文档库 最新最全的文档下载
当前位置:文档库 › 坐标正反算定义及公式-1

坐标正反算定义及公式-1

坐标正反算定义及公式-1
坐标正反算定义及公式-1

第六章→第三节→导线测量内业计算

导线计算的目的是要计算出导线点的坐标,计算导线测量的精度是否满足要求。首先要查实起算点的坐标、起始边的方位角,校核外业观测资料,确保外业资料的计算正确、合格无误。

一、坐标正算与坐标反算

1、坐标正算

已知点的坐标、边的方位角、两点间的水平距离,计算待定点的坐标,称为坐标正算。如图6-6 所示,点的坐标可由下式计算:

式中、为两导线点坐标之差,称为坐标增量,即:

【例题6-1】已知点A坐标,=1000、=1000、方位角

=35°17'36.5",两点水平距离=200.416,计算点的坐标?

35o17'36.5"=1163.580

35o17'36.5"=1115.793

2、坐标反算

已知两点的坐标,计算两点的水平距离与坐标方位角,称为坐标反算。如图6-6 可知,由下式计算水平距离与坐标方位角。

(6-3)

(6-4)

式中反正切函数的值域是-90°~+90°,而坐标方位角为0°~360°,因此坐标方位角的值,可根据、的正负号所在象限,将反正切角值换算为坐标方位角。

【例题6-2】=3712232.528、=523620.436、

=3712227.860、=523611.598,计算坐标方位角计算坐标方位角

、水平距离。

=62°09'29.4"+180°=242°09'29.4"

注意:一直线有两个方向,存在两个方位角,式中:、

的计算是过A点坐标纵轴至直线的坐标方位角,若所求坐标方位角为,则应是A点坐标减点坐标。

坐标正算与反算,可以利用普通科学电子计算器的极坐标和直角坐标相互转换功能计算,普通科学电子计算器的类型比较多,操作方法不相同,下面介绍一种方法。

【例题6-3】坐标反算,已知=2365.16、=1181.77、

=1771.03、=1719.24,试计算坐标方位角、水平距离。

键入1771.03-2365.16按等号键[=]等于纵坐标增量,按储存键[],

键入1719.24-1181.77按等号键[=]等于横坐标增量,按[]键输入,按[]显示横坐标增量,按[]键输入,按第二功能键[2ndF],再按[]键,屏显为距离,再按[]键,屏显为方位角。

【例题6-4】坐标正算,已知坐标方位角=294°42'51",

=200.40,试计算纵坐标增量横坐标增量。

键入294.4251,转换为以度为单位按[DEG],按[]键输入,

键入200.40,按[]键输入,按第二功能键[2ndF],按[]屏显,按[]屏显。

视力保护色: - 字体大小: 大中小

第六章→第三节→导线测量内业计算

二、附合导线的坐标计算

------------------------------------------问题:观测右角?

(一)角度闭合差的计算与调整

1、联测边坐标方位角计算(坐标反算)

用式(6-4)计算起始边与终边的坐标方位角。

2、导线各边坐标方位角的计算

如图6-7所示,根据已知坐标方位角,观测右角,则各边方位角为:

(6-5)

式中;n—右角个数,包括两个联接角;

—按观测角值推算CD边的方位角;

—右角之和。

从6-5式可知,按导线右角推算坐标方位角时,导线前一边的坐标

方位角等于后一边的坐标方位角加180o再减去两相邻边所夹右角,即:

(6-6)

式中:—已知后方边方位角;

—待求前方边方位角。

若导线转折角为左角时,采用6-7式计算各边方位角,推算终边方位角,即:

(6-7)

计算坐标方位角的结果,若出现负值时,则加360°;若大于360°减去360°。

3、角度闭合差的计算与调整

理论上,根据观测角值推算出的终边方位角等于终边已知方位角,由于观测角值中不可避免含有误差,它们之间的差值,称为附合导线的角度闭合差,用表示。

(6-8)

角度闭合差的容许误差见表6-3,角度闭合差在容许范围内,说明导线角度测量的精度是合格的。这样就可以将角度闭合差进行调整,以满足终边方位角等于终边已知方位角,使角度闭合差等于零。

角度闭合差调整的原则是,当观测导线右角时,角度闭合差以相

同符号平均分配于各个观测右角上;当观测导线左角时,角度闭合差

以相反符号平均分配于各个观测左角上。每个角的改正值按下式计算:

(右角取“+”,左角取“-”)(6-9)

改正后角值为:

(6-10)

(二)坐标增量闭合差计算和调整

坐标增量—两点的坐标之差。理论上,附合导线各边坐标增量的代数和应等于起点和终点已知坐标之差,即:

(6-11)

但是由于量边误差和角度虽经过调整,但仍存在残余误差的影响,使推算出来的坐标增量总和不等于已知两端点的坐标差,其不符值称为附合导线坐标增量闭合差。

如图6-8所示,由于增量闭合差的存在,使附合导线在终点CC'不能闭合,产生和纵坐标和横坐标增量闭合差,即:

(6-12)

CC'的距离值,称为导线全长闭合差,则:

(6-13)

导线愈长,导线全长闭合差也愈大,所以衡量导线精度不能只看导线全长闭合差的大小,应考虑导线总长度,则需要采用导线全长闭合差

与导线全长之比值来衡量,即导线全长相对闭合差,用表示:

(6-14)

式中—导线边总长度。K即为导线测量的精度,通常化为分子为1,分母为整数的形式表示。

导线全长容许闭合差见表6-3。当大于容许闭合差时测量结果不合格,应进行外业工作和内业计算检查;当小于容许闭合差时,测量成果合格,将坐标增量闭合差、调整到各增量中,坐标增量闭合差调整的原则是以相反符号,将坐标增量闭合差按边长成正比例分配到各坐标增量中去,对于因计算凑整残余的不符值分配到长边的坐标增量上去,使调整后的坐标增量代数和等于已知两端点的坐标差。设纵坐标增量改正数为,横坐标增量改正数,则边长的坐标增量改正数按下式计算:

坐标增量改正数之和必须满足下式的要求,也就是说,将闭合差必须分配完,使改正后的坐标增量满足理论要求。

改正后的坐标增量等于各边坐标增量计算值加相应的改正数,改正后的坐标增量代数和应等于两已知点坐标差,以此作为校核。即:

视力保护色: - 字体大小: 大中小

第六章→第三节→导线测量内业计算

(三)导线点坐标计算

如图6-8所示,附合导线起始点和终点坐标是已知的,用起始点已知坐标加上B1边改正后的坐标增量等于第一点的坐标,用第一点坐标加上12边改正后的坐标增量等于第二点的坐标,依此类推,可求出其它各点的坐标。即:

为了检查坐标推算是否存在错误,推算至终点应与已知坐标完全一致,以此作为计算校核。

【例题6-5】某一级附和导线外业成果如图6-9,计算各点坐标并检验是否满足精度要求。计算结果如表6-4所示。

(1)、绘制导线草图,如图6-9。

(2)、坐标反算

(3)、角度闭合差计算

=75o55'06"+6×180o-1187o23'46"=328o31'20"

=328o31'20"-328o31'38 =-18"

(4)、角度闭合差限差

按一级导线">18"合格

4、改正后角值

=-3"

例:106°52′00″-3″=106°51′57″

203°00′24″-3″=203°00′21″

……………………

=188°02′58″-3″=188°02′55″

5、推算方位角

例:

…………………………………

6、坐标增量闭合差计算

第6、7栏各坐标增量纵向相加得:

74.123

1345.560

74.123-74.265=-0.142

7、精度计算

8、坐标增量闭合差闭合差分配

例:的改正数计算:

校核=0.142

=0.042

9、改正后的坐标增量

例:12边的增量:

10、各导线点坐标推算

例:第一点的坐标

逐点推算至终点应等于点的已知坐标,作为校核。附合导线坐标计算表6-4

坐标正算反算公式讲解(借鉴材料)

一 方位角: 在高斯直角坐标系中,由坐标纵轴方向的北端起,顺时针量到直线间的夹角,称为该直线的坐标方位角,常简称方位角,用a 表示。 1、第一象限的方位角 Y X 第一象限第二象限 第三象限 第四象限 o A a 图1 2、第二象限的方位角 Y X 第一象限 第二象限第三象限 第四象限 o A a 图2

3、第三象限的方位角 Y X 第一象限 第二象限 第三象限 第四象限 o A a 图3 4、第四象限的方位角 Y X 第一象限 第二象限 第三象限 第四象限 o A a 图4 方位角计算公式:

x =a -1 tan A Y O Y -A X O X - 方位角的计算器计算程序:Pol(X A -X O ,Y A -Y O ) 直线OA 方位角度值赋予给计算器的字母J ,0≤J <360。 直线段OA 的距离值赋予给计算器的字母I,I >0 直线OA 与直线AO 的方位角关系: 1、 当直线OA 的方位角≤180°时,其反方位角等于a+180°。 2、 当直线 OA 的方位角>180°时,其反方位角等于a-180°。 二 方位角的推算 (一)几个基本公式 1、坐标方位角的推算

或: 注意:若计算出的方位角>360°,则减去360°;若为负值,则加上360°。 例题:方位角的推算 已知:α12=30°,各观测角β如图,求各边坐标方位角α23、α34、α 45 、α51。 13 图5

解:α23= α12-β2+180°=30°-130°+180°=80° α34= α23-β3+180°=80°-65°+180°=195° α45=α34-β4+180°=195°-128°+180°=247° α51=α45-β5+180°=247°-122°+180°=305° α12=α51-β1+180°=305°-95°+180°=30°(检查) 三坐标正算 一、直线段的坐标计算 o B D A C E a a p 图6 设起点O的坐标(X O,Y O),直线OP的方位角为F op,求A、C、E点的坐标 1、设直线段OA长度为L,则A点坐标为 X A=X O+L×Cos(F op)

坐标正反算(带高程,可以算任何线性)

100→DimZ:”ZS=1,FS=2”?Q:”K+”?M If Q=1:Then Goto A:Else Goto S:IfEnd Lb1 S “X1=”?S “Y1=”?T Lb1 A If M<23285.856(第一缓和曲线起点):Then 22396.61(起点交点)→Z:3049173.247(起点X坐标)→A:121°1°16.97°(起点方位角)→C: C:236818.413(起点Y坐标)→B:1×1020(起点半径)→R:0(右转输入0,左转输入1)→F:0(起点缓和曲线长)→L:Goto 0:IfEnd If M<23647.847(第二缓和曲线起点或圆曲线终点):Then 23285.856(第一缓和曲线起点)→Z:3048706.061(起点X坐标)→A:121°1°16.97°(起点方位角)→C:237595.285(起点Y坐标)→B:640(起点半径)→R:0(右转输入0,左转输入1)→F:180(缓和曲线长)→L:Goto 0:IfEnd If M<23827.847(第二缓和曲线终点):Then 3048473.122(起点X坐标)→A:237868.071(起点Y坐标)→B: 145°22°16.81°(线元方位角)→C :(1÷640)(上一段曲率半径)→D: 1÷(1×1020)(下一段曲率半径)→E:23647.847(第二缓和曲线起点或圆曲线终点)→Z:23827.847→H:Goto H:IfEnd

If Q=2:Then 0→U:0→O: Else “U=”?U: “O=”?O:IfEnd M-Z→Z[12] If√(Z[12]2)

高斯投影正反算公式 新

高斯投影坐标正反算 一、相关概念 大地坐标系由大地基准面和地图投影确定,由地图投影到特定椭圆柱面后在南北两极剪开展开而成,是对地球表面的逼近,各国或地区有各自的大地基准面,我国目前主要采用的基准面为:基准面,为GPS基准面,17届国际大地测量协会上推荐,椭圆柱长半轴a=6378137m,短半轴b=; 2.西安80坐标系,1975年国际大地测量协会上推荐,椭圆柱长半轴a=6378140m,短半轴b=; 3.北京54坐标系,参照前苏联克拉索夫斯基椭球体建立,椭圆柱长半轴a=6378245m, 短半轴b=; 通常所说的高斯投影有三种,即投影后: a)角度不变(正角投影),投影后经线和纬线仍然垂直; b)长度不变; c)面积不变; 大地坐标一般采用高斯正角投影,即在地球球心放一点光源,地图投影到过与中央经线相切的椭圆柱面上而成;可分带投影,按中央经线经度值分带,有每6度一带或每3度一带两种(起始带中央经线经度为均为3度,即:6度带1带位置0-6度,3度带1带位置度),即所谓的高斯-克吕格投影。

