文档库 最新最全的文档下载
当前位置:文档库 › 常见插值法

常见插值法

常见插值法
常见插值法

常见插值法

【摘 要】插值方法在数值分析中起着非常重要的作用。在此介绍一些常见的插值方法及 其应用范例。

【关键字】数值分析;插值方法;应用;

1. 插值法定义

插值法又称“内插法”,是利用函数f (x)在某区间中

插入若干点的函数值,作出适当的特定函数,在这些

表(1) 插值点

点上取已知值,在区间的其他点上用这特定函数的值作为函数f (x)的近似值,这种方法称为插值法。如果这特定函数是多项式,就称它为插值多项式。

2.常见的插值法及其构造

Lagrange 插值法

(a).公式推导:

表(1)的Lagrange 插值的插值多项式

∑==n

i i i x l x f x 0

n )()()(L ,(j=0,1,2....n)。

其中插值基函数是

≠=--=n

j

i i j i j x x x x x l 0

n )

()()(,(i,j=0,1 2...n) 。

其插值余项为

其中),b a (∈

ξ,∏≠=+--=n

j

i i j

i

j x x x x x 0

1n )()

()(ω

(b).matlab 实现方法:

Matlab 没有直接求解的相关函数,现编译如下: function yi = Lagarange_chazhi(x,y,xi)

% 求拉格朗日插值,并返回一个输入为xi 时的函数值 % x 为插值点向量,至少有三项 % y 为插值点值的向量,项数与x 相同 m = length(x); %求插值个数 m1 = length(y); if m<=2

error('项数不足!'); end if m~=m1

error('!!!y 的项数应与x 相同!!!'); end %对参数的判断 lag_hanshu = 0; syms X ;

for (l = 1:m) %构造插值基函数 la = y(l); for a = (1:l-1)

la = la*(X-x(a))/(x(l)-x(a)); end

for a = (l+1:m)

la = la*(X-x(a))/(x(l)-x(a)); end

format long

lag_hanshu = lag_hanshu+la;

%求解出插值函数 end

yi = subs( lag_hanshu,'X',xi);

%返回插值函数输入为xi 时的值 End

(c).方法缺陷:当插值点个数7n ≥时,将产生

龙格现象:

经典例子,对)

251(1

)(2x x f +=

进行拉格朗日插

0x 1x 2x ....... 1-n x n x 0y 1y 2y ....... 1-n y n y

),

(!)1()

()()()(1)1(x n f x L x f x R n n n n +++=-=ωξ

x a =b

x n =1x 2x 1

-n x 值图(1)中从左到右,从上到下,n 分别为

图(1) Lagarange 插值法的龙格现象

4,5...11,可以看出,当7n

≥后,它的\插值函数在

两个端点处发生剧烈的波动,造成较大的误差。所以拉格朗日插值法一般不适用于高次插值。

分段线性插值法

(a).插值原理:

为避免高次产生的龙格现象,采用分段插值,相邻两节点间的函数为一次线性函数, 图形为线段,在[a,b]间为折线,如图(2)。

图(2) 分段线性插值

(b).matlab 实现方法:

Matlab 中没有现成的函数,现编译如下: f unction Fenduan_liner(x,y) %对x,y 进行分段线性插值 %用虚线画出插值后的函数

m = length(x); %求插值个数 m1 = length(y); if m~=m1

error('!!!y 的项数应与x 相同!!!');

end %对参数的判断 hold on ; for ii = 1:m-1

plot([x(ii) x(ii+1)],[y(ii) y(ii+1)]); %画出线段 end

plot(x,y,'o'); %画出插值点 end

(c).方法缺陷:在节点处曲线不平滑。

保形插值(Hermite 插值) (a).插值原理:

针对分段插值法不光滑的问题,Hermite 插值引入插

值点的

导数。

表(2) Hermite 插值法 由于若

],[)(1b a C x f ∈且已知)(x f 函数表及导

数表,则存在唯一不超过12+n 次多项式)(12x H n +满足插值条件

?

??==++'1212)()(i y x H y x H i n i

i n

),....,1,0(n i =

则,通过求解方程,可得出插值函数

其插值余项为 ),(b a ∈ξ且与x 有关。

(b).matlab 实现方法:

Matlab 中没有现成的函数,现编译如下: function yi = Hermite(x,y,der_y,xi)

%对x,y 进行Hermite 插值,其各节点的导数为der_y %返回值为带入矩阵xi 后的函数值 if length(x) == length(y)

if length(y) == length(der_y)

n

n

n y y y x f y y y x f x x x x ''''

1

1

010)

()

()()!

22()(2

1)22(x n f n n +++=

ωξ)(12x R n +

n = length(x); %求插值个数end

else

error('!!!y的项数应与x相同!!!');

end

if n<=1

warning('项数不足!');

end%对参数的判断syms X;

H = 0;

for jj = 1:n

a = 0;

b = 0;

l = 1;

for ii = 1:n

if ii ~= jj

a = a+1/(x(jj)-x(ii));

l = l*(X-x(ii))/(x(jj)-x(ii));

end

end

A = (1-2*(X-x(jj))*a)*l^2;

B = (X-x(jj))*l^2;

H = H+(A*y(jj)+B*der_y(jj)); %迭代法求H

end

yi = subs(H,'X',xi);

end

(c).方法缺陷:无法获得各点的导数

④三次样条法

(a).插值原理:

对每两个点间进行三次多项式的插值,且通过端点导数推导出各点导数,使得插值函数在插值点处导数相等。

(b).matlab实现方法:

Matlab有现成的函数spline,以下为‘help spline’

“PP = spline(X,Y) provides the piecewise polynomial form of the cubic spline interpolant to the data values Y at the data sites X,for use with the evaluator PPVAL and the spline utility UNMKPP.X must be a vector.”

