文档库 最新最全的文档下载
当前位置:文档库 › 电子衍射实验报告

电子衍射实验报告

电子衍射实验报告
电子衍射实验报告

电子衍射实验

本实验采用与当年汤姆生的电子衍射实验相似的方法,用电子束透过金属薄膜,在荧光屏上观察电子衍射图样,并通过衍射图测量电子波的波长。

一、 实验目的:

测量运动电子的波长,验证德布罗意公式。理解真空中高速电子穿过晶体薄膜时的衍射现象,进一步理解电子的波动性。掌握晶体对电子的衍射理论及对立方晶系的指标化方法;掌握测量立方晶系的晶格常数方法。

二、实验原理

在物理学的发展史上,关于光的“粒子性”和“波动性”的争论曾延续了很长一段时期。人们最终接受了光既具有粒子性又具有波动性,即光具有波粒二象性。受此启发,在1924年,德布罗意(deBeroglie )提出了一切微观粒子都具有波粒二象性的大胆假设。当时,人们已经掌握了X 射线的晶体衍射知识,这为从实验上证实德布罗意假设提供了有利因素。

1927年戴维逊和革末发表了他们用低速电子轰击镍单晶产生电子衍射的实验结果。两个月后(1928年),英国的汤姆逊和雷德发表了他们用高速电子穿透物质薄片直接获得的电子衍射花纹,他们从实验测得的电子波的波长,与按德布罗意公式计算出的波长相吻合,从而成为第一批证实德布罗意假设的实验。

薛定谔(Schrodinger )等人在此基础上创立了描述微观粒子运动的基本理论——量子力学,德布罗意、戴维逊和革末也因此而获得诺贝尔尔物理学奖。现在,电子衍射技术已成为分析各种固体薄膜和表面层晶体结构的先进方法。

1924 年德布罗意提出实物粒子也具有波粒二象性的假设,他认为粒子的特征波长λ与动量 p 的关系与光子相同,即 h p

λ'= 式中h 为普朗克常数,p 为动量。 设电子初速度为零,在电位差为V 的电场中作加速运动。在电位差不太大时,即非相对论情况下,电子速度

c ν(光在真空中的速度),故0m=m m ≈其中0m 为电子的静止质量。

它所达到的速度v 可 由电场力所作的功来决定:2

21p eV=m 22m

ν=(2) 将式(2)代入(1)中,得:

λ'=(3) 式中 e 为电子的电荷, m 为电子质量。将34h 6.62610

JS -=?、310m 9.1110kg -=?、-19e=1.60210C ?,各值代入式(3),可得:A

λ'(4) 其中加速电压V 的单位为伏特(V ),λ的单位为1010-米。由式(4)可计算与电子德布罗意平面单色波的波

长。而我们知道,当单色 X 射线在多晶体薄膜上产生衍射时,可根据晶格的结构参数和衍射环纹大小来计算 图 1的波长。所以,类比单色 X 射线,也可由电子在多晶体薄膜上产生衍射时测出电子的波长λ 。如λ'与λ在误差范围内相符,则说明德布罗意假设成立。下面简述测量λ的原理。

根据晶体学知识,晶体中的粒子是呈规则排列的,具有点阵结构,

因此可以把晶体看作三维光栅。这种光栅的光栅常数要比普通人工刻

制的光栅小好几个量级。当高速电子束穿过晶体薄膜时所发生的衍射

现象与X 射线穿过多晶体进所发生的衍射现象相类似。它们衍射的方

向均满足布拉格公式。

1晶体是由原子(或离子)有规则地排列而组成的,

如图 1 所示,晶体中有许多晶面(即相互平行的原子层),

相邻两平行晶面的间距为一固定值。

当具有一定速度的平行电子束(X 射线)通过晶体时,则电

子(X 射线)受到原子(或离子)的散射。而电子束(X 射线)

具有一定的波长λ,根据布喇格定律,当相邻两晶面上反射电子

束(X 射线)(如图中的 I 、II 线)的程差Δ符合下述条件时,

可产生相长干涉,即2dsin n (n 123---)θλ?===、、(5)式中

θ 为入射电子束(或反射电子束),符合式(5)条件的晶面,才能产生相互干涉。 图2

以上介绍的晶体(元素或化合物)成为单晶。X 射线与某晶面间的夹角,称掠射角。式(5)称为布喇格公式,它说明只有在衍射角等于入射角的反射方向上,才能产生加强的反射,而在其他方向,衍射电子波(X 射线)很微弱,根本就观察不到。一块晶体实际上具有很多方向不同的晶面族,晶面间距也各不相同,如上图123d d d 、、等。

2. 电子衍射的基本理论

q nd =sin2 (n = 0,1,2, ……)式中λ为入射电子波的波长,d 为相邻晶面间的距离,即晶面间距,θ为电子波的掠

射角,n 是整数,称为衍射级次(如

图2)。

本实验是观察多晶体样品(靶)金

的电子衍射。多晶样品是取向杂乱

的小晶粒的集合体。电子衍射图象

可以看成是这些小晶粒的电子衍

射图象的重迭。由于这些小晶粒的

取向是完全杂乱的,因此靶的衍射

图象是与入射电子来向对称的许

多同心圆环,如图3示。也就是在

荧光屏上所看到的光环。

只有符对同一材料,还可以形

成多晶结构,这指其中含有大量各种取向的微小单晶体,如用波长为λ的电子束射(X 射线)入多晶薄膜,则总可以找到不少小晶体,其晶面与入射电子束(X 射线)之间的掠射角值为θ,能满足布喇格公式(5)。所以在原入射电子束(X 射线)方向能满足布喇格公式(5)。所以在原入射电子束(X 射线)方向成2θ 的衍射方向上,产生相应于该波长的最强反射,也即各衍射电子束(X 射线)均位于以入射电子束(X 射线)为轴半顶角为 2θ 的圆锥面上。若在薄膜的右方,放置一荧光屏,而屏面与入射电子束(X 射线)垂直,则可观察到圆环状的衍射环光迹(图 3)。在λ 值不变的情况下,对于满足式(5)条件的不同取向的晶面,半顶角 2θ 不相同,从而形成不同半径的衍射环。图 3

3、这里再进一步介绍如何来标志晶体中各种不同间距和取向的晶面族。

单晶体的原子(或离子)按某种方式周期性地排列着,这种重复单元称为原胞,各种

晶体的原胞结构不同,例如有面心立方、体心立方等等。面心立方晶胞的三边相等,设均

为a (这称为晶格常数),并互相垂直,这相当于在立方体各面的中心都放置一个原子,如

右图 4 所示。常见的许多金属,如金、银、铜、铝等,都为面心立方体结构。今分别以面

心立方原胞三边作为空间直角坐标系的x 、y 、z 轴。可以证明,晶面族法线方向与三个坐

标轴的夹角的余弦之比等于晶面在三个轴上的截距的倒数着比,它们是互质的三个整数,

分别以h 、k 、l 表 示[1] 。显然,这组互质的整数可以用来表示晶面的法线方向。就称它

们为该晶面族的密勒指数,习惯上用圆括弧表示,记以(h 、k 、l )。相邻晶面的间距d 与其密勒指数有如下简单

关系:h k l d =(,,)6)

