文档库 最新最全的文档下载
当前位置:文档库 › 全固态锂电池材料、结构及研究进展

全固态锂电池材料、结构及研究进展

全固态锂电池材料、结构及研究进展

书山有路勤为径;学海无涯苦作舟

全固态锂电池材料、结构及研究进展

电动汽车、大规模储能和微型器件等领域的发展要求不断提高现有二次电池的能量密度、功率密度、工作温度范围和安全性,而全固态锂电池作为最具潜力的电化学储能装置,近年来受到广泛关注。

本文阐述了全固态锂电池的优点(即固态电解质的使用有助于提高锂电

池安全性、能量密度和功率密度,拓宽电池工作温度范围和应用领域),指出了作为全固态电池关键材料的固态电解质应满足的要求,并在此基础上分别讨论了聚合物电解质和无机固态电解质(特别是硫化物和氧化物)的优缺点。

此外,文章介绍了固态锂电池的 3 种结构类型,即薄膜型、3D 薄膜型和

体型,综述了全固态锂电池从薄膜型向体型发展的历史进程及现状,并在此基础上讨论了全固态电池最终实现安全性、高能量密度和功率密度仍需解决的固态电解质材料方面问题。

随着能源危机和环境污染问题的日益突显,人们对清洁、可再生能源的

需求越来越迫切。实际应用中,太阳能、风能、水力等可再生能源需要被转化为电能等二次能源才能广泛被人们加以利用。为解决这类自然可再生能源与电力需求在时空分布上的不匹配问题,储能技术的发展必不可少。在众多储能技术中,电化学储能技术,即电池的使用受到人们越来越多的

关注。

电池储能具有高效、规模可调的特点,既可整合于电力系统作为能量储

存单元,起到对电网削峰填谷的作用,提高电网运行的可靠性和稳定性,也

可用于移动通讯、新能源汽车等领域,为人类生活质量的提高提供源源不断的能量支持。

专注下一代成长,为了孩子

微生物燃料电池的意义

1.研究目的 微生物燃料电池是一种利用微生物作为催化剂,将燃料中的化学能直接转化为电能的生物反应器。 本文通过一定室型MFC反应器,选择最优的电极材料,并对电极间距,电极面积进行参数调整,进一步对反应器构型,循环流速,膜结构和反应条件进行优化,提高微生物燃料电池的输出功率。 2.研究意义 微生物燃料电池(Microbial fuel cell, MFC)是基于传统的燃料电池(Fuel cell, FC)与微生物相结合发展起来的由阴阳两极及外电路构成的装置。在MFC系统内,微生物通过新陈代谢氧化有机物后将电子胞外传递给阳极,电子再通过外电路到达阴极从而产生电能。从MFC的构成来看,阳极作为产电微生物附着的载体,不仅影响产电微生物的附着量,而且影响电子从微生物向阳极的传递,对提高MFC产电性能有至关重要的影响。因此,从提高MFC的产电能力出发,选择具有潜力的阳极材料开展研究,解析阳极材质和表面特性对微生物产电特性的影响,对提高MFC的产电能力具有十分重要的意义。在MFC中,高性能的阳极要易于产电微生物附着生长,易于电子从微生物体内向阳极传递,同时要求阳极内部电阻小、导电性强、电势稳定、生物相容性和化学稳定性好。目前有多种材料可以作为阳极,但是各种材料之间的差异,性对电池性能的影响并没有得到深入的研究。以及各种阳极特 阳极厚度对填料型微生物燃料电池产电性能的影响(清华,钟登杰,小论文) 作为一种新型的清洁能源生产技术,MFC在产电的同时还能处理废水、去除硫化氢、产氢和修复地下水。与传统的废水处理工艺相比,MFC产泥量少、不产生甲烷,从而节省污泥和气体处理费用。但MFC的产电功率密度低,与氢氧燃料电池相比,差3~4个数量级。为了提高MFC的产电功率和处理废水的效率,目前的研究主要集中在产电微生物筛选和MFC结构优化两个方面。对于优化MFC结构,可以通过优化阳极、阴极和质子膜材料,提出新型的MFC结构和运行方式等来实现。 微生物燃料电池处理有机废水过程中的产电特性研究(哈工,尤世界,博士论文) MFC是一个新生事物,该项技术具有废水处理和电能回收的双重功能,它的出现是对传统有机废水处理技术和观念的重大革新,目前正在引起世界范围内的广泛关注,日渐成为环境科学与工程和电化学领域一个新的研究热点。尤其是在能源供需矛盾日益突出,环境污染日益严重的今天,MFC更显示出其它技术无法比拟的优越性。MFC技术一旦实现产业化,将会使废水处理技术发生一次新的革命,产生不可估量的社会、环境和经济效益。但是由于受到技术和经济方面等众多因素的限制,MFC离实际工程应用的距离还很遥远,相关研究刚刚起步,目前正处于可行性探索和基础研究阶段。本课题正是在这一背景下提出的。由于功率密度低,材料造价昂贵,反应器型式的不确定,有关MFC的研究目前主要停留在实验室的规模和水平上,很难实现商业化应用。因此,为了进一步提高MFC的产电功率密度,降低系统的基础和运行费用,研发适合废水处理工艺特点的MFC结构型式,为进一步的研究提供切实可行的依据与支撑,促进该项技术早日应用于有机废水处理的工程实践,需要在现有研究水平的基础上充分把握MFC研究中多学科交叉的特点,开展MFC的电化学特性和有机物降解特性的基础研究;弄清阳极特性对MFC性能的影响及阴极电子受体在MFC功率密度提高中起到的重 1

