径上的每个属性-值对形成“IF”部分的一个合取项,树叶节点包含类预测,形成“THEN”部分。一条路径创建一个规则。 判定树归纳的基本算法是贪心算法,它是自顶向下递归的各个击破方式构造判定树。其中一种著名的判定树归纳算法是建立在推理系统和概念学习系统基础上的ID3算法。 2.2贝叶斯分类 贝叶斯分类是统计学的分类方法,基于贝叶斯公式即后验概率公式。朴素贝叶斯分类的分类过程是首先令每个数据样本用一个N维特征向量X={X1,X2,?X n}表示,其中X k是属性A k的值。所有的样本分为m类:C1,C2,?,C n。对于一个类别的标记未知的数据记录而言,若P(C i/X)>P(C j/X),1≤ j≤m,j≠i,也就是说,如果条件X下,数据记录属于C i类的概率大于属于其他类的概率的话,贝叶斯分类将把这条记录归类为C i类。 建立贝叶斯信念网络可以被分为两个阶段。第一阶段网络拓扑学习,即有向非循环图的——————————————————— 作者简介:程建华(1982-),女,汉族,江西九江,研究生,主要研究方向为数据挖掘、信息安全。

数据挖掘技术综述

2008年第6期牡丹江教育学院学报N o.6,2008 (总第112期)J ouR N A L oF M uD A N J I A N G co L L E G EoF E D ucA T I oN s e“aI N o.112 数据挖掘技术综述 高翔侯小静 (洛阳理工学院,河南洛阳471003) [摘要]在对数据仓库与数据挖掘的概念及数据挖掘的功用与分类进行介绍的基础上.阐述了串行关联规则算法和并行关联算法的目标与内容.详细分析了A pr i or i算法、神经网络、遗传算法等数据挖掘算法。 [关键词]数据挖掘f关联规则I apr i ori算法;神经网络l遗传算法 [中图分类号]T P31[文献标识码]A[文章编号]1009—2323(2008)06一0109一02 数据挖掘是信息技术自然进化的结果。自上世纪六十年代以来,信息技术已经从原始的文件处理发展到复杂的、功能强大的数据库系统。而数据仓库是近年来数据库研究领域中迅速发展起来的新技术。利用数据仓库技术可以将现实中的海量数据存放在异构的数据库中。 为了从数据中有效地提取和发现知识.需要对数据仓库中存储的数据进行“挖掘”。数据挖掘是从大量数据中抽取出未知的、有价值的模式或规律等知识的复杂过程。数据挖掘技术由数据清理、数据集成、数据选择、数据交换、数据挖掘、模式评估六个步骤组成。通过这六个步骤的提纯与处理向用户提供有价值的信息。数据挖掘提供的数据模式有概念描述、关联规则、分类与预测、聚类分析、异类分析、演化分析等六类。 1.数据仓库与数据挖掘 数据仓库系统在数据分析和决策方面为用户和“知识工人”提供服务。这种系统与传统的联机事务处理(0L TP)系统不同.它可以用不同的格式组织和提供数据,以满足不同用户的形形色色需求.这种系统称为联机分析处理(oL A P)系统。 数据仓库和oL A P工具均基于多维数据模型.这种模型可以以星形模式、雪花模式或事实星座模式等形式存在。星形模式是最常见的.其数据仓库包括一个大的、饱含大批数据、不含冗余的中心表(实事表)和一组附属表(维表)。在星形模式中.每维只用一个表表示,每个表包含一组属性;雪花模式是星形模式的变种,其中某些维表是规范化的,故而把数据进一步分解到附加的表中。雪花模式和星形模式的主要不同在于:雪花模式的维表可能是规范化形式.便于维护并节省存储空间,但是由于执行查询操作需要更多的连接操作,故而雪花结构可能降低浏览的性能导致系统性能也会受到一定影响。事实星座模式可以看作是多个星形模式的集合.需要多个事实表共享维表。 从结构的角度看.数据仓库模型分为企业仓库、数据集市和虚拟仓库。数据仓库和数据集市已在广泛的应用领域使用.从最初的应用于产生报告和回答预先定义的查询发展到现在已经用于知识发现,并使用数据挖掘工具进行决策。在这种意义下.数据仓库工具可以分为存取与检索工具、数据库报表工具、数据分析工具和数据挖掘工具。在此基础上信息处理与分析和数据挖掘的概念基本分离。数据挖掘不限于分析数据仓库中的数据.也可以分析事务的、文本的、空间的和多媒体数据。 数据挖掘所能发现的知识有如下几种:广义型知识,即反映同类事务共同性质的知识;特征型知识.即反映事务各方面的特征的知识;差异型知识。即反映不同事务之间属性差别的知识;关联型知识。即反映事务之间依赖或关联的知识;预测型知识,它根据历史和当前的数据推测未来数据l 偏离型知识,用于揭示事务偏离常规的异常现象。这些知识都可以在不同的概念层次上被发现,随着概念的提升.从微观到宏观.以满足不同用户、不同决策的需要。至于数据挖掘的工具和方法常用的有分类、聚类、减维、模式识别、可视化、决策树、遗传算法、不确定性处理等。 从l EE E t r ans ac t i or L s o n kno w I edge and da t a engi neer.i ng以及A C M SI G M O D I nt l.C onf.M a na gem e nt of D a t a 近年来的文献中可以看出.除了不断地提出一些新的挖掘技术外。大量的有关D M的文章集中讨论了如何提高D M 系统,尤其是关联规则挖掘的性能,这包括算法的有效性、可伸缩性和并行处理。另外,复杂数据类型挖掘已经是一个发展迅速的热点研究领域。复杂数据挖掘包括复杂数据对象的多维分析.空间数据挖掘,时序数据和其他与时间相关的数据挖掘、文本挖掘以及w eb挖掘等。 2.数据挖掘的关联规则算法研究 2.1串行关联规则算法 数据挖掘的一个重要任务是从事务数据库中发现关联规则。其中每个事务都包括一个项目集.由于事务的数据库通常都饱含大量不同的项目,因此候选集的总数很大,所以当前的关联规则发现技术都是通过要求满足一个最小支持度以尽量减小搜索空间。 A pr i or.算法是一种最有影响的挖掘布尔关联规则频繁项集的算法。它将发现关联规则的过程分为两个步骤t 第一步.通过迭代检索出事务数据库中的所有频繁项集,即支持度不低于用户设定的阈值的候选集;第二步.利用频繁项集构造出满足用户最小信任度的规则t对于每个频度项目集L,产生它的所有非空子集S,对L的每个非空子集S,如果满足兰器茜乏渊≥mI-Lco挖,'贝Ⅱ输出相关规则s 一(L—S)。图l给出了A pr i or i算法及其相关过程的伪代码。由图所述,A pr i or Lgen完成两个动作:连接和剪枝。在连接部分.L I一-与LI一,连接可能的候选.剪枝部分使用A pr i or i性质删除具有非频繁子集的候选集.非频繁子集的测试在过程has-i nf requer屯s ubs et中. 1.Fl={f r equent l一i t em se t s}I 2.F0r(k=2}R一1≠口Ik+十){ 3.C k=apri ot gen(Fk一1) [收稿日期]200—03一04 [作者简介]高翔(198l一)。女.河南洛阳人.洛阳理工学院助教.中国人民大学软件与理论专业在读硕士研究向为挖掘;侯小静(1975一),女,河南洛阳人.洛阳理工学院讲师,硕士,研究向为计算机应用. 109

相关文档