⑤插值法关系图

3.插值法对比例证

代码如下:

syms X;

Y = 1./(1+25*X^2);

x = -1:0.5:1;

y = subs(Y,'X',x);

der_y = subs(diff(Y),'X',x);

xi = -1:0.01:1;

yi = 1./(1+25*xi.^2);

yi_Lagarange = Lagarange_chazhi(x,y,xi); yi_Hermite = Hermite(x,y,der_y,xi);

yi_Yangtiao = spline(x,y,xi);

hold on;

plot(x,y,'o',xi,yi,'b');

%画出分段插值

Fenduan_liner(x,y);

%画出拉格朗日插值

plot(xi,yi_Lagarange,':g');

%画出Hermite插值

plot(xi,yi_Hermite,':');

%画出三次样条插值

plot(xi,yi_Yangtiao,'--g');

结果图形为

(注:蓝色实线为原函数,蓝色圆点为插值点,蓝色短虚线为分段线性插值,蓝色点虚线为Hermite插值,绿色点虚线为Lagarange插值,绿色短虚线为三次样条插值)

结果分析:

所有插值法中,分段线性插值最贴近原函数,其次Hermite插值法,再其次为三次样条,与Lagarange插值法接近。但分段线性插值法在结点处不光滑,Hermite导数信息不易获得,Lagarange插值法虽然计算简单,但高次产生龙格现象,所以三次样条插值法比较实用。

【参考文献】1.MATLAB数值分析第2版机械工业出版社张德丰等编著

牛顿插值法原理及应用

牛顿插值法 插值法是利用函数f (x)在某区间中若干点的函数值,作出适当的特定函数,在这些点上取已知值,在区间的其他点上用这特定函数的值作为函数f (x)的近似值。如果这特定函数是多项式,就称它为插值多项式。当插值节点增减时全部插值基函数均要随之变化,这在实际计算中很不方便。为了克服这一缺点,提出了牛顿插值。牛顿插值通过求各阶差商,递推得到的一个公式: f(x)=f[x0]+f[x0,x1](x-x0)+f[x0,x1,x2](x-x0)(x-x1)+...f[x0,...xn](x-x0 )...(x-xn-1)+Rn(x)。 插值函数 插值函数的概念及相关性质[1] 定义:设连续函数y-f(x) 在区间[a,b]上有定义,已知在n+1个互异的点 x0,x1,…xn上取值分别为y0,y1,…yn (设a≤ x1≤x2……≤xn≤b)。若在函数类中存在以简单函数P(x) ,使得P(xi)=yi,则称P(x) 为f(x)的插值函数. 称x1,x2,…xn 为插值节点,称[a,b]为插值区间。 定理:n次代数插值问题的解存在且唯一。

牛顿插值法C程序 程序框图#include void main() { float x[11],y[11][11],xx,temp,newton; int i,j,n; printf("Newton插值:\n请输入要运算的值:x="); scanf("%f",&xx); printf("请输入插值的次数(n<11):n="); scanf("%d",&n); printf("请输入%d组值:\n",n+1); for(i=0;i

arcgis空间内插值教程

GIS空间插值(局部插值方法)实习记录 一、空间插值的概念和原理 当我们需要做一幅某个区域的专题地图,或是对该区域进行详细研究的时候,必须具备研究区任一点的属性值,也就是连续的属性值。但是,由于各种属性数据(如降水量、气温等)很难实施地面无缝观测,所以,我们能获取的往往是离散的属性数据。例如本例,我们现有一幅山东省等降雨量图,但是最终目标是得到山东省降水量专题图(覆盖全省,统计完成后,各地均具有自己的降雨量属性)。 空间插值是指利用研究区已知数据来估算未知数据的过程,即将离散点的测量数据转换为连续的数据曲面。利用空间插值,我们就可以通过离散的等降雨量线,来推算出山东省各地的降雨量了。 二、空间插值的几种方法及本次实习采用的原理和方法 –整体插值方法 ?边界内插方法 ?趋势面分析 ?变换函数插值 –局部分块插值方法 ?自然邻域法 ?移动平均插值方法:反距离权重插值 ?样条函数插值法(薄板样条和张力样条法) ?空间自协方差最佳插值方法:克里金插值 ■局部插值方法的控制点个数与控制点选择问题 局部插值方法用一组已知数据点(我们将其称为控制点)样本来估算待插值点(未知点)的值,因此控制点对该方法十分重要。 为此,第一要注意的是控制点的个数。控制点的个数与估算结果精确程度的关系取决于控制点的分布与待插值点的关系以及控制点的空间自相关程度。为了获取更精确的插值结果,我们需要着重考虑上述两点因素(横线所示)。 第二需要注意的是怎样选择控制点。一种方法是用离估算点最近的点作为控制点;另一种方法是通过半径来选择控制点,半径的大小必须根据控制点的分布来调整。 S6、按照不同方法进行空间插值,并比较各自优劣 打开ArcToolbox——Spatial Analyst 工具——插值,打开插值方法列表,如下图:

常见的插值方法及其原理

常见的插值方法及其原理 这一节无可避免要接触一些数学知识,为了让本文通俗易懂,我们尽量绕开讨厌的公式等。为了进一步的简化难度,我们把讨论从二维图像降到一维上。 首先来看看最简单的‘最临近像素插值’。 A,B是原图上已经有的点,现在我们要知道其中间X位置处的像素值。我们找出X位置和A,B位置之间的距离d1,d2,如图,d2要小于d1,所以我们就认为X处像素值的大小就等于B处像素值的大小。 显然,这种方法是非常苯的,同时会带来明显的失真。在A,B中点处的像素值会突然出现一个跳跃,这就是为什么会出现马赛克和锯齿等明显走样的原因。最临近插值法唯一的优点就是速度快。 图10,最临近法插值原理 接下来是稍微复杂点的‘线性插值’(Linear) 线性插值也很好理解,AB两点的像素值之间,我们认为是直线变化的,要求X点处的值,只需要找到对应位置直线上的一点即可。换句话说,A,B间任意一点的值只跟A,B有关。由于插值的结果是连续的,所以视觉上会比最小临近法要好一些。线性插值速度稍微要慢一点,但是效果要好不少。如果讲究速度,这是个不错的折衷。 图11,线性插值原理

其他插值方法 立方插值,样条插值等等,他们的目的是试图让插值的曲线显得更平滑,为了达到这个目的,他们不得不利用到周围若干范围内的点,这里的数学原理就不再详述了。 图12,高级的插值原理 如图,要求B,C之间X的值,需要利用B,C周围A,B,C,D四个点的像素值,通过某种计算,得到光滑的曲线,从而算出X的值来。计算量显然要比前两种大许多。 好了,以上就是基本知识。所谓两次线性和两次立方实际上就是把刚才的分析拓展到二维空间上,在宽和高方向上作两次插值的意思。在以上的基础上,有的软件还发展了更复杂的改进的插值方式譬如S-SPline, Turbo Photo等。他们的目的是使边缘的表现更完美。

