文档库 最新最全的文档下载
当前位置:文档库 › 生命科学研究中的光镊技术

生命科学研究中的光镊技术

生命科学研究中的光镊技术
生命科学研究中的光镊技术

光镊原理

1.1光镊技术简介 光镊是以激光的力学效应为基础的一种物理工具,是利用强会聚的光场与微粒相互作用时形成的光学势阱来俘获粒子的【4】。1969年,A. Ashkin等首次实现了激光驱动微米粒子的实验。此后他又发现微粒会在横向被吸入光束(微粒的折射率大于周围介质的折射率)。在对这两种现象研究的基础上,Ashkin提出了利用光压操纵微粒的思想,并用两束相向照射的激光,首次实现了对水溶液中玻璃小球的捕获,建立了第一套利用光压操纵微粒的工具。1986年,A. Ashkin等人又发现,单独一束强聚焦的激光束就足以形成三维稳定的光学势阱,可以吸引微粒并把它局限在焦点附近,于是第一台光镊装置就诞生了【5,6】。也因此,光镊的正式名称为“单光束梯度力势阱” (single-beam optical gradient force trap)。 由于使用光镊来捕获操纵样品具有非接触性、无机械损伤等优点,这使得光镊在生物学领域表现出了突出的优势。这些年来,随着研究的深入和技术的不断完善,光镊在生物学的应用对象由细胞和细胞器逐步扩展到了大分子和单分子等。目前,光镊常被用来研究生物过程中的细胞和分子的运动过程【7-10】,也常被用来测量生物过程中的一些力学特征【11-14】。 1.2光镊的原理与特点 众所周知,光具有能量和动量,但是在实际应用中人们经常利用了光的能量,却很少利用光的动量。究其原因,这主要是因为在生活中我们接触到的自然光和照明光等的力学效应都很小,无法引起人们可以直接感受到或观察到的宏观效应。而科学家们利用激光所具有的高亮度和优良的方向性,使得光的力学效应在显微镜下显现了出来,在这里我们要介绍的光镊技术正是以这种光的力学效应为基础发展起来的。 1.2.1光压与单光束梯度力光阱 光与物质相互作用的过程中既有能量的传递,也有动量的传递,动量的传递常常表现为压力,简称光压。1987年,麦克斯韦根据电磁波理论论证了光压的存在,并推导出了光压力的计算公式。1901年,俄国人П.Н.列别捷夫用悬在细丝下的悬体实现了光压的实验测量【15】。此后,美国物理学家尼克尔、霍尔也

大学专业介绍之生物科学类1(生物科学、生物技术、生物信息学)

大学专业介绍之生物科学类1(生物科学、生物技术、生物 信息学) 1.生物科学 本专业培养具有生物科学学科的基本理论、基本知识、基本技能,同时掌握生物科学的理论前沿、应用前景、最新发展动态和应用能力的技术人才,为我国生态建设及植物资源利用和中药资源产业化提供能从事教学、技术研究、生产管理、产品开发等方面的高级技术人才。 业务培养要求:本专业学生主要学习生物科学方面的基本理论、基本知识,受到基础研究和应用基础研究方面的科学思维和科学实验训练,具有较好的科学 1. 2.掌握动物生物学、植物生物学、微生物学、生物化学、细胞生物学、遗传学、发育生物学、神经生物学、分子生物学、生态学等方面的基本理论、基本知 3.

4. 5. 6.掌握资料查询、文献检索及运用现代信息技术获取相关信息的基本方法;具有一定的实验设计,创造实验条件,归纳、整理、分析实验结果,撰写论文, 主干课程:植物生物学、动物学、微生物学、生物化学、生物化学实验技术、细胞生物学、遗传学、分子生物学、植物生理学、生态学、天然产物化学、药用植物资源学、中药材生产质量控制、中药材加工学、生物制药等。 就业方向与深造:毕业后可在科研机构、学校从事药用植物和植物生态与资源利用科学研究和教学工作;在企、事业单位从事技术研究、产品开发和生产管理等工作。 2.生物技术 本专业是以生物化学和分子生物学为基础、应用于现代生物技术产业为特色的理科类专业。培养系统掌握现代生命科学知识、生物技术的基本理论和基因工程、细胞工程、发酵工程、生物信息及数据分析等技能,具备良好的科学素养和创新精神的高级专门人才。 主干课程:普通生物学、生物化学与分子生物学、微生物学、细胞生物学、遗传学、基因工程原理与技术、酶工程原理及技术、细胞工程原理与技术、微生物与发酵工程,生物信息学等。 业务培养要求:本专业学生主要学习生物技术方面的基本理论、基本知识,受到应用基础研究和技术开发方面的科学思维和科学实验训练,具有较好的科学

《光镊原理及应用》课程教学大纲

《光镊原理及应用》课程教学大纲 一、课程基本信息 课程中文名称:光镊原理及应用 课程英文名称:Optical tweezers theory and application 开课学期:2 学时:16 学分:1 二、课程目的和任务 激光生物学是多学科交叉的新兴学科,其中以激光微束光阱效应为基础的光镊技术是生命科学和生物工程研究的有力工具,已成为当前生物物理学中新方法和新仪器的研究热点之一。是光子技术和生命科学相互交叉与渗透而形成的一门新的边缘学科,课程教学目标:让光镊在生命学科及其他应用领域中的作用与地位,逐步树立科学的世界观,促进综合素质的提高;帮助学生获得光镊的基本知识,掌握光镊相关技术。通过课程小论文与研讨,让学生了解本学科的发展前沿,培养学生的创造型思维;开放式的教学,提高学生的综合分析和解决问题的能力。 三、教学内容与基本要求 教学主要内容及对学生的要求: 教学主要内容 第一章 光镊技术的产生与发展 光镊技术的理论研究、光镊技术的应用研究 国内外光镊技术的研究现状 第二章 光镊技术及其基本原理 光镊技术的描述、光镊的基本原理、光辐射压力、 梯度力和散射力、二维光学势阱、基于激光微束的三维光学势阱 第三章 光镊的理论分析与计算方法 光镊理论计算的意义、粒子分类与计算方法、光阱力与光操纵束缚条件第四章 光镊的系统构成与技术性能

