文档库 最新最全的文档下载
当前位置:文档库 › 常见的勾股数及公式

常见的勾股数及公式

常见的勾股数及公式
常见的勾股数及公式

常见的勾股数及公式

常见的勾股数及公式

武安市黄冈实验学校 翟升华搜集整理

我们知道,如果∠C=90°,a 、b 、c 是直角三角形的三边,则由勾股定理,得a 2+b 2=c 2;反之,若三角形的三边a 、b 、c 满足a 2+b 2=c 2,则该三角形是直角三角形,c 为斜边.与此相类似,如果三个正整数a 、b 、c 满足a 2+b 2=c 2,则称a 、b 、c 为勾股数,记为(a ,b ,c ).勾股数有无数多组,下面向同学们介绍几种:

一、三数为连续整数的勾股数

(3,4, 5)是我们所熟悉的一组三数为连续整数的勾股数,除此之外是否还有第二组或更多组呢

设三数为连续整数的勾股数组为(x -1,x ,x +1),则由勾股数的定义,得(x+1)2+x 2=(x+1)2,解得x =4或x =0(舍去),故三数为连续整数的勾股数只有一组(3,4,5);类似有3n,4n,5n (n 是正整数)都是勾股数 。

二、后两数为连续整数的勾股数

易知:(5,12,13),(9,40,41),(113,6338,6385),…,都是勾股数,如此许许多多的后两数为连续整数的勾股数,它的一般形式究竟是什么呢 a=2n+1,b=2n 2+2n,c=2n 2+2n+1(其特点是斜边与其中一股的差为1).

分别取n =1,2,3,…就得勾股数组(3,4,5),(5,12,13),(7,24,25),…

三、前两数为连续整数的勾股数

你知道(20,21,29),(119,120,169),(4059,4060,5741)…,这些都是前两数为连续整数的勾股数组。其公式为:(x ,x +1,1222++x x )(x 为正整数)。

设前两数为连续整数的勾股数组为(x ,x +1,y ),y=1222++x x 则()22

21y x x =++(*)

整理,得1222++x x =2y ,化为()121222

-=-+y x ,即()y x 212++()

y x 212-+=-1,

又()()

2121-+=-1,∴(

)1

221++n ()1

221+-n =-1(n∈N),

故取()y x 212++=(

)1

221++n ,()y x 212-+=()1

221+-n , 解之,得x =

4

1

〔()

1

221++n +()

1

22

1+-n -2〕,y =

4

2

〔()

1

221++n -()

1

22

1+-n 〕,

故前两数为连续整数的勾股数组是(

4

1

〔()

1

221++n +()

1

22

1+-n -2〕,

4

1

〔()

1

221++n +

()

1

221+-n -2〕+1,

4

2

〔()

1

221++n -()

1

22

1+-n 〕).

四、后两数为连续奇数的勾股数

如(8,15,17), (12,35,37) …其公式为:4(n+1),4(n+1)2-1,4(n+1)2+1(n 是正整数) . 五、其它的勾股数组公式:

1.a=2m,b=m 2-1,c=m 2+1(m 大于1的整数).=21(m 2-n 2),b=mn,c= 2

1

(m 2+n 2)(其中m>n 且是互质的奇数).

=2m,b=m 2

-n 2

,c=m 2

+n 2

(m>n,互质且一奇一偶的任意正整数).

下面我们把100以内的勾股数组列出来,供同学们参考: 3 4 5;5 12 13;6 8 10;7 24 25;8 15 17;9 12 15;9 40 41;10 24 26;11 60

61;12 16

20;

