文档库 最新最全的文档下载
当前位置:文档库 › 结圈形成的原因、预防措施和处理方法

结圈形成的原因、预防措施和处理方法

结圈形成的原因、预防措施和处理方法
结圈形成的原因、预防措施和处理方法

结圈形成的原因、预防措施和处理方法

1.结圈形成的原因

当窑内物料温度达到1200℃左右时就出现液相,随着温度的升高,液相粘度变小,液相量增加。暴露在热气流中的窑衬温度始终高于窑内物料温度。当它被料层覆盖时,温度突然下降,加之窑简体表面散热损失,液相在窑衬上凝固下来,形成新的窑皮。窑继续运转,窑皮又暴露在高温的热气流中被烧熔而掉落下来。当它再次被物料覆盖,液相又凝固下来,如此周而复始。假如这个过程达到平衡,窑皮就不会增厚,这属正常状态。如果粘挂上去的多,掉落下来的少,窑皮就增厚。反之则变薄。当窑皮增厚达一定程度就形成结圈。形成结圈的原因主要有如下几点:

1.1入窑生料成分波动大,喂料量不稳定

实际生产过程中,窑操作员最头疼的事是人窑生料成分波动太大和料量不稳定。窑内物料时而难烧时而好烧或时多时少,遇到高KH料时,窑内物料松散,不易烧结,窑头感到“吃火”,熟料fCaO高,或遇到料量多时都迫使操作员加煤提高烧成温度,有时还要降低窑速;遇到低KH料或料量少时,窑操作上不能及时调整,烧成带温度偏高,物料过烧发粘,稍有不慎就形成长厚窑皮,进而产生熟料圈。

1.2 有害成分的影响

分析结圈料可以知道,CaO+A1203+Fe203+Si02含量偏低,而R20和S03含量偏高。生料中的有害成分在熟料煅烧

过程中先后分解、气化和挥发,在温度较低的窑尾凝聚粘附在生料颗粒表面,随生料一起人窑,容易在窑后部结成硫碱圈。在人窑生料中,当MgO和R20都偏高时,R20在MgO引起结圈过程中充当“媒介”作用形成镁碱圈。根据许多水泥厂的操作经验,当熟料中MgO>4.8%时,能使熟料液相量大量增加,液相粘度下降,熟料烧结范围变窄,窑皮增长,浮窑皮增厚。有的水泥厂虽然熟料中MgO<4.0%,但由于R20的助熔作用,使熟料在某一特定温度或在窑某一特定位置液相量陡然大量增加,粘度大幅度降低,迅速在该温度区域或窑某一位置粘结,形成熟料圈。

1.3 煤粉质量的影响

灰分高、细度粗、水分大的煤粉着火温度高,燃烧速度慢,黑火头长,容易产生不完全燃烧,煤灰沉落也相对比较集中,就容易结熟料圈。取样分析结圈料未燃尽煤粉较多就是例证。另外,喂煤量的不稳定,使窑内温度忽高忽低,也容易产生结圈。

1.4 一次风量和二次风温度的影响

三风道或四风道燃烧器内流风偏大,二次风温度又偏高,则煤粉一出喷嘴就着火,燃烧温度高、火焰集中,烧成带短,而且位置前移,容易产生窑口圈,也称前结圈。

2. 前结圈

在正常煅烧条件下,物料温度达1350—1450℃时,液相量约为24%,粘度比较大。当熟料离开烧成带时,温度仍在1300℃以上,在烧成带和冷却带的交界处,熟料和窑皮有较

大的温差。带有液相的高温熟料覆盖在温度相对较低的窑口窑皮上就会粘结形成前结圈。对于预分解窑来说,前结圈是不可避免的,只是高一点和矮一点的问题,尤其当窑操作员控制二次风温度过高、燃烧器内流风偏大和采用短焰急烧时,烧成带高温区更为集中,液相更多,粘度更小,熟料进入冷却带时,仍有大量液相在交界处迅速冷却。温差越大粘结越严重,前圈长得更快。另外,短焰急烧,熟料晶相生长发育差,易烧出大块熟料。但熟料中细粉比例也增加,冷却机返回窑的粉尘量大,这样更促进前圈的增长。

3. 熟料圈

它结的位置是在烧成带与过渡带之间,是窑操作员最头疼,对窑危害最大的结圈。在熟料煅烧过程中,当窑内物料温度达到1280℃时,其液相粘度较大,最容易形成熟料圈。这时如果生料KH、n值较低,操作时窑内拉风又太大,火焰太长,烧成带后边浮窑皮逐渐增长、长厚,发展到一定程度就形成熟料圈。

4. 熟料圈形成以后的现象

4.1 火焰短而粗,火焰前部白亮但发浑,窑内气流不畅,火焰受阻伸不进窑内。窑前温度升高,窑简体表面温度也升高。

4.2 窑尾温度降低,窑尾负压明显上升。

4.3 窑头负压降低,并频繁出现正压,发生倒烟现象。

4.4 烧成带来料不均匀,波动大。

4.5 窑传动电流负荷增加。

4.6 结圈严重时窑尾密封圈出现漏料。

5. 结圈的预防措施

5.1选择适宜的配料方案

稳定入窑生料成分一般说烧高KH、高n的生料不易结圈,但熟料难烧,fCaO含量高,对保护窑皮和熟料质量不利;反之,熟料烧结范围窄,液相量多,熟料结粒粗,窑不好操作,易结圈。但生产经验告诉我们,烧较高KH和相对较低的n,或较高的n和相对较低的KH的生料都比较好烧,又不容易结圈。因此,窑上经常出现结圈时,应改变熟料配料方案,适当提高KH或n,减少熔剂矿物的含量对防止结圈有利。

5.2 减少原燃料带入的有害成分

一般粘土中碱含量高,煤中含硫量高。因此,如果窑上经常出现结圈时,视结圈料分析结果,最好能改变粘土或原煤的供货矿点,以减少有害成分对结圈的影响。

5.3 控制煤粉细度,确保煤粉充分燃烧

5.4 调整燃烧器控制好火焰形状确保风、煤混合均匀并有一定的火焰长度。经常移动喷煤管,改变火点位置。

5.5 提高快转率

三个班统一操作方法,稳定烧成系统的热工制度。在保持喂料喂煤均匀,加强物料预烧的基础上尽量加快窑速。采取薄料快转、长焰顺烧,提高快转率,这对防止回转窑结圈都是有利的。

5.6 确定一个经济合理的窑产量指标

通过一段时间的生产实践,每台回转窑都有自己特定的

合理的经济指标。这就是回转窑在某高产量范围内能达到熟料优质,煤耗最低,运转率最高。所以回转窑产量不是越高越好。经验告诉我们,产量超过一定限度以后,不是由于系统抽风能力所限致使煤灰在窑尾大量沉降并产生还原气氛,就是由于拉大排风使窑内气流断面风速增加,火焰拉长,液相提前出现,这都容易形成熟料圈。

6. 结圈的处理方法

不管是前结圈还是后结圈,处理结圈时一般都采用改变温度场位置的方法,调整圈体位置温度,使圈体受温度的变化而垮落。也有用水枪打的,但前结圈一般太坚固,后结圈离窑头太远,处理效果大多不理想。

6.1 前结圈的处理方法

前结圈不高时,一般对窑操作影响不大,不用处理。但当结圈太高时,既影响看火操作,又影响窑内通风及火焰形状。大块熟料长时间在窑内滚不出来,容易损伤烧成带窑皮,甚至磨蚀耐火砖。这时应将喷煤管往外拉,调整好用风和用煤量,及时处理。

1) 如果前圈离窑下料口比较远并在喷嘴口附近,则一般系统风、煤、料量可以不变,只要把喷煤管往外拉出一定距离,就可以把前圈烧垮。

2) 如果前圈离下料口比较近,并在喷嘴口前则将喷嘴往里伸,使圈体温度下降而脱落。如果圈体不垮,则有两种处理方法

①把喷煤管往外拉出,同时适当增加内流风和二次风

温度,这样可以提高烧成温度,使烧成带前移,把火点落在圈位上。一般情况下,圈能在2~3h内逐渐被烧掉。但在烧圈过程中应根据进入烧成带料量多少,及时增减用煤量和调整火焰长短,防止损伤窑皮或跑生料。