以式(6)代入式(5),并取 n=1,得:

λ=(7)

在图3 中,D 为多晶薄膜至荧光屏距离,r 为衍射环半径,入射电子束与反射电子束的夹角为2θ,当θ不

大时,sinθ可用

r

2D

表示。于是式(7)改写为λ图4

由上式可知,半径小的衍射环相应于密勒指数值小的的晶面族,面心立方晶体的几何结构定了只有h、k 、l 全是奇数或偶数的晶面才能得到相长干涉。表1出面心立方晶体各允许反射面相应的密勒指数值。

三、实验内容及步骤:

型电子衍射仪的结构如图022—5 所示,其中多晶金属靶(第三阳极)与阴极之间的DF—1加速电位差可用电压表直接读出。

1、定性观察电子衍射图样,拍摄电子衍射图像

在开启电源前,应将高压控制开关按反时针拨动,直到顶头的断开位置为止。然后接通电源,仪器预热5 分钟后方可以将高压调到所需的数值。调节电子束聚焦,便能得到清晰的电子衍射图样。

(1)观察电子衍射现象,增大或减小电子的加速电压值,观察电子衍射图样直径变化情况,并分析是否与预期结果相符。

(2)拍摄电子衍射图样时,暂时先关闭电源,接上示波器图像拍摄仪。然后再开启电源,通过调节获得最清晰电子衍射图样,并摄下电子衍射图像。

2、测量运动电子的波长。

从电子衍射仪的高压电源面板读出加速电压值V,对不同的加速电压(10KV、11KV、12KV、13KV)用游标卡尺或毫米刻度尺,从荧光屏上直接测量衍射环的直径2r ;代入(3)式计算电子的λ';对同一加速电压,测量不同晶面(以密勒指数表示)

的衍射环直径2r。靶(多

晶膜)的荧光屏的间距 D

为已知,而金的晶格常数

=4.0786A。把2r、D、a

的值及 1 相应的密勒指

数hk l代入式(8),求出

电子波长λ。

3. 计算由德布罗意假设求

出的波长;

把由两种方法得到的

波长λ'与λ进行比较,以

某一加速电压下某一组晶面指数所对应的衍射环为例,计算误差以验证德布罗意公式是否成立。

4.计算普朗克常数:

在实验结束前,可关闭电源并打开仪器观察电子衍射管的结构,要注意手不能触摸管子的高压部位。

【例】用表 2第一行数据计算误差,即由2r σ及D σ计算λσ;并考虑电表允许基本误差所导致的λ'的误差λ''?。试以此来分析和讨论λ和λ'相符与否。

1、(1)

λ'==0.122A 1V 115.0 2.0% 1.5%2V 210.0

λλ'''???===' 1.5%0.002A λλ'''?=?=

(2)

2ra 2.17 4.0780.123A 220.81.732

λ?===?? 2r σ=0.027cm

估计3D σ=0.033cm

22222

2r D 0.0270.0330.00015D 2.1720.82r λσσσλ??????????=+=+= ? ? ? ? ??????

?????

0.012λσλ

= 0.0015A λσ= 所以 (0.12

30.002λλσ±=±

电力电子技术实验报告

实验一 SCR、GTO、MOSFET、GTR、IGBT特性实验 一、实验目的 (1)掌握各种电力电子器件的工作特性。 (2)掌握各器件对触发信号的要求。 二、实验所需挂件及附件 序 型号备注 号 1DJK01 电源控制屏该控制屏包含“三相电源输出”等几个模块。2DJK06 给定及实验器件该挂件包含“二极管”等几个模块。 3DJK07 新器件特性实验 DJK09 单相调压与可调负 4 载 5万用表自备 将电力电子器件(包括SCR、GTO、MOSFET、GTR、IGBT五种)和负载电阻R 串联后接至直流电源的两端,由DJK06上的给定为新器件提供触发电压信号,给定电压从零开始调节,直至器件触发导通,从而可测得在上述过程中器件的V/A特性;图中的电阻R用DJK09 上的可调电阻负载,将两个90Ω的电阻接成串联形式,最大可通过电流为1.3A;直流电压和电流表可从DJK01电源控制屏上获得,五种电力电子器件均在DJK07挂箱上;直流电源从电源控制屏的输出接DJK09上的单相调压器,然后调压器输出接DJK09上整流及滤波电路,从而得到一个输出可以由调压器调节的直流电压源。 实验线路的具体接线如下图所示: 四、实验内容 (1)晶闸管(SCR)特性实验。

(3)功率场效应管(MOSFET)特性实验。

(5)绝缘双极性晶体管(IGBT)特性实验。 五、实验方法 (1)按图3-26接线,首先将晶闸管(SCR)接入主电路,在实验开始时,将DJK06上的给定电位器RP1沿逆时针旋到底,S1拨到“正给定”侧,S2拨到“给定”侧,单相调压器逆时针调到底,DJK09上的可调电阻调到阻值为最大的位置;打开DJK06的电源开关,按下控制屏上的“启动”按钮,然后缓慢调节调压器,同时监视电压表的读数,当直流电压升到40V时,停止调节单相调压器(在以后的其他实验中,均不用调节);调节给定电位器RP1,逐步增加给定电压,监视电压表、电流表的读数,当电压表指示接近零(表示管子完全导通),停止调节,记录给定电压U

单缝衍射实验实验报告

单缝衍射实验 一、实验目的 1.观察单缝衍射现象,了解其特点。 2.测量单缝衍射时的相对光强分布。 3.利用光强分布图形计算单缝宽度。 二、实验仪器 He-Ne激光器、衍射狭缝、光具座、白屏、光电探头、光功率计。 三、实验原理 波长为λ的单色平行光垂直照射到单缝上,在接收屏上,将得到单缝衍射图样,即一组平行于狭缝的明暗相间条纹。单缝衍射图样的暗纹中心满足条件: (1) 式中,x为暗纹中心在接收屏上的x轴坐标,f为单缝到接收屏的距离;a为单缝的宽度,k为暗纹级数。在±1级暗纹间为中央明条纹。中间明条纹最亮,其宽度约为其他明纹宽度的两倍。 实验装置示意图如图1所示。 图1 实验装置示意图 光电探头(即硅光电池探测器)是光电转换元件。当光照射到光电探头表面时在光电探头的上下两表面产生电势差ΔU,ΔU的大小与入射光强成线性关系。光电探头与光电流放大器连接形成回路,回路中电流的大小与ΔU成正比。因此,通过电流的大小就可以反映出入射到光电探头的光强大小。 四、实验内容 1.观察单缝衍射的衍射图形;

2.测定单缝衍射的光强分布; 3.利用光强分布图形计算单缝宽度。 五、数据处理 ★(1)原始测量数据 将光电探头接收口移动到超过衍射图样一侧的第3级暗纹处,记录此处的位置读数X(此处的位置读数定义为0.000)及光功率计的读数P。转动鼓轮,每转半圈(即光电探头每移动0.5mm),记录光功率测试仪读数,直到光电探头移动到超过另一侧第3级衍射暗纹处为止。实验数据记录如下: 将表格数据由matlab拟合曲线如下:

★ (2)根据记录的数据,计算单缝的宽度。 衍射狭缝在光具座上的位置 L1=21.20cm. 光电探测头测量底架座 L2=92.00cm. 千分尺测得狭缝宽度 d’=0.091mm. 光电探头接收口到测量座底座的距离△f=6.00cm. 则单缝到光电探头接收口距离为f= L2 - L1+△f=92.00cm21.20cm+6.00cm=76.80cm. 由拟合曲线可读得下表各级暗纹距离: 各级暗纹±1级暗纹±2级暗纹±3级暗纹 距离/mm 10.500 21.500 31.200 单缝宽度/mm 0.093 0.090 0.093 单缝宽度计算过程: 因为λ=632.8nm.由d =2kfλ/△Xi,得 d1=(2*1*768*632.8*10^-6)/10.500 mm=0.093mm. d2=(2*2*768*632.8*10^-6)/21.500 mm=0.090mm.