浅析燃料电池研究进展及应用

浅析燃料电池研究进展及应用 摘要: 燃料电池是一种高效、环境友好的发电装置,能将外界提供的燃料和氧化剂的化学能直接转化为电能。本文介绍了原电池的工作原理、特点和分类,并详细阐述了原电池的研究进展和应用。 关键词: 燃料电池工作原理应用 随着全世界对能源的需求日益增加以及人类对环境质量的关注,采用清洁、高效的能源利用方式、积极开发新能源已经是势在必行。燃料电池是一种电化学的发电装置,等温的按电化学方式,直接将化学能转化为电能而不必经过热机过程,因而能量转化效率高,且无噪音,无污染,正在成为理想的能源利用方式。 1. 燃料电池的工作原理 燃料电池是一种能量转化装置,它是按电化学原理,即原电池工作原理,等温的把贮存在燃料和氧化剂中的化学能直接转化为电能,因而实际过程是氧化还原反应,其工作原理如图1所示。燃料电池主要由四部分组成,即阳极、阴极、电解质和外部电路。燃料气和氧化气分别由燃料电池的阳极(负极)和阴极(正极)通入。燃料气在阳极(负极)上放出电子,电子经外电路传导到阴极(正极)并与氧化气结合生成离子。离子在电场作用下,通过电解质迁移到阳极上,与燃料气反应,构成回路,产生电流。同时,由于本身的电化学反应以及电池的内阻,燃料电池还会产生一定的热量。电池的阴、阳两极除传导电子外,也作为氧化还原反应的催化剂。当燃料为碳氢化合物时,阳极要求有更高的催化活性。阴、阳两极通常为多孔结构,以便于反应气体的通入和产物排出。电解质起传递离子和分离燃料气与氧化气的作用。为阻挡两种气体混合导致电池内短路,电解质通常为致密结构。 图1燃料电池工作原理示意图 2燃料电池的分类 目前各国开发的燃料电池种类多,应用范围广泛,分类方法也多种多样。燃料电池有不同的分类方法,本文主要介绍按电解质种类分类中的两种燃料电池。(氢燃料电池和直接甲醇燃料电池) 3燃料电池的优点 燃料电池是一种直接将燃料的化学能转化为电能的装置。从理论上来讲,只要连续供给燃料,燃料电池便能连续发电,被誉为“绿色”发电站。燃料电池的优点: (1)发电效率高。理论上, 它的发电效率可达到85% ~90% ,但由于工作时各种极化的限制,目前燃料电池的能量转化效率约为40% ~60%。(2)环境污染小。

全固态锂电池的技术研究进展

全固态锂电池的技术研究进展 根据近期流传的技术趋势预测,全固态锂电池,可能在2030年之前实现固态电解质技术突破,单体能量密度超过500Wh/kg的目标,并且达到量产能力。今天关注一下全固态电解质锂电池。 1锂电池的种类 锂电池的分类方法比较多,可以按照正极材料类型划分,负极材料类型划分,电解液类型划分等等,我们常说的三元材料还是磷酸铁锂或者锰酸锂,就是按照正极材料划分的结果。在锂电池当前发展阶段上,锂电池性能上的差异主要表现在正极材料的差异上,因此人们习惯于用正极材料的名称给一个技术路线命名。 今后两年,高镍三元将成为量产可能性最高的一种技术路线,而含镍量的不同,又成了技术路线的名字,622、811,这是镍钴锰在三元正极材料中的占比关系。这仍然是一种针对正极材料差异的提法。 欧阳明高院士最近给出的技术路线预测中,高镍以后,能量密度达到400Wh/kg的希望,很大程度上寄托在全固态电池的身上。固态电池,相对于传统锂电池的液态电解液而言的,电解质为导电率很高的纯固态物质,这是一种针对电解液形态的命名方式。 与固态电池平行的另外两种技术路线应该可以叫做液态电解液锂电池和半固态电解液锂电池。液态电解液锂电池,传统称呼中三元、磷酸铁锂、锰酸锂都属于液态电解液锂电池范围。半固态电解液,电解质是介于固态和液态之间的状态,现在常见的材料是聚合物电解质,在常温下为凝胶态。 2全固态锂电池的优缺点 优点 1)安全性好,电解质无腐蚀,不可燃,也不存在漏液问题; 2)高温稳定性好,可以在60℃-120℃之间工作; 3)有望获得更高的能量密度。固态电解液,力学性能好,有效抑制锂单质直径生长造成

锂电池负极材料的研究进展

锂离子电池负极材料研究进展介绍 来源:中国燃料电池网时间:2015-09-08 09:11 编辑:周奕 我国能源生产量和消费量均已居世界前列,但在能源供给和利用形式上存在着一系列突出问题,如能源结构不合理、能源利用效率不高、可再生能源开发利用比例低、能源利用安全水平有待进一步提高。总体上讲,我国能源工业大而不强,与发达国家相比,在技术创新能力方面还存在较大差距。因此,提高能源利用效率,调整能源结构,开发和利用可再生能源将是我国能源发展的必然选择。为了解决我国能源工业所面临的难题,寻求替代传统化石燃料的可再生绿色能源显得尤为迫切。与此同时,随着人们环保意识的日益增强和对资源利用率的关注,可充电电池逐渐成为研究的焦点,而锂原电池的成功应用大大推动了锂离子电池的研究和发展,使锂离子电池成为关注的重点。 1锂离子电池发展状况 锂电池最早出现于1958年,20世纪70年代开始进入实用化[2]。由于具有重量轻、体积小、安全性好、工作电压高、能量密度高、使用寿命长等优点成为近年来最受关注的储能器件之一。随着世界全面步入信息时代,电子化和信息化己经成为各个领域的共同发展趋势,锂离子电池也被越来越多地应用于多个方面。医疗上,锂离子电池可以为心脏起搏器、助听器等设备供能,对于病人更安全、更便捷;交通上,锂离子电池己经被广泛应用于电动单车、电动汽车上;军事上,锂离子电池可为电磁武器充能,为小型定位系统供能,甚至作为潜艇等大型作战设备的备用动力源;航天上,锂离子电池可作为航天器及各种仪器设备的电力补充单元。 电池按工作性质可以分为一次电池和二次电池[3]。一次电池是指不可循环使用的电池,如碱锰电池、锌锰电池等。二次电池指可以多次充放电、循环使用的电池,如先

微生物燃料电池电极材料的研究进展.