②如果用前一种方法无法把圈烧掉时,则把喷煤管向外拉出并把喷嘴对准圈体直接烧。待窑后预烧较差的物料进入烧成带后,火焰会缩得更短,前圈将被强火烧垮。但是必须指出,采用这种处理方法,由于喷煤管拉出过多,生料黑影较近,窑口温度很高,所以窑操作员必须在窑头勤观察,出现问题及时处理。

6.2 后结圈的处理方法

处理后结圈一般通过改变配料方案,保持火焰顺畅,适当控制窑内填充率等方式,使圈体自然脱落。

1) 当后圈离窑头较远时,这种圈的圈体一般不太坚固,但结圈宽度较大或存在较长的辅窑皮。这时可以适当调整配料方案,通过提高n值或KH值,适当略减产,并保持窑内火焰顺畅,同时要综合考量窑煅烧状况,控制分解炉煅烧温度不宜过高,防止结圈加厚,一般圈体会自然垮落。

2) 当后圈离窑头较近时,这种圈体一般比较坚固。处理这种圈应将喷煤管尽量伸入窑内,并适当向上抬高一些,加大一点外流风和系统排风使火焰的高温区移向圈体位置。但排风不宜过大,以免降低火焰温度。约烧3—4h左右后再将喷煤管向外拉出使圈体温度下降。这样反复处理,圈体受温度变化产生裂纹而垮落。

3)在处理熟料圈时,一定要在保护窑皮的基础上进行,勿使火焰过分集中。要适当改变原料成分,减少物料中的液相量,适当改变煤的配合,采用高挥发份、低灰份的煤,保证煤粉完全燃烧,以防圈的发展。

不过,从总体来说,烧圈尤其是烧后圈不是一件容易的事。有时圈体很牢固,烧圈时间过长容易烧坏窑皮及衬料或在过渡带结长厚窑皮进而在圈体后产生第二道后结圈。所以处理时一定要小心。

锅炉结垢腐蚀问题以及控制对策

锅炉结垢腐蚀问题以及控制对策 摘要:在锅炉检验中,结垢腐蚀是锅炉存在安全隐患的主要原因,检验的主要 指标是水中杂质和含氧量。由于水循环蒸发改变pH值,锅炉内部出现结垢,影 响锅炉的使用寿命。锅炉是工业生产中的重要设备,结垢腐蚀是影响锅炉寿命的 主要因素之一,腐蚀部位通常不容易判定,如果出现局部泄漏,威胁整个锅炉的 运行安全。因此要了解锅炉结垢腐蚀的成因,寻求合理的防范措施,规避危害。 【关键词】:锅炉;腐蚀;结垢;控制 锅炉结垢腐蚀是锅炉检修中需要重点关注的问题,结垢腐蚀带来较大的危害,也会增加检修和维护的成本。工业设备中常见的锅炉腐蚀有低温腐蚀和有氧腐蚀,判断腐蚀部位通常需要几天或者更长的时间,局部的泄漏会造成连锁破坏,需要 加强防范,保障锅炉的安全、节能和有效运行。 一、锅炉结垢的危害和处理 (一)锅炉结垢的危害 锅炉结垢影响传热效果。水垢的导热系数远远低于钢材,锅炉受热面结垢会 降低传热效率,影响传热效果。基本上水垢厚度每增加1mm,就会降低传热效率5%以上。锅炉结垢增加大气污染,由于结垢降低热效率,需要增加燃料的用量才 能得到一定的要求,尤其是增加煤的用量,会增加大气污染,对空气质量造成危 害[1]。锅炉结垢会破坏水汽循环,对流管、水冷壁管等结垢,破坏正常的水汽循环,导致循环阻滞。锅炉结垢影响锅炉的安全运行,锅炉的受热面温度比炉水大 约高6-10℃,但由于存在水垢,受热面温度上升,金属过热可能导致鼓包,甚至 爆破,对锅炉的安全运行造成严重影响。 (二)锅炉结垢的原因 由于锅炉给水中钙、镁盐类的存在,导致形成硫酸盐和碳酸盐水垢。随着温 度的上升,硫酸盐、碳酸盐等的溶解度降低,到一定程度会析出水渣,高温加热 后形成水垢。硫酸盐水垢通常在高温状态下沉淀,在受热强烈的受热面发生,常 见于锅炉水冷壁管和对流管。碳酸盐水垢通常在受热不强烈的地方形成[2]。硅酸 盐水垢常见于锅炉热负荷高的炉管,主要成分是铁、铝的硅酸化合物,水垢质地硬,化学结构复杂,导热性很差,危害也最大。氧化铁水垢的主要成分是铁的化 合物。锅炉正常运行水中含氧量比较低,不会出现氧腐蚀。但锅炉水中溶氧量增加,会出现金属氧腐蚀,形成氧化铁水垢。 (三)锅炉结垢的防范对策 要加强对锅炉水的处理,对原水进行预处理,使用前先进行净化处理。采用 石灰软化法的方式处理高碱度和高硬度的水。使用石灰-纯碱软化法,处理低碱度、高硬度的水。使用石灰-石膏处理法,处理高碱度、低硬度的水。处理锅外水的方 式有软化处理、氧处理。由于氧、二氧化碳等气体的存在,锅炉容易出现腐蚀, 通常需要进行除氧操作。采用热力方式加热水直到沸腾,水中氧气逸出。随少量 凝结的蒸汽,排出逸出的氧[3]。对水有害离子Mg2+等,通常使用离子交换的方 式软化,使用交换剂吸附,可交换离子溶入水肿,将水中钙离子和镁离子除去, 从而软化水。处理结垢可以在锅内加入化学药品,炉水中的离子会和化学药品产 生反应,通过排污吗,将流动性水渣排出。常用的化学药品有氢氧化钠、磷酸三钠、有机胶体等。由于蒸汽蒸发,水减少,固形物浓度增加析出沉淀,容易在高 温下形成水垢,需要合理操作定期排污,减少水垢的产生。 二、锅炉腐蚀的危害和处理