传统光镊的原理、系统构成、激光器和显微镜的选取、多光镊技术 第五章 光纤光镊技术 远场光纤光镊、近场光镊 第5章 光镊技术的发展应用 光镊技术在生物学方面应用、光镊在分子生物学领域的应用、光镊与其它技术的结合应用 对学生的要求: 1、 对光镊原理方法有明确认识。 2、 对光镊系统的性能、参数能深入了解,并能自由运用。 3、 能够了解光阱力的计算方法。 4、 有查阅外文资料的能力。 五、教学设计及方法 教学方式 1) 教学与科研结合,激发学生的求知欲 2)专家讲授与教师专题讲座相结合,拓展学生知识面 3)理论与实践结合,加强学生实验技能的训练 4)中、英双语教学相结合,提高学生国际交流能力 5)撰写专题调研报告,培养学生的自主创新能力 教学手段 将多种现代的教学手段运用于课程教学之中,多方位多途径地展教学活动,以激发学生学习兴趣,提高教学效果。 1)将多媒体教学与板书相结合,以解决学时少内容多的矛盾 2)课件与电视录像片相结合,以提高学生的自学能力 3)丰富的网络资源为学生学习提供良好的软环境 六、调查、参观、实践、实验内容 七、主要参考资料 [1]《光镊原理、技术和应用》李银妹编译中国科学技术大学出版社1996 [2]《时域有限差分法FDTD Method 》 高本庆 国防工业出版社.1995年 [3][《非均匀介质中的场与波》美]Weng Cho Chew 著聂在平,柳清伙译电子工业出版社,1992年 [4] Ashkin A. Optical trapping and manipulation of single cells using infrared laser beams. Nature, 1987, 33: 256-

生命科学

生命科学三处 生命科学三处包括生物化学与分子生物学、遗传学、细胞生物学、发育生物学和免疫学等4个一级学科,集中了生命科学最基础和最前沿的研究,是生命科学最活跃的研究领域之一。生命科学发展到今天,学科的界限逐渐融合,分子生物学、细胞生物学、遗传学等已经密不可分。分子生物学在微观层次对生物大分子的结构和功能,特别是基因研究上取得突破后,正深入到在分子水平上对细胞活动、发育、遗传和进化进行探索。基因、蛋白质、细胞、发育和进化研究形成基础生物学研究的一条主线。另一方面,遗传、细胞学、免疫学等从分子、细胞到整体不同层次水平的研究,其他领域如数学、物理、信息科学等多学科向生命科学的交叉和相互渗透、复杂系统理论和非线性科学的发展,也使得基础生物学研究在思维和方法论上从分析走向综合,或者分析与综合结合,体现了整合生物学的思想。此外,新技术和新方法的建立和引入,如生物芯片技术、蛋白质组学方法、结构基因组方法、各种质谱、波谱方法、单分子技术、生物信息学等,在基础生物学研究中特别是功能基因组和蛋白质的研究中发挥了越来越重要的作用。 生物化学与分子生物学的对象是参与生命活动过程的生物大分子的结构与功能。研究蛋白质等生物大分子具有生物功能的结构基础以及生物大分子之间相互识别的结构是生物化学学科重要领域;核酸特别是non-coding RNA的基因和功能、酶的催化和调节机制、膜蛋白和膜脂的相互作用、糖蛋白和糖复合物的结构功能等也是生物化学学科所关注的重要课题。 人类基因组计划的实施及相关模式生物基因组研究的开展,对生命科学尤其是遗传学的发展产生了巨大的影响,极大地促进了遗传学研究及生命科学其他学科的发展。功能基因组学是遗传学研究重要的方面;另外涉及基因表达调控规律、多基因、多因素影响的遗传学问题等仍是遗传学研究的重要课题;针对基因组研究产生的海量数据,发展生物信息学方法也是遗传学面临的新课题。 现代分子生物学、细胞生物学等相关学科的发展也极大促进了免疫学的发展。分子、细胞与整体水平的研究,以及通过对机体免疫系统、神经与内分泌系统等相互关系的研究,不断深化了对免疫系统的了解,丰富了对机体内环境调节机制的认识。现代免疫学的研究转而也极大地促进了相关学科的发展,尤其是在基础医学、临床医学和预防医学领域,免疫学科的研究揭示了某些疾病的发病机理,并为疾病的诊断和防治提供了理论基础。 生物化学和分子生物学曾经是生命科学的前沿和最活跃的学科。近年来由于分子生物学的技术和方法不断为生命科学其他领域广泛运用,使本学科的资助越来越侧重于蛋白质等生物大分子及其复合物的三维结构与功能研究方面。 蛋白质是生物功能的体现者,蛋白质的结构及其运动是其发挥生物功能的基础。因此蛋白质结构与功能的研究是生物化学领域的重要资助方向。人类基因组计划的实施,以及其后的功能基因组的研究,也对蛋白质的研究提出了新的课题,以蛋白质晶体学和NMR测定为特点的结构生物学,高通量、大规模研究蛋白质结构和功能,如结构基因组学、蛋白质组学等已经成为本学科的重要研究方面。 DNA、RNA等作为遗传信息分子,研究其本身的结构及与蛋白质的相互作用是该领域更基础的课题;基因表达调控以及RNA选择性剪接、RNA水平的编辑、特别是non-codingRNA,如snRNA在剪接体功能、snoRNA在细胞核内参与转录调控等方面仍有许多问题值得研究。目前国内RNA的研究队伍偏小,应予以扶植和倾斜。 膜蛋白的结构与功能及膜蛋白与膜脂的相互作用是本学科生物膜研究的重点。但由于生物膜体系复杂,研究难度较大,国内研究队伍比较薄弱;多糖和糖复合物的研究也是当前生