#电力电子技术实验报告答案

实验一锯齿波同步移相触发电路实验 一、实验目的 (1)加深理解锯齿波同步移相触发电路的工作原理及各元件的作用。 (2)掌握锯齿波同步移相触发电路的调试方法。 三、实验线路及原理 锯齿波同步移相触发电路的原理图如图1-11所示。锯齿波同步移相触发电路由同步检测、锯齿波形成、移相控制、脉冲形成、脉冲放大等环节组成,其工作原理可参见1-3节和电力电子技术教材中的相关内容。 四、实验内容 (1)锯齿波同步移相触发电路的调试。 (2)锯齿波同步移相触发电路各点波形的观察和分析。 五、预习要求 (1)阅读本教材1-3节及电力电子技术教材中有关锯齿波同步移相 触发电路的内容,弄清锯齿波同步移相触发电路的工作原理。 (2)掌握锯齿波同步移相触发电路脉冲初始相位的调整方法。 六、思考题 (1)锯齿波同步移相触发电路有哪些特点? (2)锯齿波同步移相触发电路的移相范围与哪些参数有关? (3)为什么锯齿波同步移相触发电路的脉冲移相范围比正弦波同步移相触发电路的移相范围要大? 七、实验方法 (1)将DJK01电源控制屏的电源选择开关打到“直流调速”侧,使输出线电压为200V(不能打到“交流调速”侧工作,因为DJK03-1的正常工作电源电压为220V 10%,而“交流调速”侧输出的线电压为240V。如果输入电压超出其标准工作范围,挂件的使用寿命将减少,甚至会导致挂件的损坏。在“DZSZ-1型电机及自动控制实验装置”上使用时,通过操作控制屏左侧的自藕调压器,将输出的线电压调到220V左右,然后才能将电源接入挂件),用两根导线将200V交流电压接到DJK03-1的“外接220V”端,按下“启动”按钮,打开DJK03-1电源开关,这时挂件中所有的触发电路都开始工作,用双踪示波器观察锯齿波同步触发电路各观察孔的电压波形。 ①同时观察同步电压和“1”点的电压波形,了解“1”点波形形成的原因。 ②观察“1”、“2”点的电压波形,了解锯齿波宽度和“1”点电压波形的关系。 ③调节电位器RP1,观测“2”点锯齿波斜率的变化。 ④观察“3”~“6”点电压波形和输出电压的波形,记下各波形的幅值与宽度,并比较“3”点电压U3和“6”点电压U6的对应关系。 (2)调节触发脉冲的移相范围

电力电子技术实验报告

实验一 DC-DC 变换电路的性能研究 一、实验目的 熟悉Matlab 的仿真实验环境,熟悉Buck 电路、Boost 电路、Cuk 电路及单端反激变换(Flyback )电路的工作原理,掌握这几种种基本DC-DC 变换电路的工作状态及波形情况,初步了解闭环控制技术在电力电子变换电路中的应用。 二、实验内容 1.Buck 变换电路的建模,波形观察及相关电压测试 2.Boost 变换电路的建模,波形观察及相关电压测试; 3.Cuk 电路的建模,波形观察及电压测试; 4.单端反激变换(Flyback )电路的建模,波形观察及电压测试,简单闭环控制原理研究。 (一)Buck 变换电路实验 (1)电感电容的计算过程: V V 500=,电流连续时,D=0.4; 临界负载电流为I= 20 50 =2.5A ; 保证电感电流连续:)1(20D I f V L s -?= =5 .210002024.0-150????) (=0.375mH 纹波电压 0.2%= s s f LCf D V ?8-10) (,在由电感值0.375mH ,算出C=31.25uF 。 (2)仿真模型如下: 在20KHz 工作频率下的波形如下:

示波器显示的六个波形依次为:MOSFET的门极电压、流过电阻两端的电流、电感电流、输出电压、MOSFET电流及续流二极管电流的波形。 在50KHz工作频率下的波形如下: 示波器显示的六个波形一次为:MOSFET的门极电压、流过电阻两端的电流、电感电流、输出电压、MOSFET电流及续流二极管电流的波形; 建立仿真模型如下:

(3)输出电压的平均值显示在仿真图上,分别为49.85,49.33; (4)提高开关频率,临界负载电流变小,电感电流更容易连续,输出电压的脉动减小,使得输出波形应更稳定。 (二)Boost 变换电路实验 (1)电感电容的计算过程: 升压比M= S V V 0=D -11,0V =15V,S V =6V,解得D=60%; 纹波电压0.2%=s c f f D ? ,c f RC 1=,s f =40KHz,求得L=12uH,C=750uf 。 建立仿真模型如下:

光栅衍射实验报告

光栅衍射实验报告 字体大小:大|中|小2007-11-05 17:31 - 阅读:4857 - 评论:6 南昌大学实验报告 ------实验日期: 20071019 学号:+++++++ 姓名:++++++ 班级:++++++ 实验名称:光栅衍射 实验目的:1.进一步掌握调节和使用分光计的方法。 2. 加深对分光计原理的理解。 3. 用透射光栅测定光栅常数。 实验仪器:分光镜,平面透射光栅,低压汞灯(连镇流器) 实验原理: 光栅是由一组数目很多的相互平行、等宽、等间距的狭缝(或刻痕)构成的,是单缝的组合体,其

示意图如图1所示。原制光栅是用金刚石刻刀在精制的平面光学玻璃上平行刻划而成。光栅上

,常用的是复制光栅和 的刻痕起着不透光的作用,两刻痕之间相当于透光狭缝。原制光栅价格昂贵 全息光栅。图1中的为刻痕的宽度,为狭缝间宽度,为相邻两狭缝上相应两点之间的距离,称为光栅常数。它是光栅基本常数之一。光栅常数的倒数为光栅密度,即光栅的单位长度上的条纹 数,如某光栅密度为1000条/毫米,即每毫米上刻有1000条刻痕。 图1光栅片示意图图2光线斜入射时衍射光路 图3光栅衍射光谱示意图图4载物台 当一束平行单色光垂直照射到光栅平面时,根据夫琅和费衍射理论,在各狭缝处将发生衍射, 所有衍射之间又发生干涉,而这种干涉条纹是定域在无穷远处,为此在光栅后要加一个会聚透镜, 在用分光计观察光栅衍射条纹时,望远镜的物镜起着会聚透镜的作用,相邻两缝对应的光程差为 (1) 岀现明纹时需满足条件 (2) (2 )式称为光栅方程,其中:为单色光波长;k为明纹级数。 由(2 )式光栅方程,若波长已知,并能测岀波长谱线对应的衍射角,则可以求岀光栅常数 d。 在=0的方向上可观察到中央极强,称为零级谱线,其它谱线,则对称地分布在零级谱线的 两侧,如图3所示。 如果光源中包含几种不同波长,则同一级谱线中对不同的波长有不同的衍射角,从而在不同 的位置上形成谱线,称为光栅谱线。对于低压汞灯,它的每一级光谱中有4条谱线: 紫色1=435.8nm; 绿色2=546.1 nm; 黄色两条3=577.0nm 和4=579.1 nm 。 衍射光栅的基本特性可用分辨本领和色散率来表征。