回转窑结圈的原因

13 结圈形成的原因、预防措施和处理方法 13.1 结圈形成的原因当窑内物料温度达到1 200℃左右时就出现液相,随着温度的升高,液相粘度变小,液相量增加。暴露在热气流中的窑衬温度始终高于窑内物料温度。当它被料层覆盖时,温度突然下降,加之窑简体表面散热损失,液相在窑衬上凝固下来,形成新的窑皮。窑继续运转,窑皮又暴露在高温的热气流中被烧熔而掉落下来。当它再次被物料覆盖,液相又凝固下来,如此周而复始。假如这个过程达到平衡,窑皮就不会增厚,这属正常状态。如果粘挂上去的多,掉落下来的少,窑皮就增厚。反之则变薄。当窑皮增厚达一定程度就形成结圈。形成结圈的原因主要有如下几点: 13.1.1 入窑生料成分波动大,喂料量不稳定实际生产过程中,窑操作员最头疼的事是人窑生料成分波动太大和料量不稳定。窑内物料时而难烧时而好烧或时多时少,遇到高KH料时,窑内物料松散,不易烧结,窑头感到“吃火”,熟料fCaO高,或遇到料量多时都迫使操作员加煤提高烧成温度,有时还要降低窑速;遇到低KH料或料量少时,窑操作上不能及时调整,烧成带温度偏高,物料过烧发粘,稍有不慎就形成长厚窑皮,进而产生熟料圈。 13.1.2 有害成分的影响分析结圈料可以知道,CaO+A1203+Fe203+Si02含量偏低,而R20和S03含量偏高。生料中的有害成分在熟料煅烧过程中先后分解、气化和挥发,在温度较低的窑尾凝聚粘附在生料颗粒表面,随生料一起人窑,容易在窑后部结成硫碱圈。在人窑生料中,当MgO和R20都偏高时,R20在MgO引起结圈过程中充当“媒介”作用形成镁碱圈。根据许多水泥厂的操作经验,当熟料中MgO>4.8%时,能使熟料液相量大量增加,液相粘度下降,熟料烧结范围变窄,窑皮增长,浮窑皮增厚。有的水泥厂虽然熟料中MgO<4.0%,但由于R20的助熔作用,使熟料在某一特定温度或在窑某一特定位置液相量陡然大量增加,粘度大幅度降低,迅速在该温度区域或窑某一位置粘结,形成熟料圈。 13.1.3 煤粉质量的影响灰分高、细度粗、水分大的煤粉着火温度高,燃烧速度慢,黑火头长,容易产生不完全燃烧,煤灰沉落也相对比较集中,就容易结熟料圈。取样分析结圈料未燃尽煤粉较多就是例证。另外,喂煤量的不稳定,使窑内温度忽高忽低,也容易产生结圈。 13.1.4 一次风量和二次风温度的影响三风道或四风道燃烧器内流风偏大,二次风温度又偏高,则煤粉一出喷嘴就着火,燃烧温度高、火焰集中,烧成带短,而且位置前移,容易产生窑口圈,也称前结圈。 13.2 前结圈 在正常煅烧条件下,物料温度达1350—1450 ℃时,液相量约为24%,粘度比较大。当熟料离开烧成带时,温度仍在1300℃以上,在烧成带和冷却带的交界处,熟料和窑皮有较大的温差。带有液相的高温熟料覆盖在温度相对较低的窑口窑皮上就会粘结形成前结圈。对于预分解窑来说,前结圈是不可避免的,只是高一点和矮一点的问题,尤其当窑操作员控制二次风温度过高、燃烧器内流风偏大和采用短焰急烧时,烧成带高温区更为集中,液相更多,粘度更小,熟料进入冷却带时,仍有大量液相在交界处迅速冷却。温差越大粘结越严重,前圈长得更快。另外,短焰急烧,熟料晶相生长发育差,易烧出大块熟料。但熟料中细粉比例也增加,冷却机返回窑的粉尘量大,这样更促进前圈的增长。 13.3 熟料圈它结的位置是在烧成带与过渡带之间,是窑操作员最头疼,对窑危害最大的结圈。在熟料煅烧过程中,当窑内物料温度达到1280℃时,其液相粘度较大,最容易形成熟料圈。这时如果生料KH、n值较低,操作时窑内拉风又太大,火焰太长,烧成带后边浮窑皮逐渐增长、长厚,发展到一定程度就形成熟料圈。 13.4 熟料圈形成以后的现象 1)火焰短而粗,火焰前部白亮但发浑,窑内气流不畅,火焰受阻伸不进窑内。窑前温度升高,窑简体表面温度也升高。

循环水中腐蚀和管道结垢原因和处理方法

在现代的工业生产中,循环水含有的物质例如化学物质、金属物资等方面,工业循环水管道受到这些物质的影响,会产生结垢还有腐蚀等影响,如果处理不及时,就是妨碍到循环水管道的使用性能,继而降低工业生产效率,不能得到良好的经济效益。所以,需要对工业循环水管道结垢产生的原因还有机理明确好,针对性的采取控制和解决措施,目的就是保证循环水管道使用的稳定性,提升工业生产的效率,实现比较好的经济效益。 1.结垢和腐蚀产生的机理和原因 结垢和腐蚀可以说是影响工业循环水管道使用性能的重要原因,并且两者有直接的联系,通常情况下腐蚀就会产生结垢,结垢会产生腐蚀,时间长了就会影响管道的相关零件的使用性能,提升机泵运行的负荷,继而对设备、整体系统换热冷却等方面,不仅会影响到工业循环水管道的使用性能,还会使得工业生产效率还有经济效益,有所下降。接下来就和大家针对于工业循环水管道结垢和腐蚀产生的机理和原因相关内容,展开分析和阐述。 1.1补充水 由于在工业生产中,会消耗大量的是,因此为了保证生产的效率还有稳定性,需要定期进行补充,但是补充水在进入工业循环水管道之后,补充水中硬度、碱度还有PH值、浊度等方面,都会导致结垢。如果补充水中的硬度和碱度越大,意味着结垢离子更多,并且受到温度的影响,补充水容易达到饱和的状态,增加了循环水管道腐蚀现象的产生。此外,在工业循环水管道使用中,水质中的悬浮物会起到晶核的作用,这样浊度就会产生较多,悬浮物也会变多,这样如果不定期进行处理,也会导致悬浮物长期积累,增加工业循环水管道腐蚀和结垢现象的产生。 1.2温度 导致工业循环水管道结垢和腐蚀的重要因素之一就是温度,主要是由于工业循环水管道在运行过程中,循环水中包含的硬度盐类会根据温度的变化,产生溶解的现象。并且,在溶

三圈环流难点突破

三圈环流难点突破 ——————三圈环流中的一二三四五六七八 “三圈环流”从知识体系和学生学习心理分析,它是学习全球气候的最基础的内容之一,在“大气”单元中起着承上启下的作用。教材留给师生的空间很大,如何处理好这个知识点一直是教学的难点。一般采用先引导学生阅读教材,而后教师边讲解、边板图,完成“全球大气环流示意图”(见图1)。在此基础上再引导学生解图1,归纳以下几个知识点。 一、抓住一个原理:热力环流原理 近地面受热→气流上升→近地面形成低压→天气阴雨;近地面冷却→气流下沉→近地面形成高压→天气晴朗。(上升湿润,下沉干) 根据全球热量由赤道向两极递减规律,赤道受热多、极地受热少。赤道受热多→气流上升运动→近地面形成低压;极地受热少→气流下沉运动→近地面形成高压。这是三圈环流形成的最原始动力。

二、把握二个作用力 两个作用力指全球七个气压带的形成。其中赤道低压带和两个极地高压带是热力作用形成的;两个副热带高压带和两个副极地低压带是动力作用形成的。副热带高压带是由于赤道上空气流源源不断地过来,在30°纬度附近上空堆积,产生下沉气流而形成;副极地低压带是由于较低纬的暖而轻的气流与较高纬的冷而重的气流在60°纬度附近相遇,暖而轻的气流爬升到冷而重的气流之上,产生上升气流而形成。 三、了解三圈环流的分布 三圈环流指低纬环流:赤道~30°N/S;中纬环流:30°N/S~60°N/S;高纬环流:60°N/S~北(南)极点。 四、看清四个特殊节气的气压带、风带位置 特殊节气是指两分两至日,见图2先观察二分日:太阳直射赤道,南、北半球气压带、风带的位置以赤道为对称轴呈南、北对称分布,见图2中的B。二分日后,由于太阳直射点

结垢预测

结垢机理研究 1.1 理论分析 水垢一般都是具有反常溶解度的难溶或微溶盐类,它具有固定晶格,单质水垢较坚硬致密。水垢的生成主要决定于盐类是否过饱和以及盐类结晶的生长过程。水是一种很强的溶剂,当水中溶解盐类的浓度低于离子的溶度积时,他将仍然以离子状态存在于水中,一旦水中溶解盐类的浓度达到饱和状态时,设备粗糙的表面和杂质对结晶过程的催化作用就促使这些饱和盐类溶液以水垢形态结晶析出。 水垢的种类有很多,但通常油田水中只含有其中少数几种水垢。最常见的水垢有碳酸盐类水垢,组成为CaCO3、MgCO3,但易被酸化去除,危害相对较小;而硫酸盐垢,组成成分有CaSO4、BaSO4、SrSO4,常常采用防垢方法加以阻止;铁化物垢组成为FeCO3、FeS、Fe(OH)2、Fe2O3。实际上一般的结垢都不是单一的组成,往往是混合垢,只不过是以某种垢为主而已。 表2-13 常见垢的溶度积 垢溶度积垢溶度积 BaSO4 1.1×10-10SrSO4 3.2×10-7 CaCO3 2.8×10-9FeS 8.3×10-13 CaSO49.1×10-8FeCO3 3.2×10-11 MgCO3 3.5×10-8Fe(OH)28.0×10-13 注:溶度积温度为18~25℃ (1)不相容论 两种化学不相容的液体(不同层位含有不相容的离子的地层水、地层水与地面水、清水与污水)相混,因为含有不同离子或不同浓度的离子,就会产生不稳定的、易于沉淀的固体。如宝浪油田,两个不同层位的水一混合就结垢,主要是因为一层含有SO42-,另一层含有Ba2+、Sr2+较多,混合后就生成BaSO4、SrSO4。(2) 热力学条件变化 当井下热力学和动力学条件不变时,即使有不相容的离子,并且为过饱和溶

