文档库 最新最全的文档下载
当前位置:文档库 › 屏蔽和接地

屏蔽和接地

屏蔽和接地
屏蔽和接地

屏蔽和接地

电磁屏蔽按其屏蔽原理可分为电场屏蔽、磁场屏蔽和电磁场屏蔽。电场屏蔽包括静电屏蔽和交变电场屏蔽;磁场屏蔽包含低频磁场屏蔽和高频磁场屏蔽。

首先说静电屏蔽,对于一个静电源,可以采用金属屏蔽体对其作屏蔽,并作接地,接地点不限制。

交变电场屏蔽,用良好的金属导体作屏蔽体,并作良好的接地,必须是良导体,且必须作接地。强调一点,屏蔽并不意味着非要把它包起来。雷电磁场屏蔽要包,是因为雷电磁场的发生范围和大,几乎是整个空间都存在。

低频磁场屏蔽,对于低频磁场屏蔽要用高导磁材料比如:铁、硅钢片等,而且要考虑厚度。开缝不能有垂直与磁力线的方向。特别注明不需要接地。

高频磁场屏蔽,用低电阻率的良导电材料,如铜、铝、甚至有些场合要用镀银铜。原理是在屏蔽体表面产生涡流的反磁场来达到屏蔽的目的,屏蔽体不一定要很厚,缝隙不能切断涡流方向。例如医院的核磁共振室用的屏蔽材料就是整个铜板把房间包起来。考虑到就是高频磁场屏蔽的要求。

但在实际应用中,所遇到的屏蔽一般都是指电磁场屏蔽,既包括电场屏蔽也包括磁场屏蔽。而且屏蔽体都要求做接地,但并不一定要求都多点接地,有的甚至是要单点接地。

下面说一下我们常见的电缆屏蔽和接地。

最常见的就是信号线路的屏蔽和接地

现在有些精密仪器设备的信号线路采用屏蔽电缆,为了防止外界电磁干扰,或线路互相干扰要做屏蔽,且屏蔽层必须做接地,否则岂不到屏蔽的作用。但在接地过程中,也会涉及到地电流干扰问题,尤其是低频情况,当采用多点接地时,会在屏蔽层和地回路之间形成低频干扰电流,影响线路传输。所以对低频情况下应采取单点接地。对于高频,尤其是线路长度接近四分之一波长时,采用多点接地,每隔十分之一个波长做一次接地,至少实在两端作接地。这里所指一般指1M赫兹以上的波。线路长度不能大于四分之一波长,否则起不到接地作用。如果从我们防雷的角度,即雷电感应引入过电压波角度上来考虑,单点接地是很不安全的,尤其是一条线路上某一端屏蔽层接地,另一端不接地,挡一端遭受雷击使第电位太高时有可能时另一断设备对地产生高电位,产生危险。所以在低频情况下,我们可采取穿钢管两端接地,然后屏蔽层单点接地,或用双层屏蔽电缆,即能抑制低频电流干扰又能防止雷电过电压入侵,能起到较好的效果。

电缆屏蔽与接地_笔记

1.干扰原理 1.1导线传输 理想状况下导线只考虑电阻,实际状况(尤其是高频状况)下导线还应考虑分布参数(分布电容和分布电感)。 分布电容与分布电感乘积为常数:L C = 。 导线物理特征由特性阻抗描述:Z0 = √?,与导线的电压电流无关。 分布参数是干扰及其传导的主要原因。 分布电感:导线-导线 > 导线-导板 > 导板-导板 分布电容:导线-导线 < 导线-导板 < 导板-导板 特性阻抗:导线-导线 > 导线-导板 > 导板-导板 1.2.1传输线长短 导线长度s < 信号波长λ/10(或/4) 信号传播时间t QZ < 0.5 * 信号沿上升时间t f 导线长度s > 信号波长λ/1(或/4) 波长是频率的函数:λ = c/f f < 3kHz → R > 常量:高频电源波长1m,给灯泡供电,供电回路长度为2m以上。 变量:可平移导线将灯泡短路,并从靠近灯泡(远离电源)端至远离灯泡(靠近电源)端移动。 可平移导线构成将电路分为三个支路:可平移导线支路A与灯泡支路B和电源支路C。 常量:支路A阻抗Z A为常量,因电源频率和支路A长度为常量。 变量:支路B阻抗为Z B变量,因支路B长度随可平移导线的移动而变化。 变暗:可平移导线逼近灯泡某处时,支路B长度远小于电源波长/10,按照短线特性,应考虑电感, 由于电源频率为高频,Z B》Z A,于是灯泡被短路,故灯暗。 变亮:可平移导线远离灯泡某处时,支路B长度大于电源波长/10,按照长线特性,仅考虑电阻, 由于电源频率为高频,Z B与Z A数量级相当,于是灯泡不被短路,故灯亮。 变暗:可平移导线逼近电源某处时,支路C长度远小于电源波长/10,按照短线特性,应考虑电感, 由于电源频率为高频,Z B》Z A,于是电源被短路,故灯暗。 注意:灯丝本身就是一根导线。 干扰抑制元件要就近安装在干扰源端或被保护设备端。因为由以上解释,远端的干扰可以被忽略。

