文档库 最新最全的文档下载
当前位置:文档库 › 典型例题及详细求解过程:已知数列{an}的首项为1,前n项的和为 Sn

典型例题及详细求解过程:已知数列{an}的首项为1,前n项的和为 Sn

典型例题及详细求解过程:已知数列{an}的首项为1,前n项的和为 Sn
典型例题及详细求解过程:已知数列{an}的首项为1,前n项的和为 Sn

======================================================================== 【1】解答如下: 已知:n n S a 31=+,所以:

13-=n n S a 。

用n n S a 31=+和13-=n n S a 相减得:

1133-+-=-n n n n S S a a

而:

1--=n n n S S a

所以:

n n n a a a 31=-+

所以:

41

=+n

n a a (1)

已知:

11=a

(2)

所以:

111==a S

已知:

n n S a 31=+

所以:

313312=?==S a

(3)

所以:

431212=+=+=a a S

所以:

1243323=?==S a

(4)

所以:

161231313=++=+??+=a a S

所以:

48163334=?==S a

(5)

由以上规律可见,数列{}n a 在2≥n 条件下满足等式(1),即41

=+n

n a a 所以:

。;

,,?

??≥=?=2n 1n 4312

-n n a ========================================================================

【2】解答如下: 已知:

n n a b 4log =

当1=n 时,01log 41==b

当2≥n 时,3log )2(4log 3log )43(log 424424?-=?=?=--n b n n n

所以:

。;,,?

?

?

≥=?-=213log )2(04n n n b n 可见,当2≥n 时,n b 是一个以3log 4为公差的等差数列。 所以:

当2≥n 时,2

3

log )2)(1(2)1](3log )2(0[2)1)((442n 2'?--=-?-+=-+=

+??+=n n n n n b b b b S n bn

(6)

已得:

01=b

所以:

当1=n 时,011==b S b (7)

可见,当1=n 时,也适用于2

3

log )2)(1(4'?--=

n n S bn

所以:

2

3

log )2)(1(4n 21?--=

+??++=n n b b b S bn

可见:

1=n 时,有:01=b S ,0)1(2

1

2=-n

2=n 时,有:02=b S ,02

1

)1(212>=-n

设:

2n 21)1(2

1

)(--

+??++=n b b b X 有:

2

13log )2()1()1(2123log )2)(1()1(21

4242-?-?-=--?--=--

=n n n n n n S X n 所以:

当1=n 时,0=X

即:

2n 21)1(2

1

)(-=

+??++n b b b 当2=n 时,02

1

-21213log )2()1(4<=-=-?-?

-=n n X

即:

当2=n 时,2n 21)1(2

1

)(-+??++n b b b <

当3=n 时,04

3

log 4log 3log 13log 213log )2()1(44444<=-=-=-?-?

-=n n X

当4≥n 时,4

3log 23)4log 3(log 23213log 3213log )2()1(2-n 4

42

-n 42-n 44?=-?=-?=-?-?-=n n X

所以:

当4≥n 时,031>≥-n ,022>≥-n ,932

-n ≥, 1432-n >,043log 2-n 4>,04

3log 232

-n 4>?=X

即:

当4≥n 时,2n 21)1(2

1)(-+??++n b b b >

综上所述,

当1=n 时,2n 21)1(2

1

)(-=+??++n b b b ;

当2=n 和3=n 时,2n 21)1(2

1)(-+??++n b b b <; 当4≥n 时,2n 21)1(2

1)(-+??++n b b b >。

======================================================================== 解答完毕~~

几种求数列前n项和的方法

几种求数列前n 项和的常用方法 1、公式法: 如果一个数列是等差、等比数列或者是可以转化为等差、等比数列的数列,我们可以运用等差、等比数列的前n 项和的公式来求. ①等差数列求和公式:()()11122 n n n a a n n S na d +-==+ ②等比数列求和公式:()()()11111111n n n na q S a q a a q q q q ?=?=-?-=≠?--? 常见的数列的前n 项和:, 1+3+5+……+(2n-1)= ,等. 2、倒序相加法: 类似于等差数列的前n 项和的公式的推导方法。如果一个数列{}n a ,与首末两项等距的两项之和等于首末两项之和,可采用正序写和与倒序写和的两个和式相加,就得到一个常数列的和。这一种求和的方法称为倒序相加法. 例、求οοοοο89sin 88sin 3sin 2sin 1sin 22222++???+++的值. 解:设οοοοο89sin 88sin 3sin 2sin 1sin 22222++???+++=S …………. …. …. …. ① 将①式右边反序得:οοοοο1sin 2sin 3sin 88sin 89sin 22222+++???++=S ……② 又因为sin cos(90)x x =-o ,22sin cos 1x x +=,①+②得 : 2222222(sin 1cos 1)(sin 2cos 2)(sin 89cos 89)S =++++???++o o o o o o =89 ∴ S = 小结:倒序相加法,适用于倒序相加后产生相同的结果,方便求和. 3、错位相减法: 类似于等比数列的前n 项和的公式的推导方法。若数列各项是由一个等差数列和一个等比数列对应项相乘得到,即数列是一个“差·比”数列,则采用错位相减法. 例、求和:()2112301n n S x x nx x x -=++++≠≠L ,(课本61页习题组4) 解:设S n =1+2x+3x 2+…+(n-1)x n-2+nx n -1 , ① 则:x S n = x +2 x 2+…+(n-1) x n-1 + n x n ②