回转窑系统结圈原因

回转窑系统结圈原因.事故怎样判断和安全处理 (一)、回转窑结圈 1.造成结圈的主要原因 a、精矿粉品位低,SIO2高在有FeO存在的情况下,容易生存低熔点硅酸盐矿物。 b、生球强度低,在运输过程中容易产生粉末。 c、链篦机干球焙烧强度低,入窑后再次产生粉末。 d、操作不当回转窑窑温度控制过高,造成局部高温。 e、煤粉灰分含水量量高,灰分的熔点低,当灰分的熔点低于或接近焙烧温度时容易结圈。 f、高温状态下停窑。 2.防止结圈的措施 a、严格控制原、燃料成分达到技术要求。 b、提高生球强度。 c、控制焙烧质量,入窑球抗压强度控制在800N/个球以上杜绝粉末入窑。 d、严格控制窑温,不造成局部长时间高温。 e、严禁高温停窑。 3.回转窑清圈机处理方法 (1)旧的方法、冷却法除圈:,除圈的人工方法。采用风镐、钎子、大锤等工具(2)、新旧方法烧圈.热窑机械去除结圈:a、冷烧及热烧交替烧法。首先减少或停止入窑料(视结圈程度而定),在窑内结圈处增加煤量和风量,提高结圈处温度,再停止喷煤降低结圈处温度这样反复处理使圈受冷热交替相互作有用,造成开裂而脱落。;b、冷烧:在正常生产时,在结圈部位造成低温气氛使其自行脱落。新型快速方法停窑用回转窑结圈清圈机快速处理结圈 (二)、回转窑结块原因 1、结块的原因:是由于生球质量差,在链篦机内粉化或链篦机焙烧球强度不够,在回转窑内破裂后结块或排入环冷机后粘结成块 2.控制措施:a、严控进厂原、燃料质量,把好造球关;b、造球机启动控制;c、布料厚度与机速;d、提高生球和链篦机上干球质量;e、稳定热工制度防止局部出现高温。 3.结块处理方法:发现固定筛上有大块及时打碎或扒出。

回转窑结圈

回转窑结圈/治理清除预防回转窑结圈的设备/回转窑清圈机/窑结圈处理机/回转窑结圈觧 决措施 生产中使用回转窑设备的正常生产非常重要,关于回转窑结圈的问题原因,我们巳经探讨许多,也介绍了回转窑故障事故,回转窑结圈前结圈,窑后结圈的原因,以巳处理方法,现着介绍一下制理处理清除回转窑结圈的设备,名称回转窑清圈机别名窑结圈处理机/的创造发明过程,,用什么机械设备处理回转窑结圈解决回转窑结圈措施一、概述 由巩义市中佳节能设备制造公司研制的提高回转窑产能的高新技术产品.预防治理处理回转窑结圈的设备,快速处理回转窑结圈的设备,处理回转窑结大球大蛋设备,回转窑清圈机.窑内结蛋球打蛋机,窑内结圈处理机(窑内结圈打圈机铲圈机)是针对回转窑普遍存在的回转窑皮不均匀、回转窑厚窑皮、回转窑长窑皮、回转窑内结圈、回转窑内结瘤、回转窑内结蛋结大小球、等痼疾导致回转窑红窑、料层不均匀、回转窑系统阻力增大、回转窑内有效截面积缩小,严重影响回转窑产能和有郊预防回转窑结圈而设计的,一种机电一体化并具有智能化的中型机械,该机由、钎杆、冲击装置、行走自动退让系统、冷却系统和人工变频控制系统组成,一般规格长十至二十二米,宽一点五至二点二米,高一点八至三点五米。实际大小、回转窑结圈快速清圈机长度根据用户现场要求设计和配置。 回转窑结圈、结瘤、结蛋、长厚窑皮和长长窑皮是各种回转窑普遍存在的现象,曾有人说过回转窑结圈是世界性难题。无论是早期的湿法水泥回转窑系统,还是近年来兴起的链篦机-回转窑-环冷机氧化球团回转窑系统;无论是以煤为燃料的回转窑还是以气或油为燃料的回转窑;无论是各种水泥回转窑、红钒钠回转窑、氧化铝熟料回转窑、氧化镁回转窑、氧化球团回转窑、二氧化钛回转窑和活性石灰回转窑等氧化类回转窑,还是碳素回转窑、永磁铁氧体回转窑或还原钛铁矿回转窑等还原类回转窑;从小到直径不足1米的永磁铁氧体回转窑到直径6米以上的大型链篦机-回转窑-环冷机氧化球团回转窑等,几乎所有的回转窑都有结圈的问题。回转窑结圈,严重的影响了回转窑的运转率,给企业带来巨大的经济损失,耗费了大量的人力物力。如河南某企业的活性石灰回转窑,投资数千万元人民币,由于频繁结圈,严重影响正常的生产,导致长期不能达产,甚至长期停产。国内某企业在投资活性石灰窑选型时,由于考虑活性石灰回转窑有结圈问题,居然决定放弃石灰活性度高的回转窑系统,转而选用石灰活性度较低的竖窑系统。又如国内某红钒钠回转窑生产企业准备耗资数百万元建造煤气发生炉生产半水煤气,用来替代现有的煤粉作燃料,以减少结圈。我国是煤炭大国,煤炭资源丰富,以煤为燃料,成本相对较低,我国大多数回转窑采用煤为燃料,然而,以煤粉为燃料的回转窑其结圈的频率大大高于以油和气为燃料的回转窑,因此有效预防和消除回转窑的结圈问题势在必行。 早在上世纪90年代初,河南巩义中佳节能设备有限公司李建坡总工在对回转窑进行自动化控制的同时,就开始致力于回转窑窑圈和厚窑皮的研究和治理,先后在氧化锌回转窑,水泥回转窑,铝酸钙粉回转窑、红钒钠回转窑、二氧化钛回转窑和活性石灰回转窑上实验,经历过多少次的失败和挫折,遭受过不少责难和非议,也最终得到过企业的理解和支持;耗费了大量的财力物力,取得了宝贵的经验教训;我们设计过多种多样的机型,特别是铲头的设计