微生物燃料电池电极材料的研究进展 作者:*** 北京化工大学化学工程学院,北京 *联系人,E-mail:********@https://www.wendangku.net/doc/6614346736.html, 摘要微生物燃料电池(Microbial Fuel Cell,MFC)是将有机物转化为电能的装置,而电极材料对微生物燃料电池的产电性能起着重要作用。本文简单介绍了微生物燃料电池的发展历史及工作原理,详细说明了各种微生物燃料电池电极材料的结构特点、产电性能及应用情况。最后,对微生物燃料电池的应用前景做出展望。 关键词:微生物燃料电池,电极材料,产电性能 微生物燃料电池是一种利用微生物将废水中的有机物转化为电能的装置。早在1911年,英国杜伦大学植物学家M.C.Potter首先发现微生物具有产电功能,提出了微生物燃料电池这一概念。但是由于当时微生物燃料电池发展地十分缓慢。直到20世纪80年代,伦敦皇家学院的M.J.Allen和H.Peter Bennetto对最初的微生物燃料电池做出来一系列变革性的改进,最终形成了沿用至今的微生物燃料电池基本模型。到了20世纪90年代,燃料电池产生新的突破,韩国科学技术研究院的研究员B-H.kim发现某些物种的细菌具有电化学活性,这意味着微生物燃料电池将不用介质就能将电子转移到阳极。发展至今,微生物燃料电池越发受到科研工作者的重视,因为与其他有机产能技术相比,在操作和功能上,微生物燃料电池都具有明显的优势,比如说它既能保证能量转化的高效率,而且工作条件温和,因为产物大多数为Co2等无害气体,所以又不需要进行废气处理。但是微生物燃料电池由于产电量小,产电性能不够高等因素影响其进行大规模产业化,当我们能做到微生物燃料电池大规模产业化时,对能源短缺的形势会带来意想不到的福音。本文对微生物燃料电池电极材料进行了综述,尽量全面的介绍最新的有关燃料电池电极材料的研究。 1微生物燃料电池的基本工作原理 微生物燃料电池依据氧化还原反应原理。如图1所示,在阳极室,有机燃料被氧化失去电子并且产生质子,电子直接或间接到达阳极材料,然后通过外电路到达阴极形成电流,而质子通过质子交换膜到达阴极室,然后氧化剂在阴极的电子被还原。虽然只是简单的氧化还原反应,在其间存在较为复杂的电子转移问题,根据电子转移方式不同可把微生物燃料电池分为直接微生物燃料电池和间接微生物燃料电池。直接微生物燃料电池燃料在电极上氧化,电子从燃料分子直接到电极上,此时,生物催化剂催化在电极表面的反应,而间接微生物燃料电池是有机燃料在电解质溶液或者其他地方被氧化,通过一些介质的传递作用才使电子运输到电极上,这些有电子传递作用的介质叫做介体,在微生物燃料电池的研究中具有重要意义。

材料研究方法期末复习资料(不错)

材料研究方法复习 X射线,SEM(扫描电子显微镜),TA,DTA,DSC,TG,红外,拉曼 1.X射线的本质是什么?是谁首先发现了X射线,谁揭示了X射线的本质? 本质是一种波长很短的电磁波,其波长介于0.01-1000A。1895年由德国物理学家伦琴首先发现了X射线,1912年由德国物理学家laue揭示了X射线本质。 2.试计算波长0.071nm(Mo-Kα)和0.154A(Cu-Kα)的X射线束,其频率和每个量子的能量? E=hν=hc/λ 3.试述连续X射线谱与特征X射线谱产生的机理 连续X射线谱:从阴极发出的电子经高压加速到达阳极靶材时,由于单位时间内到达的电子数目极大,而且达到靶材的时间和条件各不相同,并且大多数电子要经过多次碰撞,能量逐步损失掉,因而出现连续变化的波长谱。 特征X射线谱: 从阴极发出的电子在高压加速后,如果电子的能量足够大而将阳极靶原子中内层电子击出留下空位,原子中其他层电子就会跃迁以填补该空位,同时将多余的能量以X射线光子的形式释放出来,结果得到具有固定能量,频率或固定波长的特征X射线。 4. 连续X射线谱强度随管电压、管电流和阳极材料原子序数的变化规律? 发生管中的总光子数(即连续X射线的强度)与: 1 阳极原子数Z成正比; 2 与灯丝电流i成正比; 3 与电压V二次方成正比: I 正比于i Z V2 可见,连续X射线的总能量随管电流、阳极靶原子序数和管电压的增加而增大 5. Kα线和Kβ线相比,谁的波长短?谁的强度高?

Kβ线比Kα线的波长短,强度弱 6.实验中选择X射线管以及滤波片的原则是什么?已知一个以Fe为主要成分的样品,试选择合适的X射线管和合适的滤波片? 实验中选择X射线管要避免样品强烈吸收入射X射线产生荧光幅射,对分析结果产生干扰。必须根据所测样品的化学成分选用不同靶材的X射线管。 其选择原则是: Z靶≤Z样品+1 应当避免使用比样品中的主元素的原子序数大2-6(尤其是2)的材料作靶材。 滤波片材料选择规律是: Z靶<40时: Z滤=Z靶-1 Z靶>40时: Z滤=Z靶-2 例如: 铁为主的样品,选用Co或Fe靶,不选用Ni或Cu靶;对应滤波片选择Mn 7. X射线与物质的如何相互作用的,产生那些物理现象? X射线与物质的作用是通过X射线光子与物质的电子相互碰撞而实现的。 与物质作用后会产生X射线的散射(弹性散射和非弹性散射),X射线的吸收,光电效应与荧光辐射等现象 8. X射线强度衰减规律是什么?质量吸收系数的计算? X射线通过整个物质厚度的衰减规律: I/I0 = exp(-μx) 式中I/I0称为X射线穿透系数,I/I0 <1。I/I0愈小,表示x射线被衰减的程度愈大。μ为线性吸收系数 μm表示,μm=μ/ρ 如果材料中含多种元素,则μm=Σμmi w i其中w i为质量分数 9.下列哪些晶面属于[111]晶带? (111)、(3 21)、(231)、(211)、(101)、(101)、(133),(-1-10),(1-12), (1- 32),(0-11),(212),为什么?