电力电子实验报告

电力电子实验报告

————————————————————————————————作者:————————————————————————————————日期:

实验一SCR(单向和双向)特性与触发实验 一、实验目的 1、了解晶闸管的基本特性。 2、熟悉晶闸管的触发与吸收电路。 二、实验内容 1、晶闸管的导通与关断条件的验证。 2、晶闸管的触发与吸收电路。 三、实验设备与仪器 1、典型器件及驱动挂箱(DSE01)—DE01单元 2、触发电路挂箱Ⅰ(DST01)—DT02单元 3、触发电路挂箱Ⅰ(DST01)—DT03单元(也可用DG01取代) 4、电源及负载挂箱Ⅰ(DSP01)或“电力电子变换技术挂箱Ⅱa(DSE03)”—DP01单元 5、逆变变压器配件挂箱(DSM08)—电阻负载单元 6、慢扫描双踪示波器、数字万用表等测试仪器 四、实验电路的组成及实验操作 图1-1 晶闸管及其驱动电路

1、晶闸管的导通与关断条件的验证: 晶闸管电路面板布置见图1-1,实验单元提供了一个脉冲变压器作为脉冲隔离及功率驱动,脉冲变压器的二次侧有相同的两组输出,使用时可以任选其一;单元中还提供了一个单向晶闸管和一个双向晶闸管供实验时测试,此外还有一个阻容吸收电路,作为实验附件。打开系统总电源,将系统工作模式设置为“高级应用”。将主电源电压选择开关置于“3”位置,即将主电源相电压设定为220V;将“DT03”单元的钮子开关“S1”拨向上,用导线连接模拟给定输出端子“K”和信号地与“DE01”单元的晶闸管T1的门极和阴极;取主电源“DSM00”单元的一路输出“U”和输出中线“L01”连接到“DP01”单元的交流输入端子“U”和“L01”,交流主电源输出端“AC15V”和“O”分别接至整流桥输入端“AC1”和“AC2”,整流桥输出接滤波电容(“DC+”、“DC-”端分别接“C1”、“C2”端);“DP01”单元直流主电源输出正端“DC+”接“DSM08”单元R1的一端,R1的另一端接“DE01”单元单向可控硅T1的阳极,T1的阴极接“DP01”单元直流主电源输出负端“DC-”。闭合控制电路及挂箱上的电源开关,调节“DT03”单元的电位器“RP2”使“K”点输出电压为“0V”;闭合主电路,用示波器观测T1两端电压;调节“DT03”单元的电位器“RP2”使“K”点电压升高,监测T1的端电压情况,记录使T1由截止变为开通的门极电压值,它正比于通入T1门极的电流I G;T1导通后,反向改变“RP2”使“K”点电压缓慢变回“0V”,同时监测T1的端电压情况。断开主电路、挂箱电源、控制电路。将加在晶闸管和电阻上的主电源换成交流电源,即“AC15V”直接接“R1”一端,T1的阴极直接接“O”;依次闭合控制电路、挂箱电源、主电路。调节“DT03”单元的电位器“RP2”使“K”点电压升高,监测T1的端电压情况;T1导通后,反向改变“RP2”使“K”点电压缓慢变回“0V”,同时监测并记录T1的端电压情况。通过实验结果,参考教材相关章节的内容,分析晶闸管的导通与关断条件。实验完毕,依次断开主电路、挂箱电源、控制电路。 2、晶闸管的触发与吸收电路: 将主电源电压选择开关置于“3”位置,即将主电源相电压设定为220V;用导线连接“DT02”单元输出端子“OUT11”和“OUT12”与“DE01”单元的脉冲变压器输入端“IN1”和“IN2”;取主电源的一路输出“U”和输出中线“L01”连接到“DP01”单元的交流输入端子“U”和“L01”;“DP01”单元的同步信号输出端“A”和“B”连接到锯齿波移相触发电路的同步信号输入端“A”和“B”;将“DE01”的脉冲变压器输出“g1”和“k1”分别接至单向

光栅衍射实验报告

光栅衍射实验 系别 精仪系 班号 制33 姓名 李加华 学号 2003010541 做实验日期 2005年05月18日 教师评定____________ 一、0i =时,测定光栅常数和光波波长 光栅编号:___2____;?=仪___1’___;入射光方位10?=__7°6′__;20?=__187°2′__。 由衍射公式,入射角0i =时,有sin m d m ?λ=。 代入光谱级次m=2、绿光波长λ=546.1及测得的衍射角m ?=19°2′,求得光栅常数 ()2546.13349sin sin 192/60m m nm d nm λ??= ==+? cot cot 2m m m d d ?????==?=? ()4cot 192/601/60 5.962101802180ππ-????=+??=? ? ????? 445.96210 5.962103349 1.997d d nm nm --?=??=??= ()33492d nm =± 代入其它谱线对应的光波的衍射角,得 ()3349sin 2013/60sin 578.72 m nm d nm m ?λ?+?===黄1

()3349sin 209/60576.82 nm nm λ?+? = =黄2 ()3349sin 155/60435.72 nm nm λ?+?==紫 λ λ?== 578.70.4752nm nm λ?==黄1 576.80.4720nm nm λ?= =黄2 435.70.4220nm nm λ?==紫()578.70.5nm λ=±黄1,()576.80.5nm λ=±黄2,()435.70.4nm λ=±紫 由测量值推算出来的结果与相应波长的精确值十分接近,但均有不同程度的偏小。由于实验中只有各个角度是测量值(给定的绿光波长与级数为准确值),而分光计刻度盘读数存在的误差为随机误差,观察时已将观察显微镜中心竖直刻线置于谱线中心——所以猜测系统误差来自于分光镜调节的过程。 二、150'i =?,测量波长较短的黄线的波长 光栅编号:___2____;光栅平面法线方位1n ?=__352°7′__;2n ?=__172°1′__。

《电力电子技术》实验报告-1

河南安阳职业技术学院机电工程系电子实验实训室(2011.9编制) 目录 实验报告一晶闸管的控制特性及作为开关的应用 (1) 实验报告二单结晶体管触发电路 (3) 实验报告三晶闸管单相半控桥式整流电路的调试与分析(电阻负载) (6) 实验报告四晶闸管单相半控桥式整流电路的研究(感性、反电势负载) (8) 实验报告五直流-直流集成电压变换电路的应用与调试 (10)