等差数列及其性质典型例题及练习(学生)

等差数列及其性质 典型例题: 热点考向一:等差数列的基本量 例1. 在等差数列{n a }中, (1) 已知81248,168S S ==,求1,a 和d (2) 已知6510,5a S ==,求8a 和8S 变式训练: 等差数列{}n a 的前n 项和记为n S ,已知 102030,50a a ==. (1)求通项公式{}n a ; (2)若242n S =,求n . 热点考向二:等差数列的判定与证明. 例2:在数列{}n a 中,11a =,1114n n a a +=- ,221 n n b a = -,其中* .n N ∈ (1)求证:数列{}n b 是等差数列; (2)求证:在数列{}n a 中对于任意的* n N ∈,都有 1n n a a +>. (3 )设n b n c =,试问数列{n c }中是否存在三项,使它们可以构成等差数列?如果存在,求出这三项;如果不存在,请说明理由. 跟踪训练:已知数列{n a }中,13 5 a = ,数列11 2,(2,)n n a n n N a *-=-≥∈,数列{n b }满足 1()1 n n b n N a *=∈- (1)求证数列{n b }是等差数列; (2)求数列{n a }中的最大项与最小项. 热点考向三:等差数列前n 项和 例3 在等差数列{}n a 的前n 项和为n S . (1)若120a =,并且1015S S =,求当n 取何值时,n S 最大,并求出最大值; (2)若10a <,912S S =,则该数列前多少项的和最小? 跟踪训练3:设等差数列}{n a 的前n 项和为n S ,已知 .0,0,1213123<>=S S a (I )求公差d 的取值范围; (II )指出12321,,,,S S S S 中哪一个最大,并说明理由。 热点考向四:等差数列的综合应用 例4.已知二次函数y =f (x )的图象经过坐标原点,其导函数为f ′(x )=6x -2,数列{a n }的前n 项和为S n ,点列(n ,S n )(n ∈N *)均在函数y =f (x )的图象上. (1)求数列{a n }的通项公式; (2)设b n =3 a n a n +1,T n 是数列{b n }的前n 项和,求使得 T n +都成立。求证:c 的最大值为 2 9。

数列前n项和的求和公式

数列求和的基本方法和技巧 一、利用常用求和公式求和 利用下列常用求和公式求和是数列求和的最基本最重要的方法. 1、 等差数列求和公式:d n n na a a n S n n 2) 1(2) (11-+=+= 2、等比数列求和公式:?????≠--=--==)1(11) 1() 1(111q q q a a q q a q na S n n n 3、 )1(211+==∑=n n k S n k n 4、)12)(1(6 1 12++==∑=n n n k S n k n 5、 213)]1(2 1[+==∑=n n k S n k n [例1] 已知3 log 1 log 23-=x ,求???++???+++n x x x x 32的前n 项和. [例2] 设S n =1+2+3+…+n ,n ∈N *,求1 )32()(++=n n S n S n f 的最大值. 二、错位相减法求和 这种方法是在推导等比数列的前n 项和公式时所用的方法,这种方法主要用于求数列{a n · b n }的前n 项和,其中{}n a 、{}n b 分别是等差数列和等比数列. [例3] 求和:13 2)12(7531--+???++++=n n x n x x x S ………………………①

[例4] 求数列 ??????,22,,26,24,2232n n 前n 项的和. 三、倒序相加法求和 这是推导等差数列的前n 项和公式时所用的方法,就是将一个数列倒过来排列(反序),再把它与原数列相加,就可以得到n 个)(1n a a +. [例5] 求 89sin 88sin 3sin 2sin 1sin 22222++???+++的值 四、分组法求和 有一类数列,既不是等差数列,也不是等比数列,若将这类数列适当拆开,可分为几个等差、等比或常见的数列,然后分别求和,再将其合并即可. [例6] 求数列的前n 项和:231,,71,41,1112-+???+++-n a a a n ,… [例7] 求数列{n(n+1)(2n+1)}的前n 项和.