插值法综述《计算方法》学习报告

插值法综述 一、插值法及其国内外研究进展 1.插值法简介 插值法是一种古老的数学方法,它来自生产实践,早在一千多年前,我国科学家在研究历法上就应用了线性插值与二次插值,但它的基本理论却是在微积分产生之后才逐渐完善的,其应用也日益增多,特别是在计算机广泛使用之后,由于航空、机械加工、自动控制等实际问题的需要,使插值法在实践和理论上都显得更为重要,并得到了空前的发展。 2.国内外研究进展 ●插值法在预测地基沉降的应用 ●插值法在不排水不可压缩条件下两相介质的两重网格算法的应用 ●拉格朗日插值法在地震动的模拟研究中的应用 ●插值法在结构抗震可靠性分析中的应用 ●插值法在应力集中应变分布规律实验分析中的应用 3.代表性文献 ●不等时距GM(1%2c1)模型预测地基沉降研究秦亚琼武汉理工大学学报 (交通科学与工程版) 2008.2 ●不排水不可压缩条件下两相介质的两重网格算法牛志伟岩土力学2008.3 ●基于拉格朗日插值法的地震动的模拟白可山西建筑2010.10 ●响应表面法用于结构抗震可靠性分析张文元世界地震工程1997 ●小议应力集中应变分布规律的实验方法查珑珑淮海工学院学报(自

然科学版)2004.6 二、插值法的原理 【原理】 设有n+1个互不相同的节点(i x ,i y ) (i=0,1,2,...n )则存在唯一的多项式: 2012()...(1)n n n L x a a x a x a x =++++ 使得()(0,1,2,...)(2) n j j L x y j n == 证明:构造方程组 201020002011211120 12......(3)...n n n n n n n n n n a a x a x a x y a a x a x a x y a a x a x a x y ?++++=?++++=?? ??++++=? 令:0011111 n n n n n x x x x A x x ?????? =?? ?????? 01n a a X a ??????=?????? 01n y y Y y ?? ????=?????? 方程组的矩阵形式如下:(4)AX Y = 由于1 1 ()0n n i j i j A x x -===-≠∏∏所以方程组(4)有唯一解。 从而2012()...n n n L x a a x a x a x =++++唯一存在。 三、常用插值法 3.1 Lagrange 插值法 3.1.1 Lagrange 插值法的一般提法 给定))(,(i i x f x ),,1,0(n i =,多项式

三次样条插值方法的应用

CENTRAL SOUTH UNIVERSITY 数值分析实验报告

三次样条插值方法的应用 一、问题背景 分段低次插值函数往往具有很好的收敛性,计算过程简单,稳定性好,并且易于在在电子计算机上实现,但其光滑性较差,对于像高速飞机的机翼形线船体放样等型值线往往要求具有二阶光滑度,即有二阶连续导数,早期工程师制图时,把富有弹性的细长木条(即所谓的样条)用压铁固定在样点上,在其他地方让他自由弯曲,然后沿木条画下曲线,称为样条曲线。样条曲线实际上是由分段三次曲线并接而成,在连接点即样点上要求二阶导数连续,从数学上加以概括就得到数学样条这一概念。下面我们讨论最常用的三次样条函数及其应用。 二、数学模型 样条函数可以给出光滑的插值曲线(面),因此在数值逼近、常微分方程和偏微分方程的数值解及科学和工程的计算中起着重要的作用。 设区间[]b ,a 上给定有关划分b x x n =<<<= 10x a ,S 为[]b ,a 上满足下面条件的函数。 ● )(b a C S ,2∈; ● S 在每个子区间[]1,+i i x x 上是三次多项式。 则称S 为关于划分的三次样条函数。常用的三次样条函数的边界条件有三种类型: ● Ⅰ型 ()()n n n f x S f x S ''0'',==。 ● Ⅱ型 ()()n n n f x S f x S ''''0'''',==,其特殊情况为()()0''''==n n x S x S 。 ● Ⅲ型 ()() 3,2,1,0,0==j x S x S n j j ,此条件称为周期样条函数。 鉴于Ⅱ型三次样条插值函数在实际应用中的重要地位,在此主要对它进行详细介绍。 三、算法及流程 按照传统的编程方法,可将公式直接转换为MATLAB 可是别的语言即可;另一种是运用矩阵运算,发挥MATLAB 在矩阵运算上的优势。两种方法都可以方便地得到结果。方法二更直观,但计算系数时要特别注意。这里计算的是方法一的程序,采用的是Ⅱ型边界条件,取名为spline2.m 。 Matlab 代码如下: function s=spline2(x0,y0,y21,y2n,x) %s=spline2(x0,y0,y21,y2n,x) %x0,y0 are existed points,x are insert points,y21,y2n are the second

线性插值法计算公式解析

线性插值法计算公式解析 2011年招标师考试实务真题第16题:某机电产品国际招标项目采用综合评价法评标。评标办法规定,产能指标评标总分值为10分,产能在100吨/日以上的为10分,80吨/日的为5分,60吨/日以下的为0分,中间产能按插值法计算分值。某投标人产能为95吨/日,应得()分。A.8.65 B.8.75 C.8.85 D.8.95 分析:该题的考点属线性插值法又称为直线内插法,是评标办法的一种,很多学员无法理解公式含义,只能靠死记硬背,造成的结果是很快会遗忘,无法应对考试和工作中遇到的问题,对此本人从理论上进行推导,希望对学员有所帮助。 一、线性插值法两种图形及适用情形 F F F2

图一:适用于某项指标越低得分越高的项目评 分计算,如投标报价得分的计算 图二:适用于某项投标因素指标越高,得分越高的情 形,如生产效率等 二、公式推导 对于这个插值法,如何计算和运用呢,我个人认为考生在考试时先试着画一下上面的图,只有图出来了,根据三角函数定义,tana=角的对边比上邻边,从图上可以看出,∠A是始终保持不变的,因此,根据三角函数tana,我们可以得出这样的公式 图一:tana=(F1-F2)/(D2-D1)=(F-F2)/(D2-D)=(F1-F)/(D-D1),