实验报告一晶闸管的控制特性及作为开关的应用 一、实训目的 1.掌握晶闸管半控型的控制特点。 2.学会晶闸管作为固体开关在路灯自动控制中的应用。 二、晶闸管工作原理和实训电路 1.晶闸管工作原理 晶闸管的控制特性是:在晶闸管的阳极和阴极之间加上一个正向电压(阳极为高电位);在门极与阴极之间再加上一定的电压(称为触发电压),通以一定的电流(称为门极触发电流,这通常由触发电路发给一个触发脉冲来实现),则阳极与阴极间在电压的作用下便会导通。当晶闸管导通后,即使触发脉冲消失,晶闸管仍将继续导通而不会自行关断,只能靠加在阳极和阴极间的电压接近于零,通过的电流小到一定的数值(称为维持电流)以下,晶闸管才会关断,因此晶闸管是一种半控型电力电子元件。 2.晶闸管控制特性测试的实训电路 图1.1晶闸管控制特性测试电路 3.晶闸管作为固体开关在路灯自动控制电路中的应用电路 图1.2路灯自动控制电路 三、实训设备(略,看实验指导书)

四、实训内容与实训步骤(略,看实验指导书) 五、实训报告要求 1.根据对图1.1所示电路测试的结果,写出晶闸管的控制特点。记录BT151晶闸管导通所需的触发电压U G、触发电流I G及导通时的管压降U AK。 2.简述路灯自动控制电路的工作原理。

晶体X射线衍射实验报告全解

晶体X射线衍射实验报告全解

中南大学 X射线衍射实验报告 材料科学与工程学院材料学专业1305班班级 姓名学号0603130500 同组者无 黄继武实验日期2015 年12 月05 日指导教 师 评分分评阅人评阅日 期 一、实验目的 1)掌握X射线衍射仪的工作原理、操作方法; 2)掌握X射线衍射实验的样品制备方法; 3)学会X射线衍射实验方法、实验参数设置,独立完成一个衍射实验测试; 4)学会MDI Jade 6的基本操作方法; 5)学会物相定性分析的原理和利用Jade进行物相鉴定的方法; 6)学会物相定量分析的原理和利用Jade进行物相定量的方法。 本实验由衍射仪操作、物相定性分析、物相定量分析三个独立的实验组成,实验报告包含以上三个实验内容。 二、实验原理

1 衍射仪的工作原理 特征X射线是一种波长很短(约为20~0.06nm)的电磁波,能穿透一定厚度的物质,并能使荧光物质发光、照相乳胶感光、气体电离。在用电子束轰击金属“靶”产生的X射线中,包含与靶中各种元素对应的具有特定波长的X射线,称为特征(或标识)X射线。考虑到X射线的波长和晶体内部原子间的距离相近,1912年德国物理学家劳厄(M.von Laue)提出一个重要的科学预见:晶体可以作为X射线的空间衍射光,即当一束X射线通过晶体时将发生衍射,衍射波叠加的结果使射线的强度在某些方向上加强,在其他方向上减弱。分析在照相底片上得到的衍射花样,便可确定晶体结构。这一预见随即为实验所验证。1913年英国物理学家布拉格父子(W. H. Bragg, W. L Bragg)在劳厄发现的基础上,不仅成功地测定了NaCl、KCl等的晶体结构,并提出了作为晶体衍射基础的著名公式──布拉格定律: 2dsinθ=nλ 式中λ为X射线的波长,n为任何正整数。当X射线以掠角θ(入射角的余角,又称为布拉格角)入射到某一点阵晶格间距为d的晶面面上时,在符合上式的条件下,将在反射方向上得到因叠加而加强的衍射线。 2 物相定性分析原理 1) 每一物相具有其特有的特征衍射谱,没有任何两种物相的衍射谱是完全相同 的 2) 记录已知物相的衍射谱,并保存为PDF文件 3) 从PDF文件中检索出与样品衍射谱完全相同的物相 4) 多相样品的衍射谱是其中各相的衍射谱的简单叠加,互不干扰,检索程序能 从PDF文件中检索出全部物相 3 物相定量分析原理 X射线定量相分析的理论基础是物质参与衍射的体积活重量与其所产生的衍射强度成正比。 当不存在消光及微吸收时,均匀、无织构、无限厚、晶粒足够小的单相时,多晶物质所产生的均匀衍射环上单位长度的积分强度为: 式中R为衍射仪圆半径,V o为单胞体积,F为结构因子,P为多重性因子,M为温度因子,μ为线吸收系数。 三、仪器与材料 1)仪器:18KW转靶X射线衍射仪 2)数据处理软件:数据采集与处理终端与数据分析软件MDI Jade 6 3)实验材料:CaCO3+CaSO4、Fe2O3+Fe3O4

电力电子实验报告

实验题目:MPD-15实验设备《电力电子技术》班级:自动化1405 姓名:KZY 学号:0901140450X 指导老师:XXX

实验一、三相脉冲移相触发电路 1.实验目的:熟悉了解集成触发电路的工作原理、双脉冲形成过程及掌握集成触发电路的 应用。 2.实验内容:集成触发电路的调试及各点波形的观察与分析。 3.实验设备:YB4320A型双线示波器一台;万用表一块;MPD-15实验设备中“模拟量可逆 调速系统”控制大板中的“脉冲触发单元”。 4.实验接线:见图1 图1 该实验接好三根线:即SZ与SZ1,GZ与GND,U GD与U CT连接好就行了。 5.实验步骤: (1)将实验台左下方的三相电源总开关QF1合上;(其它开关和按钮不要动) (2)将模拟挂箱上左边的电源开关拨至“通”位置,此时控制箱便接入了工作电源和三相交流同步电源U sa U sb U sc (注:U sa U sb U sc 与主回路电压:U A16 U B16 U C16相位一致)。 (3)将模拟挂箱上正组脉冲开关拨至“通”位置,此时正组脉冲便接至了正组晶闸管。 (4)用示波器观察U sa U sb U sc孔的相序是否正确,相位是否依次相差120°(注:用示波器的公共端接GND孔,其它两信号探头分别依次检查三个同步信号)。 (5)触发器锯齿波斜率的整定 (6)触发器相位特性整定:

实验二三相桥式整流电路的研究 一、实验目的 1、熟悉三相桥式整流电路的组成、研究及其工作原理。 2、研究该电路在不同负载(R、R+L、R+L+VDR)下的工作情况,波形及其特性。 3、掌握晶体管整流电路的试验方法。 二、实验设备 1、YB4320A型双线示波器一台 2、万用表一块 3、模拟量挂箱一个 4、MPD-08试验台主回路 三、实验接线 1、先断开三相电源总开关QF1; 2、触发器单元接线维持实验一线路不变; 3、主回路接线按图5进行。 A N0 图5 三相桥式整流电路(虚线部分用导线接好) 四、实验步骤(注意:根据表1中 所对应的Uct数据来调节Uct大小)