防雷接地行业发展现状及趋势

防雷接地行业发展现状及 趋势 Final revision on November 26, 2020

中国防雷、接地行业发展现状及趋势摘要:防雷、接地技术的发展和产品的升级换代紧跟社会科技的进步,能够不断满足信息时代对防雷、接地的新的需求,为了未来创造了新的市场空间。针对特定行业及其标准定身开发制作的专业防雷、接地产品将不断涌现,满足核电、风电、太阳能等新型能源的防雷、接地需要。 一、前言 雷电是自然界中一种激烈的放电现象,由此引起的雷击灾害被联合国列为十大自然灾害之一。近20年来,雷电灾害造成的经济损失和人员伤亡事故呈现出发生频次多、范围广、危害严重、社会影响大的特点。雷电灾害已成为危害程度仅次于暴雨、洪涝滑坡塌方的第三大气象灾害。 雷电对现代社会生活的严重危害引起了社会各界对防雷工作的极大关注,以国家气象局为主管部门的各省市防雷中心高度重视,加强了防雷减灾法规宣传和防雷设施安装推广力度,有效的降低了雷击造成的设备损失和人员伤亡。 尽管如此,雷电的危害并没有消弱。随着人类对电子信息技术的依赖性日益增强,越来越多的企业和大型社会机构为保证以计算机网络为基础的信息系统的安全运行,不断加大对雷电防护的投入,各行业的专业防雷、接地工程业务迅速增长,并在基础建设中的总包、分包项目中大量呈现,防雷接地的独立的行业性特征愈加显现,产业群体已经形成。 截止2009年3月1日,国内共有具有防雷设计、施工资质的防雷企业1498家,其中甲级资质企业42家,乙级资质企业586家,丙级资质企业870家。其中,电涌保护器制造企业已超过550家,中国防雷、接地行业的从业企业约有2500家。 二、防雷市场现状 1、综合防雷技术及其主要产品 通常,人们把雷电造成的危害分为直击雷害和感应雷害。直击雷害是指由于闪电直接击中目标物——即直击雷产生的路效应(传导)——而造成的破坏,如建筑物损坏、森林火灾、油库爆炸、人员伤亡等;感应雷害是指在雷电放电过程中,由于强大的雷击电磁脉冲(LEMP)——直击雷产生的场效应(感应)——对附近的电子设备、通讯设备等产生的破坏,这种灾害往往造成严重的经济损失,也是经济发达地区雷电灾害的主要形式。 综合防雷就是针对雷电可能侵入系统的途径,综合采用各种降低雷电影响的措施的防护系统。综合防雷分外部防雷(接闪、引下、接地)和内部防雷(等电位连接、屏蔽、综合布线和SPD(电涌保护器))。 外部防雷主要依据是国际电工委员会IEC62305《雷电防护》1~4以及《建筑物防雷设计规范》等中国国家标准。外部防雷通常采用避雷针、避雷带、避雷线、避雷网作为接闪器,通过引下线将雷电流引入接地网泄放到大地。内部防雷是改善建筑物构筑物内部电磁环境,包括六项措施:分流、屏蔽、等电位连接、合理布线、电压限制和共地,设置、安装线路SPD——属于分流技术和电压限制技术。 2、防雷市场的增长情况及市场规模 有专家认为,作为综合防雷的一个节点,SPD的价值约占综合防雷整体产值的30%。SPD通常分多级保护,用量极大,是绝大多数防雷厂家的主打产品,因此,可以用SPD的产销量来分析防雷市场的状况。

屏蔽线应一端接地还是两端接地

屏蔽线应一端接地还是两端接地? 屏蔽接地通常采用两种方式来处理:屏蔽层单端接地和屏蔽层双端接地。 ①屏蔽层单端接地是在屏蔽电缆的一端将金属屏蔽层直接接地,另一端不接地或通过保护接地。 在屏蔽层单端接地情况下,非接地端的金属屏蔽层对地之间有感应电压存在,感应电压与电缆的长度成正比,但屏蔽层无电势环流通过。单端接地就是利用抑制电势电位差达到消除电磁干扰的目的。 这种接地方式适合长度较短的线路,电缆长度所对应的感应电压不能超过安全电压。静电感应电压的存在将影响电路信号的稳定,有时可能会形成天线效应。 ②双端接地是将屏蔽电缆的金属屏蔽层的两端均连接接地。 在屏蔽层双端接地情况下,金属屏蔽层不会产生感应电压,但金属屏蔽层受干扰磁通影响将产生屏蔽环流通过,如果地点A和地点B的电势不相等,将形成很大的电势环流,环流会对信号产生抵消衰减效果。 动力电缆线两边接地,电机端的PE必然要接在驱动端的PE上,并最终接入机箱内的大地汇流排。 信号线则需要区别情况对待,一般而言模拟信号主张单端接地,以避免双端接地时,地电势不同引发的地电流影响信号;数字信号或差分信号主张双端接地,只是过大的地电流也同样可能影响信号。 所以个人以为,无论是单端还是双端,原则是死的,实效才是目的,需以能解决现场问题和设备的稳定可靠运行为重,因此往往只能灵活处置。 单端接地。 如果是两端接地,由于两个接地端可能存在电位差,反而会产生干扰。 一般要求是2端接地,然而2端接地要看现场条件,如果现场条件恶劣,会在2端形成感应电压,从而有了感应电流,容易干扰,当然,对模拟量干扰严重,故此时即要单端接地。 高频双端接地如编码器,开关量等,低频单端接地如模拟量等。单端接地不存在接地电位差的问题,可减少接地干扰。 屏蔽线的接地有三种情况,即:单端接地方式、两端接地方式、屏蔽层悬浮。(1)单端接地方式:假设信号电流i1从芯线流入屏蔽线,流过负载电阻RL之后,再通过屏蔽层返回信号源。因为i1与i2大小相等方向相反,所以它们产生的磁场干扰相互抵消。这是一个很好的抑制磁场干扰的措施。同时它也是一个很好的抵制磁场耦合干扰的措施。(2)两端接地方式:由于屏蔽层上流过的电流是i2与地环电流iG的迭加,所以它不能完全抵消信号电流所产生的磁场干扰。因此,它抑制磁场耦合干扰的能力也比单端接地方式差。单端接地方式与两端接地方式都有屏蔽电场耦合干扰作用。(3)屏蔽层悬浮:只有屏蔽电场

屏蔽与接地

屏蔽技术 1屏蔽的定义 屏蔽可通过各种屏蔽体来吸收或反射电磁场骚扰的侵入, 达到阻断骚扰传播的目的; 或者屏蔽体可将骚扰源的电磁辐射能量限制在其内部, 以防止其干扰其它设备。(对两个空间区域之间进行金属的隔离, 以控制电场、磁场和电磁波由一个区域对另一个区域的感应和辐射。) 1. 一种是主动屏蔽, 防止电磁场外泄; 2. 一种是被动屏蔽, 防止某一区域受骚扰的影响。 屏蔽就是具体讲, 就是用屏蔽体将元部件、电路、组合件、电缆或整个系统的干扰源包围起来, 防止干扰电磁场向外扩散; 用屏蔽体将接收电路、设备或系统包围起来, 防止它们受到外界电磁场的影响。因为屏蔽体对来自导线、电缆、元部件、电路或系统等外部的干扰电磁波和内部电磁波均起着吸收能量(涡流损耗) 、反射能量(电磁波在屏蔽体上的界面反射) 和抵消能量(电磁感应在屏蔽层上产生反向电磁场,可抵消部分干扰电磁波) 的作用, 所以屏蔽体具有减弱干扰的功能。 2.屏蔽的分类 屏蔽可分为电场屏蔽、电磁屏蔽和磁屏蔽三类。电场屏蔽又包括静电场屏蔽和交变 电场屏蔽; 磁场屏蔽又包括静磁屏蔽和交变磁场屏蔽。 1. 静电屏蔽常用于防止静电耦合和骚扰, 即电容性骚扰; 2. 电磁屏蔽主要用于防止高频电磁场的骚扰和影响; 3. 磁屏蔽主要用于防止低频磁感应, 即电感性骚扰。 2.1静电场屏蔽和交变电场屏蔽 用来防止静电耦合产生的感应。屏蔽壳体采用高导电率材料并良好接地,以隔断两个电路之间的分布电容偶合,达到屏蔽作用。静电屏蔽的屏蔽壳体必须接地。 以屏蔽导线为例,说明静电屏蔽的原理。静电感应是通过静电电容构成的,因此,静电屏蔽是以隔断两个电路之间的分布电容。静电感应,既两条线路位于地线之上时,若相对于地线对导体1 加有V1的电压,则导体2 也将产生与V1成比例的电V2。由于导体之间必然存在静电电容,若 设电容为C10、C12 和C20,则电压V1 就被C12 和C20 分为两部分,该被分开的电压就为V2,可用下式加以计算; 导体1 和2 之间加入接地板便可构成静电屏蔽。这样,在接地板与导体1、导体2之间就产生了静电电容C`10 和C`20。等效电路,增加了对地静电电容,消除了导体1、2 之间直接偶合的静电电容。按示2.1,由于C12=0,故与V 1 无关,V2=0。这就是静电屏蔽的原理。

