文档库 最新最全的文档下载
当前位置:文档库 › 渗透数形结合思想,提升核心素养

渗透数形结合思想,提升核心素养

渗透数形结合思想,提升核心素养

渗透数形结合思想,提升核心素养

发表时间:2019-10-17T16:22:26.627Z 来源:《教育学文摘》2019年12月总第320期作者:王昕华[导读] 数学思想是数学方法应用的前提,也是数学问题解答的前提。在初中数学思想中,数形结合是十分重要的组成部分,能够解决大部分与图形相关的数学问题。

甘肃省定西市临洮县明德初级中学730500

摘要:数学思想是数学方法应用的前提,也是数学问题解答的前提。在初中数学思想中,数形结合是十分重要的组成部分,能够解决大部分与图形相关的数学问题。因此,在初中数学教学课堂上,教师需要适时利用数形结合思想进行教学内容的讲解,培养学生正确的数学思维,利用数学思想与数学方法进行解题,提高教学的有效性。

关键词:初中数学数形结合渗透

数学就是数字的学问,能把复杂的数字和文字描述转化成一个具体的图形,再用固定的公式将其计算出来,化繁为简,返璞归真,得到真解。所以说,掌握了数形结合思想,就掌握了一把万能钥匙。将数形结合的思想融入初中数学教学已经成为初中教学领域的通识,数形结合的思想可以促进学生数学思维的拓展,可以协助学生解决数学学习中遇到的难题。

一、有理数中数形结合的应用

在初中数学课上有理数是学习的重点,在实际授课中,可以将数形结合渗透到初中数学课上。教师可以将有理数作为数形结合的一种载体,让初中生对有理数的理解更加充分和细致。比如在学习有理数运算的时候,可以让初中生加入教学活动中。教师可以在板书上画出一条数轴,然后在数轴原点用粉笔点一下,依数轴正方向先移动三次,然后向反方向移动两次,每一次移动都是一个单位长度,这个时候粉笔停下的位置,在数轴上就是1。这个时候可以对有理数的一些知识进行引入,从图形中可以看出,这个计算的过程就是3+(-2),在数轴上最终粉笔停下的位置就是1,初中生直接可以回答出来。对这个过程进行分析后发现,粉笔经过了两次移动的过程,最终出现了结果。

二、数形结合在函数中的应用

函数是初中数学课上一个非常有难度的内容,对后续的学习也是有深远的影响。函数本身是抽象化的概念,一些初中生对函数实际无法理解,学习的难度也是非常大。这个时候数形结合可以对函数问题的解决有直接的帮助,学生可以建立函数模型,然后更好地对函数进行学习。在对二次函数进行学习的时候,数形结合就是非常有帮助的。教师可以让初中生自行画出图形,然后是对函数的关系进行确定,结合图形初中生可以解决问题。

三、数形结合思想在勾股定理中的应用

勾股定理中的数学问题大多能够运用数形结合思想进行解决,并且以数形结合思想进行文字解析能够使学生更好地理解题目的含义,运用正确的数学方法进行解答。例如:“直角三角形的两边边长分别为4cm、5cm,求直角三角形的面积。”一般情况下,学生根据对勾股数的记忆,套用公式,直接得出直角三角形第三边边长为3cm,然后根据三角形面积公式得出答案为6cm2。这实际上是受到思维惯性的影响。教师应该教会学生摆脱思维惯性,利用数形结合思想画图解题。学生在画图过程中能够更加清楚地意识到,题目并没有言明“4cm、5cm”是直角三角形哪两条边的边长,从而认识到错误所在。可以说,在运用勾股定理解题过程中,教师传授学生数形结合思想,能够帮助学生获得多种解题思路,有利于学生掌握数学方法,培养学生正确的数学思想。

四、在统计学知识中挖掘数形结合思想

数理统计是初中教学体系中的重点内容,在教学实践中,教师应该善于引导学生利用数据建立统计图形。例如在平均数的教学中,教师可以给出一组数据,然后让学生在坐标系中描点,再将平均数以直线的方式绘制在坐标系中,让学生很直观地观察到这组数据是沿着平均数周围分布的特征,从而进一步明确数据分布的含义。

五、数形结合思想在其他数学知识教学中的有效应用

初中数学其他知识内容中蕴含很多数形结合思想,因此,授课教师在实际教学中不仅要重视数形结合思想在有理数、二次函数等逻辑性、抽象性较强的知识内容教学中的有效应用,还要重视数形结合思想在其他数学知识教学中的有效应用。例如,在华师大版初中数学教材七年级下册《一元一次方程》教学过程中:“一列火车全长200m,火车在驶过隧道时,其时速是60km/h,火车头进入隧道开始到火车尾离开隧道总共耗时2min,求隧道的总长度。”讲解中,授课教师可以利用画图的方式让学生更加直观地理解和把握问题,可以在黑板上用三条线段进行讲解,车头进入隧道前是一条线段,中间隧道是第二条线段,设为x米,火车离开隧道之后是第三条线段。学生通过三条线段就能够直观地理解问题中各个量之间的关系,并列出方程2×1000=x+200,从而计算得出相应的结果。这样的教学方式不仅能够进一步培养学生的数学逻辑思维能力,还对提高学生的数学综合应用能力有着极其重要的促进作用。

总之,对于初中生而言,培养数学思维远比解出几道数学题重要,因此,教师在进行初中数学教学实践中应对数形结合思想高度重视,将其逐渐渗透融入到自己的课堂教学中,帮助学生自主灵活地转化“数”与“形”的关系,并通过具体的教学案例,引导学生根据数字关系灵活建立图形、解答问题,进而提升数学综合素养。