等差数列经典题型

等差数列 第三课时 前N 项和 1、在等差数列{a n }中,已知d =2,a n =11, S n =35,求a 1和n . 2、设{a n }为等差数列, S n 为数列{a n }的前n 项和,已知S 7=7, S 15=75, T n 为数列? ??? ? ? S n n 的前n 项和,求T n . (1)等差数列{a n }的前m 项和为30,前2m 项和为100,求数列{a n }的前3m 项的和S 3m ; (2)两个等差数列{a n },{b n }的前n 项和分别为S n 和T n ,已知S n T n =7n +2n +3,求a 5 b 5 的 值. 3、已知两个等差数列{a n }和{b n }的前n 项和分别为A n 和B n ,且A n B n =7n +45 n +3,则使 得a n b n 为整数的正整数n 的个数是( ) A.2 B.3 C.4 D.5 4、现有200根相同的钢管,把它们堆成正三角形垛,要使剩余的钢管尽可能少,那么剩余钢管的根数为( ) A.9 B.10 C.19 D.29 5、等差数列{a n }中, S 10=4S 5,则a 1 d 等于( ) A.12 B.2 C.1 4 D.4

6、已知等差数列{a n}中,a23+a28+2a3a8=9,且a n<0,则S10为() A.-9 B.-11 C.-13 D.-15 7、设等差数列{a n}的前n项和为S n,若S3=9, S6=36.则a7+a8+a9等于() A.63 B.45 C.36 D.27 8、在小于100的自然数中,所有被7除余2的数之和为() A.765 B.665 C.763 D.663 9、一个等差数列的项数为2n,若a1+a3+…+a2n-1=90,a2+a4+…+a2n=72,且a1-a2n=33,则该数列的公差是() A.3 B.-3 C.-2 D.-1 10、设{a n}是公差为-2的等差数列,如果a1+a4+…+a97=50,那么a3+a6+…+a99=______. 11、在项数为2n+1的等差数列中,所有奇数项的和为165,所有偶数项的和为150,则n的值为______.

数列教案、考点、经典例题_练习

澳瀚教育 学习是一个不断积累的过程,不积跬步无以至千里,不积小流无以 成江海,在学习中一定要持之以恒,相信自己,你一定可以获得成功! 高中数学 一、定义 1.等差数列:一般地,如果一个数列从第二项起,每一项与它前一项的差等于同一个常数,即n a -1-n a =d ,(n ≥2,n ∈N +),这个数列就叫做等差数列,这个常数就叫做等差数列的公差(常用字母“d ”表示) 2.等差数列的通项公式: d n a a n )1(1-+= (=n a d m n a m )(-+) 3.有几种方法可以计算公差d ① d=n a -1-n a ② d = 11--n a a n ③ d =m n a a m n -- 定义:若a ,A ,b 成等差数列,那么A 叫做a 与b 的等差中项 不难发现,在一个等差数列中,从第2项起,每一项(有穷数列的末项除外)都是它的前一项与后一项的等差中项 如数列:1,3,5,7,9,11,13…中 5是3和7的等差中项,1和9的等差中项 9是7和11的等差中项,5和13的等差中项 看来,73645142,a a a a a a a a +=++=+ 性质1:在等差数列{}n a 中,若m+n=p+q ,则,q p n m a a a a +=+ 即 m+n=p+q ?q p n m a a a a +=+ (m, n, p, q ∈N ) 二.例题讲解。 一.基本问题 例1:在等差数列{}n a 中 111111(1)(1)2()2, (1)(1)2()2, .m n p q m n p q a a a m d a n d a n m d d a a a p d a q d a p q d d a a a a +=+-++-=++-+=+-++-=++-∴+=+证明:

求前n项和公式的常用方法

求数列前N项和的常用方法 核心提示:求数列的前n项和要借助于通项公式,即先有通项公式,再在分析数列通项公式的基础上,或分解为基本数列求和,或转化为基本数列求和。当遇到具体问题时,要注意观察数列的特点和规律,找到适合的方法解题。 一.用倒序相加法求数列的前n项和 如果一个数列{a n},与首末项等距的两项之和等于首末两项之和,可采用把正着写与倒着写的两个和式相加,就得到一个常数列的和,这一求和方法称为倒序相加法。我们在学知识时,不但要知其果,更要索其因,知识的得出过程是知识的源头,也是研究同一类知识的工具,例如:等差数列前n项和公式的推导,用的就是“倒序相加法”。 例题1:设等差数列{a n},公差为d,求证:{a n}的前n项和S n=n(a1+a n)/2 解:S n=a1+a2+a3+...+a n① 倒序得:S n=a n+a n-1+a n-2+…+a1② ①+②得:2S n=(a1+a n)+(a2+a n-1)+(a3+a n-2)+…+(a n+a1) 又∵a1+a n=a2+a n-1=a3+a n-2=…=a n+a1 ∴2S n=n(a2+a n) S n=n(a1+a n)/2 点拨:由推导过程可看出,倒序相加法得以应用的原因是借助a1+a n=a2+a n-1=a3+a n-2=…=a n+a1即与首末项等距的两项之和等于首末两项之和的这一等差数列的重要性质来实现的。 二.用公式法求数列的前n项和 对等差数列、等比数列,求前n项和S n可直接用等差、等比数列的前n项和公式进行求解。运用公式求解的注意事项:首先要注意公式的应用范围,确定公式适用于这个数列之后,再计算。 例题2:求数列的前n项和S n 解: 点拨:这道题只要经过简单整理,就可以很明显的看出:这个数列可以分解成两个数列,一个等差数列,一个等比数列,再分别运用公式求和,最后把两个数列的和再求和。 三.用裂项相消法求数列的前n项和 裂项相消法是将数列的一项拆成两项或多项,使得前后项相抵消,留下有限项,从而求出数列的前n项和。 例题3:求数列(n∈N*)的和