防雷学习心得

防雷技术学习心得: 参考GB50057-94 建筑物防雷设计规范 1. 公司为第三类防雷建筑物。 2. 但是对排放可燃气体(丙酮、甲醇、电解液、NMP等)的小烟囱,要额外注意。目前在排放口放孤立避雷针即“引雷针”不够安 全,最好在利用屋顶的设备树立高金属杆,再在高金属杆拉三根钢丝,在钢丝靠近排放口的地方和上方围上铝网格,挡住“滚 地雷”,也是金属阻燃器;但是要保持水平距离5m,高度5米的安全距离;另外金属管道本身也要和屋顶的接地带连接。 3. 最好用滚球法(第三类防雷建筑物的滚球半径r=60m),按照AUTOCAD或者PROE来模拟运算,看屋顶的烟囱,道路的树木是不 是在临近的接闪器(避雷针、避雷带)以内。 今年在广州市的暨南大学发生二名女生在树下被雷电击倒的事故,对我们开 阔的SSL厂区,道路树木等安全要评估,这些树木、烟囱、风管、回收系统等都是后来建设的,不是各个都做了防雷评估。

即我们应当在有可燃气体排放口,有盖帽保护。 在其水平距离5米处设立高出5米的避雷针。 保持一定的距离的目的,一般至少3m远,是因为避雷针其实就是“引雷针”,太靠近被保护物品可能引导雷电来太近,反而不 妥。 对屋顶孤立的带盖帽的气体排放口,l≈0, h≈2m, Ri≤10Ω. 所以取5m高5米远是比较合适。 为了强化5米高度的稳定性,可以在下方有三角支撑杆子。 4. 为防止感应雷, 要求对屋顶的设备、管道、广告牌、电缆外皮、烟囱的拉绳、大型门窗、户外的卷帘门、栏杆、部分高吊 灯等都很好地接地,连接到感应带上。 5. 架空线要在建筑物安装避雷针,可以用支架焊接避雷针,再连接引下线完成。 6. 第三类防雷建筑物,要使用避雷网(带)+避雷针的结构,并且沿屋角、女儿墙、屋檐、水箱等突出部位安装。网格大小为 20X20m或者24X16m。当被保护的建筑物不够20m宽,可以在网边铺设一圈避雷带。 7. 第三类防雷建筑物的冲击接地电阻小于30Ω。但是对应条款2.0.4的建筑物(如孤立高耸的烟囱、建筑物;有比较大火灾风 险的排放口等)则冲击接地电阻小于10Ω。鼓励将防雷接地和埋入的金属管道共用,不共用则位置也不要超过2m。 8. 对第三类非金属烟囱,可在烟囱上假设避雷针和避雷环,(其实对可燃烧气体引火烧身,直接安装不妥,除非迫不得已), 多只避雷针要连接到闭合环上;没有办法形成环状,则对称布置三根。烟囱低于40m要一根引下线,超过40m要二根引下线。

信号线的屏蔽层接地方式

信号线的屏蔽线是否到底是一端接地还是两端接地? 两层屏蔽应是相互绝缘隔离型屏蔽!如没有彼此绝缘仍应视为单层屏蔽! 最外层屏蔽两端接地是由于引入的电位差而感应出电流,因此产生降低源磁场强度的磁通,从而基本上抵消掉没有外屏蔽层时所感应的电压; 而最内层屏蔽一端接地,由于没有电位差,仅用于一般防静电感应。下面的规范是最好的佐证! 《GB 50217-1994电力工程电缆设计规范》——3.6.8 控制电缆金属屏蔽的接地方式,应符合下列规定: (1)计算机监控系统的模拟信号回路控制电缆屏蔽层,不得构成两点或多点接地,宜用集中式一点接地。 (2)除(1)项等需要一点接地情况外的控制电缆屏蔽层,当电磁感应的干扰较大,宜 采用两点接地;静电感应的干扰较大,可用一点接地。 双重屏蔽或复合式总屏蔽,宜对内、外屏蔽分用一点,两点接地。 (3)两点接地的选择,还宜考虑在暂态电流作用下屏蔽层不致被烧熔。 《GB50057-2000建筑物防雷设计规范》——第6.3.1条规定:……当采用屏蔽电缆时其屏蔽层应至少在两端等电位连接,当系统要求只在一端做等电位连接时,应采用两层屏蔽,外层屏蔽按前述要求处理。 其原理是:1.单层屏蔽一端接地,不形成电位差,一般用于防静电感应。2.双层屏蔽,最外层屏蔽两端接地,内层屏蔽一端等电位接地。此时,外层屏蔽由于电位差而感应出电流,因此产生降低源磁场强度的磁通,从而基本上抵消掉没有外屏蔽层时所感应的电压。 如果是防止静电干扰,必须单点接地,不论是一层还是二层屏蔽。因为单点接地的静电放电速度是最快的。 但是,以下两种情况除外: 1、外部有强电流干扰,单点接地无法满足静电的最快放电。 如果接地线截面积很大,能够保证静电最快放电的话,同样也要单点接地。当然了,真是那样,也没有必要选择两层屏蔽。 否则,必须两层屏蔽,外层屏蔽主要是减少干扰强度,不是消除干扰,这时必须多点接地,虽然放不完,但必须尽快减弱,要减弱,多点接地是最佳选择。 比如,企业中的电缆桥架其实就是外屏蔽层,它是必须多点接地的,第一道防线,减小干扰源的强度。 内层屏蔽层(其实,大家不会买双层的电缆,一般是外层就是电缆桥架,内层才是屏蔽电缆的屏蔽层)必须单点接地,因为外部强度已经减少,尽快放电,消除干扰才是内层的目的。 2、外部电击和防雷等安全的要求。 这种情况必须要两层防护,外层不是用来消除干扰的,是出于安全的考虑的,保证人身和设备安全的,必须多点接地。内层才是防止干扰的,所以必须单点接地。