参考文献

[1]刘福刚初中数学教学中数形结合思想的应用[J].学周刊,2016,(32)。

[2]程春凤做好数形结合在初中数学教学中的应用[J].科技资讯,2018,(01)。

[3]林春安初中数学数形结合思想教学研究与案例分析[J].读写算,2015,(04)。

数形结合思想方法

八、数形结合思想方法 中学数学的基本知识分三类:一类是纯粹数的知识,如实数、代数式、方程(组)、不等式(组)、函数等;一类是关于纯粹形的知识,如平面几何、立体几何等;一类是关于数形结合的知识,主要体现是解析几何。数形结合一是一个数学思想方法,应用主要是借助形的直观性来阐明数之间的联系,其次是借助于数的精确性来阐明形的某些属性。 数形结合的思想,其实质是将抽象的数学语言与直观的图像结合起来,关键是代数问题与图形之间的相互转化。 Ⅰ、再现性题组: 1. 设命题甲:0b>1 D. b>a>1 3. 如果|x|≤π4 ,那么函数f(x)=cos 2x +sinx 的最小值是_____。 (89年全国文) A. 212- B. -212+ C. -1 D. 122 - 4. 如果奇函数f(x)在区间[3,7]上是增函数且最小值是5,那么f(x)的[-7,-3]上是____。(91年全国) A.增函数且最小值为-5 B.增函数且最大值为-5 C.减函数且最小值为-5 D.减函数且最大值为-5 5. 设全集I ={(x,y)|x,y ∈R},集合M ={(x,y)| y x --32 =1},N ={(x,y)|y ≠x +1},那么M N ∪等于_____。 (90年全国) A. φ B. {(2,3)} C. (2,3) D. {(x,y)|y =x +1 6. 如果θ是第二象限的角,且满足cos θ2-sin θ2=1-sin θ,那么θ2 是_____。 A.第一象限角 B.第三象限角 C.可能第一象限角,也可能第三象限角 D.第二象限角 7. 已知集合E ={θ|cos θ-+-=-???x x x m x 即:30212->-=-???x x m () 设曲线y 1=(x -2)2 , x ∈(0,3)和直线y 2=1-m ,图像如图所示。由图 可知:① 当1-m =0时,有唯一解,m =1; ②当1≤1-m<4时,有唯一解,即-3

数形结合的思想

数形结合的思想 中学数学的基本知识分三类:一类是纯粹数的知识,如实数、代数式、方程(组)、不等式(组)、函数等;一类是关于纯粹形的知识,如平面几何、立体几何等;一类是关于数形结合的知识,主要体现是解析几何。数形结合是一个数学思想方法,包含“以形助数”和“以数辅形”两个方面,其应用大致可以分为两种情形:或者是借助形的生动和直观性来阐明数之间的联系,即以形作为手段,数为目的,比如应用函数的图像来直观地说明函数的性质;或者是借助于数的精确性和规范严密性来阐明形的某些属性,即以数作为手段,形作为目的,如应用曲线的方程来精确地阐明曲线的几何性质。恩格斯曾说过:“数学是研究现实世界的量的关系与空间形式的科学。”数形结合就是根据数学问题的条件和结论之间的内在联系,既分析其代数意义,又揭示其几何直观,使数量关的精确刻划与空间形式的直观形象巧妙、和谐地结合在一起,充分利用这种结合,寻找解题思路,使问题化难为易、化繁为简,从而得到解决。“数”与“形”是一对矛盾,宇宙间万物无不是“数”和“形”的矛盾的统一。华罗庚先生说过:数缺形时少直观,形少数时难入微,数形结合百般好,隔裂分家万事休。数形结合的思想,其实质是将抽象的数学语言与直观的图像结合起来,关键是代数问题与图形之间的相互转化,它可以使代数问题几何化,几何问题代数化。在运用数形结合思想分析和解决问题时,要注意三点:第一要彻底明白一些概念和运算的几何意义以及曲线的代数特征,对数学题目中的条件和结论既分析其几何意义又分析其代数意

义;第二是恰当设参、合理用参,建立关系,由数思形,以形想数,做好数形转化;第三是正确确定参数的取值范围。数学中的知识,有的本身就可以看作是数形的结合。如:锐角三角函数的定义是借助于直角三角形来定义的;任意角的三角函数是借助于直角坐标系或单位圆来定义的。

渗透数形结合思想,优化解决问题策略

渗透“数形结合思想”,优化解决问题策略摘要: 日本数学史家米山国藏在他的著作《数学的精神、思想和方法》中说道:“不管他们(指学生)从事什么业务工作,即使把所交给的知识(概念、定理、法则和公式等)全忘了,唯有铭刻在他们心中的数学精神、思想和方法都随时随地的发生作用,使他们受益终身。”随着社会的发展,要想实现终身学习和人的可持续发展,重要的是在教育中发展学生的能力,使之掌握蕴藏在知识内的思想方法。只有这样,才能使学生真正感受到数学的力量和价值。 小学是学生学习数学知识的启蒙时期,这一阶段注意给学生渗透基本的数学思想尤为重要。数形结合思想是小学阶段一种重要的思想方法。著名数学家华罗庚说过:“数缺形时少直观,形少数时难入微。”这句话说明了“数”和“形”是紧密相连的。美国数学家斯蒂恩说过:“如果一个特定的问题可以转化为一个图形,那么,思想就整体把握了问题,并且能创造性的思索问题的解法。”这句话,同样说明了数形结合的重要性。 渗透数形结合思想,可以帮助学生优化解决问题策略,因此我认为,小学数学教学过程中,如何渗透数形结合思想,显得尤为重要。 关键词:数形结合思想渗透优化策略 一、数形结合思想的涵义 数与形是数学中的两个最古老,也是最基本的研究对象,它们在一定条件下可以相互转化。 中学数学研究的对象可分为两大部分,一部分是数,一部分是形,但数与形是有联系的,这个联系称之为数形结合,或形数结合。我国著名数学家华罗庚曾说过:“数形结合百般好,隔裂分家万事非。“数”与“形”反映了事物两个方面的属性。我们认为,数形结合,主要指的是数与形之间的一一对应关系。数形结合就是把抽象的数学语言、数量关系与直观的几何图形、位置关系结合起来,通过“以形助数”或“以数解形”即通过抽象思维与形象思维的结合,可以使复杂问题简单化,抽象问题具体化,从而起到优化解题途径的目的。 作为一种数学思想方法,数形结合的应用大致又可分为两种情形:或者借助于数的精确性来阐明形的某些属性,或者借助形的几何直观性来阐明数之间某种