12 35

37;13

84

85;14 48

50;15 20

25;15

36

39;15 112 113;16

30

34;16

63

65

17 144 145;18

24

30;18

80

82;19

180 181;20 21

29;20 48

52;20 99

101;21

28

35

21 72

75;21

220 221;22 120 122;23 264 265;24

32

40;24 45

51;24

70

74;24

143 145

25 60 65;25 312 313;26 168 170;27 36 45;27 120 123;27

364 365;28 45 53;28 96 100

28 195 197;29 420 421;30 40 50;30 72 78;30 224

226;31 480 481;32 60 68;32 126 130

32 255 257;33 44 55;33 56 65;33 180 183;33 544

545;34 288 290;35 84 91;35 120 125

35 612 613;36 48 60;36 77 85;36 105 111;36 160

164;36 323 325;37 684 685;38 360 362

39 52 65;39 80 89;39 252 255;39 760 761;40 42

58;40 75 85;40 96 104;40 198 202

40 399 401;41 840 841;42 56 70;42 144 150;42 440

442;43 924 925;44 117 125;44 240 244

44 483 485;45 60 75;45 108 117;45 200 205;45 336

339;46 528 530;48 55 73;48 64 80

48 90 102;48 140 148;48 189 195;48 286 290;48 575

577;49 168 175;50 120 130;50 624 626

51 68 85;51 140 149;51 432 435;52 165 173;52 336

340;52 675 677;54 72 90;54 240 246

54 728 730;55 132 143;55 300 305;56 90 106;56 105

119;56 192 200;56 390 394;56 783 785

57 76 95;57 176 185;57 540 543;58 840 842;60 63 87;60

80 100;60 91 109;60 144 156

60 175 185;60 221 229;60 297 303;60 448 452;60 899

901;62 960 962;63 84 105;63 216 225

63 280 287;63 660 663;64 120 136;64 252 260;64 510

514;65 72 97;65 156 169;65 420 425

66 88 110;66 112 130;66 360 366;68 285 293;68 576

580;69 92 115;69 260 269;69 792 795

70 168 182;70 240 250;72 96 120;72 135 153;72 154

170;72 210 222;72 320 328;72 429 435

72 646 650;75 100 125;75 180 195;75 308 317;75 560

565;75 936 939;76 357 365;76 720 724

77 264 275;77 420 427;78 104 130;78 160 178;78 504

510;80 84 116;80 150 170;80 192 208

80 315 325;80 396 404;80 798 802;81 108 135;81 360

369;84 112 140;84 135 159;84 187 205

84 245 259;84 288 300;84 437 445;84 585 591;84 880

884;85 132 157;85 204 221;85 720 725

87 116 145;87 416 425;88 105 137;88 165 187;88 234

250;88 480 488;88 966 970;90 120 150

90 216 234;90 400 410;90 672 678;91 312 325;91 588

595;92 525 533;93 124 155;93 476 485

95 168 193;95 228 247;95 900 905;96 110 146;96 128

160;96 180 204;96 247 265;96 280 296

96 378 390;96 572 580;96 765 771;98 336 350;99 132

165;99 168 195;99 440 451;99 540 549

100 105 145;100 240 260;100 495 505;100 621 629.

以下是大于100的勾股数:

第223组: 102 136 170

第224组: 102 280 298

第225组: 102 864 870

第226组: 104 153 185

第227组: 104 195 221

第228组: 104 330 346

第229组: 104 672 680

第230组: 105 140 175

第231组: 105 208 233

第232组: 105 252 273

第233组: 105 360 375

第234组: 105 608 617

第235组: 105 784 791

第236组: 108 144 180

第237组: 108 231 255

第238组: 108 315 333

第239组: 108 480 492

第240组: 108 725 733

第241组: 108 969 975

第243组: 110 600 610 第244组: 111 148 185 第245组: 111 680 689 第246组: 112 180 212 第247组: 112 210 238 第248组: 112 384 400 第249组: 112 441 455 第250组: 112 780 788 第251组: 114 152 190 第252组: 114 352 370 第253组: 115 252 277 第254组: 115 276 299 第255组: 116 837 845 第256组: 117 156 195 第257组: 117 240 267 第258组: 117 520 533 第259组: 117 756 765 第260组: 119 120 169 第261组: 119 408 425 第262组: 120 126 174 第263组: 120 160 200 第264组: 120 182 218

第266组: 120 225 255 第267组: 120 288 312 第268组: 120 350 370 第269组: 120 391 409 第270组: 120 442 458 第271组: 120 594 606 第272组: 120 715 725 第273组: 120 896 904 第274组: 121 660 671 第275组: 123 164 205 第276组: 123 836 845 第277组: 124 957 965 第278组: 125 300 325 第279组: 126 168 210 第280组: 126 432 450 第281组: 126 560 574 第282组: 128 240 272 第283组: 128 504 520 第284组: 129 172 215 第285组: 129 920 929 第286组: 130 144 194 第287组: 130 312 338