回转窑结圈的影响因素及解决措施

回转窑结圈的影响因素及解决措施 -----龙仕连我司从11月23日开始窑内断断续续出现少量漏料,并出现了三次大料球,严重影响到窑的正常运转,公司及部门领导高度重视。经分析是窑23米处结后圈导致窑尾漏料和结料球。于25日开始处理后圈:1、窑减产到350 t/h煅烧;2、窑头煤管每个班移动两次,-200~+100冷热交替处理;3、每班清理煤管头部积料结焦4次,以保证头煤燃烧好,火焰集中;4、控制煤粉细度及水分,以保证煤粉燃烧效果(煤磨出磨温度控制在63~65度,入磨温度<300度。内部控制煤粉细度<6.0);5、适当提高熟料KH。通过3天的处理,23料处后圈薄了很多,并有缺口,于28日窑恢复了365 t/h正常生产。出现这样的工艺事故,我们必须深度反思。特别是工艺管理人员和窑操作员一定要密切关注窑皮的变化趋势及原燃材料的变化,及时调整窑参数,保证窑正常运转。下面让我们再次学习一下窑内结圈的成因、危害及解决措施:结圈是指回转窑在正常生产中,由于原燃材料的变化,或者操作和热工制度的影响,窑内因物料过度粘结,在特定的区域形成一道阻碍物料运动的环形、坚硬的圈。这种现象在回转窑内是一种不正常的窑况,它破坏了正常的热工制度,影响窑内通风,造成窑内来料波动很大,直接影响到回转窑的产量、质量、消耗和长期安全运转。而且处理窑内结圈费时费力,严重时需停窑停产,危害极其严重。 结圈的成因及危害: 结圈的形成: 结圈实际上是在烧成带末端与放热反应带交界处形成的窑皮,是回转窑内危害最大的结圈。在熟料煅烧过程中,当物料温度达到1280℃时,其液相黏度较大,最容易形成结圈,而且冷却后比较坚固,不易除掉。在正常的煅烧情况下,后结圈体的内径部分往往被烧熔而掉落,保持正常的圈体内径。如果在1 250~l 280℃温度范围内出现的液相量偏多,往往会形成妨碍生产的后结圈。后结圈一般结在烧成带的边界或更远,开始是烧成带后边的窑皮逐渐增长、增厚,发展到一定程度即形成后结圈。结圈严重时的窑皮长度是正常窑皮的数倍。 结圈的成因: (1)入窑生料成分波动大,喂料量不稳定。 (2)原燃材料中有害成分的影响。 (3)煤的影响: 煤粉的制备质量差,水分大,细度粗,煤粉容易产生不完全燃烧,导致结圈。

高中地理知识点总结:三圈环流与气压带、风带的形成

高中地理知识点总结:三圈环流与气压带、风带的形成 (1)无自转,地表均匀--单圈环流(热力环流) (2)自转,地表均匀--三圈环流 (3)三圈环流的组成:0-30低纬环流;30-60中纬环流;60-90高纬环流 地表形成7压6风:纬向分布的理想模式(带状) 各气压带的干湿状况(低压湿;高压干) 各风带的风向及干湿状况(信风一般较干;西风较湿) 极锋:60度附近,由盛行西风和极地东风相遇形成 气压带和风带随太阳直射点的季节性南北移动而移动 (4)海陆分布对气压带和风带的影响:实际地表状况(块状) 最重要的影响:海陆热力差 表现(大气活动中心):北半球7月(夏季):亚欧大陆-亚洲低压;太平洋上高压 北半球1月(冬季):亚欧大陆-亚洲高压;太平洋上低压 (5)季风环流(重视图示) 概念理解:是全球性大气环流的组成部分;东亚季风最典型 季风的成因:主因--海陆热力差(可解释东亚的冬夏季风;南亚的冬季风) 南亚夏季风的成因--南半球东南信风北移过赤道右偏成西南风 (或概括说:气压带和风带的季节移动) 季风的影响:季风的共性特点:雨热同期;降水量季节变化大,易有旱涝灾 东亚的两种季风气候及各自分布区(以秦淮一线为界);各自气候特点 --温带季风气候:秦淮以北季风区;冬干冷;夏湿热 --亚热带季风气候:秦淮以南季风区;冬温和少雨;夏湿热 --东亚两种季风气候的冬夏季风风向相同,成因相同 --注意季风区城市工业布局中大气污染企业的分布 南亚的热带季风气候: --全年高温,旱季(东北季风控制)和雨季(西南季风控制)交替 季风区是世界上水稻种植业主要分布地区 --东亚、南亚和东南亚的季风气候区和东南亚的热带雨林气候区 高中地理知识点总结第 1 页共1 页

锅炉结垢与腐蚀的成因及防范措施

锅炉结垢与腐蚀的成因及防措施 【摘要】在锅炉运行中,锅炉的结垢和腐蚀会给锅炉安全运行带来很大影响,所以了解锅炉结垢和腐蚀的成因,尽量去规避这些问题带来的危害是十分必要的。本文通过分析结垢和腐蚀的危害及产生原因,寻找相应的防措施,为促进锅炉的安全运行提供了很好的参考。 【关键词】锅炉;结垢;腐蚀;危害;成因;防措施 1.前言 锅炉的结垢和腐蚀是锅炉维护和检修中应重点关注的问题,因为结垢和腐蚀会给锅炉带来的各种问题,不仅威胁到锅炉的安全运行,而且大大增加锅炉的维护和检修成本,缩短锅炉的使用寿命。对于锅炉的结垢和腐蚀问题,我们应深入分析其产生的原因,及时采取有效防措施,为锅炉的安全、节能、经济运行提供有力保障。 2.锅炉结垢 2.1结垢的危害 (1)影响传热效果由于水垢的导热系数只有钢材的几十分之一,锅炉受热面结水垢必然造成传热效率降低。据估算锅炉受热面水垢厚度每增加1mm,传热效率即降低 5%以上。 (2)影响安全运行锅炉的受热面温度一般要比炉水的温度高六到十度左右,但是水垢的存在,会使受热面的温度升高,金属过热产生蠕变,从而导致金属鼓包甚至爆破,严重影响锅炉的安全运行。

(3)增加大气污染锅炉受热面结垢必然导致热效率下降,要保证锅炉出力必须加大燃料的用量,燃料特别是煤的用量增加,会增加大气污染,影响空气质量。 (4)破坏水循环受热面特别是水冷壁管、对流管等部结垢,会影响正常的锅炉水汽循环,造成循环阻滞,破坏正常的水循环。 2.2. 结垢的原因 (1)碳酸盐、硫酸盐水垢 碳酸盐、硫酸盐水垢形成的原因是由于锅炉给水中存在钙、镁盐类,其重碳酸盐在高温锅水中会转化为碳酸盐,碳酸盐、硫酸盐等溶解度随温度的升高而降低,到一定程度会析出水垢。碳酸盐水垢,一般是在受热比较不强烈的地方形成的;硫酸盐水垢则一般在高温状态下发生沉淀,常发生在受热比较强烈的受热面上,在锅炉的水冷壁管以及对流管束中很常见。 (2)硅酸盐水垢 硅酸盐水垢的化学成分主要是铝、铁的硅酸化合物,其化学结构较为复杂,这种水垢质地最硬,并且导热性非常差,所以其危害最大,一般在锅炉热负荷高的炉管中形成。 (3)氧化铁水垢 氧化铁水垢的主要成分是铁的化合物,锅炉在正常运行情况下,水中氧含量很低,不会对锅炉造成氧腐蚀。但如果水中溶氧量增加, 就可能使金属表面产生氧腐蚀,生成氧化铁产物溶解在锅炉水中,并在高温作用下,逐渐形成氧化铁水垢。 2.3 结垢的防措施