生命科学与生物技术

生命科学与生物技术 姓名:谢新发班级:大06数学1班学号:43号 摘要: 当今世界,科学技术发展突飞猛进,新兴学科、交叉学科不断涌现,科技进步对经济社会的影响及作用显得日益广泛、深刻。伴随着信息科技革命的浪潮,生命科学和生物技术的未来也展现出其不可限量的前景。越来越多的人们已经认识到,一个生命科学的新纪元即将开始,并将对科技发展、社会进步和经济增长产生极其重要而深远的影响。生命科学和生物技术将会极大地应用于国家的农业、工业和安全。应当说,生命科学和生物技术及其产业的发展为我国提供了一次科技创新和社会生产力实现跨越式发展的重大战略机遇。 关键词:生命科学生物技术现状前景对策 一、当代生命科学与生物技术发展的现状和前景 无论是科技界还是产业界,都基本认同这样一个重要判断:在新的世纪里,生命科学的新发现,生物技术的新突破,生物技术产业的新发展将极大地改变人类及其社会发展的进程。日益成熟的转基因技术、克隆技术以及正在加速发展的基因组学技术和蛋白质组技术、生物信息技术、生物芯片技术、干细胞组织工程认知与神经科学等关键技术,正在推动生物技术产业成为新世纪最重要的产业之一,深刻地改变人类的医疗卫生、农业、人口和食品及生物安全状况。尽管世界各国对高科技领域范围的界定不完全相同,但几乎无一例外地将生命科学和生物技术放在重要位置。 进入21世纪后,生物技术产业显示出其强劲的发展势头,成为当今高技术产业发展最快的领域之一。2002年美国在生物技术领域投入研究开发资金已高达157亿美元。日本政府2002年已明确提出生物技术立国战略,强调把“科研重点转向生命科学和生物技术”。欧盟已成立生物技术委员会。在软件领域成就斐然的印度,早在1995就提出“人类基因组——印度起点”研究计划,明确提出通过发展生物产业实现经济结构的多元化。这些都表明,世界上许多国家已把发展生命科学、生物技术及其产业作为赢得未来竞争的战略选择。 目前,生命科学的研究热点仍然集中在基因组科学、蛋白质科学、认知与神经科学等领域。继2000年人类基因组计划完成之后,水稻、疟原虫、蚊子和老鼠的全部DNA序列测定也在2002年完成,这些研究成果都直接与粮食生产和人类健康有关。老鼠和河豚鱼基因序列的测定,将可能为人类提供关于脊椎动物进化的重要线索。特别是科学家们已经把目光投入到功能基因组学(Functional Genomics)和蛋白质组学(Proteomics)这两个极富挑战性的领域,这将带来更多与人类自身发展密切相关联的重大研究成果。 生物技术方面的进展则更为迅速,基因工程、转基因技术、纳米生物技术等等,将大大加快基因工程药物和疫苗的研制,以及推进对重大疾病新疗法的研究进程。总体来看,生物技术目前仍主要应用于医药和农业,但在食品、环保、能源等行业也有广阔的应用前景。据统计,全球生物药品市场规模2000年为300亿美元,预计2010年将达到9000亿美元。在转基因技术方面,尽管人们对基因改造生物的讨论和疑虑仍然存在,但2007年全球23个国家种植了1.143亿公顷转基因农作物,比2006年增长12%。随着人类基因组图谱的破译,将有力地促进生物药物的研究与开发。到2020年,利用生物技术研制的新药可能将达到3000种左右。这将对提高人类的医疗水平和健康水平产生极为重要的影响。 值得强调的是,当代科学技术发展正在呈现出前所未有的技术融合趋势。特别是生物技术与其他高技术的融合,形成了生物芯片、生物光电、生物传感器等高技术领域,产生了生物技术群。比如,生物芯片技术的开发和运用,将在生物学和医学基础研究、食品、农业、环保等领域中开辟一条全新的道路,改变生命科学的研究方式,革新医学诊断和治疗。科技发展的这一突出现象以及由此带来的产业深层次变革,已经引起许多国家的高度关注。

光镊原理浅析

光镊原理浅谈 岑学学 光镊技术由来已久,阿瑟·阿什金(Arthur Ashkin )在1986年就发明了第一代光镊。经过30多年的发展,光镊技术已经越来越成熟,并应用在生物学、物理学、医学等领域。这里我们将尽量通俗地介绍光镊的原理。 光镊,简单来讲,就是用激光来俘获、操纵、控制微小粒子的技术。这微小粒子可以是小水珠,活细胞,生物大分子等。当激光打到小粒子的时候,粒子就被光“吸住”了,并且会被吸到光强最强的地方,也就是焦点处,移动光束,就可以移动粒子。 那么,粒子为什么会被吸到光强最强的地方并被束缚住呢? 光与物质是可以相互左右的。一柱水喷我们身上,或者一阵风迎面吹来,我们都能感觉到些许压力,具有波粒二象性的光自然也一样会对我们产生压力,只不过这个力很小很小而已,这就是光压。而在某些情况下,光还能对物体产生拉力,这样就形成了能束缚粒子的一个“陷阱”,通常被称为势阱。那么势阱又是如何产生的呢?我们需要先来复习一些中学的物理知识---动量守恒定律。

如图,有两个小球,铜球有一个初速度,动量为p1,钢球则是静止的,动量为p2=0。把这两个小球看作一个系统,那么这个系统的初始动量就是p=p1+p2。

铜球撞上钢球后,它们各自的速度都发生了变化,动量也变了。但是系统的动量是不变的,还是等于p,这就是动量守恒定律。 我们回来看光束和透明小球组成的系统,如图,光束有一个动量,而小球则是静止的,动量为0,而光束的动量是水平的,系统在竖直方向上的动量为0. 当光束照射到小球但不通过中心的时候,小球会使光线折射,如图。

这时光束在竖直方向上有了一个向下的动量。为了使系统的动量守恒,小球必须有一个向上的动量,这个动量就把小球“吸”向光速的轴线。 如果小球在光束的轴线上但在焦点之外,那小球就会使光束汇聚,如图。