人教课标版高中数学必修5典型例题剖析:等差数列的通项与求和

等差数列的通项与求和 一、知识导学 1.数列:按一定次序排成的一列数叫做数列. 2.项:数列中的每一个数都叫做这个数列的项,各项依次叫做这个数列的第1项(或首项),第2项,…,第n 项,…. 3.通项公式:一般地,如果数列{a n }的第n项与序号n之间的关系可以用一个公式来表示,那么这个公式叫做这个数列的通项公式. 4. 有穷数列:项数有限的数列叫做有穷数列. 5. 无穷数列:项数无限的数列叫做无穷数列 6.数列的递推公式:如果已知数列的第一项(或前几项)及相邻两项(或几项)间关系可以用一个公式来表示,则这个公式就叫做这个数列的递推公式.递推公式是给出数列的一种重要方法,其关健是先求出a 1,a 2,然后用递推关系逐一写出数列中的项. 7.等差数列:一般地,如果一个数列从第二项起,每一项减去它的前一项所得的差都等于同一个常数,那么这个数列就叫做等差数列,这个常数叫做等差数列的公差,公差通常用d表示. 8.等差中项:如果a,A,b这三个数成等差数列,那么A=2b a +.我们把A=2 b a +叫做a和b的等差中项. 二、疑难知识导析 1.数列的概念应注意几点:(1)数列中的数是按一定的次序排列的,如果组成的数相同而排列次序不同,则就是不同的数列;(2)同一数列中可以出现多个相同的数;(3)数列看做一个定义域为正整数集或其有限子集({1,2,3,…,n })的函数. 2.一个数列的通项公式通常不是唯一的. 3.数列{a n }的前n 项的和S n 与a n 之间的关系:???≥-==-).2(),1(1 1n S S n S a n n n 若 a 1适合a n (n>2),则n a 不用分段形式表示,切不可不求a 1而直接求a n .

数列通项公式、前n项和求法总结全

一.数列通项公式求法总结: 1.定义法 —— 直接利用等差或等比数列的定义求通项。 特征:适应于已知数列类型(等差或者等比). 例1.等差数列{}n a 是递增数列,前n 项和为n S ,且931,,a a a 成等比数列,2 55a S =.求数列{}n a 的通项公式. 变式练习: 1.等差数列{}n a 中,71994,2,a a a ==求{}n a 的通项公式 2. 在等比数列{}n a 中,212a a -=,且22a 为13a 和3a 的等差中项,求数列{}n a 的首项、公比及前n 项和. 2.公式法 求数列{}n a 的通项n a 可用公式???≥???????-=????????????????=-21 11n S S n S a n n n 求解。 特征:已知数列的前n 项和n S 与n a 的关系 例2.已知下列两数列}{n a 的前n 项和s n 的公式,求}{n a 的通项公式。 (1)13-+=n n S n 。 (2)12 -=n s n

变式练习: 1. 已知数列{}n a 的前n 项和为n S ,且n S =2n 2 +n ,n ∈N ﹡,数列{b }n 满足n a =4log 2n b +3,n ∈N ﹡.求n a ,n b 。 2. 已知数列{}n a 的前n 项和2 12 n S n kn =-+(*k N ∈),且S n 的最大值为8,试确定常数k 并求n a 。 3. 已知数列{}n a 的前n 项和*∈+=N n n n S n ,2 2.求数列{}n a 的通项公式。 3.由递推式求数列通项法 类型1 特征:递推公式为 ) (1n f a a n n +=+ 对策:把原递推公式转化为)(1n f a a n n =-+,利用累加法求解。 例3. 已知数列{}n a 满足211= a ,n n a a n n ++=+211,求n a 。

小学奥数等差数列经典练习题

小学奥数等差数列经 典练习题 -CAL-FENGHAI-(2020YEAR-YICAI)_JINGBIAN

小学奥数等差数列经典练习题 一、判断下面的数列中哪些是等差数列在等差数列的括号后面打√。0,2,6,12,20,30,36…… 6,12,18,24,30,36,42……700,693,686,679,673…… 90,79,68,57,46,35,24,13…… 1,3,5,7,10,13,16……5,8,11,14,17,20…… 1,5,9,13,17,21,23…90,80,70,60,50,……20,10 二、求等差数列3,8,13,18,……的第30项是多少 三、求等差数列8,14,20,26,……302的末项是第几项 四、一个剧院的剧场有20排座位,第一排有38个座位,往后每排比前一排多2个座位,这个剧院一共有多少个座位五、计算 11+12+13……+998+999+10002+6+3+12+4+18+5+24+6+30 3、求等差数列6,9,12,15,……中第99项是几 4、求等差数列46,52,58……172共有多少项 5、求等差数列245,238,231,224,……中,105是第几项 6、求等差数列0,4,8,12,……中,第31项是几在这个数列中,2000是第几项 7、从35开始往后面数18个奇数,最后一个奇数是多少、已知一个等差数列的第二项是8,第3项是13,这1个等差数列的第10项是多少 1、计算:100+200+300+……21001+79+……+17+15+13 2、有20个同学参加聚会,见面的时候如果每人都和其他同学握手一次,那么参加聚会的同学一共要握手多少次 3、请用被4