回转窑窑后结圈原因分析及处理方法

回转窑窑后结圈原因分析及处理方法 巩义市恒昌冶金建材设备厂生产的1000t/d熟料生产线是由天津水泥工业设计研究院有限公司设计的,主要包括TDF型分解炉、单系列五级旋风预热器、Φ3.2m×50m回转窑及TC-836篦式冷却机。自2007年2月以来,窑后频繁发生结圈、结球的工艺事故,巩义市恒昌冶金建材设备厂技术人员现将原因分析及解决措施介绍如下,供同仁参考。 1、结圈情况 2007年3月19日最为严重,窑前返火,窑尾有漏料现象,无法操作煅烧,迫使停窑处理。从窑内看,主窑皮长达22m,副窑皮长到窑尾,35~37m处形成后结圈,结圈最小孔洞呈不规则状,直径约l.5m,进窑观察该圈明显分为两层,且层次明确、清晰,第一层厚约150mm,呈黄白色,第二层厚约460mm,呈黑色,圈体非常致密。对圈体取样分析见表1。 表1 圈体取样分析结果 从表l可以看出,第一层硫碱含量较高,是硫碱圈,第二层明显是煤粉圈,熟料液相出现过早、过多导致结圈。 2、原因分析 (1)由于2006年煤价不断上涨,加之公路运输距离远,为了降低成本,采用当地劣质煤煅烧,煤质下降,灰分高,挥发分低,发热值低,煤工业分析如表2、3。实际生产中,煤可燃性差,煤粉燃烧不完全,大量煤灰不均掺入生料中,液相在窑后面提前出现,而未燃尽的煤灰产生沉积及液相的提前出现结圈。 (2)2007年以来,由于机械原因,高温风机l号轴与密封圈强烈摩擦,产生局部高温,使轴侧曲,水平振动最高达6.4mm/s。为了降低振动,不得不降低高温风机转速,由原来的1130r/min降至l060r/min,有时更低,严重影响了窑内通风,加上煤质又差,更多的窑头燃烧不完全的煤粉沉积在窑后燃烧,使窑内后部温度升高,液相量增加,加速了窑后结圈的形成。

结圈形成的原因、预防措施和处理方法

结圈形成的原因、预防措施和处理方法 1.结圈形成的原因 当窑内物料温度达到1200℃左右时就出现液相,随着温度的升高,液相粘度变小,液相量增加。暴露在热气流中的窑衬温度始终高于窑内物料温度。当它被料层覆盖时,温度突然下降,加之窑简体表面散热损失,液相在窑衬上凝固下来,形成新的窑皮。窑继续运转,窑皮又暴露在高温的热气流中被烧熔而掉落下来。当它再次被物料覆盖,液相又凝固下来,如此周而复始。假如这个过程达到平衡,窑皮就不会增厚,这属正常状态。如果粘挂上去的多,掉落下来的少,窑皮就增厚。反之则变薄。当窑皮增厚达一定程度就形成结圈。形成结圈的原因主要有如下几点: 1.1入窑生料成分波动大,喂料量不稳定 实际生产过程中,窑操作员最头疼的事是人窑生料成分波动太大和料量不稳定。窑内物料时而难烧时而好烧或时多时少,遇到高KH料时,窑内物料松散,不易烧结,窑头感到“吃火”,熟料fCaO高,或遇到料量多时都迫使操作员加煤提高烧成温度,有时还要降低窑速;遇到低KH料或料量少时,窑操作上不能及时调整,烧成带温度偏高,物料过烧发粘,稍有不慎就形成长厚窑皮,进而产生熟料圈。 1.2 有害成分的影响 分析结圈料可以知道,CaO+A1203+Fe203+Si02含量偏低,而R20和S03含量偏高。生料中的有害成分在熟料煅烧

过程中先后分解、气化和挥发,在温度较低的窑尾凝聚粘附在生料颗粒表面,随生料一起人窑,容易在窑后部结成硫碱圈。在人窑生料中,当MgO和R20都偏高时,R20在MgO引起结圈过程中充当“媒介”作用形成镁碱圈。根据许多水泥厂的操作经验,当熟料中MgO>4.8%时,能使熟料液相量大量增加,液相粘度下降,熟料烧结范围变窄,窑皮增长,浮窑皮增厚。有的水泥厂虽然熟料中MgO<4.0%,但由于R20的助熔作用,使熟料在某一特定温度或在窑某一特定位置液相量陡然大量增加,粘度大幅度降低,迅速在该温度区域或窑某一位置粘结,形成熟料圈。 1.3 煤粉质量的影响 灰分高、细度粗、水分大的煤粉着火温度高,燃烧速度慢,黑火头长,容易产生不完全燃烧,煤灰沉落也相对比较集中,就容易结熟料圈。取样分析结圈料未燃尽煤粉较多就是例证。另外,喂煤量的不稳定,使窑内温度忽高忽低,也容易产生结圈。 1.4 一次风量和二次风温度的影响 三风道或四风道燃烧器内流风偏大,二次风温度又偏高,则煤粉一出喷嘴就着火,燃烧温度高、火焰集中,烧成带短,而且位置前移,容易产生窑口圈,也称前结圈。 2. 前结圈 在正常煅烧条件下,物料温度达1350—1450℃时,液相量约为24%,粘度比较大。当熟料离开烧成带时,温度仍在1300℃以上,在烧成带和冷却带的交界处,熟料和窑皮有较

高三地理教案:三圈环流

高三地理教案:三圈环流 【篇一】 一、教学目的 “三圈环流”一直是教学的难点。由于本节内容空间尺度大、要素多,只凭课本中的图片,学生难以理解吃透,借助多媒体课件的动画展示,也只能看得见,仍然摸不着,学生也只是凭借画面去想象,难以形成空间思维的概念,最后也是晕头转向。因此我们决定让学生动手,制作三圈环流模型。以此提高学生的空间想象能力和逻辑推理能力。 二、教学思路 本次实验按照实验准备――小组分工――合作互助――模型展示――教师总结这5步完成。在实验准备阶段,由老师事先安排好实验所需要的材料;然后小组分工对材料进行加工,形成最后模型制作所需要的材料;然后,小组结合课本上“三圈环流的形成”相关文字介绍,合作完成模型;最后对模型进行展示,教师对模型制作中出现的问题进行点评。 三、教学准备 (1)地球仪。每个班准备10个橡胶地球仪玩具,其大小适中,并自带经纬网,学科性强,可以在实验的同时帮助学生加深地理认识。 (2)硬纸条。以打印纸为材料,上面已经绘制了4个垂直气流、3个近地面风向和3个高空风向,只需要学生在上课时沿线剪下即可,大大节省了课堂时间。同时,在设计上,高空风和近地面风是不一样的,高空风成弧形,最后偏转了90°,近地面风成直线形。这是因为高空风向和近地面风的成因略有差异,在制作前需要给学生具体强化。 (3)透明胶布、剪刀等。 (4)模型制作:①明确分工。在课堂上,学生以学习小组为单位,合理分工。2

个同学负责剪纸,2个同学负责折叠,准备出4个垂直气流、3个高空风、3个近地面风,另2个同学负责阅读课本,了解三圈环流的形成过程;②合作互助。材料准备齐后,小组同学群策群力,共同完成模型。 第一步,赤道地区受热最多,近地面空气膨胀上升,所以在赤道附近有上升的垂直气流;而极地终年寒冷,空气堆积下沉,所以极地附近有下沉的垂直气流。 第二步,赤道地区空气上升后,高空空气密度增大,形成高气压;极地地区空气下沉后,高空空气密度减小,形成低气压。在水平气压梯度力的作用下,高空空气由赤道流向极地(南风),受地转偏向力影响,南风逐渐右偏成西南风,在30°N 附近高空偏转成西风。这样,来自赤道上空的气流不断在此堆积下沉。因此,30°N 附近有下沉的垂直气流。因此近地面空气密度增大,形成高气压。空气由此向南、向北流出,其中向南流的气流(北风)受地转偏向力的影响,逐渐偏成东北风(近地面),低纬环流形成。 第三步,从30°N近地面向北流的气流(南风)受地转偏向力的影响,逐渐偏成西南风(近地面);极地空气下沉,近地面空气密度增大,形成高气压,空气向南流出(北风),逐渐偏成东北风(近地面)。于是在60°N附近,从南边来的西南空气和从北边来的东北空气相遇,暖而轻的气流爬升到冷而重的气流之上。因此60°N 附近有上升的垂直气流。 第四步,60°N附近空气上升后,在高空分别流向30°N(高空风)和90°N(高空风),组成了中纬度和高纬度环流圈。 四、模型展示 模型制作完成后,各小组派代表展示小组模型制作成果,并结合模型说出三圈环流的过程。 五、教学评价 本次模型制作,体现了模型制作的以下优势:

回转窑结圈的原因及处理方法

回转窑结圈的原因及处理方法 1、结圈的危害 回转窑“结圈”的部位一般在距窑口一定距离的固体燃料集中燃烧点附近的耐火窑衬上,厚度可达200-500 mm左右。“结圈”对球团生产的危害有以下几方面: (1)降低产量,增加劳动强度 窑圈一经形成,对燃料烧烧所产生的热气流势必起阻碍作用,如图-1所示。热气流被部分阻挡在A区,影响了球团的焙烧效果。同时,由于链篦机上生球的干燥、预热过程是利用窑尾废气进行的,故此,结圈也对生球的干燥、预热产生不良影响。具体地说,就是透气性差,火焰不进,后部温度低,干燥时水分不易脱除,生球爆裂、粉化严重,成品率低,从而降低了劳动生产率。 另外,圈结形成后,如不及时处理,就会使圈的纵向长度、厚度增加,当圈掉下时,必然增加工人的劳动强度,有时甚至需停机处理,也影响了球团矿的产量。 (2) 增加了设备负荷 如图-1所示,一定面积及厚度的结圈使物料流被阻于B区,此时,被阻的料量要高出正常时许多,加之圈本身的重量,必然增加了托轮、轴承的磨损,同时,增加了电机的负荷,甚至烧毁。 (3) 浪费能源 在实际看火操作中,当出现“结圈”现象后,由于热气流被阻于A区,为保证链篦机的干燥和预热效果,看火工往往采用加大给煤

量的方式,这无疑造成了能源浪费。 2、结圈的原因 结圈的原因,在生产中主要可以归纳为操作不当。具体地说,是由于上料量过大,干燥效果差,生球爆裂,粉化严重,致使透气性差,使得引风机抽动火焰的作用不明显,火焰只在窑内一定距离燃烧。在大于1 200℃的高温下,未完全氧化的Fe3O4就与磁铁矿中一定数量的SiO2发生反应形成液相。 2Fe3O4+3SiO2+2CO=3Fe2SiO4+2CO2 2FeO+SiO2=Fe2SiO4 另外,当给煤量较大时,在1 150℃条件下,Fe2O3也会部分分解为Fe3O4,与SiO2作用而生成2FeO·SiO2,形成渣相粘结。这就使得物料在流经焙烧带时,所产生的液相、渣相极易粘附在窑衬的表面,同时粘结物料而产生结圈现象。 3、处理方法 为减少或杜绝结圈现象,在生产中首先是要采取措施防止结圈,即采用正确的操作方法,稳定上料量,使料层厚度适宜,以保证干燥、预热效果,减少生球的爆裂和粉化,同时,控制喂煤量,不宜过大,使温度保持在较低范围内,避免出现渣相。 在出现结圈后,一定要及时处理,否则将出现窑壁加宽加厚的不良后果,这样就增加了处理难度,甚至影响生产正常进行。 去圈的方法有以下三种: (1) 在窑内安设移动的合金刮刀;

锅炉结垢与腐蚀的成因及防范措施

锅炉结垢与腐蚀的成因及防范措施 【摘要】在锅炉运行中,锅炉的结垢和腐蚀会给锅炉安全运行带来很大影响,所以了解锅炉结垢和腐蚀的成因,尽量去规避这些问题带来的危害是十分必要的。本文通过分析结垢和腐蚀的危害及产生原因,寻找相应的防范措施,为促进锅炉的安全运行提供了很好的参考。 【关键词】锅炉;结垢;腐蚀;危害;成因;防范措施 1.前言 锅炉的结垢和腐蚀是锅炉维护和检修中应重点关注的问题,因为结垢和腐蚀会给锅炉带来的各种问题,不仅威胁到锅炉的安全运行,而且大大增加锅炉的维护和检修成本,缩短锅炉的使用寿命。对于锅炉的结垢和腐蚀问题,我们应深入分析其产生的原因,及时采取有效防范措施,为锅炉的安全、节能、经济运行提供有力保障。 2.锅炉结垢 2.1结垢的危害 (1)影响传热效果由于水垢的导热系数只有钢材的几十分之一,锅炉受热面结水垢必然造成传热效率降低。据估算锅炉受热面水垢厚度每增加1mm,传热效率即降低5%以上。 (2)影响安全运行锅炉的受热面温度一般要比炉水的温度高六到十度左右,但是水垢的存在,会使受热面的温度升高,金属过热产生蠕变,从而导致金属鼓包甚至爆破,严重影响锅炉的安全运行。

(3)增加大气污染锅炉受热面结垢必然导致热效率下降,要保证锅炉出力必须加大燃料的用量,燃料特别是煤的用量增加,会增加大气污染,影响空气质量。 (4)破坏水循环受热面特别是水冷壁管、对流管等内部结垢,会影响正常的锅炉水汽循环,造成循环阻滞,破坏正常的水循环。 2.2. 结垢的原因 (1)碳酸盐、硫酸盐水垢 碳酸盐、硫酸盐水垢形成的原因是由于锅炉给水中存在钙、镁盐类,其重碳酸盐在高温锅水中会转化为碳酸盐,碳酸盐、硫酸盐等溶解度随温度的升高而降低,到一定程度会析出水垢。碳酸盐水垢,一般是在受热比较不强烈的地方形成的;硫酸盐水垢则一般在高温状态下发生沉淀,常发生在受热比较强烈的受热面上,在锅炉的水冷壁管以及对流管束中很常见。 (2)硅酸盐水垢 硅酸盐水垢的化学成分主要是铝、铁的硅酸化合物,其化学结构较为复杂,这种水垢质地最硬,并且导热性非常差,所以其危害最大,一般在锅炉热负荷高的炉管中形成。 (3)氧化铁水垢 氧化铁水垢的主要成分是铁的化合物,锅炉在正常运行情况下,水中氧含量很低,不会对锅炉造成氧腐蚀。但如果水中溶氧量增加, 就可能使金属表面产生氧腐蚀,生成氧化铁产物溶解在锅炉水中,并在高温作用下,逐渐形成氧化铁水垢。 2.3 结垢的防范措施

窑内结圈、结球的原因及处理措施

窑内结圈、结球的原因及处理措施 中控室侯素克结圈是指窑内在正常生产中因物料过度黏结,在窑内特定的区域形成一道阻碍物料运动的环形、坚硬的圈。这种现象在回转窑内是一种不正常的窑况,他破坏正常的热工制度,影响窑内通风,造成来料波动很大,直接影响回转窑的产量、质量、消耗和长期安全运转。尤其频繁结圈的回转窑,不仅破坏了窑内正常热工制度,而且损害操作人员的身体健康,给生产造成经济损失。引起回转窑结圈的因素很多,它与原料性质、生料成分、燃料的灰分和细度、窑型、窑内还原气氛及热工制度等有关。 1 结圈的形成 回转窑内形成结圈的因素很多,但液相的产生和固化是结圈的主要形成过程。而衬料温度、物料温度、煤灰和生料组成又是决定液相的生成和固化的主要因素。在正常情况下,窑皮保持在200mm左右的厚度,该温度条件及区域内若熔化和固化的过程达到平衡,窑皮就不会增厚。当熔化的少固化的多,其厚度增长到一定程度,即形成圈。当衬料与物料的温差大时,在足够液相的条件下,圈体越结越厚。 1.1前结圈的形成 前圈结在烧成带和冷却带交界处,由于风煤配合不好,或者煤粉粒度过粗,煤灰和水分大,影响煤粉燃烧,使黑火头长,烧成带像窑尾方向移动,熔融的物料凝结在窑口处使“窑皮”增厚,发展成前圈,或者由于煤粉落在熟料上,在熟料中形成还原性燃烧,铁还原成亚铁,形成熔点低的矿物或者由于煤灰分中氧化铝含量高而使熟料液相量增加,黏度增大,当遇到入窑二次风温降温、冷却,就会逐渐凝结在窑口处形成圈。 前圈形成的主要原因是煤粉的质量,熟料中溶剂矿物含量过高或氧化铝含量过高,燃烧器在窑口断面的位置不合理,影响煤粉燃烧,使结圈速度加快,前温急烧,导致温差相差大,造成液相冷却凝固形成前圈, 1.2熟料圈的形成原因