(完整版)全固态锂电池技术的研究进展与展望

全固态锂电池技术的研究进展与展望 周俊飞 (衢州学院化学与材料工程学院浙江衢州324000) 摘要:现有电化学储能锂离子电池系统采用液体电解质,易泄露、易腐蚀、服役寿命短,具有安全隐患。薄膜型 全固态锂电池、大容量聚合物全固态锂电池和大容量无机全固态锂电池是一类以非可燃性固体电解质取代传统锂离 子电池中液态电解质,锂离子通过在正负极间嵌入-脱出并与电子发生电荷交换后实现电能与化学能转换的新型高 安全性锂二次电池。作者综述了各种全固态锂电池的研究和开发现状,包括固态锂电池的构造、工作原理和性能特 征,锂离子固体电解质材料与电极/电解质界面调控,固态整电池技术等方面,提出并详细分析了该技术面临的主要 科学与技术问题,最后指出了全固态锂电池技术未来的发展趋势。 关键词:储能;全固态锂离子电池;固体电解质;界面调控 1 全固态锂电池概述 全固态锂二次电池,简称为全固态锂电池,即电池各单元,包括正负极、电解质全部采用固态材料的锂二次电池,是从20 世纪50 年代开始发展起来的[10-12]。全固态锂电池在构造上比传统锂离子电池要简单,固体电解质除了传导锂离子,也充当了隔膜的角色,如图 2 所示,所以,在全固态锂电池中,电解液、电解质盐、隔膜与黏接剂聚偏氟乙烯等都不需要使用,大大简化了电池的构建步骤。全固态锂电池的工作原理与液态电解质锂离子电池的原理是相通的,充电时正极中的锂离子从活性物质的晶格中脱嵌,通过固体电解质向负极迁移,电子通过外电路向负极迁移,两者在负极处复合成锂原子、合金化或嵌入到负极材料中。放电过程与充电过程恰好相反,此时电子通过外电路驱动电子器件。目前,对于全固态锂二次电池的研究,按电解区分主要包括两大类[13]:一类是以有机聚合物电解质组成的锂离子电池,也称为聚合物全固态锂电池;另一类是以无机固体电解质组成的锂离子电池,又称为无机全固态锂电池,其比较见表1。通过表1 的比较可以清楚地看到,聚合物全固态锂电池的优点是安全性高、能够制备成各种形状、通过卷对卷的方式制备相对容易,但是,该类电池作为大容量化学电源进入储能领域仍有一段距离,主要存在的问题包括电解质和电极的界面不稳定、高分子固体电解质容易结晶、适用温度范围窄以及力学性能有提升空间;以上问题将导致大容量电池在使用过程中因为局部温度升高、界面处化学反应面使聚合物电解质开貌发生变化,进而增大界面电阻甚至导致断路。同时,具有隔膜作用的电解质层的力学性能的下降将引起电池内部发生短路,从面使电池失效[14-15]。无机固体电解质材料具有机械强度高,不含易燃、易挥发成分,不存在漏夜,抗温度性能好等特点;同时,无机材料处理容易实现大规模制备以满足大尺寸电池的需要,还可以制备成薄膜,易于将锂电池小型化,而且由无机材料组装的薄膜无机固体电解质锂电池具有超长的储存寿命和循环性能,是各类微型电子产品电源的最佳选择[10]。采用有机电解液的传统锂离子电池,因过度充电、内部短路等异常时电解液发热,有自燃甚至爆炸的危险(图3)。从图 3 可以清楚地看到,当电池因为受热或短路情况下导致温度升高后,传统的锰酸锂或钴酸锂液体电解质锂离子电池存在膨胀起火的危险,而基于纯无机材料的全固态锂电池未发生此类事故。这体现了无机全固态锂电池在安全性方面的独特优势。以固体电解质替代有机液体电解液的全固态锂电池,在解决传统锂离子电池能量密度偏低和使用寿命偏短这两个关键问题的同时,有望彻底解决电池的安全性问题,符合未来大容量新型化学储能技术发展的方向。正是被全固态锂电池作为电源所表现出来的优点所吸引,近年来国际上对全固态锂电池的开发和研究逐渐开始活跃[10-12] 2 全固态锂电池储能应用研究进展 在社会发展需求和潜在市场需求的推动下,基于新概念、新材料和新技术的化学储能新体系不断涌现,化学储能技术正向安全可靠、长寿命、大规模、低成本、无污染的方向发展。目前已开发的化学储能装置,包括各种二次电池(如镍氢电池、锂离子电池等)、超级电容器、可再生燃料电池(RFC:电解水制氢-储氢-燃料电池发电)、钠硫电池、液流储能电池等。综合各种因素,考虑用于大规模化学储能的主要是锂二次电池、钠硫电池及液流电池,而其中大容量储能用锂二次电池更具推广前景。。 全固态锂电池、锂硫电池、锂空气电池或锂金属电池等后锂离子充电电池的先导性研究在世界各地积极地进行着,计划在2020 年前后开始商业推广。在众多后锂离子充电电池中,包括日本丰田汽车、韩国三星电子和德国KOLIBRI 电池公司对全固态锂电池都表现出特别的兴趣。图 4 为未来二十年大容量锂电池的发展路径,从图 4 可以看出,全固态电