第289组: 132 176 220 第290组: 132 224 260 第291组: 132 351 375 第292组: 132 385 407 第293组: 132 475 493 第294组: 132 720 732 第295组: 133 156 205 第296组: 133 456 475 第297组: 135 180 225 第298组: 135 324 351 第299组: 135 352 377 第300组: 135 600 615 第301组: 136 255 289 第302组: 136 273 305 第303组: 136 570 586 第304组: 138 184 230 第305组: 138 520 538 第306组: 140 147 203 第307组: 140 171 221 第308组: 140 225 265 第309组: 140 336 364 第310组: 140 480 500

第312组: 140 975 985 第313组: 141 188 235 第314组: 143 780 793 第315组: 143 924 935 第316组: 144 165 219 第317组: 144 192 240 第318组: 144 270 306 第319组: 144 308 340 第320组: 144 420 444 第321组: 144 567 585 第322组: 144 640 656 第323组: 144 858 870 第324组: 145 348 377 第325组: 145 408 433 第326组: 147 196 245 第327组: 147 504 525 第328组: 150 200 250 第329组: 150 360 390 第330组: 150 616 634 第331组: 152 285 323 第332组: 152 345 377 第333组: 152 714 730

第335组: 153 420 447 第336组: 153 680 697 第337组: 154 528 550 第338组: 154 840 854 第339组: 155 372 403 第340组: 155 468 493 第341组: 156 208 260 第342组: 156 320 356 第343组: 156 455 481 第344组: 156 495 519 第345组: 156 667 685 第346组: 159 212 265 第347组: 160 168 232 第348组: 160 231 281 第349组: 160 300 340 第350组: 160 384 416 第351组: 160 630 650 第352组: 160 792 808 第353组: 161 240 289 第354组: 161 552 575 第355组: 162 216 270 第356组: 162 720 738

第358组: 165 280 325 第359组: 165 396 429 第360组: 165 532 557 第361组: 165 900 915 第362组: 168 224 280 第363组: 168 270 318 第364组: 168 315 357 第365组: 168 374 410 第366组: 168 425 457 第367组: 168 490 518 第368组: 168 576 600 第369组: 168 775 793 第370组: 168 874 890 第371组: 170 264 314 第372组: 170 408 442 第373组: 171 228 285 第374组: 171 528 555 第375组: 171 760 779 第376组: 174 232 290 第377组: 174 832 850 第378组: 175 288 337 第379组: 175 420 455

第381组: 176 210 274 第382组: 176 330 374 第383组: 176 468 500 第384组: 176 693 715 第385组: 176 960 976 第386组: 177 236 295 第387组: 180 189 261 第388组: 180 240 300 第389组: 180 273 327 第390组: 180 299 349 第391组: 180 385 425 第392组: 180 432 468 第393组: 180 525 555 第394组: 180 663 687 第395组: 180 800 820 第396组: 180 891 909 第397组: 182 624 650 第398组: 183 244 305 第399组: 184 345 391 第400组: 184 513 545 第401组: 185 444 481 第402组: 185 672 697

第404组: 186 952 970 第405组: 189 252 315 第406组: 189 340 389 第407组: 189 648 675 第408组: 189 840 861 第409组: 190 336 386 第410组: 190 456 494 第411组: 192 220 292 第412组: 192 256 320 第413组: 192 360 408 第414组: 192 494 530 第415组: 192 560 592 第416组: 192 756 780 第417组: 195 216 291 第418组: 195 260 325 第419组: 195 400 445 第420组: 195 468 507 第421组: 195 748 773 第422组: 196 315 371 第423组: 196 672 700 第424组: 198 264 330 第425组: 198 336 390

第427组: 200 210 290 第428组: 200 375 425 第429组: 200 480 520 第430组: 200 609 641 第431组: 201 268 335 第432组: 203 396 445 第433组: 203 696 725 第434组: 204 253 325 第435组: 204 272 340 第436组: 204 560 596 第437组: 204 595 629 第438组: 204 855 879 第439组: 205 492 533 第440组: 205 828 853 第441组: 207 224 305 第442组: 207 276 345 第443组: 207 780 807 第444组: 207 920 943 第445组: 208 306 370 第446组: 208 390 442 第447组: 208 660 692 第448组: 208 819 845