抗干扰的措施主要包括屏蔽、隔离、滤波、接地和软件

数控车床如何抗干扰 数控车床作为cnc机床自然也会像其他的电子仪器仪表一样受到众多的干扰,所以面对有可能发生的干扰我们必须有应对的措施,抗干扰的措施主要包括屏蔽、隔离、滤波、接地和软件处理等。 ①屏蔽技术:屏蔽是目前采用最多也是最有效的一种方式。屏蔽技术切断辐射电磁噪声的传输途径通,常用金属材料或磁性材料把所需屏蔽的区域包围起来,使屏蔽体内外的场相互隔离,切断电磁辐射信号,以保护被屏蔽体免受干扰,屏蔽分为电场屏蔽、磁场屏蔽及电磁屏蔽。在实际工程应用时,对于电场干扰时,系统中的强电设备金属外壳(伺服驱动器、变频器、驱动器、开关电源、电机等)可靠接地实现主动屏蔽;敏感设备如智能纠错装置等外壳应可靠接地,实现被动屏蔽;强电设备与敏感设备之间距离尽可能远;高电压大电流动力线与信号线应分开走线,选用带屏蔽层的电缆,对于磁场干扰,选用高导磁率的材料,如玻莫合金等,并适当增加屏蔽体的壁厚;用双绞线和屏蔽线,让信号线与接地线或载流回线扭绞在一起,以便使信号与接地或载流回线之间的距离最近;增大线间的距离,使得干扰源与受感应的线路之间的互感尽可能地小;敏感设备应远离干扰源强电设备变压器等。 ②隔离技术:隔离就是用隔离元器件将干扰源隔离,以防干扰窜入设备,保证电火花机床的正常运行。常见的隔离方法有光电隔离、变压器隔离和继电器隔离等方法。 (1)光电隔离:光电隔离能有效地抑制系统噪声,消除接地回路的干扰。在智能纠错系统的输入和输出端,用光耦作接口,对信号及噪声进行隔离;在电机驱动控制电路中,用光耦来把控制电路和马达高压电路隔离开。 (2)变压器隔离是一种用得相当广泛的电源线抗干扰元件,它最基本的作用是实现电路与电路之间的电气隔离,从而解决地线环路电流带来的设备与设备之间的干扰,同时隔离变压器对于抗共模干扰也有一定作用。隔离变压器对瞬变脉冲串和雷击浪涌干扰能起到很好的抑制作用,对于交流信号的传输,一般使用变压器隔离干扰信号的办法。 (3)继电器隔离,继电器的线圈和触点之间没有电气上的联系。因此,可以利用继电器的线圈接受电气信号,而用触点发送和输出信号,从而避免强电和弱电信号之间的直接联系,实现

屏蔽 接地 滤波

我们知道,造成设备性能降低或失效的电磁干扰必须同时具备三个要素,首先是有一个电磁场所,其次是有干扰源和被干扰源,最后就是具备一条电磁干扰的耦合通路,以便把能量从干扰源传递到受干扰源。因此,为解决设备的电磁兼容性,必须围绕这三点来分析。一般情 况下,对于EMI的控制,我们主要采用三种措施:屏蔽、滤波、接地。这三种方法虽然有 着独立的作用,但是相互之间是有关联的,良好的接地可以降低设备对屏蔽和滤波的要求,而良好的屏蔽也可以使滤波器的要求低一些。下面,我们来分别介绍屏蔽、滤波和接地。 1屏蔽 屏蔽能够有效的抑制通过空间传播的电磁干扰。采用屏蔽的目的有两个,一个是限制内部的辐射电磁能量外泄出控制区域,另一个就是防止外来的辐射电磁能量入内部控制区。按照屏蔽的机理,我们可以将屏蔽分为电场屏蔽、磁场屏蔽、和电磁场屏蔽。 1.1 电场屏蔽 一般情况下,电场感应可以看成是分布电容间的耦合,图1是一个电场感应的示意图。 图1 电场感应示意图 其中A为干扰源,B为受感应设备,其中Ua和Ub之间的关系为 Ub=C1*Ua/(C1+C2) C1为A、B之间的分布电容;C2为受感应设备的对地电容。 根据示意图和等式,为了减弱B上面的地磁感应,使用的方法有 增大A和B之间的距离,减小C1。 减小B和地之间的距离,增大C2。 在AB之间放置一金属薄板或将A使用金属屏蔽罩罩住A,C1将趋向0数值。 相对来说1和2比较容易理解,这里主要针对第3种方法进行分析。由图2可以看出,插入屏蔽板后(屏蔽板接地)。就造成两个分布电容C3和C4,其中C3被屏蔽板短路到地,它不会对B点的电场感应产生影响。而受感应物B的对地和对屏蔽板的分布电容,C3和C4,实际上是处在并联的位置上。这样,B设备的感应电压ub'应当是A点电压被A、B之间的剩余电容C1'与并联电容C2和C4的分压,即 Ub=C1'*Ua/(C1'+C2+C4)

屏蔽线如何接地

屏蔽线如何接地 屏蔽的作用是将电磁场噪声源与敏感设备隔离,切断噪声源的传播路径。屏蔽分为主动 屏蔽和被动屏蔽,主动屏蔽目的是为了防止噪声源向外辐射,是对噪声源的屏蔽;被动屏蔽 目的是为了防止敏感设备遭到噪声源的干扰,是对敏感设备的屏蔽。 屏蔽电缆的屏蔽层主要由铜、铝等非磁性材料制成,并且厚度很薄,远小于使用频率上 金属材料的集肤深度,屏蔽层的效果主要不是由于金属体本身对电场、磁场的反射、吸收而 产生的,而是由于屏蔽层的接地产生的,接地的形式不同将直接影响屏蔽效果。对于电场、 磁场屏蔽层的接地方式不同。可采用不接地、单端接地或双端接地 总结: 单端接地: 1) 屏蔽电缆的单端接地对于避免低频电场的干扰是有帮助的。或者说它能够避免 波长λ 远远大于电缆长度L 的频率干扰。L<λ /20 2) 电缆屏蔽层单端接地能够避免屏蔽层上的低频电流噪声。这种电流在内部导 致共模干扰电压并且有可能干扰模拟量设备。 3) 屏蔽层的单端接地对于那些对低频干扰敏感的电路(模拟量电路)来说是可取 的。 4) 连续测量值的上下波动和永久偏差表示有低频干扰。 双端接地: 1) 确保到电控柜或者插头(圆形接触)的连接经过一个大的导电区域(低感应系 数)。选择金属在金属上比非金属在非金属上要好。 2) 由于有些模拟量模块使用了脉冲技术(例如:处理器和A/D 转换器集成在同一模 块中),建议将模拟量信号彼此间屏蔽,确保正确的等电位连接,只有在这种情况下进行双端接地。 3) 通常金属箔屏蔽层的传输阻抗远远大于铜编织线的屏蔽层,其效果相差5-10 倍, 不能用作数字信号电缆。 4) 偶尔的功能失灵表明有高频干扰。这是导线等电位连接无法消除的。 5) 除去电缆的端点以外,屏蔽层多点接地是有利的。 6) 不要将屏蔽层接在插针上,避免“猪尾巴”现象。 7) 要时刻注意屏蔽层的并联阻抗应该小于自身阻抗的1/10。电缆桥架、机械框架、