通过这个公式,我们可以进行多种推算,得出最终公式如下F=F2+(F1-F2)*(D2-D)/ (D2-D1) 或者F= F1-(F1-F2)*(D-D1)/(D2-D1) 图二:tana=(F1-F2)/(D2-D1)=(F-F2)/ (D-D1)=(F1-F)/(D2-D)通过这个公式我们不难得出公式: F= F2+(F1-F2)*(D-D1)/(D2-D1) 或者F=F1-(F1-F2)*(D2-D)/(D2-D1) 三:例题解析 例题一:某招标文件规定有效投标报价最高的得30分,有效投标报价最低的得60分,投标人的报价得分用线性插值法计算,在评审中,评委发现有效的最高报价为300万元,有效最低的报价为240万元,某A企业的有效投标报价为280万元,问他的价格得分为多少 分析,该题属于图一的适用情形,套用公式 计算步骤:F=60+(30-60)/(300-240)*(280-240)=40 例题二:某招标文件规定,水泵工作效率85%的3分,95%的8分,某投标人的水泵工作效率为92%,问工作效率指标得多少分? 分析:此题属于图二的适用情形,套用公式 F=3+(92%-85%)*(8-3)/(95%-85%)=3+7/2=6.5 (此文档部分内容来源于网络,如有侵权请告知删除,文档可自行编辑修改内容, 供参考,感谢您的配合和支持)

插值法在图像处理中的运用要点

插值方法在图像处理中的应用 作者: 专业姓名学号 控制工程陈龙斌 控制工程陈少峰 控制工程殷文龙 摘要 本文介绍了插值方法在图像处理中的应用。介绍了典型的最近邻插值、双线性插值、双三次插值、双信道插值、分形插值的原理。以分形插值为重点,在图像放大领域用MATLAB进行仿真,并与其它方法的结果做了比对。指出了各种方法的利弊,期待更进一步的研究拓展新的算法以及改进现有算法。

一、引言 人类通过感觉器官从客观世界获取信息,而其中一半以上的信息都是通过视觉获得的。图像作为人类视觉信息传递的主要媒介,具有声音、语言、文字等形式无法比拟的优势,给人以具体、直观的物体形象。在数字化信息时代,图像处理已经成为重要的数据处理类型。数字图像比之传统的模拟图像处理有着不可比拟的优势。一般采用计算机处理或者硬件处理,处理的内容丰富,精度高,变通能力强,可进行非线性处理。但是处理速度就会有所不足。图像处理的主要内容有:几何处理、算术处理、图像增强、图像复原、图像重建、图像编码、图像识别、图像理解等。以上这些图像处理大体上可分为图像的像质改善、图像分析和图像重建三大部分。 日常生活中,越来越多的领域需要高分辨率图像,采用图像插值技术来提高数字图像的分辨率和清晰度,从软件方面进行改进就具有十分重要的实用价值。多媒体通信在现代网络传输中扮演重要角色,因此插值放大提高图像分辨率是一个非常重要的问题。此外,图像变换被广泛用于遥感图像的几何校正、医学成像以及电影、电视和媒体广告等影像特技处理中。在进行图像的一些几何变换时,通常都会出现输出像素坐标和输入栅格不重合的现象,也必须要用到图像插值。图像插值是图像处理中图像重采样过程中的重要组成部分,而重采样过程广泛应用于改善图像质量、进行有损压缩等,因而研究图像插值具有十分重要的理论意义和实用价值。 图像插值是一个数据再生过程。由原始图像数据再生出具有更高分辨率的图像数据。分为图像内插值和图像间插值。前者指将一幅较低分辨率的图像再生出一幅较高分辨率的图像。后者指在若干幅图像之间再生出几幅新的图像。插值过程就是确定某个函数在两个采样点之间的数值时采用的运算过程.通常是利用曲线拟合的方法进行插值算法,通过离散的输入采样点建立一个连续函数,用这个重建的函数求出任意位置处的函数值,这个过程可看作是采样的逆过程。 20世纪40年代末,香农提出了信息论,根据采样定理,若对采样值用sinc函数进行插值,则可准确地恢复原函数,于是sinc函数被接受为插值函数,也称为理想插值函数。理想插值函数有两个缺点: (1)它虽然对带限信号可以进行无错插值,但实际中带限信号只是一小部分信号。 (2)sinc函数的支撑是无限的,而没有函数既是带限的,又是紧支撑的。 为了解决这个问题,经典的办法是刚窗函数截断sinc函数,这个窗函数必须在0剑l 之间为正数,在l到2之间为负数。sinc函数对应的是无限冲激响应,不适于有限冲激相应来进行局部插值。对数字图像来说,对图像进行插值也称为图像的重采样。它分为两个步骤:将离散图像插值为连续图像以及对插值结果图像进行采样。 经典的图像插值算法是利用邻近像素点灰度值的加权平均值来计算未知像素点处的灰度值,而这种加权平均一般表现表现为信号的离散采样值与插值基函数之间的二维卷积。这种基于模型的加权平均的图像插值方法统称为线性方法。经典的插值方法有:最近邻域法,双线性插值,双三次B样条插值,双三次样条插值,sinc函数等。线性方法,它们一个共同点就是,所有这些基函数均是低通滤波器,对数据中的高频信息都具有滤除和抑制效应,因

几种插值法比较与应用

多种插值法比较与应用 (一)Lagrange 插值 1. Lagrange 插值基函数 n+1个n 次多项式 ∏ ≠=--=n k j j j k j k x x x x x l 0)( n k ,,1,0ΛΛ= 称为Lagrange 插值基函数 2. Lagrange 插值多项式 设给定n+1个互异点))(,(k k x f x ,n k ,,1,0ΛΛ=,j i x x ≠,j i ≠,满足插值条件 )()(k k n x f x L =,n k ,,1,0ΛΛ= 的n 次多项式 ∏∏ ∏=≠==--==n k n k j j j k j k k n k k n x x x x x f x l x f x L 0 00 ))(()()()( 为Lagrange 插值多项式,称 ∏=+-+=-=n j j x n n x x n f x L x f x E 0 )1()()!1()()()()(ξ 为插值余项,其中),()(b a x x ∈=ξξ (二)Newton 插值 1.差商的定义 )(x f 关于i x 的零阶差商 )(][i i x f x f = )(x f 关于i x ,j x 的一阶差商