图表11高斯投影和分带 地球某点经度(L)为过该点和地球自转轴的半圆与子午线所在半圆夹角,东半球为东经,西半球为西经;地球某点纬度(B)为所在水平面法线与赤道圆面的线面角。 正算是已知大地坐标(L,B),求解高斯平面坐标(X,Y),为确保Y值为正,Y增加500公里;反算则是由高斯平面坐标(X,Y)求解大地坐标(L,B)。 二、计算模型: 地球椭球面由椭圆绕地球自转轴旋转180度而成。 图表 1 椭圆 椭圆长半轴a,椭圆短半轴b, 椭圆方程:

(1) 图表2椭球面 椭球面方程: y2 a2+ x2 b2 + z2 a2 =1 /*************************************** 与网上充斥的将函数关系先展开为泰勒级数,再依据投影规则确定各参数不同,本文直接依据空间立体三角函数关系得出结果。 *****/ (一)正算 由图表1,

坐标正反算计算公式

坐标正反算公式

一、GPS数据处理相关术语 1、三维无约束平差 三维无约束平差是以基线解算所得到的三维静态基线向量为观测值,待定参数主要为GPS 网中点的坐标;同时,利用基线解算时随基线向量一同输出的基线向量的方差阵,形成平差的随机模型,最终形成平差完整的数学模型。随后对所形成的数学模型进行求解,根据平差结果来确定观测值中是否存在粗差,数学模型是否有需要改进的部分,若存在问题,则采用相应的方法进行处理并重新进行求解;若未发现问题,则输出最终结果,并进行后续的数据处理。 2、三维约束平差 三维约束平差是以基线解算所得到的三维静态基线向量为观测值,在平差过程中引入会使GPS 网的尺度、方向和位置发生变化的外部起算数据,从而实现GPS 网成果由基线解算时GPS 卫星星历所采用的参照系(WGS84 )到特定参照系的转换,得到在特定参照系下的经过用户约束条件约束的点三维空间坐标。 二、南方GPS数据处理软件的平差方式

三维约束平差是指在基线解算后,WGS84坐标系下的三维平差,在三维平差中是不需要当地平面直角坐标系下的已知点坐标,当需要用到WGS84经纬度或空间直角坐标的用户可加载已知点的WGS84空间坐标(如果只有经纬度时,可采用COORD4.1软件进行转换,本站免费提供)进行三维约束平差,即可得到与已知点相匹配的WGS84坐标。 一般情况下,在“已知点坐标录入”窗口中,我们都没有输入WGS8坐标,而只输入当地坐标系下的已知坐标,此时GPS处理软件会自动识取一个坐标点的WGS84坐标进行约束平差。如下图:

如果在某些控制测量中,需要得到精确的WGS84经纬度或空间坐标时,让系统自动识取显然是不行的,此时我们只要为参与平差的已知点的WGS84空间坐标输入后再进行三维平差即可 在这里,我们加入了两个已知点的WGS84空间坐标,三维平差后,列表中会显示两个"固定"字样的点,说明,在进行三维平差中,我们把这两个点做为起算点,进行平差别的未知点。

坐标正反算定义及公式

坐标正反算定义及公式 Corporation standardization office #QS8QHH-HHGX8Q8-GNHHJ8

第六章→第三节→导线测量内业计算 导线计算的目的是要计算出导线点的坐标,计算导线测量的精度是否满足要求。首先要查实起算点的坐标、起始边的方位角,校核外业观测资料,确保外业资料的计算正确、合格无误。 一、坐标正算与坐标反算 1、坐标正算 已知点的坐标、边的方位角、两点间的水平距离,计算待定点的坐标,称为坐标正算。如图6-6 所示,点的坐标可由下式计算: 式中、为两导线点坐标之差,称为坐标增量,即: 【例题6-1】已知点A坐标,=1000、=1000、方位角=35°17'36.5",两点水平距离=200.416,计算点的坐标?

35o17'36.5"=1163.580 35o17'36.5"=1115.793 2、坐标反算 已知两点的坐标,计算两点的水平距离与坐标方位角,称为坐标反算。可知,由下式计算水平距离与坐标方位角。 (6-3) (6-4) 式中反正切函数的值域是-90°~+90°,而坐标方位角为0°~360°,因此坐标方位角的值,可根据、的正负号所在象限,将反正切角值换算为坐标方位角。 【例题6-2】=3712232.528、=523620.436、=3712227.860、=523611.598,计算坐标方位角计算坐标方位角 、水平距离。

=62°09'29.4"+180°=242°09'29.4" 注意:一直线有两个方向,存在两个方位角,式中:、的计算是过A点坐标纵轴至直线的坐标方位角,若所求坐标方位角为,则应是A点坐标减点坐标。 坐标正算与反算,可以利用普通科学电子计算器的极坐标和直角坐标相互转换功能计算,普通科学电子计算器的类型比较多,操作方法不相同,下面介绍一种方法。 【例题6-3】坐标反算,已知=2365.16、=1181.77、 =1771.03、=1719.24,试计算坐标方位角、水平距离。 键入1771.03-2365.16按等号键[=]等于纵坐标增量,按储存键[], 键入1719.24-1181.77按等号键[=]等于横坐标增量,按[]键输入,按[]显示横坐标增量,按[]键输入,按第二功能键[2ndF],再按[]键,屏显为距离,再按[]键,屏显为方位角。 【例题6-4】坐标正算,已知坐标方位角=294°42'51", =200.40,试计算纵坐标增量横坐标增量。

坐标正反算定义附公式

第六章→第三节→导线测量内业计算 导线计算的目的是要计算出导线点的坐标,计算导线测量的精度是否满足要求。首先要查实起算点的坐标、起始边的方位角,校核外业观测资料,确保外业资料的计算正确、合格无误。 一、坐标正算与坐标反算 1、坐标正算 已知点的坐标、边的方位角、两点间的水平距离,计算待定点的坐标,称为坐标正算。如图6-6 所示,点的坐标可由下式计算: 式中、为两导线点坐标之差,称为坐标增量,即:

【例题6-1】已知点A坐标,=1000、=1000、方位角 =35°17'36.5",两点水平距离=200.416,计算点的坐标? 35o17'36.5"=1163.580 35o17'36.5"=1115.793 2、坐标反算 已知两点的坐标,计算两点的水平距离与坐标方位角,称为坐标反算。如图6-6可知,由下式计算水平距离与坐标方位角。 (6-3) (6-4) 式中反正切函数的值域是-90°~+90°,而坐标方位角为0°~360°,因此坐标方位角的值,可根据、的正负号所在象限,将反正切角值换算为坐标方位角。 【例题6-2】=3712232.528、=523620.436、 =3712227.860、=523611.598,计算坐标方位角计算坐标方位角 、水平距离。

=62°09'29.4"+180°=242°09'29.4" 注意:一直线有两个方向,存在两个方位角,式中:、 的计算是过A点坐标纵轴至直线的坐标方位角,若所求坐标方位角为,则应是A点坐标减点坐标。 坐标正算与反算,可以利用普通科学电子计算器的极坐标和直角坐标相互转换功能计算,普通科学电子计算器的类型比较多,操作方法不相同,下面介绍一种方法。 【例题6-3】坐标反算,已知=2365.16、=1181.77、 =1771.03、=1719.24,试计算坐标方位角、水平距离。 键入1771.03-2365.16按等号键[=]等于纵坐标增量,按储存键[], 键入1719.24-1181.77按等号键[=]等于横坐标增量,按[]键输入,按[]显示横坐标增量,按[]键输入,按第二功能键[2ndF],再按[]键,屏显为距离,再按[]键,屏显为方位角。 【例题6-4】坐标正算,已知坐标方位角=294°42'51", =200.40,试计算纵坐标增量横坐标增量。 键入294.4251,转换为以度为单位按[DEG],按[]键输入,

坐标反算正算计算公式

坐标反算正算计算公式 一、坐标正算 根据A点的坐标X A、Y A和直线AB的水平距离D AB与坐标方位角O AB,推算B点的坐标X B、Y B,为坐标正算,其计算公式为: X B = X A + AX AB Y B = X A + AY AB(1-18 ) 二式中,AX AB与AY AB分别称为A?B的纵、横坐标增量,其计算公式为: AX AB = X B—X A = D AB COS O AB AY AB = Y B—Y A = D AB sin O AB(1-19 ) 注意,AX AB和AY AB均有正、负,其符号取决于直线AB的坐标方位角所在的象限。 二、坐标反算 根据A、B两点的坐标X A、Y A和X B、Y B,推算直线AB的水平距离D AB与坐标方位角 OCAB , 为坐标反算。其计算公式为: (1-20 ) 注意,由(1-20 )式计算OCAB时往往得到的是象限角的数值,必须先根据AX AB、AY AB的正、负号,确定直线AB所在的象限,再将象限角换算为坐标方位角。 三角函数内容规律 三角函数看似很多,很复杂,但只要掌握了三角函数的本质及内部规律就会发现 三角函数各个公式之间有强大的联系。而掌握三角函数的内部规律及本质也是学好三 角函数的关键所在. 1、三角函数本质: 三角函数的本质来源于定义,如右图: 根据右图,有 sin 0 =y/ R; cos 0 =x/R; tan 0 =y/x; cot 0 =x/y。 深刻理解了这一点,下面所有的三角公式都可以从这里出发推导出来,比如以推导 si n( A+B) = si nAcosB+cosAs inB 为例: 推导: 首先画单位圆交X轴于C,D,在单位圆上有任意A,B点。角AOD为a,BO D为B,旋转AOB使0B与0D重合,形成新A'OD。 A(cos a ,sin a ),B(cos 3 ,sin 3 ),A'(cos( - BM,sin( 诩)) OA'=OA=OB=OD=1,D(1,0) [cos( a- 3 >1]A2+[sin( a- 3 )]A2=(cos a cos 3 )A2+(sin a-sin 3 )A2 和差化积及积化和差用还原法结合上面公式可推出(换(a+b)/2与(a-b)/2 ) [1] (1-21 )

计算坐标与坐标方位角基本公式

二 计算坐标与坐标方位角的基本公式 控制测量的主要目的是通过测量和计算求出控制点的坐标,控制点的坐标是根据边长及方位角计算出来的。下面介绍计算坐标与坐标方位角的基本公式,这些公式是矿山测量工中最基本最常用的公式。 一、坐标正算和坐标反算公式 1.坐标正算 根据已知点的坐标和已知点到待定点的坐标方位角、边长计算待定点的坐标,这种计算在测量中称为坐标正算。 如图5—5所示,已知A 点的坐标为A x 、A y ,A 到B 的边长和坐标方位角分别为AB S 和AB α,则待定点B 的坐标为 AB A B AB A B y y y x x x ?+=?+= } (5—1) 式中 AB x ? 、AB y ?——坐标增量。 由图5—5可知 AB AB AB AB AB AB S y S x ααsin cos =?=? } (5—2) 式中 AB S ——水平边长; AB α——坐标方位角。 将式(5-2)代入式(5-1),则有 AB AB A B AB AB A B S y y S x x ααsin cos +=+= }

(5—3) 当A 点的坐标A x 、A y 和边长AB S 及其坐标方位角AB α为已知时,就可以用上述公式计算出待定点B 的坐标。式(5—2)是计算坐标增量的基本公式,式(5—3)是计算坐标的基本公式,称为坐标正算公式。 从图5—5可以看出AB x ?是边长AB S 在x 轴上的投影长度, AB y ?是边长AB S 在 y 轴上的投影长度,边长是有向线段,是在 实地由A 量到B 得到的正值。而公式中的坐标方位角可以从0°到360°变化,根据三角函数定义,坐标方位角的正弦值和余弦值就有正负两种 情况,其正负符号取决于坐标方位角所在的象限,如图5—6所示。从式(5—2)知,由于三角函数值的正负决定了坐标增量的正负,其符号归纳成表5—3。