等差数列典型例题及分析

第四章 数列 [例1]已知数列1,4,7,10,…,3n+7,其中后一项比前一项大3.(1)指出这个数列的通项公式;(2)指出1+4+…+(3n -5)是该数列的前几项之和.正解:(1)a n =3n -2; (2) 1+4+…+(3n -5)是该数列的前n -1项的和. [例2] 已知数列{}n a 的前n 项之和为① n n S n -=22 ② 12 ++=n n S n 求数列{}n a 的通项公式。 正解: ①当1=n 时,1 11==S a 当2≥n 时,3 4)1()1(222 2-=-+---=n n n n n a n 经检验 1=n 时 11=a 也适合,∴34-=n a n ②当1=n 时,3 11==S a 当2≥n 时,n n n n n a n 21)1()1(12 2=-----++= ∴ ?? ?=n a n 23 ) 2()1(≥=n n [例3] 已知等差数列{}n a 的前n 项之和记为S n ,S 10=10 ,S 30=70,则S 40等于 。 正解:由题意:??? ????=?+=?+70 2293030102 9101011d a d a 得152,521= =d a 代入得S 40 =120402 39 40401=??+ d a 。 [例5]已知一个等差数列{}n a 的通项公式a n =25-5n ,求数列{}||n a 的前n 项和; 正解: ??? ????≥+--≤-6,502)5)(520(5,2 ) 545(n n n n n n [例6]已知一个等差数列的前10项的和是310,前20项的和是1220, 由此可以确定求其前n 项和的公式吗? [例7]已知:n n a -+=12lg 1024 (3010.02lg =)+∈N n (1) 问前多少项之和为

求数列前n项和的七种方法

求数列前N 项和的七种方法 1. 公式法 等差数列前n 项和: 特别的,当前n 项的个数为奇数时,211(21)k k S k a ++=+g ,即前n 项和为中间项乘以项数。这个公式在很多时候可以简化运算。 等比数列前n 项和: q=1时,1n S na = ( )1111n n a q q S q -≠= -,,特别要注意对公比的讨论。 其他公式: 1、)1(211+==∑=n n k S n k n 2、)12)(1(61 1 2++==∑=n n n k S n k n 3、21 3)]1(2 1[+==∑=n n k S n k n [例1] 已知3 log 1 log 23-= x ,求???++???+++n x x x x 32的前n 项和. 解:由2 1 2log log 3log 1log 3323=?-=?-= x x x 由等比数列求和公式得 n n x x x x S +???+++=32 (利用常用公式) =x x x n --1)1(=2 11) 21 1(2 1--n =1-n 21 [例2] 设S n =1+2+3+…+n,n ∈N *,求1 )32()(++= n n S n S n f 的最大值.

解:由等差数列求和公式得 )1(21+=n n S n , )2)(1(2 11++=+n n S n (利 用常用公式) ∴ 1)32()(++= n n S n S n f =64 342++n n n = n n 64 341+ += 50 )8(12+- n n 50 1≤ ∴ 当 8 8-n ,即n =8时,501)(max =n f 2. 错位相减法 这种方法是在推导等比数列的前n 项和公式时所用的方法,这种方法主要用于求数列{a n · b n }的前n 项和,其中{ a n }、{ b n }分别是等差数列和等比数列. [例3] 求和:132)12(7531--+???++++=n n x n x x x S ………………………① 解:由题可知,{1)12(--n x n }的通项是等差数列{2n -1}的通项与等比数列{1-n x }的通项之积 设 n n x n x x x x xS )12(7531432-+???++++=………………………. ② (设制错位) ① - ② 得 n n n x n x x x x x S x )12(222221)1(1432--+???+++++=-- (错位相 减) 再利用等比数列的求和公式得:

数列通项公式和前n项和求解方法

数列通项公式的求法详解 关键是找出各项与项数n 的关系.) 例1:根据数列的前4项,写出它的一个通项公式: (1)9,99,999,9999,…(2)K ,1716 4,1093 ,542,21 1(3) K ,52,21,32 ,1(4)K ,5 4 ,43,32,21-- 答案:(1)110-=n n a (2);1 22++=n n n a n (3);12+=n a n (4)1)1(1+? -=+n n a n n . 公式法1:特殊数列 例2: 已知数列{a n }是公差为d 的等差数列,数列{b n }是公比为q 的(q ∈R 且q ≠1)的等比数列,若函数f (x ) = (x -1)2 ,且a 1 = f (d -1),a 3 = f (d +1),b 1 = f (q +1),b 3 = f (q -1),求数列{ a n }和{ b n }的通项公式。 答案:a n =a 1+(n -1)d = 2(n -1); b n =b ·q n -1=4·(-2)n -1 例3. 等差数列{}n a 是递减数列,且432a a a ??=48,432a a a ++=12,则数列的通项公式是( ) (A) 122-=n a n (B) 42+=n a n (C) 122+-=n a n (D) 102+-=n a n 答案:(D) 例4. 已知等比数列{}n a 的首项11=a ,公比10<