i j i j j i x x x f x f x x f --= ][][],[ 依次类推,)(x f 关于i x ,1+i x ,……,k i x +的k 阶差商 i k i k i i k i i k i i i x x x x f x x f x x x f --= +-+++++] ,,[],,[],,,[111ΛΛΛΛΛ 2. Newton 插值多项式 设给定的n+1个互异点))(,(k k x f x ,n k ,,1,0ΛΛ=,j i x x ≠,j i ≠, 称满足条件 )()(k k n x f x N =,n k ,,1,0ΛΛ= 的n 次多项式 )()](,,,[)](,[][)(10100100---++-+=n n n x x x x x x x f x x x x f x f x N ΛΛΛΛΛ 为Newton 插值多项式,称 ],[,)(],,,[)()()(010b a x x x x x x f x N x f x E n j j n n ∈-=-=∏=ΛΛ 为插值余项。 (三)Hermite 插值 设],[)(1b a C x f ∈,已知互异点0x ,1x ,…,],[b a x n ∈及所对应的函数值为0f ,1f ,…,n f ,导数值为'0f ,'1f ,…,'n f ,则满足条件 n i f x H f x H i i n i i n ,,1,0,)(,)(''1212Λ===++ 的12+n 次Hermite 插值多项式为 )()()(0 '12x f x f x H j n j j j n j i n βα∏∏=++= 其中 )())((,)]()(21[)(2 2'x l x x x l x l x x x j j j j j j j j ---=βα

《财务管理》教学中插值法的快速理解和掌握

摘要在时间价值及内部报酬率计算时常用到插入法,但初学者对该方法并 不是很容易理解和掌握。本文根据不同情况分门别类。利用相似三角形原理推 导出插入法计算用公式。并将其归纳为两类:加法公式和减法公式,简单易懂、理解准确、便于记忆、推导快捷。 关键词插入法;近似直边三角形;相似三角形 时间价值原理正确地揭示了不同时点上资金之间的换算。是财务决策的基 本依据。为此,财务人员必须了解时间价值的概念和计算方法。但在教学过程中。笔者发现大多数教材插值法(也叫插入法)是用下述方法来进行的。如高等 教育出版社2000年出版的《财务管理学》P62对贴现期的。 事实上,这样计算的结果是错误的。最直观的判断是:系数与期数成正向 关系。而4.000更接近于3.791。那么最后的期数n应该更接近于5,而不是6。正确结果是:n=6-0.6=5.4(年)。由此可见,这种插入法比较麻烦,不小心时还容易出现上述错误。 笔者在教学实践中用公式法来进行插值法演算,效果很好,现分以下几种 情况介绍其原理。 一、已知系数F和计息期n。求利息率i 这里的系数F不外乎是现值系数(如:复利现值系数PVIF年金现值系数PVIFA)和终值系数(如:复利终值系数FVIF、年金终值系数FVIFA)。 (一)已知的是现值系数 那么系数与利息率(也即贴现率)之间是反向关系:贴现率越大系数反而越小,可用图1表示。 图1中。F表示根据题意计算出来的年金现值系数(复利现值系数的图示略 有不同,在于i可以等于0,此时纵轴上的系数F等于1),F为在相应系数表 中查到的略大于F的那个系数,F对应的利息率即为i。查表所得的另一个比F 略小的系数记作F,其对应的利息率为i。

插值法的原理

《财务管理》教学中插值法的快速理解和掌握 摘要在时间价值及内部报酬率计算时常用到插入法,但初学者对该方法并不是很容易理解和掌握。本文根据不同情况分门别类。利用相似三角形原理推导出插入法计算用公式。并将其归纳为两类:加法公式和减法公式,简单易懂、理解准确、便于记忆、推导快捷。 关键词插入法;近似直边三角形;相似三角形 时间价值原理正确地揭示了不同时点上资金之间的换算。是财务决策的基本依据。为此,财务人员必须了解时间价值的概念和计算方法。但在教学过程中。笔者发现大多数教材插值法(也叫插入法)是用下述方法来进行的。如高等教育出版社2000年出版的《财务管理学》P62对贴现期的。 事实上,这样计算的结果是错误的。最直观的判断是:系数与期数成正向关系。而4.000更接近于3.791。那么最后的期数n应该更接近于5,而不是6。正确结果是:n=6-0.6=5.4(年)。由此可见,这种插入法比较麻烦,不小心时还容易出现上述错误。 笔者在教学实践中用公式法来进行插值法演算,效果很好,现分以下几种情况介绍其原理。 一、已知系数F和计息期n。求利息率i

这里的系数F不外乎是现值系数(如:复利现值系数PVIF年金现值系数PVIFA)和终值系数(如:复利终值系数FVIF、年金终值系数FVIFA)。 (一)已知的是现值系数 那么系数与利息率(也即贴现率)之间是反向关系:贴现率越大系数反而越小,可用图1表示。 图1中。F表示根据题意计算出来的年金现值系数(复利现值系数的图示略有不同,在于i可以等于0,此时纵轴上的系数F等于1),F为在相应系数表中查到的略大于F的那个系数,F对应的利息率即为i。查表所得的另一个比F略小的系数记作F,其对应的利息率为i。

几种插值法的应用和比较

插值法的应用与比较 信科1302 万贤浩 13271038 1格朗日插值法 在数值分析中,拉格朗日插值法是以法国十八世纪数学家约瑟夫·路易斯·拉格朗日命名的一种多项式插值方法.许多实际问题中都用函数来表示某种内在联系或规律,而不少函数都只能通过实验和观测来了解.如对实践中的某个物理量进行观测,在若干个不同的地方得到相应的观测值,拉格朗日插值法可以找到一个多项式,其恰好在各个观测的点取到观测到的值.这样的多项式称为拉格朗日(插值)多项式.数学上来说,拉格朗日插值法可以给出一个恰好穿过二维平面上若干个已知点的多项式函数.拉格朗日插值法最早被英国数学家爱德华·华林于1779年发现,不久后由莱昂哈德·欧拉再次发现.1795年,拉格朗日在其著作《师范学校数学基础教程》中发表了这个插值方法,从此他的名字就和这个方法联系在一起. 1.1拉格朗日插值多项式 图1 已知平面上四个点:(?9, 5), (?4, 2), (?1, ?2), (7, 9),拉格朗日多项式:)(x L (黑色)穿过所有点.而每个基本多项式:)(00x l y ,)(11x l y , )(22x l y 以及)(x l y ??各穿过对应的一点,并在其它的三个点的x 值上取零. 对于给定的若1+n 个点),(00y x ,),(11y x ,………),(n n y x ,对应于它们的次数不超过n 的拉格朗日多项式L 只有一个.如果计入次数更高的多项式,则有无穷个,因为所有与L 相差 ))((10x x x x --λ……)(n x x -的多项式都满足条件. 对某个多项式函数,已知有给定的1+k 个取值点: ),(00y x ,……,),(k k y x ,