水的结垢与防治

在什么情况下水容易结垢,汽包、水管容易腐蚀? 用锅炉、水壶等容器烧水或供应蒸汽时,硬水中溶解的钙、镁碳酸氢盐受热分解,析出白色沉淀物,渐渐积累附着在容器上,叫结垢。锅炉结垢,不但多耗燃料,且易造成局部过热,引起。锅炉给水进行预先软化可防止结垢。 根据结垢层沉积的机理,可将污垢分为颗粒污垢、结晶污垢、化学反应污垢、腐蚀污垢、生物污垢等。 1)颗粒污垢:悬浮于流体的固体微粒在换热表面上的积聚。这种污垢也包括较大固态微粒在水平换热面上因重力作用形成的沉淀层,即所谓沉淀污垢和其他胶体微粒的沉积。 2)结晶污垢:溶解于流体中的无机盐在换热表面上结晶而形成的沉积物,通常发生在过饱和或冷却时。典型的污垢如冷却水侧的碳酸钙、硫酸钙和二氧化硅结垢层。 3)化学反应污垢:在传热表面上进行化学反应而产生的污垢,传热面材料不参加反应,但可作为化学反应的一种催化剂。 4)腐蚀污垢:具有腐蚀性的流体或者流体中含有腐蚀性的杂质对换热表面腐蚀而产生的污垢。通常,腐蚀程度取决于流体中的成分、温度及被处理流体的pH 值。 5)生物污垢:除海水冷却装置外,一般生物污垢均指微生物污垢。其可能产生粘泥,而粘泥反过来又为生物污垢的繁殖提供了条件,这种污垢对温度很敏感,在适宜的温度条件下,生物污垢可生成可观厚度的污垢层。 6)凝固污垢:流体在过冷的换热面上凝固而形成的污垢。例如当水低于冰点而在换热表面上凝固成冰。温度分布的均匀与否对这种污垢影响很大。

防止结垢的技术应考虑以下几点:1)防止结垢形成;2)防止结垢后物质之间的粘结及其在传热表面上的沉积;3)从传热表面上除去沉积物。 防止结垢采取的措施包括以下几个方面: 1 设计阶段应采取的措施 在换热器的设计阶段,考虑潜在污垢时的设计,应考虑如下 6 个方面:1)换热器容易清洗和维修(如板式换热器);2)换热设备安装后,清洗污垢时不需拆卸设备,即能在工作现场进行清洗;3)应取最少的死区和低流速区;4)换热器内流速分布应均匀,以避免较大的速度梯度,确保温度分布均匀(如折流板区);5)在保证合理的压力降和不造成腐蚀的前提下,提高流速有助于减少污垢;6)应考虑换热表面温度对污垢形成的影响。 2 运行阶段污垢的控制 1)维持设计条件由于在设计换热器时,采用了过余的换热面积,在运行时,为满足工艺需要,需调节流速和温度,从而与设计条件不同,然而应通过旁路系统尽量维持设计条件(流速和温度)以延长运行时间,推迟污垢的发生。2)运行参数控制在换热器运行时,进口物料条件可能变化,因此要定期测试流体中结垢物质的含量、颗粒大小和液体的pH 值。3)维修措施良好换热设备维修过程中产生的焊点、划痕等可能加速结垢过程形成,流速分布不均可能加速腐蚀,流体泄漏到冷却水中,可为微生物提供营养,对空气冷却器周围空气中灰尘缺少排除措施,能加速颗粒沉积和换热器的化学反应结垢的形成。用不洁净的水进行水压试验,可引起腐蚀污垢的加速形成。4)使用添加剂针对不同类型结垢机理,可用不同的添加剂来减少或消除结垢形成。如生物灭剂和抑制剂、结晶改良剂、分散剂、絮凝剂、缓蚀剂、化学反应抑制剂和适用于燃烧系统中防止结垢的添加剂等。5)减少流体中结垢物质浓度通常,结垢随着流体中结垢物质浓度的增加

循环水的常见问题分析及判断(结垢,腐蚀,微生物)

系统的降温是依靠冷却塔的蒸发作用带走热量的。由于水的蒸发,各种无机离子和有机物质浓度增加,即浓缩现象。浓缩会改变水的性质,加重水的结垢和腐蚀倾向;在冷却塔中,水在与空气接触中会失去部分游离的二氧化碳,使pH值升高,加大结垢倾向;另外空气中的氧进入水中,增加了水的腐蚀倾向;水在与空气接触过程中,还会将空气中的灰尘、微生物、污染气体(如二氧化硫、硫化氢和氨等)或昆虫等带入水系统,引起水质污染,产生细菌和藻类繁殖。 每一个循环冷却水系统无论其设备材质如何,设备类型如何,也不论其补充水源如何,都会受沉积物的析出与附着、设备腐蚀和微生物滋生及黏泥问题的困扰。它们会威胁和破坏企业长周期地安全生产,甚至造成经济损失,因此决不能掉以轻心。 1、沉积物的析出与附着—水垢与污垢 1.1 水垢 水中溶解有各种盐类,如重碳酸盐、碳酸盐、硫酸盐、氯化物、硅酸盐,其中以溶解的重碳酸盐如Ca(HCO3)2、Mg(HCO3)2最不稳定,受热或CO2溢出,反应向右进行,即分解生成碳酸盐。 Ca(HCO3)2 →CaCO3↓+ H2O + CO2↑ 常见的水垢组成为:碳酸钙、硫酸钙、磷酸钙、镁盐、硅酸盐。 1.2 污垢 油污、腐蚀产物、颗粒细小的泥砂、不溶性盐类的泥状物、胶状氢氧化物、特别是菌藻的尸体及其黏性分泌物是污垢的主要组成部分。 在流速较慢的部位污垢沉积最多。它们是引起垢下腐蚀的主要原因,也是某些细菌如厌氧菌生存和繁殖的温床。 1.3 水垢与污垢的危害 ①降低传热效率或传热不均。设备腐蚀(垢下腐蚀)。

②增加管线输送压力差及电力消耗。降低缓蚀剂性能。 ③增加工厂非计划性停车。甚至会造成某些设备的直接报废。 2、腐蚀机理及危害 循环水的腐蚀主要为电化学腐蚀,也就是钢材与水中氧气作用而腐蚀;当微生物繁殖时,其微生物的分泌物与冷却水中有机物、无机物聚积而形成粘泥,沉积在系统中时,将造成沉积物下金属腐蚀。另外,pH值、温度、流速、大气污染物等也是影响腐蚀的因素。 腐蚀主要危害: ①减少设备的使用寿命。增加设备维护费用及生产成本。设备穿孔造成报废。 ②资源和能源浪费严重。 ③引发灾难性事故。 ④造成环境污染,阻碍新技术的发展。 3、微生物滋生及黏泥问题 微生物危害在循环冷却水系统中是很严重的,有人认为对化学处理来说,微生物控制工作可说是“一荣俱荣,一损俱损”。国外也有文章认为“最大的挑战来自微生物繁殖”。与水垢、电化学腐蚀比起来,其危害更胜一筹。微生物带给系统的危害不外乎污垢和腐蚀。表现出来时,往往和水垢,电化学腐蚀的危害混合在一起。微生物粘泥是以微生物菌体及其粘结在一起的粘性物质(多糖类、蛋白质等)为主体组成。敞开式循环冷却水系统中,由产粘泥细菌引起的故障为最多,其次则是由藻类、霉菌(丝状菌)、球衣细菌(丝状细菌)引起的故障。 3.1 各种微生物的生长环境 绝大多数水中微生物的生长温度在20~40℃;pH值5~9,部分微生物即使在温度70℃;pH值2~3之间也适宜繁殖。因此,在每个循环冷却水系统都有微生物的活动滋生。 3.2 微生物滋生及黏泥主要危害:

相关文档