衍射光强实验报告

教学目的 1、观察单缝衍射现象,加深对衍射理论的理解; 2、学会使用衍射光强实验系统,并能用其测定单缝衍射的光强分布; 3、形成实事求是的科学态度和严谨、细致的工作作风。 重点:SGS-3型衍射光强实验系统的调整和使用 难点:1)激光光线与光电仪接收管共轴调节;2)光传感器增益度的正确调整 讲授、讨论、实验演示相结合 3学时 一、实验简介 光的衍射现象是光的波动性的一种表现。衍射现象的存在,深刻说明了光子的运动 是受测不准关系制约的。因此研究光的衍射,不仅有助于加深对光的本性的理解,也是 近代光学技术(如光谱分析,晶体分析,全息分析,光学信息处理等)的实验基础。 衍射导致光强在空间的重新分布,利用光电传感元件探测光强的相对变化,是近 代技术中常用的光强测量方法之一。 二、实验目的 1、学会SGS-3型衍射光强实验系统的调整和使用方法; 2、观察单缝衍射现象,研究其光强分布,加深对衍射理论的理解; 3、学会用光电元件测量单缝衍射的相对光强分布,掌握其分布规律; 4、学会用衍射法测量狭缝的宽度。 三、实验原理 1、单缝衍射的光强分布 当光在传播过程中经过障碍物时,如不透明物体的边缘、小孔、细线、狭缝等, 一部分光会传播到几何阴影中去,产生衍射现象。如果障碍物的尺寸与波长相近,那么 这样的衍射现象就比较容易观察到。 单缝衍射[single-slit diffraction]有两种:一种是菲涅耳衍射[Fresnel diffraction],单 缝距离光源和接收屏[receiving screen]均为有限远[near field],或者说入射波和衍 射波都 是球面波;另一种是夫琅禾费衍射[Fraunhofer diffraction],单缝距离光源和接收屏 均为

衍射光强分布测量实验报告.docx1

衍射光强分布的测量 1008406006 物理师范陈开玉 摘要:为了观察并验证单缝衍射和多缝衍射的图样以及它们的规律,本实验设计了基于水平光路的测量方法。运用自动光强记录仪来对衍射现象进行比较函数化的观察。实验观察到衍射条纹随着缝宽变窄而模糊和间距扩大,并且通过仪器对光强图样的位置定位和夫琅禾费光强的公式来计算单缝的缝宽。该实验装置结构简单、调节方便、条纹移动清晰。 关键词:衍射自动光强记录仪单缝多缝 一、引言 光的衍射现象是光的波动性的重要表现,并在实际生活中有较多应用,如运用单缝衍射测量物体之间的微小间隔和位移,或者用于测量细微物体的尺寸等。本实验要求通过观察、测量夫琅禾费衍射光强分布,加深对光的衍射现象的理解和掌握。 二、实验原理 1,衍射的定义: 波遇到障碍物或小孔后通过散射继续传播的现象。衍射现象是波的特有现象,一切波都会发生衍射现象,而光也是波的一种, 光在传播路径中,遇到不透明或透明的障碍物或者小孔(窄缝),绕过障碍物,产生偏离直线传播的现象称为光的衍射。衍射时产生的明暗条纹或光环,叫衍射图样2,光的衍射分为夫琅禾费衍射和菲涅尔衍射, 夫琅禾费衍射是指光源和观察点距障碍物为无限远,即平行光的衍射;而菲涅尔衍射是指光源和观察点距障碍物为有限远的衍射.本实验研究的只是夫琅禾费衍射.实际实验中只要满足光源与衍射体之间的距离u,衍射体至观察屏之间的距离v都远大于就满足了夫琅禾费衍射的条件,其中a为衍射物的孔径,λ为光源的波长. 3,单缝、单丝衍射原理:

如上图所示,a为单缝宽度,缝和屏之间的距离为v,为衍射角,其在观察屏上的位置为x,x离屏幕中心o的距离为OX=,设光源波长为λ,则有单缝夫琅禾费衍射的光强公式为: 式中是中心处的光强,与缝宽的平方成正比。 若将所成衍射图样的光强画成函数图象在坐标系中,则所成函数图象大致如下 除主极强外,次极强出现在的位置,它们是超越方程的根,其数值为: 对应的值为 当角度很小时,满足,则OX可以近似为 因而我们可以通过得出函数中次级强的峰值的横坐标只差来确定狭缝的宽度a 4,多缝衍射和干涉原理

实验报告-电力电子仿真实验

电力电子仿真实验 实验报告 院系:电气与电子工程学院 班级:电气1309班 学号: 1131540517 学生姓名:王睿哲 指导教师:姚蜀军 成绩: 日期:2017年 1月2日

目录 实验一晶闸管仿真实验 (3) 实验二三相桥式全控整流电路仿真实验 (6) 实验三电压型三相SPWM逆变器电路仿真实验 (18) 实验四单相交-直-交变频电路仿真实验 (25) 实验五VSC轻型直流输电系统仿真实验 (33)

实验一晶闸管仿真实验 实验目的 掌握晶闸管仿真模型模块各参数的含义。 理解晶闸管的特性。 实验设备:MATLAB/Simulink/PSB 实验原理 晶闸管测试电路如图1-1所示。u2为电源电压,ud为负载电压,id为负载电流,uVT 为晶闸管阳极与阴极间电压。 图1-1 晶闸管测试电路 实验内容 启动Matlab,建立如图1-2所示的晶闸管测试电路结构模型图。

图1-2 带电阻性负载的晶闸管仿真测试模型 双击各模块,在出现的对话框内设置相应的模型参数,如图1-3、1-4、1-5所示。 图1-3 交流电压源模块参数

图1-4 晶闸管模块参数 图1-5 脉冲发生器模块参数 固定时间间隔脉冲发生器的振幅设置为5V,周期与电源电压一致,为0.02s(即频率为50Hz),脉冲宽度为2(即7.2o),初始相位(即控制角)设置为0.0025s(即45o)。 串联RLC分支模块Series RLC Branch与并联RLC分支模块Parallel RLC Branch的参数设置方法如表1-1所示。 元件串联RLC分支并联RLC分支 类别电阻数值电感数值电容数值电阻数值电感数值电容数值单个电阻R0inf R inf0 单个电感0L inf inf L0 单个电容00C inf inf C

衍射光强实验报告

单缝衍射光强分布研究 教学目的 1 、观察单缝衍射现象,加深对衍射理论的理解; 2、学会使用衍射光强实验系统,并能用其测定单缝衍射的光强分布; 3、形成实事求 是的科学态度和严谨、细致的工作作风。 重点:SGS-3型衍射光强实验系统的调整和使用 难点:1)激光光线与光电仪接收管共轴调节;2)光传感器增益度的正确调整讲 授、讨论、实验演示相结合 3 学时 一、实验简介 光的衍射现象是光的波动性的一种表现。衍射现象的存在,深刻说明了光子的运动是受测不准关系制约的。因此研究光的衍射,不仅有助于加深对光的本性的理解,也是近代光学技术(如光谱分析,晶体分析,全息分析,光学信息处理等)的实验基础。 衍射导致光强在空间的重新分布,利用光电传感元件探测光强的相对变化,是近代技术中常用的光强测量方法之一。 二、实验目的 1、学会SGS-3型衍射光强实验系统的调整和使用方法; 2、观察单缝衍射现象,研究其光强分布,加深对衍射理论的理解; 3、学会用光电元件测量单缝衍射的相对光强分布,掌握其分布规律; 4 、学会用衍射法测量狭缝的宽度。 三、实验原理 1、单缝衍射的光强分布 当光在传播过程中经过障碍物时,如不透明物体的边缘、小孔、细线、狭缝等,一部分光会传播到几何阴影中去,产生衍射现象。如果障碍物的尺寸与波长相近,那么这样的衍射现象就比较容易观察到。 单缝衍射[single-slit diffraction] 有两种:一种是菲涅耳衍射[Fresnel diffraction] ,单缝距离光源和接收屏[receiving SCreen]均为有限远[near field],或者说入射波和衍射波都是球面波;另一种是夫