2021年坐标正反算计算公式

坐标正反算公式 欧阳光明(2021.03.07) 一、GPS数据处理相关术语 1、三维无约束平差 三维无约束平差是以基线解算所得到的三维静态基线向量为观测值,待定参数主要为 GPS 网中点的坐标;同时,利用基线解算时随基线向量一同输出的基线向量的方差阵,形成平差的随机模型,最终形成平差完整的数学模型。随后对所形成的数学模型进行求解,根据平差结果来确定观测值中是否存在粗差,数学模型是否有需要改进的部分,若存在问题,则采用相应的方法进行处理并重新进行求解;若未发现问题,则输出最终结果,并进行后续的数据处理。 2、三维约束平差 三维约束平差是以基线解算所得到的三维静态基线向量为观测值,在平差过程中引入会使 GPS 网的尺度、方向和位置发生变化的外部起算数据,从而实现 GPS 网成果由基线解算时 GPS 卫星星历所采用的参照系( WGS84 )到特定参照系的转换,得到在特定参照系下的经过用户约束条件约束的点三维空间坐标。二、南方GPS数据处理软件的平差方式

三维约束平差是指在基线解算后,WGS84坐标系下的三维平差,在三维平差中是不需要当地平面直角坐标系下的已知点坐标,当需要用到WGS84经纬度或空间直角坐标的用户可加载已知点的WGS84空间坐标(如果只有经纬度时,可采用 COORD4.1软件进行转换,本站免费提供)进行三维约束平差,即可得到与已知点相匹配的WGS84坐标。 一般情况下,在“已知点坐标录入”窗口中,我们都没有输入WGS8坐标,而只输入当地坐标系下的已知坐标,此时GPS处理软件会自动识取一个坐标点的WGS84坐标进行约束平差。如下图: 如果在某些控制测量中,需要得到精确的WGS84经纬度或空间坐标时,让系统自动识取显然是不行的,此时我们只要为参与平差的已知点的WGS84空间坐标输入后再进行三维平差即可 在这里,我们加入了两个已知点的WGS84空间坐标,三维平差后,列表中会显示两个"固定"字样的点,说明,在进行三维平差中,我们把这两个点做为起算点,进行平差别的未知点。

卡西欧计算器坐标的正反算

可以算任意斜交涵洞轴线的坐标,增加T为斜交角度,规定T为涵轴右侧方向与“线路前进方向切线”之间的夹角,当涵轴与线路正交时,T=90,其他操作与原程序一样; 1. 正算子程序(SUB1) [color=Red]A=0.26:B=0.74:K=0.02:L=0.82:F=1-L: M=1-K:X=U+W(Acos(G+57.2958QKW(1/P+KWD))+Bcos(G+57.2958QLW(1/P+LW D))+Bcos(G+57.2958QFW (1/P+FWD))+Acos(G+57.2958QMW(1/P+MWD))):Y=V+W(Asin(G+57.2958QKW(1/ P+KWD))+Bsin(G+ 57.2958QLW(1/P+LWD))+Bsin(G+57.2958QFW(1/P+FWD))+Asin(G+57.2958QMW (1/P+MWD))):F=G+57.2958QW(1/P+ WD)+90:X=X+Zcos(F-90+T):Y=Y+Zsin(F-90+T) 2. 反算子程序(SUB2) W=Abs((Y-V)cos(G-90)-(X-U)sin(G-90)):Z=0:Lbl 0:Prog "SUB1":L=(G-90)+5 7.2958QW(1/P+ WD):Z=(J-Y)cosL-(I-X)sinL:AbsZ<1E-6=>Goto1:≠>W=W+Z:Goto 0Δ←┘ Lbl 1:Z=0:Prog "SUB1":Z=(J-Y)÷sinF 二.增设数据库程序(SJK主程序) Lb1 4:"1.SZ => XY":"2.XY => SZ":{NS}:S∠下一线元起点里程=>O =本线元起点里程:U=本线元起点X:V=本线元起点Y:G=本线元起算方位角:H =本线元长度:P=起点曲率半径:R=终点曲率半径:Q=0或1、-1:Prog“TYQXJS”:Goto0Δ←┘(第一线元数据要素) S∠下一线元起点里程=>O=本线元起点里程:U=本线元起点X:V=本线元起点Y:G=本线元起算方位角:H=本线元长度:P=起点曲率半径:R=终点曲率半径:Q=0或1、-1:Goto0Δ←┘(第二线元数据要素)

坐标正算与反算

一、坐标正算 根据A点的坐标X A、Y A和直线AB的水平距离D AB与坐标方位角αAB,推算B点的坐标X B、Y B,为坐标正算,其计算公式为: X B=X A + ΔX AB Y B=X A+ ΔY AB(1-18) 二式中,ΔX AB与ΔY AB分别称为A~B的纵、横坐标增量,其计算公式为: ΔX AB=X B-X A=D AB · cosαAB ΔY AB=Y B-Y A=D AB · sinαAB(1-19) 注意,ΔX AB和ΔY AB均有正、负,其符号取决于直线AB的坐标方位角所在的象限。 二、坐标反算 根据A、B两点的坐标X A、Y A和X B、Y B,推算直线AB的水平距离D AB与坐标方位角αAB,为坐标反算。其计算公式为: (1-20) (1-21) 注意,由(1-20)式计算αAB时往往得到的是象限角的数值,必须先根据ΔX AB、ΔY AB的正、负号,确定直线AB所在的象限,再将象限角换算为坐标方位角。

三角函数内容规律 三角函数看似很多,很复杂,但只要掌握了三角函数的本质及内部规律就会发现三角函数各个公式之间有强大的联系。而掌握三角函数的内部规律及本质也是学好三角函数的关键所在. 1、三角函数本质: 三角函数的本质来源于定义,如右图: 根据右图,有 sinθ=y/ R; cosθ=x/R; tanθ=y/x; cotθ=x/y。 深刻理解了这一点,下面所有的三角公式都可以从这里出发推导出来,比如以推导 sin(A+B) = sinAcosB+cosAsinB 为例: 推导: 首先画单位圆交X轴于C,D,在单位圆上有任意A,B点。角AOD为α,BO D为β,旋转AOB使OB与OD重合,形成新A'OD。 A(cosα,sinα),B(cosβ,sinβ),A'(cos(α-β),sin(α-β)) OA'=OA=OB=OD=1,D(1,0) ∴[cos(α-β)-1]^2+[sin(α-β)]^2=(cosα-cosβ)^2+(sinα-sinβ)^2 和差化积及积化和差用还原法结合上面公式可推出(换(a+b)/2与(a-b)/2) [1] 两角和公式 sin(A+B) = sinAcosB+cosAsinB sin(A-B) = sinAcosB-cosAsinB