内插法计算公式

内插法计算公式 内插法计算公式 1、X1、Y1为《建设工程监理与相关服务收费标准》附表二中计费额的区段值;Y1、Y2为对应于X1、X2的收费基价;X为某区段间的插入值道;Y为对应于X由插入法计算而得的收费基价。 2、计费额小于500万元的,以计费额乘以3.3%的收费专率计算收费基价; 3、计费额大于1,000,000万元的,以计费额乘以1.039%的收费率计算收费基价。 【例】若计算得计费额为600万元,计算其收费基价属。 根据《建设工程监理与相关服务收费标准》附表二:施工监理服务收费基价表,计费额处于区段值500万元(收费基价为16.5万元)与1000万元(收费基价为30.1万元)之间,则对应于600万元计费额的收费基价: 内插法(Interpolation Method) 什么是内插法 在通过找到满足租赁交易各个期间所支付的最低租金支付额及租赁期满时租赁资产估计残值的折现值等于租赁资产的公平价值的

折现率,即租赁利率的方法中,内插法是在逐步法的基础上,找到两个接近准确答案的利率值,利用函数的连续性原理,通过假设关于租赁利率的租赁交易各个期间所支付的最低租金支付额及租赁期满时租赁资产估计残值的折现值与租赁资产的公平价值之差的函数为线性函数,求得在函数值为零时的折现率,就是租赁利率。 内插法原理 数学内插法即“直线插入法”。其原理是,若A(i1,b1),B(i2,b2)为两点,则点P(i,b)在上述两点确定的直线上。而工程上常用的为i在i1,i2之间,从而P在点A、B之间,故称“直线内插法”。 数学内插法说明点P反映的变量遵循直线AB反映的线性关系。 上述公式易得。A、B、P三点共线,则 (b-b1)/(i-i1)=(b2-b1)/(i2-i1)=直线斜率,变换即得所求。 内插法的具体方法 求得满足以下函数的两个点,假设函数为线性函数,通过简单的比例式求出租赁利率。 以每期租金先付为例,函数如下: A表示租赁开始日租赁资产的公平价值; R表示每期租金数额; S表示租赁资产估计残值; n表示租期; r表示折现率。 通过简单的试错,找出二个满足上函数的点(a1,b1)(a2,b2),

几种常用的插值方法

数学系 信息与计算科学1班 李平 指导老师:唐振先 摘要:插值在诸如机械加工等工程技术和数据处理等科学研究中有许多直接的应用,在很多领域都要用插值的办法找出表格和中间值,插值还是数值积分微分方程数值解等数值计算的基础。本文归纳了几种常用的插值方法,并简单分析了其各自的优缺点。 关键词:任意阶多项式插值,分段多项式插值。 引言:所谓插值,通俗地说就是在若干以知的函数值之间插入一些未知函数值,而插值函数的类型最简单的选取是代数多项式。用多项式建立插值函数的方法主要用两种:一种是任意阶的插值多项式,它主要有三种基本的插值公式:单项式,拉格朗日和牛顿插值;另一种是分段多项式插值,它有Hermite 和spine 插值和分段线性插值。 一.任意阶多项式插值: 1.用单项式基本插值公式进行多项式插值: 多项式插值是求通过几个已知数据点的那个n-1阶多项式,即P n-1(X)=A 1+A 2X+…A n X n-1,它是一个单项式基本函数X 0,X 1…X n-1的集合来定义多项式,由已知n 个点(X,Y )构成的集合,可以使多项式通过没数据点,并为n 个未知系数Ai 写出n 个方程,这n 个方程组成的方程组的系数矩阵为Vandermonde 矩阵。 虽然这个过程直观易懂,但它都不是建立插值多项式最好的办法,因为Vandermonde 方程组有可能是病态的,这样会导致单项式系数不确定。另外,单项式中的各项可能在大小上有很大的差异,这就导致了多项式计算中的舍入误差。 2.拉格朗日基本插值公式进行插值: 先构造一组插值函数L i (x ) =011011()()()() ()()()() i i n i i i i i i n x x x x x x x x x x x x x x x x -+-+--------,其中i=0,… n.容易看出n 次多项式L i (x )满足L i (x )=1,(i=j );L i (x )=0,(i ≠j ),其中i=0,1…n ,令L i (x )=0()n i i i y l x =∑这就是拉格朗日插值多项式。与单项式基本 函数插值多项式相比,拉格朗日插值有2个重要优点:首先,建立插值多项式不需要求解方程组;其次,它的估计值受舍入误差要小得多。拉格朗日插值公式结构

插值法的分类与应用

插值法的方法与应用 武汉科技大学城市建设学院 琚婷婷 结构工程 201108710014 【摘要】文章讨论插值法在数值分析中的中心地位和重要作用,比较插值法间的优缺点,应用以及各种方法之间的相互联系。 【关键词】插值法;应用。 1.插值问题的提出 在许多实际问题及科学研究中,因素之间往往存在着函数关系,但是这些关系的显示表达式不一定都知道,通常只是由观察或测试得到一些离散数值,所以只能从这些数据构造函数的近似表达式,有时虽然给出了解析表达式,但由于解析表达式过于复杂,使用或计算起来十分麻烦。这就需要建立函数的某种近似表达,而插值法就是构造函数的近似表达式的方法。 2.插值法的数学表达 由于代数多项式是最简单而又便于计算的函数,所以经常采用多项式作为插值函数,称为多项式插值。多项式插值法有拉格朗日插值法,牛顿插值法、埃尔米特插值法,分段插值法和样条插值法等。其基本思想都是用高次代数多项式或分段的低次多项式作为被插值函数f (x)的近似解析表达式。 3.常用多项式插值公式构造 (I)拉格朗日插值 n 次拉格朗日插值多项式p n (x)对可表示为 p n (x)= y i l i (x)n i=0= y i ( x ?x j x i ?x j n j ≠0i ≠j n i=0) 其中l i x ,i =0,1,2???,n 称为插值基函数,插值余项为: R n (x)= f (x)- p n (x)=f n +1 (ξ) n+1 ! (x ?x i )n i=0 拉格朗日插值多项式在理论分析中非常方便,因为它的结构紧凑,利用基函