关于数形结合思想的教学方式浅谈

关于数形结合思想的教学方式浅谈 资料来源:大学生教育资源 我有幸参加了由省教科所组织的四川省教育教学共同体举办的关于“小学生数形结合能力的研究”论坛,全省30个共同体研究单位进行了三年级和六年级数形结合能力调查与分析,共同体学校对此项工作非常重视,都给出了分析报告。论坛中来自7所学校的一线教师带来了七堂精彩的数形结合课,有以形来揭示数的《路程速度时间》、《相遇问题》、《合理安排提高效率》、《比赛场次》,有以数来表示形的《点阵中的规律》、《组合图形》、《方向与位置》等,七节课为此次论坛数形结合能力研究提供了很多研究素材,特别是经过小组讨论、专家点评、专家讲座后,给我的教学方法提供了启发。 通过本次论坛,通过与专家面对面的评课、议课结合自己的教学实际和本次对三、六年级的数形能力的调查与分析,主要对以下问题提出了质疑: ●数形结合中“数”与“形”谁先谁后? ●教师在数学教学中如何充分渗透数形结合的思想? ●通过直观的图形揭示数,是否影响了学生的抽象思维能力? ●如何在教学中很好地通过数抽象出图形,看图提问题、解决问题? ●数学课堂中能否建立一种数一形一数或形一数一形的数

学教学模式? ●在高段教学中,数形怎样结合才能促进学生主动发展? 在这次论坛中,通过专家对课例的点评和对数形结合的理解,结合课例对一线教师提出的质疑作出了解答,使一线教师对数形结合在实际教学中要注意的问题有了更深入的理解和认识,使我由最初的迷茫发展至现在的茅塞顿开,达到了参与这次论坛的目的。 一、数形结合是一种数学思考方法 数形结合是数学思考、数学研究、数学应用、数学教学的基本方式,数形结合是双向过程,要处理好数与形的结合,要根据教材的特点和学生的思维水平而定。 1.就教材内容而言,对于较新、较难的教学内容、对于学习较困难的学生可先形后数,用形来表示数,学生通过形来表示数量之间的关系;对于后继教材和较容易理解的内容可先数后形,通过数来揭示形。 2.就学生的年龄特征而言。中低段学生是以具体形象思维为主,实施先形后数,让学生从形中读懂重要的数学信息,并整理信息,提出数学问题并加以解决,对于逻辑思维能力较强的中高段学生,应该逐步过渡到先数后形,如在教学分数的乘、除法意义,教学长方体、正方体、圆柱体的拼、截引起的面积变化时,让学生通过画出直观图形,能让学生很快找出面的变化,

数形结合思想在小学数学教学中的渗透与应用

数形结合思想在小学数学教学中的渗透与应用 数形结合思想是根据数与形之间的对应关系,通过数与形的相互转化,将抽象的数学语言与直观的图形结合起来解决问题的思想方法。数形结合思想是数学中最重要、最基本的思想方法之一,是解决许多数学问题的有效思想。利用数形结合能使“数”和“形”统一起来。以形助数、以数辅形,可以使许多数学问题变得简易化。 小学数学中虽然不像初中数学那样,将数形结合的思想系统化, 但作为学习数学的启蒙和基础阶段,数形结合的思想已经渐渐渗透其中,为更好的学习数与代数、空间与图形两方面的知识服务,同时也在培养抽象思维,解决实际问题方面起了较大的作用。 数形的结合是双向的,一方面,抽象的数学概念、复杂的数量关系,借助图形使之直观化、形象化、简单化;另一方面,复杂的形体可以用简单的数量关系表示。 如我在教学“求一个数的几倍是多少”时,学生最难理解的是“倍”的概念,如何把“倍”的数学概念深入浅出地教授给学生,使他们能对“倍”有自己的理解,并内化成自己的东西?我认为用图形演示的方法是最简单又最有效的方法。于是我就利用书上的主题图。在第一行排出用4根小棒围出的一个正方形,再在第二行排出同样的两个正方形,第三行摆出同样的四个正方形。结合演示,让学生观察比较第一行和第二行小棒的数量特征,通过教师启发,学生小组合作讨论和交流,使学生清晰地认识到:第一行与第二行比较,第一行是1个4根,第二行是2个4根;把一个4根当作一份,则第一行小棒是1份,而第二行就有两份。用数学语言:把4根小棒当作1倍,第二行小棒的根数就是第一行小棒的2倍。这样,从演示图形中让学生看到从“个数”到“份数”,再引出倍数,很快就触及了概念的本质。接着我请学生说出第三行小棒根数与第一行的关系,学生能准确的从三个4根说出了第三行是第一行的3倍。 再如六年级有这样一题:一杯牛奶,甲第一次喝了半杯,第二次又喝了剩下的一半,就这样每次都喝了上一次剩下的一半。甲五次一共喝了多少牛奶? 此题若把五次所喝的牛奶加起来,即1/2+1/4+1/8+1/16+1/32就为所求,但这不是最好的解题策略。我们先画一个正方形,并假设它的面积为单位“1”,由图可知,1-1/32就为所求,这里不但向学生渗透了数形结合思 5分米,或宽增加12分米,面积都增加60平方分米,原来长方形的面积是多少平方分米?”的教学中,我引导学生根据题意画出面积图:

三种数学思想方法教案

课题:中职常见的三种数学思想方法 教学目标:1.理解数形结合思想,分类讨论思想,转化与化归思想; 2.学会用数形结合思想,分类讨论思想,转化与化归思想 等三种思想解答实际数学问题。 教学重点:帮助学生树立数形结合思想,分类讨论思想,转化与化归思想。 教学难点:数形结合思想,分类讨论思想,转化与化归思想在实际数学问题中的应用。 教学方法:讲练结合及世界大学城空间网络教学 教学设计: Ⅰ.新课讲授 (一)专题一:数形结合思想 1.数形结合的含义 (1)数形结合,就是根据数与形之间的对应关系,通过数与形 的相互转化来解决数学问题的一种重要思想方法. 数形结合思想通过“以形助数,以数辅形”,使复杂问题简单化, 抽象问题具体化,能够变抽象思维为形象思维,有助于把握数 学问题的本质,它是数学的规律性与灵活性的有机结合. (2)数形结合包含“以形助数”和“以数辅形”两个方面,其应用大 致可以分为两种情形:一是借助形的生动性和直观性来阐明数 形之间的联系,即以形作为手段,数作为目的,比如应用函数

的图像来直观地说明函数的性质;二是借助于数的精确性和规 范严密性来阐明形的某些属性,即以数作为手段,形作为目的, 如应用曲线的方程来精确地阐明曲线的几何性质. 角度一:利用数形结合讨论方程的解或图像交点 [例1]函数f(x)=x 1 2 - ? ? ? ? ?1 2 x 的零点的个数为( ) A.0 B.1 C.2 D.3 方法规律:讨论方程的解(或函数的零点)可构造两个函数,使问题转化为讨论两曲线的交点问题,但用此法讨论方程的解一定要注意图像的准确性、全面性,否则会得到错解. 强化训练:1.方程log3(x+2)=2x解的个数为 角度二:利用数形结合解不等式或求参数问题 [例2]使log2(-x)