坐标正反算

一、坐标正算与坐标反算 1、坐标正算 已知点的坐标、边的方位角、两点间的水平距离,计算待定点的坐标,称为坐标正算。如图6-6 所示,点的坐标可由下式计算: 式中、为两导线点坐标之差,称为坐标增量,即: 【例题6-1】已知点A坐标,=1000、=1000、方位角 =35°17'36.5",两点水平距离=200.416,计算点的坐标? 35o17'36.5"=1163.580 35o17'36.5"=1115.793 2、坐标反算 已知两点的坐标,计算两点的水平距离与坐标方位角,称为坐标反算。如图6-6可知,由下式计算水平距离与坐标方位角。 (6-3) (6-4)式中反正切函数的值域是-90°~+90°,而坐标方位角为0°~360°,因此坐标方位角的值,可根据、的正负号所在象限,将反正切角值换算为坐标方位角。

【例题6-2】=3712232.528、=523620.436、 =3712227.860、=523611.598,计算坐标方位角计算坐标方位角 、水平距离。 =62°09'29.4"+180°=242°09'29.4" 注意:一直线有两个方向,存在两个方位角,式中:、 的计算是过A点坐标纵轴至直线的坐标方位角,若所求坐标方位角为,则应是A点坐标减点坐标。 坐标正算与反算,可以利用普通科学电子计算器的极坐标和直角坐标相互转换功能计算,普通科学电子计算器的类型比较多,操作方法不相同,下面介绍一种方法。 【例题6-3】坐标反算,已知=2365.16、=1181.77、 =1771.03、=1719.24,试计算坐标方位角、水平距离。 键入1771.03-2365.16按等号键[=]等于纵坐标增量,按储存键[], 键入1719.24-1181.77按等号键[=]等于横坐标增量,按[]键输入,按[]显示横坐标增量,按[]键输入,按第二功能键[2ndF],

坐标正算反算公式讲解..

在高斯直角坐标系中,由坐标纵轴方向的北端起,顺时针量到 直线间的夹角,称为该直线的坐标方位角,常简称方位角,用a表示。 1、第一象限的方位角 X A 第四象限第一象限 a 0 Y 第三象限第二象限 图1 2、第二象限的方位角 X 第四象限第一象限 a 0 Y A 第三象限第二象限 图2

3、第三象限的方位角 4、第四象限的方位角 X 第四象限 第一象限 1 - 'o a 第三象限 第二象限 X 第四象限 第一象限 A 第三象限 第二象限

方位角计算公式: A 图4

M AO 方位角的计算器计算程序:P O I(X A-X O,Y A-Y。) 直线OA方位角度值赋予给计算器的字母J, 0< JV 360。 直线段OA的距离值赋予给计算器的字母1,1 >0 直线OA与直线AO的方位角关系: 当直线OA的方位角W 180°时,其反方位角等于a+180°。2、当直线OA的方位角〉180°时,其反方位角等于a-180 °。 二方位角的推算 (一)几个基本公式 1、坐标方位角的推算 a = a + P ± d on 前后左I 80 ziYAo *A a = tan - X.-X) 1、

或: a 前 =a 后 一 3右± 180 注意:若计算出的方位角>360°,则减去360°;若为负值,则加上 360° 例题:方位角的推算 45 、 a 51 o a 23= a 12- P 2+180° =30° -130 +180° =80已知:a 12=30 ,各观测角P 如图,求各边坐标方位角 ot 23 、 a 34、 a 解:

坐标正算 直线段的坐标计算 E 、 X a V B 厂 D ” 丿a A ” \ ' 、C 设起点0的坐标(X o ,Y ),直线OP 的方位角为F oP ,求A 、C 、E 点 的坐标 X A =X O +L X Cos(F op ) Y A 二Y o +L X Sin(F op ) 设直线段OB 长度为L OB ,直线段BC 长度为L BC ,则C 点坐标为 X B =X O +L OB X Cos(F op ) p 3+180° =80° -65 ° + 180° = 195° B4+180° = 195° -128 + 180° =247° p5+180° =247° -122 + 180° =305° p 1 + 180° =305 ° -95 + 180° =30° Ot 45= a 34- Ot 51= a 45- ot 12= a 51- (检 查) Ot 34 = a 23- 1、 设直线段OA 长度为L,则A 点坐标为 2、

高斯投影正反算公式83

§8.3高斯投影坐标正反算公式 任何一种投影①坐标对应关系是最主要的;②如果是正形投影,除了满足正形投影的条件外(C-R 偏微分方程),还有它本身的特殊条件。 8.3.1高斯投影坐标正算公式: B,l ? x,y 高斯投影必须满足以下三个条件: ①中央子午线投影后为直线;②中央子午线投影后长度不变;③投影具有正形性质,即正形投影条件。 由第一条件知中央子午线东西两侧的投影必然对称于中央子午线,即(8-10)式中,x 为l 的偶函数,y 为l 的奇函数;0330'≤l ,即20/1/≈''''ρl ,如展开为l 的级数,收敛。 +++=++++=553316644220l m l m l m y l m l m l m m x (8-33) 式中 ,,10m m 是待定系数,它们都是纬度B 的函数。 由第三个条件知: q y l x l y q x ??-=????=??, (8-33)式分别对l 和q 求偏导数并代入上式 ----=++++++=+++553315 63424 42204 52 3164253l dq dm l dq dm l dq dm l m l m l m l dq dm l dq dm dq dm l m l m m (8-34) 上两式两边相等,其必要充分条件是同次幂l 前的系数应相等,即

dq dm m dq dm m dq dm m 231 20 13121? =? -== (8-35) (8-35)是一种递推公式,只要确定了 0m 就可依次确定其余各系数。 由第二条件知:位于中央子午线上的点,投影后的纵坐标x 应等于投影前从赤道量至该点的子午线弧长X ,即(8-33)式第一式中,当0=l 时有: 0m X x == (8-36) 顾及(对于中央子午线) B V M r M B N dq dB M dB dX cos cos 2 ==== 得: B V c B N r dq dB dB dX dq dX dq dm m cos cos 01===?===(8-37,38) B B N dq dB dB dm dq dm m cos sin 2 2121112=?-=?-= (8-39) 依次求得6543,,,m m m m 并代入(8-33)式,得到高斯投影正算公式