数很容易推导和形象的描述算法,但是也有一些缺点,当插值节点增加、减少或其位置变化时,整个插值多项式的结构都会改变,这就不利于实际计算,增加了算法复杂度,此时我们通常采用牛顿插值多项式算法。 (2)牛顿插值多项式 牛顿插值多项式为 N(x)=f(x0)+f x0,x1(x?x0)++???+f[x0,x1,???,x n](x?x0)(x?x1)???(x?x n?1)用它插值时,首先要计算各阶差商,而各高阶差商可归结为一阶差商的逐次计算。一般情况讨论的插值多项式的节点都是任意分布的,但是在实际应用中,出现了很多等距节点的情形,这时的插值公式可以进一步简化,在牛顿均差插值多项式中各阶均差用相应的差分代替,就得到了各种形式的等距节点插值公式,常用的是牛顿前插与后插公式。 (3)分段插值 在整个插值区间上,随着插值节点的增多,插值多项式的次数必然增高,而高次插值会产生Runge现象,不能有效的逼近被插函数,人们提出用分段的低次多项式分段近似被插函数,这就是分段插值法。构造分段插值多项式的方法仍然是基函数法,即先在每个插值节点上构造分段线性插值基函数,再对基函数作线性组合。它的优点在于只要节点间距充分小,总能获得所要求的精度,即收敛性总能得到保证,另一优点是它的局部性质,即如果修改某个数据,那么插值曲线仅仅在某个局部范围内受到影响。 (4)Hermite插值 分段线性插值的算法简单,计算量小,然而从整体上看,逼近函数不够光滑,在节点处,逼近函数的左右导数不相等,若要求逼近函数与被逼近函数不仅在插值节点上取相同的函数值,而且还要求逼近函数与被逼近函数在插值节点上取相同的若干阶导数值,这类问题称为Hermite插值。 (5)样条插值 通常我们用到的分段三次埃尔米特插值构造的是一个整体上具有一阶光滑性的插值多项式,但在实际中,对光滑性的要求更高。如飞机外形的理论模型,舶体放样等型值线等常要求有二阶的光滑度。工程上常用的是3次样条函数s(x)。其基本思想是将插值区间n等分后,在每一个小区间上,采用分段3次Hermite

拉格朗日插值算法及应用实验报告

数学与统计学院课程设计报告 课程:数值分析 题目:拉格朗日插值的算法设计及应用年级:三年级 专业:数学与应用数学 学号:08063008 姓名:肖天天 指导教师:宁娣 2010年 12 月 8 日 数学与统计学院本科课程设计

拉格朗日插值的算法设计及应用 【摘要】 本文简介拉格朗日插值,它的算法及程序和拉格朗日在实际生活中的运 用。运用了拉格朗日插值的公式,以及它在MA TLAB 中的算法程序,并用具体例子说明。拉格朗日插值在很多方面都可以运用,具有很高的应用价值。 【关键词】 拉格朗日;插值;公式;算法程序;应用;科学。 一、绪论 约瑟夫·拉格朗日(Joseph Louis Lagrange),法国数学家、物理学家。他在数学、力学和天文学三个学科领域中都有历史性的贡献,其中尤以数学方面的成就最为突出。拉格朗日对流体运动的理论也有重要贡献,提出了描述流体运动的拉格朗日方法。数据建模有两大方法:一类是插值方法,另一类是拟合函数一般的说,插值法比较适合数据准确或数据量小的情形。然而Lagrange 插值有很多种,1阶,2阶,…n 阶。我们可以利用拉格朗日插值求方程,根据它的程序求原方程的图像。下面我具体介绍分析一下拉格朗日插值的算法设计及应用。 二、正文 1、基本概念 已知函数y=f(x)在若干点i x 的函数值i y =()i x f (i=0,1,???,n )一个差值问题就是求一“简单”的函数p(x):p(i x )=i y ,i=0,1,???,n, (1) 则p(x)为f(x)的插值函数,而f(x)为被插值函数会插值原函数,0x ,1x ,2x ,...,n x 为插值节点,式(1)为插值条件,如果对固定点- x 求f(- x )数值解,我们称- x 为一个插值节点,f(- x )≈p(- x )称为- x 点的插值,当- x ∈[min(0x ,1x ,2x ,...,n x ),max(0x ,1x ,2x ,...,n x )]时,称为内插,否则称为外插式外推,特别地,当p(x)为不超过n 次多项式时称为n 阶Lagrange 插值。 2、Lagrange 插值公式 (1)线性插值)1(1L 设已知0x ,1x 及0y =f(0x ) ,1y =f(1x ),)(1x L 为不超过一次多项式且满足 )(01x L =0y ,)(11x L =1y ,几何上,) (1x L 为过(0x ,0y ),(1x ,1y )的直线,从而得到 )(1x L =0y + 101x x y y --(x-0x ). (2)

常见插值法

常见插值法 【摘 要】插值方法在数值分析中起着非常重要的作用。在此介绍一些常见的插值方法及 其应用范例。 【关键字】数值分析;插值方法;应用; 1. 插值法定义 插值法又称“内插法”,是利用函数f (x)在某区间中 插入若干点的函数值,作出适当的特定函数,在这些 表(1) 插值点 点上取已知值,在区间的其他点上用这特定函数的值作为函数f (x)的近似值,这种方法称为插值法。如果这特定函数是多项式,就称它为插值多项式。 2.常见的插值法及其构造 Lagrange 插值法 (a).公式推导: 表(1)的Lagrange 插值的插值多项式 ∑==n i i i x l x f x 0 n )()()(L ,(j=0,1,2....n)。 其中插值基函数是 ∏ ≠=--=n j i i j i j x x x x x l 0 n ) ()()(,(i,j=0,1 2...n) 。 其插值余项为 其中),b a (∈ ξ,∏≠=+--=n j i i j i j x x x x x 0 1n )() ()(ω (b).matlab 实现方法: Matlab 没有直接求解的相关函数,现编译如下: function yi = Lagarange_chazhi(x,y,xi) % 求拉格朗日插值,并返回一个输入为xi 时的函数值 % x 为插值点向量,至少有三项 % y 为插值点值的向量,项数与x 相同 m = length(x); %求插值个数 m1 = length(y); if m<=2 error('项数不足!'); end if m~=m1 error('!!!y 的项数应与x 相同!!!'); end %对参数的判断 lag_hanshu = 0; syms X ; for (l = 1:m) %构造插值基函数 la = y(l); for a = (1:l-1) la = la*(X-x(a))/(x(l)-x(a)); end for a = (l+1:m) la = la*(X-x(a))/(x(l)-x(a)); end format long lag_hanshu = lag_hanshu+la; %求解出插值函数 end yi = subs( lag_hanshu,'X',xi); %返回插值函数输入为xi 时的值 End (c).方法缺陷:当插值点个数7n ≥时,将产生 龙格现象: 经典例子,对) 251(1 )(2x x f += 进行拉格朗日插 0x 1x 2x ....... 1-n x n x 0y 1y 2y ....... 1-n y n y ), (!)1() ()()()(1)1(x n f x L x f x R n n n n +++=-=ωξ