《数形结合思想》专题(整理)

数形结合思想 知识综述 (1)函数几何综合问题是近年来各地中考试题中引人注目的新题型,这类试题将几何问题与函数知识有机地结合起来,重在考查学生的创新思维及灵活运用函数、几何有关知识,通过分析、综合、概括和逻辑推理来解决数学综合问题的能力,此类试题倍受命题者青睐,究其原因,它是几何与代数的综合题,构题者巧妙地将几何图形置于坐标系中,通过函数图象为纽带,将数与形有机结合,并往往以开放题的形式出现。 (2)解答此类问题必须充分注意以下问题: a. 认识平面坐标系中的两条坐标轴具有垂直关系 b. 灵活将点的坐标与线段长度互相转化 c. 理解二次函数与二次方程间的关系——抛物线与x轴的交点,横坐标是对应方程的根。 d. 熟练掌握几个距离公式: 点P(x,y)到原点的距离 e. 具备扎实的几何推理论证能力。 一、填空题(每空5分,共50分) 1. 如果a,b两数在数轴上的对应点如图所示: 则化简:__________。 2. 已知A,B是数轴上的两点,AB=2,点B表示数-1,则点A表示的数为__________。 3. 已知△ABC的三边之比是,则这个三角形是__________三角形。 4. 已知点A在第二象限,它的横坐标与纵坐标之和是1,则点A的坐标是__________。(写出符合条件的一个点即可) 5. 如图,在梯形ABCD中,AB∥CD,E为CD的中点,△BCE的面积为1,则△ACD 的面积为__________。 6. 已知二次函数的图象如图所示,则由抛物线的特征写出如下含有系数

a,b,c的关系式:①②③④,其中正确结论的序号是__________(把你认为正确的都填上) 7. 如图,AB是半圆的直径,AB=10,弦CD∥AB,∠CBD=45°,则阴影部分面积为__________。 8. 某公司市场营销部的营销人员的个人收入与其每月的销售量成一次函数关系,其图象如图所示,由图中给出的信息可知,营销人员没有销售时的收入是__________元。 9. 如图,矩形内有两个相邻的正方形,面积分别为4和2,那么阴影部分的面积为 __________。 10. 如图,在等腰直角三角形ABC中,∠C=90°,AC=6,D是AC上一点,若 ,则AD的长为__________。

数形结合思想数形结合思想数形结合

数 形 结 合 ———高考解题的一把利刃 山东 胡大波 数形结合思想的实质是将抽象的数量关系与直观的图形结合起来,具有直观、明了、易懂等优越性,如能准确把握,威力巨大.这也是高考考查的重点,让我们看看其在函数中的神奇效果. 一、研究函数的性质 例1 (2005年北京卷13题)对于函数()f x 定义域中任意的1212()x x x x ≠,,有如下结论: ①1212()()()f x x f x f x +=g ;②1212()()()f x x f x f x =+g ; ③1212()()0f x f x x x ->- ;④1212()()22x x f x f x f ++??< ??? . 当()lg f x x =时,上述结论中正确结论的序号是___. 解析:作出图象如图1,由图可知④不正确;而①显然不成立;②为运算律,成立;③表示12x x -与12()()f x f x -同号,由增函数的定义知:()lg f x x =在其定义域上为增函数成立.所以答案为:②③. 点评:本题综合考查函数的概念、图象及性质,选项③侧重考查单调性,选项④考查函数图象,若用代数方法研究,难度较大,通过图象的特征及其变化趋势则容易判断. 二、研究函数的最值 例2 (2006年全国Ⅱ理科12题)函数19 1()n f x x n ==-∑的最小值为( ) . (A)190 (B)171 (C)90 (D)45 解析:绝对值往往是使试题增加难度的“添加剂”.如果试图进行分类讨论,几乎不可能完成,必须另寻妙法!1x -的几何意义是什么?是数轴上的点 x 到点1的距离,那么 12x x -+-就是点x 到点1与到点2的距离之和,如图2,当[1 2]x ∈,时,12x x -+-的最小值为1;又当x =2时,123x x x -+-+-的最小值为2;…,依次类推,当x =10

数形结合思想

数形结合思想 1. 数形结合思想的概念。 数形结合思想就是通过数和形之间的对应关系和相互转化来解决问题的思想方法。数学是研究现实世界的数量关系与空间形式的科学,数和形之间是既对立又统一的关系,在一定的条件下可以相互转化。这里的数是指数、代数式、方程、函数、数量关系式等,这里的形是指几何图形和函数图象。在数学的发展史上,直角坐标系的出现给几何的研究带来了新的工具,直角坐标系与几何图形相结合,也就是把几何图形放在坐标平面上,使得几何图形上的每个点都可以用直角坐标系里的坐标(有序实数对)来表示,这样可以用代数的量化的运算的方法来研究图形的性质,堪称数形结合的完美体现。数形结合思想的核心应是代数与几何的对立统一和完美结合,就是要善于把握什么时候运用代数方法解决几何问题是最佳的、什么时候运用几何方法解决代数问题是最佳的。如解决不等式和函数问题有时用图象解决非常简捷,几何证明问题在初中是难点,到高中运用解析几何的代数方法有时就比较简便。 2. 数形结合思想的重要意义。 数形结合思想可以使抽象的数学问题直观化、使繁难的数学问题简捷化,使得原本需要通过抽象思维解决的问题,有时借助形象思维就能够解决,有利于抽象思维和形象思维的协调发展和优化解决问题的方法。数学家华罗庚曾说过:“数缺形时少直觉,形少数时难入微。”这句话深刻地揭示了数形之间的辩证关系以及数形结合的重要性。众所周知,小学生的逻辑思维能力还比较弱,在学习数学时必须面对数学的抽象性这一现实问题;教材的编排和课堂教学都在千方百计地使抽象的数学问题转化成学生易于理解的方式呈现,借助数形结合思想中的图形直观手段,可以提供非常好的教学方法和解决方案。如从数的认识、计算到比较复杂的实际问题,经常要借助图形来理解和分析,也就是说,在小学数学中,数离不开形。另外,几何知识的学习,很多时候只凭直接观察看不出什么规律和特点,这时就需要用数来表示,如一个角是不是直角、两条边是否相等、周长和面积是多少等。换句话说,就是形也离不开数。因此,数形结合思想在小学数学中的意义尤为重大。 3. 数形结合思想的具体应用。 数形结合思想在数学中的应用大致可分为两种情形:一是借助于数的精确性、程序性和可操作性来阐明形的某些属性,可称之为“以数解形”;二是借助形