2018上海高中学业水平考试生命科学生物等级考真题卷

上海市2018学年度等级考监控测试 生命科学试卷 考生注意: 1.试卷满分100分,考试时间60分钟。 2.本考试分设试卷和答题纸。试卷包括两部分,第一部分全部为选择题,第二部分为综合分析题,包括填空题、选择题和简答题等题型。 3.考生应用2B铅笔、钢笔或圆珠笔将答案直接写在答题纸上 一.选择题(共40分,每小题2分,每小题只有一个正确答案) 1. 图1为丙氨酸结构式,依据氨基酸结构通式,判定他的R基是() A. -H B. -NH 2 C. -COOH D. -CH 3 2. 我国科学家钟杨已保存种子4000万种,他的团队贡献属于保护生物多样性的措施() A.就地保护 B.迁地保护 C.离体保护 D.异地保护 3. 图2为某动物细胞周期中各期时长,该细胞分裂间期时长为() A. 1h B. 4h C. 12h D. 21h 4. 使用显微镜目镜测微尺在低倍镜10X下测量变形虫,测得虫体长占20格,转换高倍镜40X虫体所占格数为() A. 10格 B. 20格 C. 40格 D. 80格 5. 表1为某同学设计的实验,该实验结果可以证明酶() 表1 步骤1号试管2号试管 1加淀粉液2ml加淀粉液2ml 2加充足淀粉酶加充足脂肪酶

3加碘液加碘液 现象不变色变蓝 A.具有高效性 B. 具有专一性 C. 本质为蛋白质 D. 本质为RNA 6.为一个基因型AaBb的土豆,将其块茎埋入土中,其后代基因型为() A. AaBb B. AaBB C. AABb D. aaBb 7.如图3是人体内物质X和Y的代谢示意图,以下表述正确的是() A.①表示糖酵解 B.物质Y是丙酮酸 C. Z表示卡尔文循环 D. 物质X是脂肪 8.发财树浇水太多容易导致烂根,烂根后植物能检测出() A.乙醇与CO 2 B. 仅CO 2 C. 仅O 2 D. 仅H 2 O 9.吸收外周组织中多余胆固醇并运到肝脏的脂蛋白主要是() A.乳糜微粒CM B. 高密度脂蛋白HDL C. 低密度脂蛋白LDL D. 极低密度脂蛋白VLDL 10. 小萌正在参加百米赛跑,下列状况中符合此时身体情况的是() A. 支气管扩张,心跳加快 B. 支气管收缩,心跳加快 C. 支气管扩张,心跳减慢 D. 支气管收缩,心跳减慢 11. 图4是某植物细胞有丝分裂的光学显微镜照片,该细胞刚完成() A. 细胞核分离 B. 染色单体分离 C. DNA双链解开 D. 同源染色体分离

公元年公元年生命科学发展大事记

生命科学发展大事记 公元1600年~公元1839年 公元1609年 ●意大利物理学家、天文学家G.伽利略制造一台复合显微镜,并用于观察昆虫的复眼。公元1628年 ●英国医生、解剖学家W.哈维所著的《动物心血运动的研究》一书出版,建立血液循环 理论,奠定了近代医学和生理学的基础。 公元1660年 ●意大利解剖学家M.马尔皮基观察到蛙肺里连接动脉和静脉的毛细血管,证实了哈维的 血液循环理论。 公元1665年 ●英国物理学家R.Hooke(R.胡克)在显微镜下观察软木切片,发现蜂窝状小室,称之为 “Cell”,并发表著作《显微摄影》描述之。 公元1668年 ●意大利医生F.雷迪通过蝇卵生蛆的对比实验,为反对自然发生说提供了第一个证据。公元1675年 ●荷兰人A.van 列文虎克发明了显微镜。 公元1675年 ● A.van 列文虎克用自制的、当时分辨率最高的显微镜进行了广泛观察,发现了由种种 活着的“小动物”组成的微生物世界,同时也发现了人的精子。 公元1682年 ●英国植物学家N.格鲁编著的《植物解学》出版,其中也包括植物生理学的研究成果。公元1686年 ●英国博物学家J.雷所著《植物史》第一卷出版,以后继续出版第二、三卷,其中讨论了 种的定义。 公元1727年 ●中国医学家俞茂鲲在《痘科金镜赋集解》中记载,人痘接种术起于明朝隆庆年间(1567~

1572);《医宗金鉴》(1742)介绍了痘衣、痘浆、水苗、旱苗四种方法。据俞正燮(1775~1840)在《癸巳存稿》中记载,1688年(清康熙二十七年)俄国已派医生来学“人痘法”。公元1735年 ●瑞典植物学家Linne C.V.(C.von林奈)所著的巨著《自然系统》第一版出版,首创物 种二名法,把自然界的植物、动物、矿物、分成纲、目、属、种,实现了植物与动物分类范畴的统一,在全世界得到普遍承认与推广。 公元1761年 ●科尔鲁特以早熟的普通烟草和晚熟的心叶烟草杂交获得了品质优良的早熟杂种一代。公元1770年~公元1774年 ●氧气的发现,经历了一个较为漫长的曲折历程。造成这种曲折的原因尽管是多方面的, 但主要还是发现者本人的主观因素所造成的。因此,总结这一深刻教训,可给后人留下许多有益的历史启示。 人类关于氧气的研究,可以追溯到遥远的古代。据史书记载,公元8世纪,中国就曾经对大气进行过研究,并把大气分为阴阳两部分。到17世纪,罗伯特·波义耳(R. Boyle,1627-1691)在进行抽气机与燃烧实验时,发现了一些奇妙有趣的现象。在真空中,火药环只在受热的地方才燃烧,但一通入空气,立刻全部燃烧。这些燃烧现象,使波义耳得出结论:“空气中有一些活性物质不是被磷的烟雾消耗掉,就是被它驯化”。 这给人们以启发,那就是空气中含有两种截然不同的气体。此后,R. 虎克(R. Hooke,1635-1703)也做了类似的燃烧实验,并得出结论,认为空气中存在一种可以溶解可燃物体自身的东西。 罗伯特·波义耳和虎克的实验,对发现氧气都是极为有益的。只要沿着这个正确的思路去寻找空气中那种具有活性的物质是什么?氧气就会很顺利地被发现。但科学发现的道路是曲折的。在通往客观真理的征途上,遇到任何一点障碍,都可能使科学家犹豫不前,而大大推迟科学发现的时间。 在氧气发现的过程中,最大的障碍,就是“燃素说”的提出。它使一些科学家步入歧途,茫然而不能自拔。“燃素说”是英国人乔治.恩斯特.史塔尔继承了约翰.约阿希姆.帕克的《地下的自然哲学》中的学说,并综合了各家观点,于1703年较系统地阐述和发挥为完整理论的。史塔尔认为,空气中有一种可燃的油状土,即为燃素。史塔尔所说的燃素是“火质和火素而非火本身”,燃素存在于一切可燃物体中,在燃烧时,快速逸出。 燃素是金属性质、气味和颜色的根源。它是火微粒构成的火元素。按照“燃素说”的观点,