抗干扰的接地处理及屏蔽处理

抗干扰的接地处理及屏蔽处理 抗干扰接地处理的主要内容:(1)避开地环电流的干扰;(2)降低公共地线阻抗的耦合干扰。 “一点接地”有效地避开了地环电流;而在“一点接地”前提下,并联接地则是降低公共地线阻抗的耦合干扰的有效措施;它们是工业控制系统采用的最基本的接地方法。 工业控制系统接地的含义不一定就是接大地。例如直流接地只是定义电路或系统的基准电位。它可以悬浮,但要求与大地严格绝缘。通常,其绝缘电阻要达到50 MΩ以上。直流地悬浮隔离了交流地网的干扰,经济简便,工程中经常使用。直流地悬浮的缺点是机器容易带静电,如果该静电电位过高,会损坏器件,击伤操作人员等等;而且,如果这时直流地与大地的绝缘电阻减小,可能会产生很多原先没有想到的干扰。直流地接大地,按照国家标准,要埋设一个不大于4Ω的独立接地体。但无论直流地悬浮或者接大地,直流地与大地之间的电位都存在着间接或者直接的关系。工业控制机所操作的各种输入输出信号之间接地是否合理,不只是形成相互耦合干扰的问题,有时还危及计算机系统的安全。在实际的工业控制系统中,各种通道的信号频率大多在1MHz内,属于低频范围。因此,谈谈低频范围的接地。 1. 串联接地 在串联接地方式中,各电路各有一个电流i1、i2、i3等流向接地点。由于地线存在电阻,因此,每个串联接点的电位不再是零,于是各个电路间相互发生干扰。尤其是强信号电路将严重干扰弱信号电路。如果必须要这样使用,应当尽力减小公共地线的阻抗,使其能达到系统的抗干扰容限要求。串联的次序是:最怕干扰的电路的地应最接近公共地,而最不怕干扰的电路的地可以稍远离公共地。 2. 并联接地 并联接地方式:在工业控制机中的模拟通道和数字通道采用并联接地。并联接地中各个电路的地电位只与其自身的地线阻抗和地电流有关,互相之间不会造成耦合干扰。因此,有效地克服了公共地线阻抗的耦合干扰问题,工业控制机应当尽量采用并联接地方式。值得注意的是,虽然采用了并联接地方式,但是地线仍然要粗一些,以使各个电路部件之间的地电位差尽量减小。这样,当各个部件之间有信号传送时,地线环流干扰将减小。 工业现场的干扰来源是多渠道的,针对不同的项目和不同的现场,应该有不同的处理方法。屏蔽和接地是由工控系统开发者操作的一项技术内容。能否正确设计和利用它们,不仅关系到系统安全稳定地运行、良好地抑制干扰,而且是工控项目开发者是否成熟的重要标志。 工控系统的屏蔽处理 工业现场动力线路密布,设备启停运转繁忙,因此存在严重的电场和磁场干扰。而工业控制系统又有几十乃至几百个甚至更多的输入输出通道分布在其中,导线之间形成相互耦合是通道干扰的主要原因之一。它们主要表现为电容性耦合、电感性耦合、电磁场辐射三种形式。在工业控制系统中,由前两种耦合造成的干扰是主要的,第三种是次要的。它们对电路主要造成共模形式的干扰。

屏蔽线屏蔽层应一端接地还是两端接地

屏蔽线屏蔽层应一端接地还是两端接地

屏蔽接地通常采用两种方式来处理:屏蔽层单端接地和屏蔽层双端接地。 ①屏蔽层单端接地是在屏蔽电缆的一端将金属屏蔽层直接接地,另一端不接地或通过保护接地。 在屏蔽层单端接地情况下,非接地端的金属屏蔽层对地之间有感应电压存在,感应电压与电缆的长度成正比,但屏蔽层无电势环流通过。单端接地就是利用抑制电势电位差达到消除电磁干扰的目的。 这种接地方式适合长度较短的线路,电缆长度所对应的感应电压不能超过安全电压。静电感应电压的存在将影响电路信号的稳定,有时可能会形成天线效应。 ②双端接地是将屏蔽电缆的金属屏蔽层的两端均连接接地。 在屏蔽层双端接地情况下,金属屏蔽层不会产生感应电压,但金属屏蔽层受干扰磁通影响将产生屏蔽环流通过,如果地点A和地点B的电势不相等,将形成很大的电势环流,环流会对信号产生抵消衰减效果。动力电缆线两边接地,电机端的PE必然要接在驱动端的PE上,并最终接入机箱内的大地汇流排。 信号线则需要区别情况对待,一般而言模拟信号主张单端接地,以避免双端接地时,地电势不同引发的地电流影响信号; 数字信号或差分信号主张双端接地,只是过大的地电流也同样可能影响信号。

所以个人以为,无论是单端还是双端,原则是死的,实效才是目的,需以能解决现场问题和设备的稳定可靠运行为重,因此往往只能灵活处置。 单端接地。 如果是两端接地,由于两个接地端可能存在电位差,反而会产生干扰。一般要求是2端接地,然而2端接地要看现场条件,如果现场条件恶劣,会在2端形成感应电压,从而有了感应电流,容易干扰,当然,对模拟量干扰严重,故此时即要单端接地。 高频双端接地如编码器,开关量等,低频单端接地如模拟量等。 单端接地不存在接地电位差的问题,可减少接地干扰。 屏蔽线的接地有三种情况,即:单端接地方式、两端接地方式、屏蔽层悬浮。(1)单端接地方式:假设信号电流i1从芯线流入屏蔽线,流过负载电阻RL之后,再通过屏蔽层返回信号源。因为i1与i2大小相等方向相反,所以它们产生的磁场干扰相互抵消。这是一个很好的抑制磁场干扰的措施。同时它也是一个很好的抵制磁场耦合干扰的措施。(2)两端接地方式:由于屏蔽层上流过的电流是i2与地环电流iG的迭加,所以它不能完全抵消信号电流所产生的磁场干扰。因此,它抑制磁场耦合干扰的能力也比单端接地方式差。单端接地方式与两端接地方式都有屏蔽电场耦合干扰作用。(3)屏蔽层悬浮:只有屏蔽电场耦合干扰能力,而无抑制磁场耦合干扰能力。 对于单端接地,是变送器端接地