学习心得数形结合

数形结合学习心得 低年段数学中的数形结合思想很多。例如:在教学100以内进位加法时,我通过课件演示28根小棒加72根小棒两次满十进一的过程使学生理解相同数位对齐、满十进一的道理。通过多媒体教学,既充分展现数与形之间的内在关系,又激发了学生的好奇心和求知欲,为培养学生数形结合的兴趣提供了可靠的保证。 又例如:在教学有余数的除法时,我是利用7根小棒来完成的教学的。首先出示7根小棒,问能拼成几个三角形?要求学生用除法算式表示拼三角形的过程。像这样,把算式形象化,学生看到算式就联想到图形,看到图形能联想到算式,更加有效地理解算理。 再如:教学连除应用题时,课一始,呈现了这样一道例题:“有30个桃子,有3只猴子吃了2天,平均每天每只猴子吃了几个?”请学生尝试解决时,教师要求学生在正方形中表示出各种算式的意思。学生们经过思考交流,呈现了精彩的答案。 30÷2÷3,学生画了右图:平均分成2份,再将获得一份平均分成3份。 30÷3÷2,学生画了右图:先平均分成3份,再将获得一份平均分成2份。 30÷(3×2),学生画了右图:先平均分成6份,再表示出其中的1份。 在教学中我要求学生在正方形中表示思路的方法,是一种在画线段图基础上的演变和创造。因为正方形是二维的,通过在二维图中的表达,让学生很容易地表达出了小猴的只数、吃的天数与桃子个数之间的关系。通过数形结合,让抽象的数量关系、思考思路形象地外显了,非常直观,易于中下学生理解。

在教学实践中,这样的例子多不胜数。数形结合,其实质是将抽象的数学语言与直观的图形联系起来,使抽象思维和形象思维结合起来,通过对图形的处理,发挥直观对抽象的支柱作用,揭示数和形之间的内在联系,实现抽象概念和具体形象、表象之间的转化,发展学生的思维。数形结合是学生建构知识的一个拐杖,有了这根拐杖,学生们才能走得更稳、更好。

渗透数形结合思想

渗透数形结合思想,提高学生的数形结合能力 新课标指出“使学生获得必要的数学基础知识和基本技能”是高中数学课程的目标之一。我国著名的数学家华罗庚先生曾用“数缺形时少直观,形离数时难入微,数形结合百般好,隔裂分家万事休”形象生动的阐述了数形结合的意义。以下结合自己的教学实践,分别从引导学生直观感受基本的数学概念,亲身探究定理、结论产生的背景及应用等方面渗透数形结合思想,逐步提高学生的数形结合的能力。 在解决数学问题时,根据问题的条件和结论,使数的问题借助形去观察,而形的问题借助数去思考,采用这种“数形结合”来解决问题的策略,我们称之为“数形结合的思想方法”。它的主要特点:数形问题解决;或形数问题解决。也就是说:“以形助数”、“以数赋形”两种处理问题的途径,这本身体现了转化的思想,化归的思想。数形结合的基本思路是:根据数的结构特征,构造出与之相适应的几何图形,并利用图形的特性和规律,揭示其几何意义,使数量关系和空间形式巧妙、和谐地结合起来,并充分利用这种结合,寻找解题思路,使问题得到解决。 一、借助直观图示,理解抽象概念,研究函数的性质,直观体会数形结合思想 在进行人教B版必修1第二章函数的教学时,在初中学生对函数已有了初步的认识,但对用集合语言描述函数的概念,用代数方法研究函数的单调性、奇偶性等性质还是感到困难,因此在教学中我采取用数形结合思想让学生借助直观图示理解抽象概念,自己动手画函数的图象,研究函数的性质。 在讲完函数的概念以后,我出了一道这样的练习题:下列图象中不能作为函数的图象的是()

让学生从形的角度进一步理解函数的概念。 在研究一次函数和二次函数的性质与图象时,由于学生在初中已用描点法作过一次函数和二次函数的图象,因此我先从学生已有知识出发,让学生列表、描点、连线,作出一次函数和二次函数的图象,引导他们先从数的角度认识单调性、奇偶性,对称性,然后再通过图象直观感觉单调性、奇偶性,对称性,让学生深刻体会“数缺形时少直观,形离数时难入微”。 二、借助实验活动,探究直线与平面垂直的判定定理,形象感受数形结合思想 在必修2中1.2.3空间中的垂直关系教学中,我们都知道可以用定义判断直线与平面垂直,但无法验证任意性,故不具有可操作性。于是,为寻求其它可操作的判断方法,做如下实验: 如图1,请同学们准备好一块(任意)三角形的纸片,过的顶点A所在的 直线翻折纸片,得到折痕AD,将翻折后的纸片竖直放置在桌面上(BD、DC与桌面接触) 图1 探究1:折痕AD与桌面垂直吗?为什么?