生物科学,生物技术,生物工程的区别与联系

生物科学 业务培养目标:本专业培养具备生物科学的基本理论、基本知识和较强的实验技能,能在科研机构、高等学校及企事业单位等从事科学研究、教学工作及管理工作的生物科学高级专门人才。 业务培养要求:本专业学生主要学习生物科学方面的基本理论、基本知识,受到基础研究和应用基础研究方面的科学思维和科学实验训练,具有较好的科学素养及一定的教学、科研能力。 毕业生应获得以下几方面的知识和能力: 1.掌握数学、物理、化学等方面的基本理论和基本知识; 2.掌握动物生物学、植物生物学、微生物学、生物化学、细胞生物学、遗传学、发育生物学、神经生物学、分子生物学、生态学等方面的基本理论、基本知识和基本实验技能; 3.了解相近专业的一般原理和知识; 4.了解国家科技政策、知识产权等有关政策和法规; 5.了解生物科学的理论前沿、应用前景和最新发展动态; 6.掌握资料查询、文献检索及运用现代信息技术获取相关信息的基本方法;具有一定的实验设计,创造实验条件,归纳、整理、分析实验结果,撰写论文,参与学术交流的能力。 主干学科:生物学 主要课程:动物生物学、植物生物学、微生物学、生物化学、细胞生物学、遗传学、发育生物学、神经生物学、分子生物学、生态学等 主要实践性教学环节:包括野外实习、毕业论文等,一般安排10周~20周。 主要专业实验:动物生物学实验、植物生物学实验、微生物学实验、细胞生物学实验、遗传学实验、生物化学实验、分子生物学实验等 修业年限:四年 授予学位:理学学士 生物技术

业务培养目标:本专业培养具备生命科学的基本理论和较系统的生物技术的基本理论、基本知识、基本技能,能在科研机构或高等学校从事科学研究或教学工作,能在工业、医药、食品、农、林、牧、渔、环保、园林等行业的企业、事业和行政管理部门从事与生物技术有关的应用研究、技术开发、生产管理和行政管理等工作的高级专门人才。 业务培养要求:本专业学生主要学习生物技术方面的基本理论、基本知识,受到应用基础研究和技术开发方面的科学思维和科学实验训练,具有较好的科学素养及初步的教学、研究、开发与管理的基本能力。 毕业生应获得以下几方面的知识和能力: 1.掌握数学、物理、化学等方面的基本理论和基本知识; 2.掌握基础生物学、生物化学、分子生物学、微生物学、基因工程、发酵工程及细胞工程等方面的基本理论、基本知识和基本实验技能,以及生物技术及其产品开发的基本原理和基本方法; 3.了解相近专业的一般原理和知识; 4.熟悉国家生物技术产业政策、知识产权及生物工程安全条例等有关政策和法规; 5.了解生物技术的理论前沿、应用前景和最新发展动态,以及生物技术产业发展状况; 6.掌握资料查询、文献检索及运用现代信息技术获取相关信息的基本方法;具有一定的实验设计,创造实验条件,归纳、整理、分析实验结果,撰写论文,参与学术交流的能力。 主干学科:生物学 主要课程:微生物学、细胞生物学、遗传学、生物化学、分子生物学、基因工程、细胞工程、微生物工程、生化工程、生物工程下游技术、发酵工程设备等 主要实践性教学环节:包括教学实习、生产实习和毕业论文(设计)等,一般安排10周~20周。 主要专业实验:微生物学实验、细胞生物学实验、遗传学实验、生物化学实验、分子生物学实验、生物技术大实验等 修业年限:四年 授予学位:理学学士