求数列前n项和的几种常用方法

2 2 2 3 求数列前n 项和的几种常用方法 江苏省 马吉超 公式法 如果数列是等差或等比数列,可直接利用前n 项求和公式,这是 的条件。 二、分组转化法 差构成,可以把原数列的求和分组转化为等差、等比或特殊数列的求 和。 求S n 1 解: S n 1 2 n n 1 n n -- d 2 2 2 1 n 2 最基本的方法。但应注意等比数列前 N 项求和公式 a 1 S n 解:①当x 1时, S n ②当x 1时, S n X 1 X 1 X 如果所给数列的每一项是由等差 等比或特殊数列对应项的和或 解: S n

1 n 2 2 2s n 2C n 1 2 C n n n 2 C n 2(c n 1 C n 三、倒序相加法 如果求和数列的首末两项的和及与首末两项等距离的两项的和 相 等,可用此法。(等差数列求和公式可用此法推导) 求所有大于2且小于10的分母为5的既约分数的和。 ⑴+⑵得 2s 12 32 384 s 192 ⑴+⑵得 1 n 一 一 n 1 2n 2 6 1 n n 1 1 --------- 2 2 解: 11 亏 49 5 12 ~5 48 5 13 ~5 47 5 47 "5 13 5 48 ~5 12 5 49 "5 11 5 解: 0 s C n m C n C n 2 C n C n 1 2C n 3c n n n 1 1 C n n C n n m C n 2 3C n 1 2 C n n 1 n C n n 0 C n n 1

2 1 四、错位相减法 求和公式可用此法推导) . n 1 2 ①一② S n 故 S n n 12n1 2 五、裂项相消法 分正负项又可以相消,则可用此法。 求9 1 占丘 2 - 21 1 n 2n n 1 形如a n b n 的数列,其中a n 是等差数列,b n 是等比数列,则 可在求和等式两边同乘 b n 的公比, 然后两等式错位相减。 (等比数列 例6求S n 1 2 2 2 2 3 S n 2 2 2 2 3 如果求和数列的每一项均能分裂成对应两项的差, 求和时,大部 解: S n 21 丄 21 2 2

经典等差数列性质练习题(含答案)讲解学习

等差数列基础习题选(附有详细解答) 一.选择题(共26小题) 1.已知等差数列{a n}中,a3=9,a9=3,则公差d的值为() A.B.1C.D.﹣1 2.已知数列{a n}的通项公式是a n=2n+5,则此数列是() A.以7为首项,公差为2的等差数列B.以7为首项,公差为5的等差数列 C.以5为首项,公差为2的等差数列D.不是等差数列 3.在等差数列{a n}中,a1=13,a3=12,若a n=2,则n等于() A.23 B.24 C.25 D.26 4.等差数列{a n}的前n项和为S n,已知S3=6,a4=8,则公差d=() A.一1 B.2C.3D.一2 5.两个数1与5的等差中项是() A.1B.3C.2D. 6.一个首项为23,公差为整数的等差数列,如果前六项均为正数,第七项起为负数,则它的公差是()A.﹣2 B.﹣3 C.﹣4 D.﹣5 7.(2012?福建)等差数列{a n}中,a1+a5=10,a4=7,则数列{a n}的公差为() A.1B.2C.3D.4 8.数列的首项为3,为等差数列且,若,,则=()A.0B.8C.3D.11 A.25 B.24 C.20 D.19 A.5B.3C.﹣1 D.1 A.a1+a8>a4+a5B.a1+a8=a4+a5C.a1+a8<a4+a5D.a1a8=a4a5 12.(2004?福建)设S n是等差数列{a n}的前n项和,若=() A.1B.﹣1 C.2D. A.﹣1 B.1C.3D.7

14.在等差数列{a n}中,a2=4,a6=12,,那么数列{}的前n项和等于() A.B.C.D. 15.已知S n为等差数列{a n}的前n项的和,a2+a5=4,S7=21,则a7的值为() A.6B.7C.8D.9 16.已知数列{a n}为等差数列,a1+a3+a5=15,a4=7,则s6的值为() A.30 B.35 C.36 D.24 17.(2012?营口)等差数列{a n}的公差d<0,且,则数列{a n}的前n项和S n取得最大值时的项数n是A.5B.6C.5或6 D.6或7 A.58 B.88 C.143 D.176 A.﹣1 B.0C.1D.2 2 A.6B.7C.8D.9 2 A.4或5 B.5或6 C.4D.5 A.12 B.10 C.8D.4 A.230 B.140 C.115 D.95 A.5B.25 C.50 D.100 25.设S n是公差不为0的等差数列{a n}的前n项和,且S1,S2,S4成等比数列,则等于() A.1B.2C.3D.4 A.第10项B.第11项C.第10项或11项D.第12项 二.填空题(共4小题)