几种常用的插值方法

几种常用的插值方法 数学系信息与计算科学1班平 指导老师:唐振先 摘要:插值在诸如机械加工等工程技术和数据处理等科学研究中有许多直接的应用,在很多领域都要用插值的办法找出表格和中间值,插值还是数值积分微分方程数值解等数值计算的基础。本文归纳了几种常用的插值方法,并简单分析了其各自的优缺点。 关键词:任意阶多项式插值,分段多项式插值。 引言:所谓插值,通俗地说就是在若干以知的函数值之间插入一些未知函数值,而插值函数的类型最简单的选取是代数多项式。用多项式建立插值函数的方法主要用两种:一种是任意阶的插值多项式,它主要有三种基本的插值公式:单项式,拉格朗日和牛顿插值;另一种是分段多项式插值,它有Hermite和spine插值和分段线性插值。 一.任意阶多项式插值: 1.用单项式基本插值公式进行多项式插值: 多项式插值是求通过几个已知数据点的那个n-1阶多项式,即P n-1(X)=A1+A2X+…A n X n-1,它是一个单项式基本函数X0,X1…X n-1的集合来定义多项式,由已知n个点(X,Y)构成的集合,可以使多项式通过没数据点,并为n个未知系数Ai写出n个方程,这n个方程组成的方程组的系数矩阵为Vandermonde 矩阵。 虽然这个过程直观易懂,但它都不是建立插值多项式最好的办法,因为Vandermonde方程组有可能是病态的,这样会导致单项式系数不确定。另外,单项式中的各项可能在大小上有很大的差异,这就导致了多项式计算中的舍入误差。 2.拉格朗日基本插值公式进行插值:

先构造一组插值函数L i (x ) =011011()()()() ()()()() i i n i i i i i i n x x x x x x x x x x x x x x x x -+-+--------,其中i=0,… n.容易看出n 次多项式L i (x )满足L i (x )=1,(i=j );L i (x )=0,(i ≠j ),其中i=0,1…n ,令L i (x )=0()n i i i y l x =∑这就是拉格朗日插值多项式。与单项式基本函 数插值多项式相比,拉格朗日插值有2个重要优点:首先,建立插值多项式不需要求解方程组;其次,它的估计值受舍入误差要小得多。拉格朗日插值公式结构紧凑,在理论分析中很方便,但是,当插值节点增加、减少或其位置变化时全部插值函数均要随之变化,从而整个插值公式的结构也将发生变化,这在实际计算是非常不利的。 3.使用牛顿均差插值公式进行多项式进行插值: 首先,定义均差,f 在xi,xj 上的一阶均差()()[,]j i i j j i f x f x f x x x x -=-,其中(i ≠j)。f 在 x i ,x j ,x k 的二阶均差f[x i ,x j ,x k ]= [,][,] i j j k j k f x x f x x x x --,k 阶均 f[x i …x k ]= 10[][] k i k k f x x f x x x x ---。 由此得出牛顿均值插值多项式的公式为Pn(x)=f[x 0]+f[x 0-x 1](x-x 0)+…+f[x 0,x n ](x-x 0)…(x-x n-1)。实际计算中经常利用下表给出的均差表直接构造牛顿插值公式 , , … …

几种插值法的应用和比较论文(数学类)

几种插值法的应用与比较 作者:*** 指导老师:*** 摘要本文主要介绍了几种常用插值法的应用和比较,针对每个插值法,经过详细的论证和讨论,给出了每个插值法的优点和缺点.通过对数学插值法的研究、比较及应用的讨论及总结,从而得出所讨论插值方法的各自优势,以方便用户选择合适的插值法. 关键词拉格朗日插值重心拉格朗日插值分段线性插值 1 引言 在许多实际问题及科学研究中,因素之间往往存在着函数关系,但是这些关系的显示表达式不一定都知道,通常只是由观察或测试得到一些离散数值,所以只能从这些数据构造函数的近似表达式,有时虽然给出了解析表达式,但由于解析表达式过于复杂,计算起来十分麻烦.这就需要建立函数的某种近似表达,而插值法就是构造函数的近似表达式的方法. 由于代数多项式是最简单而又便于计算的函数,所以经常采用多项式作为插值函数,称为多项式插值.多项式插值法有拉格朗日插值法,牛顿插值法、埃尔米特插值法,分段插值法和样条插值法等.其基本思想都是用高次代数多项式或分段的低次多项式作为被插值函数的近似解析表达式. 2拉格朗日插值法 在数值分析中,拉格朗日插值法是以法国十八世纪数学家约瑟夫·路易斯·拉格朗日命名的一种多项式插值方法.许多实际问题中都用函数来表示某种内在联系或规律,而不少函数都只能通过实验和观测来了解.如对实践中的某个物理量进行观测,在若干个不同的地方得到相应的观测值,拉格朗日插值法可以找到一个多项式,其恰好在各个观测的点取到观测到的值.这样的多项式称为拉格朗日(插值)多项式.数学上来说,拉格朗日插值法可以给出一个恰好穿过二维平面上若干个已知点的多项式函数.拉格朗日插值法最早被英国数学家爱德华·华林于1779年发现,不久后由莱昂哈德·欧拉再次发现.1795年,拉格朗日在其著作《师范学校数学基础教程》中发表了这个插值方法,从此他的名字就和这个方法联系在一起. 2.1 拉格朗日插值多项式

相关文档