三相桥式全控整流电路实验报告

三相桥式全控整流电路实 验报告 Prepared on 24 November 2020

实验三三相桥式全控整流电路实验 一.实验目的 1.熟悉MCL-18, MCL-33组件。 2.熟悉三相桥式全控整流电路的接线及工作原理。 二.实验内容 1.MCL-18的调试 2.三相桥式全控整流电路 3.观察整流状态下,模拟电路故障现象时的波形。 三.实验线路及原理 实验线路如图3-12所示。主电路由三相全控整流电路组成。触发电路为数字集成电路,可输出经高频调制后的双窄脉冲链。三相桥式整流电路的工作原理可参见“电力电子技术”的有关教材。 四.实验设备及仪器 1.MCL—Ⅱ型电机控制教学实验台主控制屏。 2.MCL-18组件 3.MCL-33组件 4.MEL-03可调电阻器(900) 6.二踪示波器 7.万用表 五.实验方法 1.按图3-12接线,未上主电源之前,检查晶闸管的脉冲是否正常。 (1)打开MCL-18电源开关,给定电压有电压显示。

(2)用示波器观察MCL-33的双脉冲观察孔,应有间隔均匀,相互间隔60o 的幅度相同的双脉冲。 (3)用示波器观察每只晶闸管的控制极、阴极,应有幅度为1V —2V 的脉冲。注:将面板上的Ublf 接地(当三相桥式全控整流电路使用I 组桥晶闸管VT1~VT6时),将I 组桥式触发脉冲的六个琴键开关均拨到“接通”, 琴键开关不按下为导通。 (4)将给定输出Ug 接至MCL-33面板的Uct 端,在Uct=0时,调节偏移电压Ub ,使=90o 。(注:把示波器探头接到三相桥式整流输出端即U d 波形, 探头地线接到晶闸管阳极。) 2.三相桥式全控整流电路 (1) 电阻性负载 按图接线,将Rd 调至最大450 (900并联)。 三相调压器逆时针调到底,合上主电源,调节主控制屏输出电压U uv 、U vw 、U wu ,从0V 调至70V(指相电压)。调节Uct ,使 在30o ~90o 范围内变化,用示波器观察记录=30O 、60O 、90O 时,整流电压u d =f (t ),晶闸管两端电压u VT =f (t )的波形,并记录相应的Ud 和交流输入电压U 2 数值。 30° 60° 90° 3.电感性负载 按图线路,将电感线圈(700mH)串入负载,Rd 调至最大(450)。 调节Uct ,使 在30o ~90o 范围内变化,用示波器观察记录=30 O 、60O 、90O 时,整流电压u d =f (t ),晶闸管两端电压u VT =f (t )的波形,并记录相应的Ud 和交流输入电压U 2 数值。 30° 60° 90°

单缝衍射光强分布实验报告.doc

单缝衍射光强分布 【实验目的】 1.定性观察单缝衍射现象和其特点。 2.学会用光电元件测量单缝衍射光强分布,并且绘制曲线。 【实验仪器】 【实验原理】 光波遇到障碍时,波前受到限制 而进入障碍后方的阴影区,称为衍 射。衍射分为两类:一类是中场衍 射,指光源与观察屏据衍射物为有 限远时产生的衍射,称菲涅尔衍射; 一类是远场衍射,指光源与接收屏距衍射物相当于无限远时所产生的衍射,叫夫琅禾费衍射,它就是平行光通过障碍的衍射。 夫琅禾费单缝衍射光强I =I 0 (sin β)2β2;其中β=πa sin θλ;a 为缝宽, θ为衍射角,λ为入射光波长。 上图中θ为衍射角,a 为缝宽。 仪器名称 光学导轨 激光器 接收器 数字式检流计 衍射板 型号

【实验内容】 (一)定性观察衍射现象 1.按激光器、衍射板、接收器(屏)的顺序在光节学导轨上放置仪器,调节光路,保证等高共轴。衍射板与接收器的间距不小于1m。 2.观察不同形状衍射物的衍射图样,记录其特点。 (二)测量单缝衍射光强分布曲线 1.选择一个单缝,记录缝宽,测量-2到+2级条纹的光强分布。要求至少测30个数据点。 2.测量缝到屏的距离L。 3.以sinθ为横坐标,I/I0为纵坐标绘制曲线,在同一张图中绘出理论曲线,做比较。 【实验步骤】 1.摆好实验仪器,布置光路如下图 顺序为激光器—狭缝—接收器—数字检流计,其中狭缝与出光口

的距离不大于10cm,狭缝与接收器的距离不小于1m。 2.调节激光器水平,即可拿一张纸片,对准接收器的中心,记下位置,然后打开激光器,沿导轨移动纸片,使激光器的光点一直打纸片所记位置,即光线打过来的高度要一致。 3.再调节各光学元件等高共轴,先粗调,即用眼睛观察,使得各个元件等高;再细调,用尺子量取它们的高度(狭缝的高度,激光器出光口的高度,接收器的中心),调节升降旋钮使其等高,随后用一纸片,接到光源发出的光,以其上的光斑位置作为参照,依次移动到各个元件前,调节他们的左右(即调节接收器底座的平移螺杆,狭缝底座的平移螺杆)高低,使光线恰好垂直照到元件的中心。 4.调节狭缝宽度,使光束穿过,可见衍射条纹,调节宽度,使条纹中心亮纹的宽度约为5mm,且使得条纹最亮,而数字检流计的读数最大,经过上述调节后,上述任何一个旋钮的改变都会使读数变小。 5.测量光强,先遮住接收器的光探头,选择合适的档位,并对读数进行调零,(若不能调零,则记下该处误差,在得到实验数据后减去),若在测量过程中需要换挡,则换挡需要调零。调节接收器底座的平移螺杆,观察检流计的读数,能够观察到第三暗纹的出现,单方向转动手轮,沿x方向每次转动,从左侧第三级暗条纹一直测到右边第三级暗纹,记录光电流大小和坐标位置。 6.记录缝宽和测量缝到光探头的距离。 【注意事项】

2020年光栅衍射实验报告范文

实验时间2019 年 月 日签到序号 【进入实验室后填写】 福州大学 【实验七】 光栅的衍射 (206 实验室) 学学院 班班级 学学号 姓姓名 实验前必须完成【实验预习部分】 登录下载预习资料 携带学生证提前 10 分钟进实验室 实验预习部分【实验目的】 】 【实验仪器】( 名称、规格或型号) 【实验原理】(文字叙述、主要公式、衍射的原理图)实验预习部分【实验步骤和注意事项】 】 实验预习部分