第五组——光镊技术的新应用剖析

光镊技术的新应用 纪美伶,白中博,王娜,马学进(西安交通大学生物医学工程) 摘要激光光镊自从1986年发明以来,作为一种无直接接触、无损伤、可产生和检测微小力以及精确测量微小位移的物理学工具,在生命科学等多个领域得到了广泛的应用。本文从光镊的诞生出发,简要讨论了光镊的原理,光镊装置的基本结构,并简要介绍了各个种类光镊的独特功能以及基于光镊的一些新技术,进而对光镊技术及其在生命科学中的应用现状和进一步发展作了评述和讨论,阐述了光镊在生命科学研究中的潜在地位和巨大的发展前景。关键词光镊;生命科学;原理;基本结构;应用现状;发展 New Applications of Optical Tweezer Ji Mei-ling,Bai Zhong-bo,Wang Na,Ma Xue-jin Abstract The optical tweezer technique has emerged as a flexible and powerful tool for exploring a variety of scientific processes such as life science since it was invented in 1986. From the birth of the optical tweezer, this paper will briefly discuss its working principle, its basic structure and introduce some kinds of optical tweezers with novel features or some new technologies based on it. Then its recent developments on both the technology and applications in life science will be reviewed. It is shown that optical tweezer will have great potential in life science. Key words:optical tweezer; life science; principle; basic structure; application; development 光镊简介 一百年前,爱因斯坦提出的光量子学说最终导致了激光的诞生,20世纪60年代激光器的发明,使光与物质相互作用产生的力学效应真正走向实际的应用。20世纪70年代,美国贝尔实验室的学者Arthur Ashkin等人[1]发现了激光具有移动微粒的能力,并首先提出利用光压操控微小粒子的概念:在氩离子激光器发出的TEM00模式激光束作用下,硅小球在横向梯度力的作用下陷入光束中心,然后在光束散射力的作用下沿着光束传播的方向加速运动;还发现了折射率低于周围介质的粒子(气泡)会被激光束排斥,同时也会被激光束沿着激光传播的方向加速。其后Ashkin 利用两束相对照射的TEM00模式激光去捕获高折射率粒子,发现粒子在激光横向梯度力的作用下陷入光束中心,然后沿着光束传播的方向运动到一个稳定的平衡点停止下来,这样粒子就被两束相对照射的激光束稳定捕获了。这时它还不能称之为光镊,因为只能实现横向二维捕获,而在轴向上由于强烈的散射力的存在无法实现捕获。 1971 年,Ashkin 和Dziedzic 第一次使用了单光束捕获粒子[2]。他们利用一束聚焦的TEM00模式激光从下向上照射粒子,在轴向散射力的作用下粒子被顶起,同时粒子受到向下的重力作用。当粒子运动到平衡位置时,向上的散射力和向下的重力达到平衡,粒子在轴向上稳定下来。在横向上,由于光束的横向梯度力始终指向光束中心,因此粒子被稳定地捕获在光束中心。这样就形成了一个单光束悬浮光阱(opticallevitation trap)。在1986年,Ashkin 发表了一篇具有深远意义的论文[3],标志着光镊的诞生。在此文中Ashkin仅仅利用一束激光就实现了在三维方向上捕获电介质粒子,而且在轴向上利用的是梯度力捕获粒子,而非利用重力作用的悬浮光阱。实验中Ashkin利用高度聚焦的单光束焦点形成的单光束梯度力势阱(single beam gradientforce trap),在水中成功地捕获了直径从25nm 到10μm 的电介质粒子,且在横向和轴向上所施加的捕获力都来自于光场梯度力。由于这种单光束梯度力势阱

浅谈对生命科学的认识

浅谈对生命科学的认识 对于生命科学有一个比较全面的概括----------生命科学是研究 生物之间和生物与环境之间相互关系的科学。用于有效地控制生命活动能动地改造生物界造福人类生命科学与人类生存、人民健康、经济建设和社会发展有着密切关系是当今在全球范围内最受关注的基础自然科学。 生物科学主要涵盖了植物学、动物学、微生物学、神经学、生理学、组织学、解剖学等 生物技术则涉及到基因工程、细胞工程、酶工程、发酵工程等内容 信息进行存储、检索和分析的学基因组学、蛋白学和系统生物学等方面而我自身比较感兴趣的是微生物学与植物学的交叉学科下面先以微生物学与植物学的交 2008年度国家自然科学基金项目指南中提到生命科学部一处由微生物学学科与植物学学科组成,主要受理针对微生物和植物开展的生物多样性、形态与结构、系统与进化、生理与代谢、遗传与发育等科学问题的综合研究。微生物学学科主要受理范围微生

病毒学基于微生物学的交 包括次生代谢、植物化学和天然 物学植物等。可见微生物学的研究与植物学是密不可分的同时其也是生命科学中一个重要的研究方向其应用实例有鏈霉菌在植物保護方面的應用。生物防治法是农业生态系中植物病原、昆虫与益菌或天敌等族群间维持均衡的重要策略之一。就植物病害而 下透过一种或多种拮 而达到防治植物病害的效果。链霉菌拮抗植物病原菌的原生物 的效果。 链霉菌拮抗植物病原菌的原理可分为抗生、竞争和超寄生作用。抗生作用是指拮抗菌所分泌 抑制病原菌的生长。竞争作用是拮抗菌与植物病原菌竞争养分、 制病原菌的生长及存活间接保护作物免于被病原危害。超寄生作

受破坏甚至死亡。例如利迪链霉菌WYEC108 腐霉菌菌丝的细胞壁。如果把豌豆种子粉衣以WYEC108 菌株 灰绿链霉菌可产生 霉菌 链霉菌还可产生多种可分解蛋白质、木质素、几丁质及纤维素的 、分子生物学与基因工程方面、发酵工程以及医学上的应用分子生物学与基因工程方 科学在自然科学中的位置起了革命性的变化。20世纪50年代遗传物质DNA生命活动的新纪元。此后遗传信息由DNA通过RNA传向蛋白质这一“中

生物科学技术发展

生物科学技术发展 急需关于生物科学技术发展的报道! 提问者:露雨风桐 调查媒体对生物科学技术发展的报道 多姿多彩的生物,使地球上充满了生机。人类的生存和发展同各种各样的生物息息相关。自古以来,人类就不断探索生物界的奥秘,从中获益良多。现代社会,生物科学在人类社会的各个领域发挥着日益重要的作用。人类社会与生物学的关系越来越紧密。 生物科学与社会的关系 随着生物科学的发展,生物科学技术对社会的影响越来越大。这主要表现在以下几个方面: 1.影响人们的思想观念,如进化的思想和生态学思想正在被越来越多的人所接 受。 2.促进社会生产力的提高,如生物技术产业正在形成一个新兴产业;农业生产 力因生物科学技术的应用而显著提高。 3.随着生物科学的发展,将会有越来越多的人从事与生物学有关的职业。 4.促进人们提高健康水平和生活质量,延长寿命。 5.影响人们的思维方式,如生态学的发展促进人们的整体性思维;随着脑科学 的发展,生物科学技术将有助于改进人类的思维。 6.对人类社会的伦理道德体系产生冲击,如试管婴儿、器官移植、人基因的人 工改造等,都会对人类社会现有的伦理道德体系产生挑战。 7.生物科学技术的发展对社会和自然界也可能产生负面影响,如转基因生物的 大量生产改造物种的天然基因库,可能会影响生物圈的稳定性。 理解科学技术与社会的关系,是科学素质的重要组成部分。因此,中学生课程中应当充实这方面的内容。 展望21世纪的科学技术 21世纪的科学研究将在四个层面上展开。 第一个层面是研究物质结构及其运动规律的物质科学,由此将深化人们对物质世界和字宙起源与演化的认识。