浅谈数形结合思想的应用

浅谈数形结合思想的应用 ——蒋海朋摘要:数学是在客观上研究数量关系和空间形式的一门科学,用通俗易懂的话来概括就是数学是研究“数”和“形”的一门科学。数相对于形来说更为抽象,形相对于数来说较为直观,在研究学习中,数与形是相辅相成、息息相关的。对于这个问题,本人在结合自己学习的总结以及前人所提供的经验,并且查阅相关资料,对于这个话题做一个简单的分析。文中的例子都是本人在学习中总结的历年高考、中考的试题以及模拟题,有很强的代表性。 关键词:数形结合数学思想应用 1 引言 1.1问题提出的背景 纵观数学发展的历史进程,数学家们早已把“数”和“形”联系在一起。早在公元300年之前,欧几里得的著作《几何原本》,他从几何的角度出发去研究和处理等价的代数问题;笛卡尔利用坐标为根基,通过代数为途径来研究几何问题,进而创立了解析几何学;化圆为方、三等分角、立方倍积这些几何难题都通过代数的方法得以完美解决。 数学往往被分为两大类:代数、几何。虽然他们被分为两类,但他们绝不是相互独立的,反而是密切相关的。很多代数上的问题计算量很大,看似非常复杂,甚至无从下手,但是利用了图形之后就会发现问题迎刃而解,直观的图形很容易反映图形的性质;很多几何问题因为辅助线相对复杂想不到,导致无法进一步研究,但是往往我们利用坐标系能够把几何问题转化成代数问题,同样也做到了化 繁为简。这就是数学上常用的数形结合思想。 1.2问题研究的意义 伟大的数学家华罗庚就曾说过:“数形结合百般好,割裂分家万事休。”这两句诗充分直观得反映了“数”与“形”这两者密不可分的联系。应用数形结合思想来思考问题就是要求我们结合代数的准确论证和图形的直观描述来发现问题的解决途径的一种思想方法。由此可见,数形结合思想对于数学解题方面的应用来说是十分重要的,但老师往往仅仅把它当做一种思想一谈而过,照着课本讲课,没有引导学生进一步思考,导致很多学生都不能具体有序地应用这种思想。 2 数形结合思想的重要地位 2.1使用数形结合思想的意义 数形结合思想无疑是连接“数”和“形”的桥梁,几何的直观形象和数量关系的严谨他们各有优点,在应用过程中有目的有计划地将“数”与“形”结合在一起,根据题目的已知条件,整合“数”和“形”的相关信息,巧妙结合,从而建起它们中间的桥梁,兼取两者之优,能让我们的解题更为轻松。

数学思想方法专题数形结合思想

数学思想方法专题:数形结合思想 【教学目标】 知识目标 数形结合是把数或数量关系与图形对应起来,借助图形来研究数量关系或者利用数量关系来研究图形的性质,是一种重要的数学思想方法。它可以使抽象的问题具体化,复杂的问题简单化。灵活运用数形结合的思想方法,可以有效提升思维品质和数学技能。 能力目标 用好数形结合的思想方法,需要在平时学习时注意理解概念的几何意义和图形的数量表示,为用好数形结合思想打下坚实的知识基础。函数的图像、方程的曲线、集合的文氏图或数轴表示等,是 “以形示数”,而解析几何的方程、斜率、距离公式,向量的坐标表示则是 “以数助形”,还有导数更是数形结合的产物,这些都为我们提供了 “数形结合”的知识平台。 情感目标 在数学学习和解题过程中,要善于运用数形结合的方法来寻求解题途径,制定解题方案,养成数形结合的习惯,解题先想图,以图助解题。 【教学重难点】 重点:对数形结合思想方法的考查包含“以形助数”和“以数辅形”两个方面,代数问题几何化,几何问题代数化。 难点:一些概念和运算的几何意义及常见曲线的代数特征,关键在于恰当应用图形来体现数的几何意义,巧妙运用数的精确性和严密性,来揭示形的某些属性。 【考情分析】 在高考中,利用客观题的题型特点来考查数形结合的思想方法,突出考查考生将复杂的数量关系转化为直观的几何图形来解决问题的意识,而在解答题中对数形结合思想的考查是由“形”到“数”的转化为主。高考题对数形结合思想方法的考查,一方面是通过解析几何或平面向量考查一些几何问题,如何用代数方法来处理,另一方面,有一些代数问题则依靠几何图形的构造和分析辅助解决,历年来高考试卷中的许多试题都富有鲜明的几何意义,运用数形结合思想可迅速做出正确的判断。 【知识归纳】 数形结合思想包含“数形结合”和“形数结合”两方面,“数形结合”就是将代数的问题转化为图形形式的问题,利用图形形式解决问题;“形数结合”就是将图形的问题转化为代数的问题,利用代数的方法解决问题。 应用数形结合的思想,可实现以下类型的数与形的转化: (1)构建函数模型并结合其图象求参数的取值范围; (2)构建函数模型并结合其图象研究方程根的范围,求零点的个数; (3)构建解析几何中的斜率、截距、距离等模型研究最值问题; (4)构建函数模型并结合其几何意义研究函数的最值问题、比较大小关系和证明不等式; (5)构建立体几何模型将代数问题几何化; (6)建立坐标关系,研究图形的确定形状、位置关系、性质等. 【考点例析】 题型1:数形结合思想在集合中的应用 例1.设平面点集{ } 22 1(,)()()0,(,)(1)(1)1A x y y x y B x y x y x ??=--≥=-+-≤??? ? ,则B A ?所表示的平 面图形的面积为( D ) A . 34π B . 35π C . 47π D . 2 π

数形结合思想在初中数学教学中渗透

数形结合思想在初中数学教学中渗透 内容提要:数形结合思想是初中课本中的基本的数学思想,在初中数学教学和解题中起着十分重要的角色。本文结合了本人的一些教学体会,讲述分析了如何充分的利用数形结合思想在教学中的运用以及去解常见数学题目,本文主要分为三个部分来分析:数转化为形,形转化为数,数形结合。使学生充分认识“数”和“形”之间的内在联系,把问题化繁为简,化难为易,使学生在学习数学知识中,充分了解和掌握数形结合这种解决问题的策略和方法。 关键字:数形结合,思想,解题 数形结合思想,就是根据数与形之间的一一对应关系,把抽象的数学语言、数量关系与直观的几何图形、位置关系结合起来,通过“以形助数”或“以数解形”,即通过抽象思维与形象思维的结合,使复杂问题简单化,抽象问题具体化,优化解题途径的思想。[1] 在初中教学中经常用到数形结合思想。如有理数内容体现着数形结合思想。数轴的引入是有理数内容体现数形结合思想的一个重要方面。由于对每一个有理数,数轴上都有唯一确定的点与它对应,因此,两个有理数大小的比较,是通过这两个有理数在数轴上的对应点的位置关系进行的(实数的大小比较也是如此)。相反数、绝对值概念则是通过相应的数轴上的点与原点的位置关系来刻划的。尽管我们学习的是(有理)数,但要时刻牢记它的形(数轴上的点),通过渗透数形结合的思想方法,帮助七年级学生正确理解有理数的性质及其运算法则。 又如应用题内容隐含着数形结合思想。列方程解应用题的难点是如何根据