数列通项、数列前n项和的求法例题练习

通项公式和前n 项和 一、新课讲授: 求数列前N 项和的方法 1. 公式法 (1)等差数列前n 项和: 11()(1) 22 n n n a a n n S na d ++= =+ 特别的,当前n 项的个数为奇数时,211(21)k k S k a ++=+g ,即前n 项和为中间项乘以项数。这个公式在很多时候可以简化运算。 (2)等比数列前n 项和: q=1时,1n S na = ( )1111n n a q q S q -≠= -,,特别要注意对公比的讨论。 (3)其他公式较常见公式: 1、)1(211+==∑=n n k S n k n 2、)12)(1(611 2 ++==∑=n n n k S n k n 3、21 3)]1(21[+== ∑=n n k S n k n [例1] 已知3 log 1log 23-=x ,求???++???+++n x x x x 32的前n 项和. [例2] 设S n =1+2+3+…+n,n ∈N *,求1 )32()(++=n n S n S n f 的最大值.

2. 错位相减法 这种方法是在推导等比数列的前n 项和公式时所用的方法,这种方法主要用于求数列{a n · b n }的前n 项和,其中{ a n }、{ b n }分别是等差数列和等比数列. [例3] 求和:1 32)12(7531--+???++++=n n x n x x x S ………………………① [例4] 求数列 ??????,2 2,,26,24,2232n n 前n 项的和. 练习: 求:S n =1+5x+9x 2+······+(4n -3)x n-1 答案: 当x=1时,S n =1+5+9+······+(4n-3)=2n 2-n 当x ≠1时,S n = 1 1-x [ 4x(1-x n ) 1-x +1-(4n-3)x n ] 3. 倒序相加法求和 这是推导等差数列的前n 项和公式时所用的方法,就是将一个数列倒过来排列(反序),再把它与原数列相加,就可以得到n 个)(1n a a +. [例5] 求ο ο ο ο ο 89sin 88sin 3sin 2sin 1sin 2 2 2 2 2++???+++的值

求数列前N项和的方法

求数列前N 项和的方法 1. 公式法 等差数列前n 项和: 11() (1) 2 2 n n n a a n n S n a d ++= =+ 特别的,当前n 项的个数为奇数时,211(21)k k S k a ++=+ ,即前n 项和为中间项乘以项数。这个公式在很多时候可以简化运算。 等比数列前n 项和: q=1时,1n S n a = ( ) 1111n n a q q S q -≠= -,,特别要注意对公比的讨论。 其他公式: 1、)1(2 11+= = ∑ =n n k S n k n 2、)12)(1(6 11 2 ++= = ∑ =n n n k S n k n 3、21 3 )]1(2 1[+== ∑=n n k S n k n [例1] 已知3 log 1log 2 3 -= x ,求???++???+++n x x x x 32的前n 项和. 解:由2 12log log 3 log 1log 3 3 2 3 = ?-=?-= x x x 由等比数列求和公式得 n n x x x x S +???+++=32 (利 用常用公式) =x x x n --1)1(= 2 11) 211(2 1 - -n =1- n 2 1 [例2] 设S n =1+2+3+…+n ,n ∈N *,求1 )32()(++= n n S n S n f 的最大值. 解:由等差数列求和公式得 )1(2 1+= n n S n , )2)(1(2 11++= +n n S n (利 用常用公式) ∴ 1 )32()(++= n n S n S n f = 64 342 ++n n n

最新求数列的前n项和列(教案-例题-习题)

精品文档 四.数列求和的常用方法 1. 公式法:①等差数列求和公式;②等比数列求和公式, 特别声明:运用等比数列求和公式,务必检查其 公比与1的关系,必要时需分类讨论. ③常用 公式:1 2 3山 n n 1 ) 12 22 11( n 2 二丄n (n 1)(2n 1), 2 6 13 23 33 川 n 3