第二个层面是生命科学。20世纪末,人类基因组全部测序工作基本完成,预示着新世纪生命科学必将酝酿着新的突破,将引发对解读基因密码规律的探索,从而使人类在分子水平上能够找到生命起源及其演化过程的谱系,发现生命遗传、生殖与发育、生长与衰老、代谢与免疫等机制。同时通过对人类基因密码的解读.-些重大的疾病基因将被发现,使危害人类生命的疾病得到治疗。 第三个层面是地球与环境科学。21世纪,地球与环境科学将更加注重人类与自然环境的协调发展,并从工业经济时代的注重矿产资源,逐步转移到重视新能源、水、耕地和生态资源,研究对象从陆地更多地拓展到海洋、太空等。 第四个层面就是对人脑与认知的研究。21世纪,人类将在脑科学、认知神经科学研究和人类起源与进化的几个重大问题上取得突破性进展,这也将是科学发展的一个新高峰。脑与认知神经科学的进展将进一步揭示人类意识、思维的本质,为攻克脑的疾病提供基础。同时为开发智能计算机、仿脑的信息系统以及能像人一样思维和动作的机器人创造了条件,这将对人类文明进程产生无可限量的影响。 生物科学与计算机技术的结合 20世纪后期,生物科学技术迅猛发展,无论从数量上还是从质量上都极大地丰富了生物科学的数据资源。数据资源的急剧膨胀迫使人们寻求一种强有力的工具去组织这些数据,以利于储存、加工和进一步利用。而海量的生物学数据中必然蕴含着重要的生物学规律,这些规律将是解释生命之谜的关键,人们同样需要一种强有力的工具来协助人脑完成对这些数据的分析工作。另一方面,以数据分析、处理为本质的计算机科学技术和网络技术迅猛发展?并日益渗透到生物科学的各个领域。于是,一门崭新的、拥有巨大发展潜力的新学科?生物信息学?悄然兴起。 生物信息学的诞生及其重要性 早在1956年,在美国田纳西州盖特林堡召开的首次?生物学中的信息理论研讨会?上,便产生了生物信息学的概念。但是,就生物信息学的发展而言,它还是一门相当年轻的学科。直到20世纪80?90年代,伴随着计算机科学技术的进步,生物信息学才获得突破性进展。 1987年,林华安博士(Dr. Hwa A. Lim)正式把这一学科命名为?生物信息学?(Bioinformatics)。此后,其内涵随着研究的深入和现实需要的变化而几经更迭。1995年,在美国人类基因组计划第一个五年总结报告中,给出了一个较为完整的生物信息学定义:生物信息学是一门交叉科学,它包含了生物信息的获取、加工、存储、分配、分析、解释等在内的所有方面,它综合运用数学、计算机科学和生物学的各种工具,来阐明和理解大量数据所包含的生物学意义。 生物信息学不仅是一门新学科,更是一种重要的研究开发工具。从科学的角度来讲,生物信息学是一门研究生物和生物相关系统中信息内容与信息流向的综合系统

光镊原理及其应用

光镊原理及其应用 摘要:激光的发明使得光的力学效应走向了实际应用。本文介绍了光镊技术的基本原理及其在生物科学方面的一些应用。 关键词:光镊;光的力学效应;生物科学;应用 1 引言 光镊是A. Ashkin[1]在关于光与微粒子相互作用实验的基础上于1986年发明的。光镊在问世之初被看作是微小宏观粒子的操控手段,并渐渐成了光的力学效应的研究和应用最活跃的领域之一。近20年来光镊技术的研究和应用得到了迅速的发展,特别是在生命科学领域,光镊已成为研究单个细胞和生物大分子行为不可或缺的有效工具。 2 基本原理 光镊的基本原理在于光与物质微粒之间的动量传递的力学效应。对于直径大于波长的米氏散射粒子来说,光镊的势阱原理可以用几何光学来解释[1~3]。如图1(a)所示。入射光线A将光子的动量以辐射压的形式作用于粒子小球,力的作用方向与光线入射方向相同。A经过若干反射、折射后,以光线A’出射。入射光线的辐射压减去出射光线的辐射压为粒子小球所受的净剩力F A。图1(b)为作用力简图,实际力的作用过程较此复杂,A’应为所有(包括反射光透射光)出射光线辐射压的合力,但结果与此相似,小球受轴向指向焦点的力。 对于直径小于激光波长的瑞利散射颗粒,适用于波动光学理论[1]和电磁模型。波动光学理论(也是光镊的基本理论)认为,在光轴方向有一对作用力:与入射光同向正比于光强的散射力和与光强梯度同向正比与强度梯度的梯度力。在折射率为n m的介质中,折射率为n p 的瑞利粒子所受的背离焦点的散射力为[1] F scat =n m P scat/ c (1) 这里P scat为被散射的光功率。或用光强I0和有效折射率m = n p / n m表示为 (2) 对于极化率为α的球形瑞利粒子所受的指向焦点的梯度力为