[电气]屏蔽线应一端接地还是两端接地

屏蔽接地通常采用两种方式来处理:屏蔽层单端接地和屏蔽层双端接地。 ① 屏蔽层单端接地是在屏蔽电缆的一端将金属屏蔽层直接接地,另一端不 接地或通过保护接地。 在屏蔽层单端接地情况下,非接地端的金属屏蔽层对地之间有感应电压存在,感应电压与电缆的长度成正比,但屏蔽层无电势环流通过。单端接地就是利用抑制电势电位差达到消除电磁干扰的目的。 这种接地方式适合长度较短的线路,电缆长度所对应的感应电压不能超过安全电压。静电感应电压的存在将影响电路信号的稳定,有时可能会形成天线效应。 ② 双端接地是将屏蔽电缆的金属屏蔽层的两端均连接接地。 在屏蔽层双端接地情况下,金属屏蔽层不会产生感应电压,但金属屏蔽层受干扰磁通影响将产生屏蔽环流通过,如果地点A和地点B的电势不相等,将形成很大的电势环流,环流会对信号产生抵消衰减效果。 动力电缆线两边接地,电机端的PE必然要接在驱动端的PE上,并最终接入机箱内的大地汇流排。 信号线则需要区别情况对待,一般而言模拟信号主张单端接地,以避免双端接地时,地电势不同引发的地电流影响信号;数字信号或差分信号主张双端接地,只是过大的地电流也同样可能影响信号。 所以个人以为,无论是单端还是双端,原则是死的,实效才是目的,需以能解决现场问题和设备的稳定可靠运行为重,因此往往只能灵活处置。 单端接地。 如果是两端接地,由于两个接地端可能存在电位差,反而会产生干扰。 一般要求是2端接地,然而2端接地要看现场条件,如果现场条件恶劣,会

在2端形成感应电压,从而有了感应电流,容易干扰,当然,对模拟量干扰严重,故此时即要单端接地。 高频双端接地如编码器,开关量等,低频单端接地如模拟量等。单端接地不存在接地电位差的问题,可减少接地干扰。 屏蔽线的接地有三种情况,即:单端接地方式、两端接地方式、屏蔽层悬浮。(1)单端接地方式:假设信号电流i1从芯线流入屏蔽线,流过负载电阻RL之后,再通过屏蔽层返回信号源。因为i1与i2大小相等方向相反,所以它们产生的磁场干扰相互抵消。这是一个很好的抑制磁场干扰的措施。同时它也是一个很好的抵制磁场耦合干扰的措施。(2)两端接地方式:由于屏蔽层上流过的电流是i2与地环电流iG的迭加,所以它不能完全抵消信号电流所产生的磁场干扰。因此,它抑制磁场耦合干扰的能力也比单端接地方式差。单端接地方式与两端接地方式都有屏蔽电场耦合干扰作用。(3)屏蔽层悬浮:只有屏蔽电场耦合干扰能力,而无抑制磁场耦合干扰能力。 对于单端接地,是变送器端接地 1、先说独立地线。所谓的独立地线,顾名思义,就是为本系统单独设置的地线,它必须是通过对地电阻测量合格的地线。那么什么是合格地线呢?他的对地电阻的标准是多少?这有国标决定,对于计算机系统的接地地线标准,应该是小于4欧姆。这个独立的地,接变频器的PE、现场的电机外壳、所有导电金属相关柜体、机体外壳。 2、再说等电位。所谓的等电位,就是安装接线的这个系统所有物体的金属外壳,用导电体大面积连接一片。面积越大,抗干扰的效果越好。从抗干扰的效果看,等电位的处理,优于单独接地的效果。接独立地,是在等电位的基础上实施的,因为,根据一点接地的原则,那个独立地是接在整个系统的什么位置也很关键。要视现场的具体情况而定。原则是,独立地线的“入地点”接在系统所有壳体、物体的金属表面积最大的地方。等电位包括了所有电缆频蔽层的金属导体连接。 3、最后一条说的是信号地。信号地为了不混淆大地的概念,所以称“参考电位”。它是信号的参考电位,在西门子的装置里称作M。所以它不能与PE、大地连接。信号地----参考电位,必须与“大地”悬浮。 最后需要强调的是,“一点接地”,千万不要狭义的理解为一个螺丝栓点,那样的话就大错特错了。关键是要理解西门子的传动装置手册中EMC有关章节描述的“大面积连接”。什么叫大面积连接,就是接地的导体、导线其表面积越大越好。因为干扰的噪声信号,都具有“肌肤效应”,集中在导体的表面,所以,等电位的导体,表面积越大,越利于干扰噪声的吸收。一点接地,要广义的理解。一个大的导体也可以看成一个节点,汇集一点,就是可以在这个导体上的任何部位接地,这样,噪声会有利于在这个导体的表面被吸收。如果汇集一个螺栓点,这种效果就没有了。 双端接地,可能导致屏蔽线上走电流,甚至大电流的可能,只要有电流就产生磁场了,不利于屏所以基本上都是单端接地。但是如果两个系统全部是浮地系统,则无所谓了,可以双端接地的。比如,编码器的屏蔽线怎么接?这个在西门子的手册里已经明确的讲了呀。对于数字信号线的屏蔽就是双端接地。如果说按照此规范接地了,

电缆的屏蔽与接地

电缆的屏蔽与接地 Cable Shield and ground https://https://www.wendangku.net/doc/6611548675.html,/cs/cn/zh/view/109481350

摘要西门子通信电缆的屏蔽与接地 关键词西门子系统、屏蔽、接地 Key Words Siemens cable Shield Ground

目录 1骚扰源的传输路径 (4) 1.1导线的传导干扰 (4) 1.1.1传输线-短线与长线 (4) 1.1.2共阻抗耦合 (6) 1.1.3传输线的反射 (8) 1.1.4共模干扰与差模干扰 (10) 1.2骚扰通过空间传输 (13) 1.2.1天线效应 (13) 1.2.2近场电场耦合 (17) 1.2.3近场磁场耦合 (18) 2 屏蔽 (20) 2.1 电场屏蔽 (21) 2.2 磁场屏蔽 (23) 3电缆的屏蔽接地 (27) 3.1 电场的屏蔽接地 (27) 3.1.1屏蔽层不接地 (27) 3.1.2屏蔽层单端接地 (27) 3.2 磁场的屏蔽接地 (28) 3.2.1屏蔽层单端接地或不接地 (28) 3.3 电缆屏蔽接地总结 (31) 4 PROFIBUS的安装要求 (34) 4.1 PROFIBUS的布线 (34) 4.2 PROFIBUS的屏蔽接地 (36) 5 PROFINET的安装要求 (38) 5.1 PROFINET的布线 (38) 5.2 PROFINET的屏蔽接地 (40)