锂离子电池三元正极材料的研究进展

锂离子电池三元正极材料的研究进展 2009年09月01日作者:丁楚雄/孟秋实/陈春华来源:《化学与物理电源系统》编辑:樊晓琳 摘要:本文综述了锂离子电池正极材料层状三元过渡金属氧化物 Li-Ni-Co-Mn-O的研究进展,讨论了三元材料的结构特性与电化学反应特征,重点介绍了三元材料的制备方法和掺杂、表面修饰等改性手段,并分析了三元材料目前存在的问题和未来的研究重点。 关键词:锂离子电池;Li-Ni-Co-Mn-O;层状结构;制备方法;改性 Abstract: The research progress of the ternary transition metal oxides LiNi1-x-yCoxMnyO2 as layered cathode materials for lithium ion batteries is reviewed. The structure and electrochemical performances of the materials are discussed. Various synthesis methods, doping and surface-modification approaches are introduced in detail. Finally, the current main problems and further research trend of the materials are pointed out. Key words: lithium ion battery; cathode; layered structure; synthesis methods; modification 1、引言 锂离子电池因其电压高、能量密度高、循环寿命长、环境污染小等优点倍受青睐[1, 2],但随着电子信息技术的快速发展,对锂离子电池的性能也提出了更高的要求。正极材料作为目前锂离子电池中最关键的材料,它的发展也最值得关注。 目前常见的锂离子电池正极材料主要有层状结构的钴酸锂、镍酸锂,尖晶石结构的锰酸锂和橄榄石结构的磷酸铁锂。其中,钴酸锂(LiCoO2)制备工艺简单,充放电电压较高,循环性能优异而获得广泛应用。但是,因钴资源稀少、成本较高、环境污染较大和抗过充能力较差,其发展空间受到限制[3, 4]。镍酸锂(LiNiO2)比容量较大,但是制备时易生成非化学计量比的产物,结构稳定性和热稳定性差[5]。锰酸锂除了尖晶石结构的LiMn2O4外,还有层状结构的LiMnO2。其中层状LiMnO2比容量较大,但其属于热力学亚稳态,结构不稳定,存在Jahn-Teller效应而循环性能较差[6]。尖晶石结构LiMn2O4工艺简单,价格低廉,充放电电压高,对环境友好,安全性能优异,但比容量较低,高温下容量衰减较严重[7]。磷酸铁锂属于较新的正极材料,其安全性高、成本较低,但存在放电电

生物燃料电池的研究进展_宝玥

第10卷 第1期2004年2月 电化学 ELECT ROCHEM IST RY Vol.10 No.1 Feb.2004 文章编号:1006_3471(2004)01_0001_08生物燃料电池的研究进展 宝 王月,吴霞琴* (上海师范大学生命与环境科学学院,上海200234) 摘要: 简要介绍生物燃料电池的工作原理、分类,归纳近年来国内外研究现状.讨论了电子传递媒介体在生物燃料电池中的作用以及如何提高电池性能的对策.最后,探讨了影响生物燃料电池研究进展的瓶颈,并展望其应用前景. 关键词: 生物燃料电池;酶;电子传递媒介体;修饰电极 中图分类号: T M911.45 文献标识码: A 生物燃料电池(Biofuel cell)是利用酶(Enzyme)或者微生物(Microbe)组织作为催化剂,将燃料的化学能转化为电能. 生物燃料电池工作原理与传统的燃料电池存在许多相同之处.以葡萄糖作底物的燃料电池为例,其阴阳极反应如下式所示:  阳极反应 C6H12O6+6H2O 催化剂 6CO2+24e-+24H+  阴极反应 6O2+24e-+24H+催化剂 12H2O 1911年植物学家Potter用酵母和大肠杆菌进行试验,发现微生物也可以产生电流,从此,开创了生物燃料电池的研究.至今,在空间科学研究过程中,已开发出几种可用于空间飞行器的生物燃料电池,用飞行器中的生活垃圾作电池的燃料,可说是真正意义上的环保新能源.这类电池占主导地位的是间接微生物电池,即利用发酵产物作为电池的燃料.自上世纪60年代末以来,直接的生物燃料电池开始成为研究热点,主要的研究对象是以葡萄糖为阳极燃料、以氧为氧化剂的酶燃料电池.但此时恰逢锂电池取得了突破性进展,因而使这类酶燃料电池又受到冷落.80年代后,由于氧化还原媒介体(Mediator)的广泛应用,生物燃料电池的输出功率有了较大的提高,使其作为小功率电源而使用的可行性增大,并因此推动了它的研究和开发[1].另一方面,由于生物燃料电池中的阴极与其它燃料电池相似,也可以使用空气中的氧作为氧化剂,所以相关的研究大多集中于阳极,但同时,也出现了具有生物电催化功能的修饰电极代替常规的氧阴极.有趣的是,以天然食物为燃料,能够自给自足的机器人(Gastrobots)研究也于近年来取得了某些进展[2]. 收稿日期:2003_07_19 *通讯联系人,Tel:(86_021)64322930,E_mail:x qwu@https://www.wendangku.net/doc/6614346736.html, 上海市教委自然科学基金(01D04_2)资助 DOI:10.13208/j.electroche m.2004.01.001

材料研究方法简单总结

XRD: ●所有的衍射峰都有一定的宽度是因为:1.晶体不是严格的晶体;2.X射线不是严格的单 色光;3.仪器设计造成。 ●XRD用途:1.精确测定晶胞参数——可反映晶体内部成分、受力状态等的变化,可用 于鉴别固溶体类型、测量固溶度、测定物质的真实密度等等。 2.物相定性分析——各衍射峰的角度位置所确定的晶面间距d以及它们的相对强度I/Io 是物质的固有特性。因而呢过用于五物相分析。 3.物相的(半)定量分析——外标法(物相数=2);内标法(物相数>2);基体冲洗法(修 正了内标法由于引入参比物导致的误差) 4.纳米物质平均粒度分析——当粒度小于200nm的时候,衍射线会发生宽化(相干散射 的不完全所致),测定待测样品的衍射峰的半高宽和标准物质的衍射峰的半高宽,用公式即可以得出纳米颗粒的平均粒度。 电镜: 电镜的缺陷:其实际分辨率达不到理论值 原因:电磁透镜存在像差(几何像差和色差) 几何像差:由透镜磁场几何形状上的缺陷而造成的,包括球差和像散。 球差:由于电磁透镜中心区域和边缘区域磁场强度的差异,从而造成对电子会聚能力不 同而造成的。 像散:由于透镜的磁场轴向不对称所引起的一种像差。 色差:由于成像电子的能量或波长不同而引起的一种像差。 像差的存在使同一物点散射的具有不同能量的电子经透镜后不再会聚于一点,而是在像 面上形成一漫射圆斑。 ●透射电镜(TEM):1.观察水泥及其原料颗粒表面及聚集体的状态,揭示水泥熟料的微 细结构,研究水泥浆体的断面结构,观察其水化产物、未水化产物及孔的大小、形状和分布 2.黏土矿物的形态和结晶习性对陶瓷至关重要,可用TEM观察陶瓷的显微结构、点阵 缺陷和畸变。 3.TEM广泛应用于金相分析和金属断口分析。 4.TEM可以观察高分子粒子的形状、大小及分布。 ●扫描电镜(SEM):用于形貌分析(观察粉体表面形貌、材料断面、材料表面形貌)●电子探针(EPMA 配合波谱仪或能谱仪使用):主要用于材料表面层成分的定性和定 量分析 能谱仪(EDS) 优点:1.分析速度快;2.灵敏度高;3.谱线重复性好 缺点:1.能量分辨率低,峰背比低;2.使用条件苛刻 波谱仪(WDS) 优点:波长分辨率高 缺点:1.为了有足够的色散率,聚焦圆半径需足够大。导致X射线光子收集率低,使其对X射线利用率低 2.X光经衍射后,强度损失大,难以在低束流和低激发强度下使用 热分析 具体的研究内容有:熔化、凝固、升华、蒸发、吸附、解吸、裂解、氧化还原、相图制