高中生命科学(生物)第二册知识点整理

生物第二册复习资料 【第五章生物体对信息的传递和调节】 第一节动物体对外界信息的获取 ※单细胞动物以整个细胞感受光、热、电和化学物质的刺激,而人和高等动物则通过自身特定的感受器获取这些信息。这些信息通过神经传递到脑,在脑中产生感觉。根据外界刺激物的类型,通常可将感受器分为物理感受器和化学感受器。 一、动物体对物理信息的获取 1、皮肤感受器 人和高等动物皮肤中有许多神经末梢,当受到压力、温度、针刺等刺激时,便会将各种刺激转换为神经信号,从神经末梢传递到神经中枢,这些神经末梢统称为皮肤感受器。 2、光感受器 ※折光装置均无色透明,具有折光和聚焦的作用。 视杆细胞:感受光亮 视细胞 视锥细胞:感受色彩 视细胞将光能转换为电信号(神经冲动),必须由视神经传到脑的视觉中枢后才能形成视觉。 3、声波感受器 ①耳可分为外耳、中耳和内耳。

②外耳收集声波,通过外耳道向内传递,声波可以引起外耳道底部的鼓膜振动。 ③鼓膜内侧为中耳,内有3块听小骨,听小骨将声音传递到内耳。 ④内耳由耳膜和前庭器组成,耳蜗是声音感受器,将声波转化成神经冲动,由听神经传到脑的听觉中枢,产生听觉。前庭器由3个半规管和前庭组成,是感受身体平衡的器官。 4、特殊的感受器: ①鱼类的侧线,用来感受水流和定方位。 ②蛇类的颊窝,感受周边动物散发出的热能。 二、动物体对化学信息的获取 1、人和其他脊椎动物的化学感受器主要分布于鼻腔的嗅黏膜和口腔的舌上。 ①分布于嗅黏膜上的嗅细胞可感受溶解在嗅黏膜表面液体中的有气味的化学分子。 ②味蕾顶端有一个小孔,味细胞顶端的微绒毛分布于此,溶解在水中的化学分子经微绒毛由味细胞传换成神经冲动,最终传递给脑产生味觉。 2、昆虫的味觉毛分布于足的末端和口器,而感受气味的毛多分布于触角。 第二节神经系统中信息的传递和调节 1、动物体通过神经系统对外界和体内的各种刺激(信息)发生反应,称为反射。 2、反射是神经系统调节各种活动的基本方式。 3、反射是通过反射弧来完成的。 4、反射弧及其功能: 一、信息在神经系统中的传递 1、组成神经系统的基本结构和功能单位是神经细胞,也称神经元。 2、神经元由细胞体、轴突、树突组成: ①细胞体是神经元的营养和代谢中心,内含细胞核和细胞器,主要集中在脑和脊髓里。 ②树突通常较短,具有许多树枝样分支,是神经元接受信息的部分。 ③轴突较长,分支少,是神经元传出信息部分。 3、神经元的轴突或长的树突以及套在外面的髓鞘,称为神经纤维。 4、神经冲动传导: ①在神经细胞质膜的内外两侧之间存在电位差,称为膜电位。 ②静息状态下,膜内为负(K+),膜外为正(Na+)。 ③受到刺激时,局部区域(兴奋区)Na+流入细胞内,电位反转为内正外负,即产生兴奋(神经冲动)。兴奋区域此时与周邻部位之间有电位差,这就会引起周邻部分产生兴奋,兴奋沿神经纤维推进,此过程即为神经冲动传导。 ④信息在神经元上是以生物电的形式传导的。 5、突触传递: ①神经元以轴突末端膨大与其他神经元的细胞体或树突相接触,两个神经元相接触部分的细胞膜合称为突触,突触由突触前膜、突触间隙和突触后膜组成。 ②突触小泡内所含有的化学物质称为神经递质。 ③信息在神经元之间是通过化学物质传递的。

影响人类未来的十大生物科学技术

生物谷张发宝博士:影响人类未来的十大生物科学技术 ——用生物科技促进人类与自然和谐发展 生物谷(https://www.wendangku.net/doc/661509260.html, 张发宝博士):生物科学自从进入21世纪以来,飞速发展。尤其是随着人类基因组计划的完成,人类有自主改造基因的能力,于是各种梦想就应蕴而成。然而哪些技术会与人们的生活和未来的生活息息相关呢? 以下我们列举了十大生物技术,有理由相信,在未来相当长时间内,以下一些领域将成为人类攻关的热点,它们不仅带来给我们的是一项项的技术,更为人与自然的和谐。 1 新型药物研发。靶向,RNAi,疫苗,纳米运输成为关键词。 虽然现代医药日新月异,但是仍然有大量疾病缺少真正有效的手段,如艾滋病等许多病毒性疾病,中风,心血管等退行性病变,以及许多遗传性疾病。另外,现代的经典的药物,也在与微生物的斗争中,疲于应付。不断的变异的细菌,使得药物的研发越来越吃力。 其实,真正的新药,不仅是药物的本身,还包括药物的载体(运输)和高度特异性。许多药物效果很好,但是作用太过广泛,或无法靶向应用,或无法到达靶器官等,使得许多原因不在于没有这个药,而在于没有办法将药物靶向性作用于这些病变组织。如RNAi技术成为人类治疗病毒性疾病,肿瘤等有力的武器,但是现在却没有办法让它能够安全地运达病灶并发挥作用。 在未来,靶向性药物,纳米药物将成为药物研究过程中重要的载体,而与传统的药物结合,共同构成真正强有力的治疗工具。 2 组织工程与器官移植 随着干细胞的技术快速发展,人类目前已经能对某些细胞的分化方向进行人工控制,使得人类对组织工程和器官移植期待得到空前的提高。当然,目前的技术离应用还有很长的距离,但是新的技术,如三维组织培养,定向分化技术使得人类能够在体外复制出一些简单的组织。对于复杂的组织和器官,相应随着技术的不断发展,仍然有可能成为现实。 3 个性化医疗时代 传统的医疗技术,是治病的技术,不是治人的技术。而随着人类基因组、SNP、代谢组学等的全面了解和蛋白质组学的逐步了解,为个性化医疗开辟了新的曙光。 根据不同病人的基因表型,进行有针对性地用药和治疗,达到最低的副作用,最高的敏感性和效果。这是人们期待的事实。

相关文档
相关文档 最新文档