求数列前n项和方法

数列求和 1.直接用等差、等比数列的求和公式求和。 d n n na a a n S n n 2)1(2)(11-+=+= ?????≠--==)1(1)1() 1(11q q q a q na S n n 公比含字母时一定要讨论 例:1.已知等差数列}{n a 满足,11=a 32=a ,求前n 项和}{n S 2. 等差数列{a n }中,a 1=1,a 3+a 5=14,其前n 项和S n =100,则n =( ) A .9 B .10 C .11 D .12 3.已知等比数列}{n a 满足,11=a 32=a ,求前n 项和}{n S 4.设4 7 10 310 ()22222()n f n n N +=+++++∈ ,则()f n 等于( ) A. 2(81)7n - B.12(81)7n +- C.32 (81)7n +- D. 4 2(81)7 n +- 2.错位相减法求和:如:{}{}.,,2211的和求等比等差n n n n b a b a b a b a +++ 例:1.求和2 1 123n n S x x nx -=++++ 2.求和:n n a n a a a S ++++= 32321 3.设{}n a 是等差数列,{}n b 是各项都为正数的等比数列,且111a b ==,3521a b +=,5313a b += (Ⅰ)求{}n a ,{}n b 的通项公式;(Ⅱ)求数列n n a b ?? ???? 的前n 项和n S . 3.裂项相消法求和:把数列的通项拆成两项之差、正负相消剩下首尾若干项。 常见拆项: 111)1(1+-=+n n n n ) 121 121(21)12)(12(1+--=+-n n n n )211(21)2(1+-=+n n n n ]) 2)(1(1 )1(1[21)2)(1(1++-+=++n n n n n n n !)!1(!n n n n -+=? )!1(1!1)!1(+-=+n n n n i n i n i n C C C 1 11----= 数列{}n a 是等差数列,数列? ?? ???+11n n a a 的前n 项和 例:1.数列{}n a 的前n 项和为n S ,若1 (1) n a n n = +,则5S 等于( B )

等差数列典型例题

等差数列典型例题 类型一:直接利用等差数列的定义、公式求解 例1.(1)求等差数列3,7,11,……的第11项. (2)100是不是等差数列2,9,16,……的项?如果是,是第几项?如果不是, 说明理由. 思路点拨:(1)根据所给数列的前2项求得首项和公差,写出该数列的通项公式,从而求出所求项;(2)题中要想判断一数是否为某一数列的其中一项,关键是要看是否存在一正整数n 值,使得n a 等于这一数. 总结升华: 1.根据所给数列的前2项求得首项1a 和公差d ,写出通项公式n a . 2.要注意解题步骤的规范性与准确性. 举一反三: 【变式1】求等差数列8,5,2…的第21项 【变式2】-20是不是等差数列0,7 2 -,-7,……的项?如果是,是第几项?如果不是,说明理由. 【变式3】求集合* {|7,,100}M m m n n N m ==∈<的元素的个数,并求这些元素的和 类型二:根据公式列方程(组)求解 例2.已知等差数列{}n a 中,1533a =,45153a =,试问217是否为此数列的项?若是,说明是第几项?若不是,说明理由。 思路点拨:由于在条件中已知两项的值(两个等式),所以在求解方法上,可以考虑运用方程思想求解基本量首项1a 和公差d ,也可以利用性质求d ,再就是考虑运用等差数列的几何意义。 总结升华: 1. 等差数列的关键是首项1a 与公差d ;五个基本量1a 、n 、d 、n a 、n S 中,已知三个基本量便可求出其余两个量; 2.列方程(组)求等差数列的首项1a 和公差d ,再求出n a 、n S ,是数列中的基本方法. 举一反三: 【变式1】等差数列-10,-6,-2,2,…前多少项的和是54? 【变式2】等差数列{}n a 中, 4d =, 18n a =, 48n S =,求1a 的值. 【变式3】已知等差数列{}n a ,354a =,73 4 a =-,则15a = 。 类型三:等差数列的判断与证明 例3.已知数列{}n a 的前n 项和为2 43n S n n =+,求证:数列{}n a 为等差数列.

求数列的前n项和列(教案+例题+习题)

四.数列求和的常用方法 1.公式法:①等差数列求和公式;②等比数列求和公式, 特别声明:运用等比数列求和公式,务必检查其公比与1的关系,必要时需分类讨论.;③常用公式:1123(1)2 n n n +++ +=+,222112(1)(21)6 n n n n ++ +=++, 33332 (1)123[ ]2 n n n +++++=. 例1 、已知3 log 1log 23-= x ,求???++???+++n x x x x 32的前n 项和. 解:由2 1 2log log 3log 1log 3323=?-=?-= x x x 由等比数列求和公式得 n n x x x x S +???+++=32 (利用常用公式) =x x x n --1)1(= 2 11)21 1(21--n =1-n 21 练一练:等比数列{}n a 的前n 项和S n=2n-1,则2 232221n a a a a ++++ =_____ ; 2.分组求和法:在直接运用公式法求和有困难时,常将“和式”中“同类项”先合并在一 起,再运用公式法求和. 例2、 求数列的前n 项和:231 ,,71,41, 1112-+???+++-n a a a n ,… 解:设)231 ()71()41()11(12-++???++++++=-n a a a S n n 将其每一项拆开再重新组合得 )23741()1 111(12-+???+++++???+++ =-n a a a S n n (分组) 当a =1时,2)13(n n n S n -+==2)13(n n + (分组求和) 当1≠a 时,2)13(1111n n a a S n n -+--==2)13(11n n a a a n -+--- 练一练:求和:1357(1)(21)n n S n =-+-+-+-- 3.倒序相加法:若和式中到首尾距离相等的两项和有其共性或数列的通项与组合数相关联,则常可考虑选用倒序相加法,发挥其共性的作用求和(这也是等差数列前n 和公式的推 导方法). 例3、求 89sin 88sin 3sin 2sin 1sin 22222++???+++的值

相关文档
相关文档 最新文档