一、 巩固分光计的结构(P 197 ,图25-10 ) 载物台 6 7 25 望远镜11 12 15 16 17 平行光管2 27 调节分光计,要求达到(验调节步骤参阅实验25 ) ⑴⑴望远镜聚焦于无穷远,且其光轴与仪器转轴垂直。 ⑵⑵平行光管产生平行光,且其光轴与望远镜光轴同轴等高,狭缝为宽度在望远镜视场中约为1 mm (狭缝宽度不当应由教师调节) 二、光栅位置的调节 1 、光栅平面与平行光管轴线垂直 ①①转动望远镜使竖直叉丝对准 。 ,然后固定望远镜位置。 ②放置光栅时光栅面要垂直

。 ③③调节 螺丝直到望远镜中看到光栅面反射回来的绿色十字叉丝像与 重合。 2 、光栅上狭缝与仪器转轴平行。 松开望远镜止动螺钉,向左(或向右)转动望远镜,观察各谱线,调节被螺丝使各谱线都被分划板视场中央的水平叉丝平分。 3 、反复调节直到1 和2 两个要求同时满足! 数据记录与处理【一】测定光栅常数 测出第一级绿光谱线的衍射角 绿=541 nm k=1 置望远镜位置 T 1 置望远镜位置 T 2 1 1 2 2 2 1 2 1 1- -41 1′= rad) (弧度) 10sin 绿 kd

杭电电力电子技术实验报告

电力电子技术实验报告班级: 学号: 姓名: 指导老师:余善恩、孙伟华 实验名称:锯齿波同步移相触发电路及单相半波可控整流 三相桥式全控整流及有源逆变电路实验

实验一锯齿波同步移相触发电路及单相半波可控整流一、实验目的 1.加深理解锯齿波同步移相触发电路的工作原理及各元件的作用。 2.掌握锯齿波同步触发电路的调试方法。 3.对单相半波可控整流电路在电阻负载及电阻电感负载时工作情况作全面分析。 4.了解续流二极管的作用。 二、实验内容 1.锯齿波同步触发电路的调试。 2.锯齿波同步触发电路各点波形观察,分析。 3.单相半波整流电路带电阻性负载时特性的测定。 4.单相半波整流电路带电阻—电感性负载时,续流二极管作用的观察。 三、实验线路及原理 锯齿波同步移相触发电路主要由同步检测、锯齿波形成、移相控制、脉冲形成、脉冲放大等环节组成,其原理图如图1-1所示。 主电路 (a) (b)锯齿波同步移相触发电路 图1-1 单相半波可控整流电路 由V3、VD1、VD2、C1等元件组成同步检测环节,其作用是利用同步电压U T来控制锯齿波产生的时刻及锯齿波的宽度。由V1、V2等元件组成的恒流源电路,当V3截止时,恒流源对C2充电形成锯齿波;当V3导通时,电容C2通过R3、V3放电;调节电位器RP1可以调节恒流源的电流大小,改变对电容的充电时间,从而改变了锯齿波的斜率;控制电压U ct、偏移电压U b和锯齿波电压在V5基极综合叠加,从而构成移相控制环节,RP2、RP3分别调节控制电压U ct和偏移电压U b的大小;V6、V7构成脉冲形成放大环节,C5为强触发电容用于改善脉冲的前沿,由脉冲变压器输出触发脉冲。

电力电子实验报告

电力电子实验报告 学院名称电气信息学院 专业班级电气自动化03班 学号 学生姓名 指导教师

实验一电力晶体管(GTR)驱动电路研究 一.实验目的 1.掌握GTR对基极驱动电路的要求 2.掌握一个实用驱动电路的工作原理与调试方法 二.实验内容 1.连接实验线路组成一个实用驱动电路 2.PWM波形发生器频率与占空比测试 3.光耦合器输入、输出延时时间与电流传输比测试 4.贝克箝位电路性能测试 5.过流保护电路性能测试 三.实验线路 四.实验设备和仪器 1.MCL-07电力电子实验箱 2.双踪示波器 3.万用表 4.教学实验台主控制屏 五.实验方法 1.检查面板上所有开关是否均置于断开位置 2.PWM波形发生器频率与占空比测试 (1)开关S1、S2打向“通”,将脉冲占空比调节电位器RP顺时针旋到底,用示波器观察1和2点间的PWM波形,即可测量脉冲宽度、幅度与脉冲周期,并计算出频率f与占空比D 当S2通,RP右旋时:

当S2断,RP右旋时: 当S2通,RP左旋时: 当S2断,RP左旋时: (2)将电位器RP左旋到底,测出f与D。 (3)将开关S2打向“断”,测出这时的f与D。 (4)电位器RP顺时针旋到底,测出这时的f与D。 (5)将S2打在“断”位置,然后调节RP,使占空比D=0.2左右。 3.光耦合器特性测试 (1)输入电阻为R1=1.6K 时的开门,关门延时时间测试 a.将GTR单元的输入“1”与“6”分别与PWM波形发生器的输出“1”与“2”相连,再分别连接GTR单元的“3”与“5”,“9”与“7”及“6”与“11”,即按照以下表格的说明连线。

光栅衍射实验报告

4.10光栅的衍射 【实验目的】 (1)进一步熟悉分光计的调整与使用; (2)学习利用衍射光栅测定光波波长及光栅常数的原理和方法; (3)加深理解光栅衍射公式及其成立条件。 【实验原理】 衍射光栅简称光栅,是利用多缝衍射原理使光发生色散的一种光学元件。它实际上是一组数目极多、平行等距、紧密排列的等宽狭缝,通常分为透射光栅和平面反射光栅。透射光栅是用金刚石刻刀在平面玻璃上刻许多平行线制成的,被刻划的线是光栅中不透光的间隙。而平面反射光栅则是在磨光的硬质合金上刻许多平行线。实验室中通常使用的光栅是由上述原刻光栅复制而成的,一般每毫米约250~600条线。由于光栅衍射条纹狭窄细锐,分辨本领比棱镜高,所以常用光栅作摄谱仪、单色仪等光学仪器的分光元件,用来测定谱线波长、研究光谱的结构和强度等。另外,光栅还应用于光学计量、光通信及信息处理。 1.测定光栅常数和光波波长 光栅上的刻痕起着不透光的作用,当一束单色光垂直照射在光栅上时,各狭缝的光线因衍射而向各方向传播,经透镜会聚相互产生干涉,并在透镜的焦平面上形成一系列明暗条纹。 如图1所示,设光栅常数d=AB 的光栅G ,有一束平行光与光栅的法线成i 角的方向,入射到光栅上产生衍射。从B 点作BC 垂直于入射光CA ,再作BD 垂直于衍射光AD ,AD 与光栅法线所成的夹角为?。如果在这方向上由于光振动的加强而在F 处产生了一个明条纹,其光程差CA +AD 必等于波长的整数倍,即: ()sin sin d i m ?λ±= (1) 式中,λ为入射光的波长。当入射光和衍射光都在光栅法线同侧时,(1)式括号内取正号, 在光栅法线两侧时,(1)式括号内取负号。 如果入射光垂直入射到光栅上,即i=0,则(1)式变成: sin m d m ?λ= (2) 这里,m =0,±1,±2,±3,…,m 为衍射级次,?m 第m 级谱线的衍射角。 图1 光栅的衍射

相关文档