WGS-84坐标与国家或地方坐标的转换在excel中的实现

西安80坐标系 西安80坐标系也是一个参心大地坐标系,原点为我国陕西省泾阳县永乐镇,采用国际大地测量和地球物理联合会1975年推荐的四个地球椭球基本参数。其椭球短轴平行于地球质心指向我国地极原点JYD1968.0方向,大地起始子午面平行于格林尼治平均天文台的子午面。西安80坐标系与北京54坐标系相比,椭球参数更加精确,椭球面也与我国大地水准面更加吻合,是在北京54坐标系的基础上建立起来的。 地方独立坐标系 在一些城市测量和工程测量中,若直接采用国家坐标系可能会由于远离中央子午线,造成变形严重,误差太大,还有些特殊的测量如桥梁大坝等工程使用国家坐标系也很不方便,因此,常常会建立适合本地区的独立坐标系。 空间直角坐标系和大地坐标系的互相转换 坐标转换中不可避免的会用到空间直角坐标和大地坐标之间的转换。比如有时我们GPS 平差后的结果为大地坐标系,与其他坐标转换时需要先转换为空间直角坐标。当检核时,我们还需要反过来把空间直角坐标转换为大地坐标。所以先介绍一下两者之间的关系以及转换的实现。

由图2我们可以推出空间直角坐标与椭球大地坐标之间的公式,进而实现两者的互相转换。以下是公式: 表1 椭球参数 克拉索夫斯基椭球体1975年国际椭球体WGS-84椭球体 a 6378245.0000000000 6378140.0000000000 6378137.0000000000 b 6356863.0187730473 6356755.2881575287 6356752.3142 c 6399698.9017827110 6399596.6519880105 6399593.6258 α 1/298.3 1/298.257 1/298.257223563 e20.006693421622966 0.006694384999588 0.0066943799013 e'20.006738525414683 0.006739501819473 0.00673949674227 每个参考椭球的形状和大小由五个基本参数来决定,长半轴a,短半轴b,椭圆的扁率α,椭圆的第一偏心率e,第二偏心率e′。但只需知道其中两个参数就(至少知道一个长度元素)可以算出其他元素。 我们以WGS-84椭球为例,进行空间直角坐标同椭球大地坐标的相互转换。 大地坐标系向空间直角坐标系的转换

坐标正反算定义及公式[精华]

坐标正反算定义及公式[精华] 第六章?第三节?导线测量内业计算 导线计算的目的是要计算出导线点的坐标,计算导线测量的精度是否满足要求。首先要查实起算点的坐标、起始边的方位角,校核外业观测资料,确保外业资料的计算正确、合格无误。 一、坐标正算与坐标反算 1、坐标正算 已知点的坐标、边的方位角、两点间的水平距离,计算待定点的坐标,称为坐标正算。如图6-6 所示,点的坐标可由下式计算: 式中、为两导线点坐标之差,称为坐标增量,即: 【例题6-1】已知点A坐标,=1000、=1000、方位角=35?17,36.5",两点水平距离=200.416,计算点的坐标, 35o17,36.5"=1163.580

35o17,36.5"=1115.793 2、坐标反算 已知两点的坐标,计算两点的水平距离与坐标方位角,称为坐标反算。如图6-6 可知,由下式计算水平距离与坐标方位角。 (6-3) 4) (6- 式中反正切函数的值域是-90?,+90?,而坐标方位角为0?,360?,因此坐标方位角的值,可根据、的正负号所在象限,将反正切角值换算为坐标方位角。 【例题6-2】=3712232.528、=523620.436、 =3712227.860、=523611.598,计算坐标方位角计算坐标方位角 、水平距离。 =62?09,29.4"+180?=242?09,29.4" 注意:一直线有两个方向,存在两个方位角,式中:、 点坐标纵轴至直线的坐标方位角,若所求坐标方位角为的计算是过A

,则应是A点坐标减点坐标。 坐标正算与反算,可以利用普通科学电子计算器的极坐标和直角坐标相互转换功能计算,普通科学电子计算器的类型比较多,操作方法不相同,下面介绍一种方法。 【例题6-3】坐标反算,已知=2365.16、=1181.77、=1771.03、=1719.24,试计算坐标方位角、水平距离。 键入1771.03-2365.16按等号键,=,等于纵坐标增量,按储存键,,, 键入1719.24-1181.77按等号键,=,等于横坐标增量,按,,键输入,按,,显示横坐标增量,按,,键输入,按第二功能键,2ndF,,再按,,键,屏显为距离,再按,,键,屏显为方位角。 【例题6-4】坐标正算,已知坐标方位角=294?42,51",=200.40,试计算纵坐标增量横坐标增量。 键入294.4251,转换为以度为单位按,DEG,,按,,键输入,键入200.40,按,,键输入,按第二功能键,2ndF,,按,,屏显,按,,屏显。 视力保护色: - 字体大小: 大中小 第六章?第三节?导线测量内业计算 二、附合导线的坐标计算 ------------------------------------------问题:观测右角, (一)角度闭合差的计算与调整 1、联测边坐标方位角计算(坐标反算)

坐标转换工具使用文档

坐标转换工具使用说明 坐标转换工具说明 该工具的坐标转换是基于一步法坐标转换模型。 坐标转换有坐标正算和坐标反算两大模块,其中坐标正算是指从大地坐标B,L值计算平面坐标X,Y值,坐标反算是指从平面坐标X,Y值计算大地坐标B,L值。 该工具主要有四个功能,批量坐标正算,批量坐标反算,单个坐标正算和单个坐标反算,具体如下图所示: 坐标转换工具注意事项 该工具用到的Excel中的sheet命名统一命名为Sheet1。 该工具的坐标转换不涉及高程值,即不支持高程转换。 该工具必须先在配置文件中配置好相应参数信息才能使用。 下面我用昆水的坐标转换作为例子来说明坐标转换工具的使用方法和步骤: 必需条件 当地中央子午线参数 例如昆明当地中央子午线参数为102度32分0秒,那么我们的配置文件如下图所示:

三个及以上控制点 昆水给我们的五个控制点,控制点数据包括高程值,即大地坐标B,L,H和空间直角坐标X,Y,Z ,但是我们的坐标转换工具转换不包括高程转换,所以,我们只需要B,L和X,Y值即可,Excel信息如下图: 转换参数计算 转换参数计算我们放在“批量坐标正算”功能模块。 坐标正算原理:大地坐标经过高斯投影投影到临时TM投影(临时坐标系)上,然后再通过四参数转换转换到地方坐标系。 坐标反算原理:地方坐标系先通过四参数转换转到临时TM投影(临时坐标系)上,然后经过高斯反算公式反算大地坐标。 由以上原理可知,坐标正反算中临时坐标系很重要,要计算转换参数,必需先得到临时坐标系的对应控制点坐标值。所以无论正反算,我们必须要先求出控制点在临时坐标系的X值和Y值。 如下图所示,勾选“计算四参数”复选框,转换得到的结果就是控制点在临时坐标系对应的X值和Y值。

最新坐标正反算定义及公式

坐标正反算定义及公 式

第六章→第三节→导线测量内业计算 导线计算的目的是要计算出导线点的坐标,计算导线测量的精度是否满足要求。首先要查实起算点的坐标、起始边的方位角,校核外业观测资料,确保外业资料的计算正确、合格无误。 一、坐标正算与坐标反算 1、坐标正算 已知点的坐标、边的方位角、两点间的水平距离,计算待定点的坐标,称为坐标正算。如图6-6 所示,点的坐标可由下式计算:

式中、为两导线点坐标之差,称为坐标增量,即: 【例题6-1】已知点A坐标,=1000、=1000、方位角=35°17'36.5",两点水平距离=200.416,计算点的坐标? 35o17'36.5"=1163.580 35o17'36.5"=1115.793 2、坐标反算 已知两点的坐标,计算两点的水平距离与坐标方位角,称为坐标反算。如图6-6 可知,由下式计算水平距离与坐标方位角。 (6-3)

(6-4) 式中反正切函数的值域是-90°~+90°,而坐标方位角为0°~360°,因此坐标方位角的值,可根据、的正负号所在象限,将反正切角值换算为坐标方位角。 【例题6-2】=3712232.528、=523620.436、=3712227.860、=523611.598,计算坐标方位角计算坐标方位角、水平距离。 =62°09'29.4"+180°=242°09'29.4" 注意:一直线有两个方向,存在两个方位角,式中:、 的计算是过A点坐标纵轴至直线的坐标方位角,若所求坐标方位角为,则应是A点坐标减点坐标。

坐标正算与反算,可以利用普通科学电子计算器的极坐标和直角坐标相互转换功能计算,普通科学电子计算器的类型比较多,操作方法不相同,下面介绍一种方法。 【例题6-3】坐标反算,已知=2365.16、=1181.77、=1771.03、=1719.24,试计算坐标方位角、水平距离 。 键入1771.03-2365.16按等号键[=]等于纵坐标增量,按储存键[], 键入1719.24-1181.77按等号键[=]等于横坐标增量,按[]键输入,按[]显示横坐标增量,按[]键输入,按第二功能键[2ndF],再按[]键,屏显为距离,再按[]键,屏显为方位角。 【例题6-4】坐标正算,已知坐标方位角=294°42'51", =200.40,试计算纵坐标增量横坐标增量。 键入294.4251,转换为以度为单位按[DEG],按[]键输入,键入200.40,按[]键输入,按第二功能键[2ndF],按[]屏显,按[]屏显。 视力保护色: - 字体大小:大中小

坐标计算公式

坐标计算公式 1.坐标正算 用坐标正算计算测点X、Y坐标值(注意,全站仪测得的边长分水平距与斜距,坐标正算公式用的是水平距) 测点高程=测站高程+高差 坐标正算,就是根据直线的边长、坐标方位角和一个端点的坐标,计算直线另一个端点的坐标的工作。 编辑本段计算实例 实例1,设直线AB的边长DAB和一个端点A的坐标XA、YA为已知,则直线另一个端点B的坐标为: XB=XA+ΔXAB (5.1) YB=YA+ΔYAB (5.2) 式中,ΔXAB、ΔYAB称为坐标增量,也就是直线两端点A、B的坐标值之差。 根据三角函数,可写出坐标增量的计算公式为: ΔXAB=DAB·cosαAB (5.3) ΔYAB=DAB·sinαAB (5.4) 式中ΔX、ΔY的符号取决于方位角α所在的象限。 实例2. 已知直线B1的边长为125.36m,坐标方位角为

211°07′53〃,其中一个端点B的坐标为(1536.86 ,837.54),求直线另一个端点1的坐标X1,Y1。 解: 先代入公式(5.3)、(5.4),求出直线B1的坐标增量:ΔXB1=DB1·CosαB1=125.36×cos211°07′53〃=-107.31m ΔYB1=DB1·sinαB1=125.36×sin211°07′53〃〃=-64.81m 然后代入公式(5.1)、(5.2),求出直线另一端点1的坐标: X1=XB+ΔXB1=1536.86-107.31=1429.55m Y1=YB+ΔYB1=837.54-64.81=772.73m 坐标增量计算也常使用小型计算器计算,而且非常简单。如使用fx140等类型的计算器,可使用功能转换键INV和极坐标与直角坐标换算键P→R以及x←→y键。按键顺序为: D INV P→R α =显示ΔX X←→y 显示ΔY。 如上例,按125.36 INV P→R 211°07′53〃=显示-107.31(ΔXB1); 按x←→y 显示-64.81(ΔYB1) 追问 能不能再来一个简单的实例全数字的,不用公式代替, 参考资料:

相关文档
相关文档 最新文档