1骚扰源的传输路径 产生干扰的三个要素:干扰源、耦合路径、潜在的易受干扰的器件。骚扰源可以通过空间的辐射、电磁耦合传递到敏感设备,也可以通过导线的传输进入敏感设备。 1.1导线的传导干扰 信号通过导线传输,通常在理想情况下只考虑导线的电阻,但实际的传输导线都存在分布电容和电感,尤其在传送频率高的情况下,就要考虑分布参数的影响。分布电容与电感的乘积等于常数,它们与导体间介质的相对磁导率μ和介电常数ε有关: L C = με=常数, L/是电缆的物理特征,与传输线的电压电流无关。导线的传导特性阻抗为Z0 =C 干扰绝大部分也是是由导线的分布参数引起得的。图1-1列出几种传输线的布置,(a)为导线对;(b)为轨线与板;(c)为平行板,假设导线间距相同,三者的分布参数比较为:La > Lb >Lc;Ca < Cb < Cc;Za > Zb > Zc; 图1-1几种传输线的布置 1.1.1传输线-短线与长线 线路中的分布电感、分布电容、分布电阻影响信号及电源的传输,根据传输线的长度与传输信号频率的关系,将传输线分为短线(有的资料为电短)和长线(有的资料为电长),如图1-2所示,如果s l (有的参考资料为大于l/4)就是长线,例如机械尺寸比波长大,适用于分布参数电路分析,基耳霍夫电压定律不再适用,因为电路中的电压和电流除了是时间的函数外,还是空间坐标的函数。同样一段传输线,由于传输信号频率不同,有可能是短线,也有可能是长线。计算波长的公式如下: V l= f l:波长

常见接地有三种

常见接地有三种: 1、保护接地设备的金属壳体与大地直接连接,以免危及操作人员的人身安全,相应的接地线保护地线; 2、系统接地接地的目的是为系统的各部分提供稳定的基准电位,要求接地回路的公共阻抗尽可能小,相应的接地线称为系统地线; 3、屏蔽接地电缆、变压器等屏蔽层的接地,目的是抑制电磁干扰,相应的接地线称为屏蔽地线。 保护接地两种方式:保护接零适用于三相四线制中性点接地的配电系统中,将用电设备外壳与零线连接,当外壳与某相火线接触时,该相将有很大的短路电流通过,使保护电器动作,切断电源。广泛应用于低压动力、照明、及小容量控制设备的配电系统中,应注意零线与保护地线分开配置; 保护接地适用于三相四线制中性点不直接接地或不接地的配电系统中,将用电设备外壳与大地连接,如中性点不接地的供电变压器或独立的发配电系统,必须有接地监视器。该方式干扰影响小,适于控制设备采用。 同一配电系统只能采用一种接地保护方式。 系统接地:在装置内部采用放射式或干线式一点接地方法(适用于低频电路);平面式多点接地方法(适用于30MHz以上高频电路);

转换式接地方法,即低频直接接地,高频通过电容接地或高频直接接地,低频通过电感接地(适用于混合电路)。 系统接地三种方式:1、浮地方式各电子装置的系统地连接,但与大地绝缘,即悬浮方式,适用于机电控制、无模数转换、低增益低速的小型控制设备; 2、共地方式系统地直接接大地,适用于大规模或高速电控装置; 3、电容接地方式系统地通过数微法电容接大地,适用于系统地与大地可能有直流或低频电位差的设备。 屏蔽接地8种方式:1、低频信号电缆采用一端接地,一般在控制装置侧接地; 2、高频敏感信号电缆,屏蔽层两端接地; 3、热电偶传感器电缆,在被测装置侧接地; 4、双重屏蔽电缆,外屏蔽层接屏蔽地,内屏蔽层接系统地; 5、交流进线电缆,屏蔽层接保护地; 6、进线滤波器外壳接保护地; 7、电源变压器的屏蔽层接保护地,如有二次屏蔽层则接系统地或屏蔽地; 8、晶闸管脉冲变压器的屏蔽层接保护地,如有二次屏蔽层则接晶闸管阴极。

工控系统的屏蔽和接地抗干扰技术

工控系统的屏蔽和接地抗干扰技术 工控系统的屏蔽和接地抗干扰技术 孟传良(贵州工业大学控制技术研究所) 摘要:屏蔽是抑制干扰的重要方法。而良好的接地则是使工业控制机系统稳定运行、消除干扰的重要措施。屏蔽和接地两大技术之间的联系密切,如果应用得法,可以明显提高系统的抗干扰能力。论述了工控系统工程中使用屏蔽和接地技术的诸多要点。 关键词:控制;抗干扰;可靠性;屏蔽;接地 一、引言 工业现场动力线路密布,设备启停运转繁忙,因此存在严重的电场和磁场干扰。而工业控制系统又有几十乃至几百个输入输出通道分布在其中,导线之间形成相互耦合是通道干扰的主要原因之一。它们主要表现为电容性耦合、电感性耦合、电磁场辐射三种形式。 在工业控制系统中,由前两种耦合造成的干扰是主要的,第三种是次要的。它们对电路主要造成共模形式的干扰。可以等效为图1中的干扰源Ecm。 众所周知,地球是一个静电容量很大的导体,其电位非常恒定。如果把一个导体与大地紧密连接,那么该导体的电位也是恒定的。通常我们把它的电位叫作零电位,它是电位的参考点。然而,工程上不可能做到这种紧密连接,总是存在一定的接地电阻。当有电流经该导体入地时,它的电位就有波动。于是,不同的接地点之间的电位就会有差异。当我们用一根导线连接不同的接地点时,在导线中就可能有电流流动,这称为地环电流。接地抗干扰技术就是解决以地环电流为中心的一系列技术问题。图1 等效示意了信号源地线和放大器地线之间的电位差形成的干扰源EG,它对电路主要造成共模形式的干扰。 图1 地电位差和电磁干扰造成的共模电压的等效图 然而,由干扰源Ecm和EG形成的共模电压,其中一部分会转换成差模电压,直接对电路造成干扰。假设信号源Es=0,即只考虑干扰源Ecm和EG的作用时。因为i1回路和i2 回路阻抗不相等,因此,回路电流i1和i2也不相等。于是两个电流的差在放大器的输入电阻上形成了差模电压。采取合适的屏蔽和正确的接地措施就可以减少和消除这些干扰。 二、屏蔽抗干扰技术 1、电场耦合的屏蔽和抑制技术 克服电场耦合干扰最有效的方法是屏蔽。因为放置在空心导体或者金属网内的物体不受外电场的影响。请注意,屏蔽电场耦合干扰时,导线的屏蔽层最好不要两端连接当地线使用。因在有地环电流时,这将在屏蔽层形成磁场,干扰被屏蔽的导线。正确的作法是把屏蔽层单点接地,一般选择它的任一端头接地。