燃料电池的发展现状及研究进展

应用电化学 论文作业 题目燃料电池的发展现状及研究进展学院化学与化学工程学院 专业班级制药134班 姓名郭莹莹

摘要 燃料电池是一种清洁高效的能源利用方式,它是一种能够持续将化学能转化为电能的能量转换装置。发展燃料电池对于改善环境和实现能源可持续发展有重要意义。本文介绍了燃料电池的工作原理、分类及燃料电池的优点,详细阐述了燃料电池现在的发展现状和未来研究前景的展望。 关键词:燃料电池转换装置应用发展

1 燃料电池的工作原理及分类 燃料电池( Fuel Cell,FC) 是把燃料中的化学能通过电化学反应直接转换为电能的发电装置。按电解质分类,燃料电池一般包括质子交换膜燃料电池( Proton Exchange Membrane Fuel Cell,PEM-FC) 、磷酸燃料电池( Phosphoric Acid Fuel Cell,PAFC) 、碱性燃料电池( Alkaline Fuel Cell,AFC) 、固体氧化物燃料电池( Solid Oxide Fuel Cell,SOFC) 及熔融碳酸盐燃料电池( Molten CarbonateFuel Cell,MCFC) 等。以质子交换膜燃料电池为例,主要部件包括: 膜电极组件( Membrane Elec-trode Assembly,MEA) 、双极板及密封元件等。膜电极组件是电化学反应的核心部件,由阴阳极多孔气体扩散电极和电解质隔膜组成。电解质隔膜两侧分别发生氢氧化反应与氧还原反应,电子通过外电路作功,反应产物为水。额定工作条件下,一节单电池工作电压仅为0.7 V 左右。为了满足一定应用背景的功率需求,燃料电池通常由数百个单电池串联形成燃料电池堆或模块。因此,与其它化学电源一样,燃料电池的均一性非常重要。燃料电池发电原理与原电池类似( 见图1) ,但与原电池和二次电池比较,需要具备一相对复杂的系统,通常包括燃料供应、氧化剂供应、水热管理及电控等子系统,其工作方式与内燃机类似。理论上只要外部不断供给燃料与氧化剂,燃料电池就可以续发电。 图1 PEMFC 基本原理 燃料电池从发明至今已经经历了100 多年的历程。于能源与环境已成为人

微生物燃料电池的研究进展

山西大学研究生学位课程论文(2013 ---- 2014学年第学期) 学院(中心、所): 专业名称: 课程名称:高等环境微生物 论文题目:微生物燃料电池的研究进展授课教师(职称): 研究生姓名: 年级: 学号: 成绩: 评阅日期: 山西大学研究生学院 2014年月日

微生物燃料电池的研究进展 学生:指导老师: 摘要:微生物燃料电池作为一种可再生能源是当下的一个研究热点。本文从微生物燃料电 池的由来,原理,分类,研究方向,应用前景等方面对微生物燃料电池做了一大致的概述。 介绍了几种主要的燃料电池细菌。 关键字微生物燃料电池 随着全球化石油燃料的减少和由此产生的温室效应的加剧,一种清洁高效的能源走进了人们的视野,它便是微生物燃料电池。微生物燃料电池(Microbiological Fuel Cells)并非刚刚出现的一项技术,早在1910年,英国植物学家马克·比特首次发现了细菌的培养液能够产生电流,于是,他用铂作电极,将其放进大肠杆菌和普通酵母菌培养液里,成功制造出了世界第一个微生物燃料电池。 利用微生物的作用进行能量转换(如碳水化合物的代谢或光合作用等),把呼吸作用产生的电子传递到电极上,这样的装置叫微生物燃料电池。用微生物作生物催化剂,可以在常温常压下进行能量转换。[1] 纵观微生物燃料电池的发展历史,经历了几种形式的变革[2]。早期的微生物燃料电池是将微生物发酵的产物作为电池的燃料,如从家畜粪便中提取甲烷气体作为燃料发电。20世纪60年代末以来,人们将微生物发酵和制电过程合为一体。20世纪80年代后,由于电子传递中间体的广泛应用,微生物燃料电池的输出功率有了较大提高,使其作为小功率电源而使用的可行性增大,并因此推动了它的研究和开发。2002年后,随着直接将电子传递给固体电子受体的菌种的发现,人们发明了无需使用电子传递中间体的微生物电池,其中所使用的菌种可以将电子直接传递给电极。由于微生物燃料电池能够长时间提供稳定电能,所以它在诸如深海底部和敌方境内的军事装备这些“特殊区域”具有潜在用途.近年来,微生物燃料电池的研究受到了广泛关注。 1.微生物燃料电池的工作原理和分类 微生物燃料电池是利用微生物作为反应主体,将燃料(有机物质)的化学能直接转化为电能的一种装置。其工作原理与传统的燃料电池存在许多相同之处,以葡萄糖作底物的燃料电池为例,其阴阳极化学反应式如下[3]: 阳极反应C6H12O6+6H20 CO2+24e-+24H+ 阴极反应6O2+24e-+24H+12H2O 一般而言,微生物燃料电池都是在缺氧条件下通过向阳极传递电子氧化电子供体来实现的(见图1),电子供体可以是微生物代谢底物,也可以是人工添加的辅助电子传递中间体,这种中间体能够从微生物那里获得电子,然后将获得的电子传递到阳极。有些情况下,微生物本身可以产生可溶性电子传递中间体,或者直接将产生的电子传递到阳极表面,电子通过外电路到达阴极,有机物氧化过程中释放的质子通过质子交换膜到达阴极,而这种交换膜能限制溶氧进入阳极室,最后,电子、质子和氧气在阴极表面结合形成水。 根据电子传递方式的不同,可将微生物燃料电池分为直接和间接微生物燃料电池[4-5]。