题意寻找等量关系布列方程,要突破这一难点,往往就要根据题意画出相应的示意图。这里隐含着数形结合的思想方法。例如,北师大版七年级数学上册的第五章第七节课题是“能追上小明吗”,是一个研究行程问题的课题,教学中,老师必须渗透数形结合的思想方法,依据题意画出相应的示意图,才能帮助七年级学生迅速找出等量关系列出方程,从而突破难点。 再如不等式内容蕴藏着数形结合思想。北师大版八年级数学下册第一章内容是“一元一次不等式和一元一次不等式组”,教学时,为了加深八年级学生对不等式解集的理解,老师要适时地把不等式的解集在数轴上直观地表示出来,使学生形象地看到,不等式有无限多个解。这里蕴藏着数形结合的思想方法。在数轴上表示数是数形结合思想的具体体现,而在数轴上表示数集,则比在数轴上表示数又前进了一步。确定一元一次不等式组的解集时,利用数轴更为有效,也让学生理解的更深刻。 函数及其图象内容凸显了数形结合思想。由于在直角坐标系中,有序实数对(x ,y)与点P的一一对应,使函数与其图象的数形结合成为必然。一个函数可以用图形来表示,而借助这个图形又可以直观地分析出函数的一些性质和特点,这为数学的研究与应用提供了很大的帮助。因此,函数及其图象内容凸显了数形结合的思想方法。教学时老师若注重了数形结合思想方法的渗透,将会收到事半功倍的效果。 如果说上述的例子是初中代数的内容体现了数形结合思想,那么初中几何教学中也离不开数形结合思想。如比较两条线段(或两个角)的大小,我们常用的方法是重叠法和度量法,重叠法是几何方法,顾名思义将两条线段(或两个角)放在一起比较长短(大小),度量法是代数方法,即用刻度尺(量角器)测量两条线段的长度(两个角的大小)。体现了数形结合思想。

浅谈数形结合思想在小学数学中的应用

浅谈数形结合思想在小学数学中的应用 摘要 数形结合的思想是一种重要的数学思想方法,就是通过数与形之间的对应和转化来解决数学问题, 利用数形结合能使“数”和“形”统一起来。以形助数、以数辅形, 可以使抽象问题具体化,可以使复杂问题简单化。 关键词 数形结合、思想、应用 一、小学生都是从直观、形象的图形开始入门学习数学 从人类发展的历史来看,具体形象的事物是出现在抽象的符号、文字之前的,人类一开始用小石子,贝壳记下所发生的事情,慢慢的发展成为用形象的符号记事,后来出现了数字。这个过程和小学生学习数学过程有着很大的相似之处。低年级的小学生学习数学,也是从具体的物体开始识数,很多知识都是从具体形象逐步向抽象逻辑思维过渡,但这时的逻辑思维是初步的,且在很大程度上仍具有具体形象性。这方面的例子有有很多,如低年级开始学习识数、学习找规律、学习乘除法,到中年级的分数的初步认识、高年级的认识负数等都是以具体的事物或图形为依据,学生根据已有的生活经验,在具体的表象中抽象出来。 此外,他们往往能在图形的操作或观察中学会收集与选择重要的信息内容;发现图形与数学知识之间的联系,并乐于用图形来表达数学关系。现在的小学课本中很多习题,已知条件不是用文字的形式给出,而是蕴藏在图形中,既是学生喜欢接受的形象,也培养了他们的观察能力和逻辑思维能力。 要让学生真正掌握数形结合思想的精髓,必须有雄厚的基础知识和熟练的基本技巧,如果教师只讲解几个典型习题并且学生会解题了,就认为学生领会了数形结合这一思想方法,这是一种片面的观点。平时要求学生认真上好每一堂课,学好新教材的系统知识,掌握各种图像特点,理解和把握各种几何图形的性质。教师讲题时,要引导学生根据问题的具体实际情况,多角度多方面的观察和理解问题,揭示问题的本质联系,利用“数”的准确澄清“形”的模糊,用“形”的直观了解“数”的计算,从而来解决问题。教学中要紧紧抓住数形转化的策略,通过多渠道来协调知识间的联系,激发学生学习兴趣,并及时总结数形结合在解题中运用的规律性,来训练学生的逻辑思维能力,并提高学生的理解能力和运用水平。 二、利用图形的直观,帮助学生理解数量之间的关系,提高学习效率 用数形结合策略表示题中量与量之间的关系,可以达到化繁为简、化难为易的目的。 “数形结合”可以借助简单的图形(如统计图)、符号和文字所作的示意图,促进学生形象思维和抽象思维的协调发展,沟通数学知识之间的联系,从复杂的数量关系中凸显其最本质的特征。它是小学数学教材的一个重要特点,更是解决问题时常用的方法。 例如:1、小学高年级中所学的,运用分数乘法、除法解决问题。引用人教版小学六年级上册数学书,第二章分数乘法,第二节解决问题,第20页,第二题。

高中数学的数形结合思想方法-全(讲解+例题+巩固+测试)

数形结合的思想方法(1)---讲解篇 一、知识要点概述 数与形是数学中两个最古老、最基本的元素,是数学大厦深处的两块基石,所有的数学问题都是围绕数和形的提炼、演变、发展而展开的:每一个几何图形中都蕴藏着一定的数量关系,而数量关系又常常可以通过图形的直观性作出形象的描述。因此,在解决数学问题时,常常根据数学问题的条件和结论之间的内在联系,将数的问题利用形来观察,提示其几何意义;而形的问题也常借助数去思考,分析其代数含义,如此将数量关系和空间形式巧妙地结合起来,并充分利用这种“结合”,寻找解题思路,使问题得到解决的方法,简言之,就是把数学问题中的数量关系和空间形式相结合起来加以考察的处理数学问题的方法,称之为数形结合的思想方法。 数形结合是一个数学思想方法,包含“以形助数”和“以数辅形”两个方面,其应用大致可以分为两种情形:或者是借助形的生动和直观性来阐明数之间的联系,即以形作为手段,数为目的,比如应用函数的图像来直观地说明函数的性质;或者是借助于数的精确性和规范严密性来阐明形的某些属性,即以数作为手段,形作为目的,如应用曲线的方程来精确地阐明曲线的几何性质。 数形结合的思想,其实质是将抽象的数学语言与直观的图像结合起来,关键是代数问题与图形之间的相互转化,它可以使代数问题几何化,几何问题代数化。在运用数形结合思想分析和解决问题时,要注意三点:第一要彻底明白一些概念和运算的几何意义以及曲线的代数特征,对数学题目中的条件和结论既分析其几何意义又分析其代数意义;第二是恰当设参、合理用参,建立关系,由数思形,以形想数,做好数形转化;第三是正确确定参数的取值范围。 二、解题方法指导 1.转换数与形的三条途径: ①通过坐标系的建立,引入数量化静为动,以动求解。 ②转化,通过分析数与式的结构特点,把问题转化到另一个角度来考虑,如将转化为勾股定理或平面上两点间的距离等。 ③构造,比如构造一个几何图形,构造一个函数,构造一个图表等。 2.运用数形结合思想解题的三种类型及思维方法: ①“由形化数”:就是借助所给的图形,仔细观察研究,提示出图形中蕴含的数量关系,反映几何图形内在的属性。 ②“由数化形”:就是根据题设条件正确绘制相应的图形,使图形能充分反映出它们相应的数量关系,提示出数与式的本质特征。 ③“数形转换”:就是根据“数”与“形”既对立,又统一的特征,观察图形的形状,分析数与式 的结构,引起联想,适时将它们相互转换,化抽象为直观并提示隐含的数量关系。 三、数形结合的思想方法的应用 (一)解析几何中的数形结合 解析几何问题往往综合许多知识点,在知识网络的交汇处命题,备受出题者的青睐,求解中常常通过数形结合的思想从动态的角度把抽象的数学语言与直观的几何图形结合起来,达到研究、解决问题的目的. 1. 与斜率有关的问题 【例1】已知:有向线段PQ的起点P与终点Q坐标分别为P(-1,1),Q(2,2).若直线l∶x+my+m=0