屏蔽层接地标准规范

屏蔽层接地标准规范 一、单端接地 屏蔽层单端接地是在屏蔽电缆的一端将金属屏蔽层直接接地,另一端不接地或通过保护接地。 在屏蔽层单端接地情况下,非接地端的金属屏蔽层对地之间有感应电压存在,感应电压与电缆的长度成正比,但屏蔽层无电势环流通过。单端接地就是利用抑制电势电位差达到消除电磁干扰的目的。 这种接地方式适合长度较短的线路,电缆长度所对应的感应电压不能超过安全电压。静电感应电压的存在将影响电路信号的稳定,有时可能会形成天线效应。 二、双端接地 双端接地是将屏蔽电缆的金属屏蔽层的两端均连接接地。 在屏蔽层双端接地情况下,金属屏蔽层不会产生感应电压,但金属屏蔽层受干扰磁通影响将产生屏蔽环流通过,如果地点A和地点B的电势不相等,将形成很大的电势环流,环流会对信号产生抵消衰减效果。 动力电缆线两边接地,电机端的PE必然要接在驱动端的PE上,并最终接入机箱内的大地汇流排。 信号线则需要区别情况对待,一般而言模拟信号电流信号、信号、温度信号、压 力信号、流量信号等单端接地,以避免双端接地时,地电势不同引发的地电流影响信号。 数字信号、差分信号、编码器,开关量主张双端接地,只是过大的地电流也同样可能影响信号。 无论是单端还是双端,原则是死的,实效才是目的,需以能解决现场问题和设备的稳定可靠运行为重,因此往往只能灵活处置。 三、屏蔽线的接地三种情况 单端接地方式、两端接地方式、屏蔽层悬浮 (1)单端接地方式:假设信号电流i1从芯线流入屏蔽线,流过负载电阻R L之后,i2再通过屏蔽层返回信号源。因为i1与i2大小相等方向相反,所以它们产生的磁场干 扰相互抵消。这是一个很好的抑制磁场干扰的措施。同时它也是一个很好的抵制磁场耦合干扰的措施。

屏蔽接地

屏蔽接地 通常采用两种方式来处理:屏蔽层单端接地和屏蔽层双端接地。 ①屏蔽层单端接地是在屏蔽电缆的一端将金属屏蔽层直接接地,另一端不接地或通过保护接地。在屏蔽层单端接地情况下,非接地端的金属屏蔽层对地之间有感应电压存在,感应电压与电缆 的长度成正比,但屏蔽层无电势环流通过。单端接地就是利用抑制电势电位差达到消除电磁干 扰的目的。 这种接地方式适合长度较短的线路,电缆长度所对应的感应电压不能超过安全电压。静电感应 电压的存在将影响电路信号的稳定,有时可能会形成天线效应。 ②双端接地是将屏蔽电缆的金属屏蔽层的两端均连接接地。 在屏蔽层双端接地情况下,金属屏蔽层不会产生感应电压,但金属屏蔽层受干扰磁通影响将产 生屏蔽环流通过,如果地点A和地点B的电势不相等,将形成很大的电势环流,环流会对信 号产生抵消衰减效果。 动力电缆线两边接地,电机端的PE必然要接在驱动端的PE上,并最终接入机箱内的大地汇 流排。 信号线则需要区别情况对待,一般而言模拟信号主张单端接地,以避免双端接地时,地电势不 同引发的地电流影响信号; 数字信号或差分信号主张双端接地,只是过大的地电流也同样可能影响信号。 单端接地。 如果是两端接地,由于两个接地端可能存在电位差,反而会产生干扰。 一般要求是2端接地,然而2端接地要看现场条件,如果现场条件恶劣,会在2端形成感应电压,从而有了感应电流,容易干扰,当然,对模拟量干扰严重,故此时即要单端接地。 高频双端接地如编码器,开关量等,低频单端接地如模拟量等。 单端接地不存在接地电位差的问题,可减少接地干扰。 屏蔽线的接地有三种情况,即:单端接地方式、两端接地方式、屏蔽层悬浮。(1)单端接地 方式:假设信号电流i1从芯线流入屏蔽线,流过负载电阻RL之后,再通过屏蔽层返回信号源。因为i1与i2大小相等方向相反,所以它们产生的磁场干扰相互抵消。这是一个很好的抑制磁

控制电缆屏蔽层和铠装接地施工措施

为了保证方山220KV串补变电站工程的控制电缆屏蔽层和铠装接地的施工质量,促进工程施工技术水平的提高,确保电缆接地安全,特制定此措施。 1.适用范围 本作业措施适用于方山220千伏串补变电站工程,主控楼配电间内、220kV配电区、110kV配电区、主变区端子箱、35kV高压开关室、串补区等所有控制电缆的屏蔽层和铠装接地施工。 2.编制依据: 1)《电气装置安装工程电缆线路施工及验收规范》GB50168-2009 2)《电气装置安装工程电气设备交接试验标准》GB50150-2006 3)关于印发《国家电网公司电网工程施工安全风险识别、评估及控制办法(试行)》的通知(国家电网基建[2011]1758号) 4)关于应用《国家电网公司输变电工程工艺标准库》的通知基建质量〔2010〕100 号5)关于印发《国家电网公司电力建设安全工作规程(变电站部分)》标准的通知(国家电网科[2011]1738号) 6)工程设计施工图纸及相关规程规范。 3. 3.1电缆接地技术负责人: 3.1.1负责电缆接地的技术工作,解决工作中出现的技术问题及技术指导。监督施工中的工艺水平达标。 3.2电缆接地安全负责人: 3.2.1负责电缆接地工作的安全措施落实,指导施工中的安全措施工作,做好电缆接地的安全监督监护。 3.3专业接线人员: 3.3.1负责电缆接地施工工作,做好电缆控制电缆的屏蔽层和铠装的接地工作,保证按规范及设计图顺利进行,严把施工质量关。 3.4非专业施工人员: 3.4.1听从工作负责人的工作安排,负责热缩完的套管切割工作,保证切割时不划伤电缆。 4.施工准备

工器具及材料配备(见下表) 5.工期计划及施工方案 5.1 计划开始施工日期 计划3月31日开始施工,1人技术总负责,3人切割电缆热缩管,5人进行屏蔽层和铠装接地施工 5.2 计划竣工日期 接地工程计划于4月7日完成。 5.3 施工方案 5.3.1 主控室内的控制电缆热缩管割开后进行铠装接地,用接地软导线引出,并接与盘柜的接地排上。 5.3.2 全部室外的控制电缆热缩管割开后进行屏蔽层与铠装分部接地,用不同颜色的软导线引出,屏蔽层接地接于盘柜的等电位铜排上,铠装接地接于盘柜的接地排上。 5.2.3 全部厂家的接线也进行一次检查,发现接地不对的,及时进行整改并做好记录。 5.3电缆头整理: (1)电缆整理应排列整齐、层次分明、曲率一致、松紧适度,严禁扭曲、交叉或杂乱无章; (2)电缆接地做好后进行整理,排列整齐一致,弯好弯度,全部用绑线固定绑扎好。(3)根据二次工艺策划的要求及端子排图,将电缆分层、逐根穿入二次设备。接线位置较低的电缆排在屏内侧,接线位置较高的电缆排在屏外侧; 5.4 电缆接地总体要求: (1)按图纸说明及规范整改,接线正确;

相关文档