材料研究方法作业答案

材料研究方法作业答案

材料研究方法

第二章思考题与习题 一、判断题 √1.紫外—可见吸收光谱是由于分子中价电子跃迁产生的。 ×2.紫外—可见吸收光谱适合于所有有机化合物的分析。 ×3.摩尔吸收系数的值随着入射波光长的增加而减少。×4.分光光度法中所用的参比溶液总是采用不含待测物质和显色剂的空白溶液。 ×5.人眼能感觉到的光称为可见光,其波长范围是200~400nm。 ×6.分光光度法的测量误差随透射率变化而存在极大值。 √7.引起偏离朗伯—比尔定律的因素主要有化学因素和物理因素,当测量样品的浓度极大时,偏离朗伯—比尔定律的现象较明显。 √8.分光光度法既可用于单组分,也可用于多组分同时测定。 ×9.符合朗伯—比尔定律的有色溶液稀释时,其最大吸

收波长的波长位置向长波方向移动。 ×10.有色物质的最大吸收波长仅与溶液本身的性质有关。 ×11.在分光光度法中,根据在测定条件下吸光度与浓度成正比的比耳定律的结论,被测定溶液浓度越大,吸光度也越大,测定的结果也越准确。() √12.有机化合物在紫外—可见区的吸收特性,取决于分子可能发生的电子跃迁类型,以及分子结构对这种跃迁的影响。() ×13.不同波长的电磁波,具有不同的能量,其大小顺序为:微波>红外光>可见光>紫外光>X射线。()×14.在紫外光谱中,生色团指的是有颜色并在近紫外和可见区域有特征吸收的基团。() ×15.区分一化合物究竟是醛还是酮的最好方法是紫外光谱分析。() ×16.有色化合物溶液的摩尔吸光系数随其浓度的变化而改变。() ×17.由共轭体系π→π*跃迁产生的吸收带称为K吸收带。() √18.红外光谱不仅包括振动能级的跃迁,也包括转动能级的跃迁,故又称为振转光谱。() √19.由于振动能级受分子中其他振动的影响,因此红

燃料电池的发展现状及研究进展

应用电化学 论文作业题目燃料电池的发展现状及研究进展学院化学与化学工程学院 专业班级制药134班 姓名郭莹莹

摘要 燃料电池是一种清洁高效的能源利用方式,它是一种能够持续将化学能转化为电能的能量转换装置。发展燃料电池对于改善环境和实现能源可持续发展有重要意义。本文介绍了燃料电池的工作原理、分类及燃料电池的优点,详细阐述了燃料电池现在的发展现状和未来研究前景的展望。 关键词:燃料电池转换装置应用发展 1 燃料电池的工作原理及分类 燃料电池( Fuel Cell,FC) 是把燃料中的化学能通过电化学反应直接转换为电能的发电装置。按电解质分类,燃料电池一般包括质子交换膜燃料电池( Proton Exchange Membrane Fuel Cell,PEM-FC) 、磷酸燃料电池( Phosphoric Acid Fuel Cell,PAFC) 、碱性燃料电池( Alkaline Fuel Cell,AFC) 、固体氧化物燃料电池 ( Solid Oxide Fuel Cell,SOFC) 及熔融碳酸盐燃料电池( Molten CarbonateFuel Cell,MCFC) 等。以质子交换膜燃料电池为例,主要部件包括: 膜电极组件( Membrane Elec-trode Assembly, MEA) 、双极板及密封元件等。膜电极组件是电化学反应的核心部件,由阴阳极多孔气体扩散电极和电解质隔膜组成。电解质隔膜两侧分别发生氢氧化反应与氧还原反应,电子通过外电路作功,反应产物为水。额定工作条件下,一节单电池工作电压仅为0.7 V 左右。为了满足一定应用背景的功率需求,燃料电池通常由数百个单电池串联形成燃料电池堆或模块。因此,与其它化学电源一样,燃料电池的均一性非常重要。燃料电池发电原理与原电池类似( 见图1) ,但与原电池和二次 电池比较,需要具备一相对复杂的系统,通常包括燃料供应、氧化剂供应、水热管理及电控等子系统,其工作方式与内燃机类似。理论上只要外部不断供给燃料与氧化剂,燃料电池就可以续发电。 图1 PEMFC 基本原理 燃料电池从发明至今已经经历了 100 多年的历程。于能源与环境已成为人类社会赖以生存的重点问题。近20 年以来,燃料电池这种高效、洁净的能量 转化装置得到了各国政府、开发商及研究机构的普遍重视。燃料电池在交通运输、便携式电源、分散电站、航空及水下潜器等民用与军用领域展现出广阔的应用前景。目前,燃料电池汽车、电站及便携式电源等均处于示范阶段,在商