浅谈数形结合思想如何教学

浅谈数形结合思想如何教学 数形结合的思想,是把函数、坐标、几何图形作为同一个数学系统的一种思想,如果用这种思想来想问题,这三者之间可以通过某种需要相互转换,数形结合思想是简化数学问题的一种重要的思想.高中数学教师要合理引导学生理 解和运用数形结合的思想,以便让学生能够更灵活地解决数学问题.本次研究将说明高中数学教师在教学中培养学生数 形结合思想的方法. 一、强化学生的数形结合理念 通常高中生在学习的过程中已经建立了数形结合这个 概念,然而高中数学教师必须要看到,很多学生的数形结合理念仅仅只建立在一个观念上,即他们理解有数形结合是一种数学思路,然而遇到数学问题的时候,学生可能就会忘记数形结合这种解决数学问题的思想。数学教师要在数学教学中强调数形结合这个理念,让学生只要遇到数学问题,就能联想到可以用数形结合这种解决问题方法的数学思路. 以数学教师引导学生做习题1为例:已知一个有向线段PQ,它的起点P的坐标为P(-1,1),终点的座标Q为(2,2),如果有一条直线x十my+m=0与该有向线段相交,那么实数m的取值范围为多少?

学生遇到这一类问题时,一般会认为这种题适合用坐标图解决问题,于是照题意绘出图1,然而教师要让学生意识到图1,既可以转化为两个斜线方程式的相交问题,也可以将它理解为图形角度的问题,学生只有从多种角度看问题,解题的思路才更宽广.如果以最简思路来想问题,可将此题视为斜率 解:将x十my+m=0转化为点斜式方程y+l:=-1/m(x-0),由此可得直线x十my+m =0过定点M(0,-1),且它的斜率为-1/m 由于直线x+my+m=0与PQ相交,那么由图1可知当直线x+ my +m =0过点P,Q时,可取得边界值,因此可得:如果设直线x+my +m =0的斜率为k1,那么可以得到k1∈(一∞,一2] U[3/2,+∞), 即解一1/m≤一2或一1/m≥3/2,从而得到 教师可以从这一题引导学生学会从宏观的视角看问题,让学生了解到函数、坐标图、几何图形这三样事物的特点,学生了解了这三样事物的特点以后,就可以根据自己的需要灵活地做数形转换. 教师如果能够引导学生具备灵活的数形转换思路,学生就能够用更宏观的思维看待数学问题. 二、提高学生的数形结合技巧 当学生意识到数形结合思路的重要性,心中已经建立起

浅谈数形结合思想方法的渗透

浅谈数形结合思想方法的渗透 数形结合思想是数与形之间的对应关系,通过数与形的相互转化,将抽象的数学语言与直观的图形结合起来解决问题的思想方法,数形结合思想是数学中最重要、最基本的思想,是解决许多数学问题的有效思想,利用数形结合能使“数”和“形”统一起来。以形助数,以数辅形,可以使许多数学问题变得简易化。华罗庚教授对此有精辟概述:“数无形,少直观;形无数,难入微”。那么如何在教学中渗透数形结合的思想。下面谈谈自己的看法: 一、教师要深入研究教材,有效渗透数形结合 小学数学内容中,有相当部分的内容是计算问题,计算教学要引导学生理解算理,算理就是计算方法的道理,学生不明白道理又怎么能更好的掌握计算方法①?在学生获得知识和解决问题的过程中能有效地引导学生经历知识形成的过程,让学生在观察、对比、分析、抽象、概括的过程中看到数学知识蕴涵的思想。如一年级下册“两位数加减一位数和整十数“35-2和35-20内容时,教师可提出问题,这两题怎么计算?让学生说出算法,再根据学生的回答分别写出支形图,并写出想的过程,然后进一步追问:“有没有不同的算法?”激发学生思考,开拓学生的学习思维。最后进一步问:计算35-2,能不能先用十位上的3减2等于1,结果35-2等于15对吗?让学生思考讨论,产生思维的碰撞,让学生的思维碰撞出智慧的火花。接下来让学生用摆小棒验证,教师可充分利摆小棒,使学生明白:因为35中的3表示3个十,5表示5个1,计数单位不同,所以不能用十位上的3减2,可以用5个1减2个1等于3个1,它们的计数单位都是1,再和3个十合并起来等33。通过摆小棒有效地渗透数形结合,使问题简明直观。教师要深入研究教材,弄清编排的意图,吃透教材,才能用好教材,有效渗透数形结合思想,彰显了数学学习的价值,通过摆小棒这个活动让学生感受到简单推理的过程,获得一些简单推理的经验就可以了。在教师的引导下,让学生明白这两题是把相同数位相加减的算理,这是教材编排的意图,也是本节课的重点。学生不明白道理又怎么能更好的掌握计算方法?在教学时,应以清晰的理论指导学生理解算理,在理解算理的基础上掌握计算方法,正所谓“知其然,知其所以然”。渗透数学思想,路漫漫兮,任重而道远,作为孩子们的导师,我们应该充分根据孩子们的发展规律,适当地利用教材,在教学过程中巧妙地渗透思想,培

相关文档
相关文档 最新文档