动力电池用正极材料磷酸铁锂的研究进展

2010年第7期广东化工 第37卷总第207期https://www.wendangku.net/doc/6614346736.html, · 59 · 动力电池用正极材料磷酸铁锂的研究进展 侯贤华,胡社军,彭薇 (华南师范大学物理与电信工程学院,广东广州 510006) [摘要]文章综述了锂离子动力电池关键正极材料磷酸铁锂的产业化制备方法,市场状况分析和近年来国内外对该正极材料的研究进展情况。结果表明:产业化制备方法目前主要是固相反应法和水热合成,市场需求大于市场供给,具有很好的市场前景,高倍率磷酸铁锂将成为未来的一个重要研究方向。 [关键词]磷酸铁锂;正极材料;倍率性能 [中图分类号]TM912 [文献标识码]A [文章编号]1007-1865(2010)07-0059-02 Research Progress of LiFePO4 Cathode Materials for Power Lithium-ion Battery Hou Xianhua, Hu Shejun, Peng Wei (School of Physics and Telecommunication Engineering, South China Normal University, Guangzhou 510006, China) Abstract: The research progress in LiFePO4 Cathode materials for lithium ion battery was reviewed. The emphasis was expressed preparation method of industrialization, market analysis and cathode materials progress for the past few years. The result suggested that the industrialized method have solid state reaction and hydrothermal synthesis, market requirement is more than supply, this product has excellent market prospects, high rate property will become one of the research fields in the future. Keywords: LiFePO4;cathode material;rate property 锂离子电池因具有电压高、比能量高、工作温度范围广、 环境友好等优点,而被广泛应用于各种便携式电子产品[1-2], 如手机、数码相机、笔记本电脑和电动工具等,并有望成为未 来混合动力汽车和纯动力汽车的能源供给之一[3]。正极材料是 决定锂离子电池综合性能优劣的关键因素之一,目前商业化正 极材料主要是LiCoO2,因钴为战略资源,由此导致电池的成 本较高(目前在整个电池成本中,正极材料成本占35 %),且 LiCoO2安全性较差,因而限制了其使用范围。LiFePO4具有稳 定的橄榄石结构,理论容量约为170 mAh/g,原材料价格低廉 丰富,工作电压适中、电容量大、高放电功率、可快速充电且 循环寿命长、稳定性高,是一种理想的动力电池用正极材料。 1 磷铁铁锂晶体结构 LiFePO4晶体是有序的橄榄石型结构,属于正交晶系,空间群为Pnma,晶胞参数a = 1.0329 nm,b = 0.60072 nm,c= 0. 46905 nm。在LiFePO4晶体中氧原子呈微变形的六方密堆积,磷原子占据四面体空隙,锂原子和铁原子占据八面体空隙。八面体结构的FeO6在晶体的bc面上相互连接,在b轴方向上八面体结构的LiO6相互连接成链状结构。1个FeO6与2个LiO6共边,1个PO4和FeO6共用一条边,与LiO6共用两条边。 充放电反应是在LiFePO4和FePO4两相之间进行,如图1所示。在充电过程中,LiFePO4逐渐脱出锂离子形成FePO4,在放电过程中锂离子插入FePO4形成LiFePO4。在锂离子反复嵌入与脱出的过程中,当晶格结构由LiFePO4转变为Li1-x FePO4时,磷酸根离子(FePO4-)可稳定整个材料的晶格结构。由于在这2种物相互变过程中铁氧配位关系变化很小,故此电极材料虽然存在物相的变化,但是没有影响电化学效应的体积效应产生。当磷酸铁锂进行充电时,材料本身的体积约减少6.5 %,这也是材料具有良好循环性能的主要原因。LiFePO4的电化学曲线非常平坦,具有较高的理论容量,约为170 mAh/g。 2 磷酸铁锂产业化制备方法 目前产业化制备LiFePO4材料最常用的方法是固相法,此法工艺简单,制备条件容易控制和规模化,缺点是球磨的均匀程度以及强度同样制约了产物的性能,产物颗粒不均匀,晶形无规则,粒径分布范围广,实验周期长。S.A.Anna等测试了LiFePO4在不同温度下的充放电性能,发现即使在85 ℃下,它仍然能稳定工作,而且经过20次循环以后,60 ℃下测试的样品比23 ℃下测试的样品中的Fe3+含量低了14 % ,说明在较低温度下,锂离子的嵌入比较困难。 图1 充放电前后LiFePO4和FePO4两相图 Fig.1 The structural modes of LiFePO4 and FePO4 before and after charge/discharge 水热法也是制备磷酸铁锂的另一种常见方法,具有操作简单、物相均匀、粒径小的优点。在密闭体系中,以水为溶剂,在一定温度下,在水的自生压强下,溶液内部的金属盐具有较高的活性,在溶液中进行结晶反应。S.Yang等对水热法合成LiFePO4晶体进行了大量研究。他们发现pH值对实验结果的影响不大,而且水热法比高温固相法合成的晶体颗粒要小,Fe2+含量高。A.K.Padhi等发现用水热法在还原性条件下可得LiFePO4晶体,在氧化性条件下则得LiFePO4(OH) 晶体。当锂盐的量很少时,则会有多孔的FePO4·2H2O生成,它在高温时失水生成电化学非活性的FePO4。在用水热法合成LiFePO4晶体时要保证锂盐的量,以防止电化学非活性的FePO4晶体的生成。 除了固相法和水热法两种产业化方法外,在研究过程中还有各种各样的合成方法涌现出来,包括共沉淀法,乳化干燥法,机械化学激活法,微波炉加热法等。 3 磷酸铁锂的市场状况 采用磷酸铁锂作为锂离子电池正极材料的电池被称为磷酸铁锂电池(简称铁电池),由于铁电池的众多优点被广泛使用于各个领域。其中主要应用领域有: (1)储能设备:风力发电系统的储能设备,太阳能电池的储能设备,如太阳能LED路灯(比亚迪已经生产出该类电池); (2)电动工具:高功率电动工具、电钻、除草机等;(3)电动车辆:电动摩托车、电动自行车、电动婴儿车、电动轮椅和电动 [收稿日期] 2010-4-19 [基金项目] 国家自然科学基金资助项目(50771046) [作者简介] 侯贤华(1977-),男,湖北恩施人,博士后,主要研究方向为清洁能源材料。LiFePO4 FePO4 充电 放电

相关文档