第450组: 210 416 466 第451组: 210 504 546 第452组: 210 720 750 第453组: 213 284 355 第454组: 215 516 559 第455组: 215 912 937 第456组: 216 288 360 第457组: 216 405 459 第458组: 216 462 510 第459组: 216 630 666 第460组: 216 713 745 第461组: 216 960 984 第462组: 217 456 505 第463组: 217 744 775 第464组: 219 292 365 第465组: 220 231 319 第466组: 220 459 509 第467组: 220 528 572 第468组: 220 585 625 第469组: 222 296 370 第470组: 224 360 424 第471组: 224 420 476

第473组: 224 882 910 第474组: 225 272 353 第475组: 225 300 375 第476组: 225 540 585 第477组: 225 924 951 第478组: 228 304 380 第479组: 228 325 397 第480组: 228 665 703 第481组: 228 704 740 第482组: 230 504 554 第483组: 230 552 598 第484组: 231 308 385 第485组: 231 392 455 第486组: 231 520 569 第487组: 231 792 825 第488组: 232 435 493 第489组: 232 825 857 第490组: 234 312 390 第491组: 234 480 534 第492组: 235 564 611 第493组: 237 316 395 第494组: 238 240 338

第496组: 240 252 348 第497组: 240 275 365 第498组: 240 320 400 第499组: 240 364 436 第500组: 240 418 482 第501组: 240 450 510 第502组: 240 551 601 第503组: 240 576 624 第504组: 240 700 740 第505组: 240 782 818 第506组: 240 884 916 第507组: 240 945 975 第508组: 243 324 405 第509组: 245 588 637 第510组: 245 840 875 第511组: 246 328 410 第512组: 248 465 527 第513组: 248 945 977 第514组: 249 332 415 第515组: 250 600 650 第516组: 252 275 373 第517组: 252 336 420

第519组: 252 539 595 第520组: 252 561 615 第521组: 252 735 777 第522组: 252 864 900 第523组: 255 340 425 第524组: 255 396 471 第525组: 255 612 663 第526组: 255 700 745 第527组: 256 480 544 第528组: 258 344 430 第529组: 259 660 709 第530组: 259 888 925 第531组: 260 273 377 第532组: 260 288 388 第533组: 260 624 676 第534组: 260 651 701 第535组: 260 825 865 第536组: 261 348 435 第537组: 261 380 461 第538组: 264 315 411 第539组: 264 352 440 第540组: 264 448 520

第542组: 264 702 750 第543组: 264 770 814 第544组: 264 950 986 第545组: 265 636 689 第546组: 266 312 410 第547组: 266 912 950 第548组: 267 356 445 第549组: 270 360 450 第550组: 270 648 702 第551组: 270 704 754 第552组: 272 510 578 第553组: 272 546 610 第554组: 273 364 455 第555组: 273 560 623 第556组: 273 736 785 第557组: 273 936 975 第558组: 275 660 715 第559组: 276 368 460 第560组: 276 493 565 第561组: 276 805 851 第562组: 279 372 465 第563组: 279 440 521

常见的勾股数及公式

常见的勾股数及公式 武安市黄冈实验学校 翟升华搜集整理 我们知道,如果∠C=90°,a 、b 、c 是直角三角形的三边,则由勾股定理,得a 2+b 2=c 2;反之,若三角形的三边 a 、 b 、 c 满足a 2+b 2=c 2,则该三角形是直角三角形,c 为斜边.与此相类似,如果三个正整数a 、b 、c 满足a 2+b 2=c 2,则称a 、b 、c 为勾股数,记为(a ,b ,c ).勾股数有无数多组,下面向同学们介绍几种: 一、三数为连续整数的勾股数 (3,4, 5)是我们所熟悉的一组三数为连续整数的勾股数,除此之外是否还有第二组或更多组呢? 设三数为连续整数的勾股数组为(x -1,x ,x +1),则由勾股数的定义,得(x+1)2+x 2=(x+1)2,解得x = 4或x =0(舍去),故三数为连续整数的勾股数只有一组(3,4,5);类似有3n,4n,5n (n 是正整数)都是勾股数 。 二、后两数为连续整数的勾股数 易知:(5,12,13),(9,40,41),(113,6338,6385),…,都是勾股数,如此许许多多的后两数为连续整数的勾股数,它的一般形式究竟是什么呢? a=2n+1,b=2n 2+2n,c=2n 2+2n+1(其特点是斜边与其中一股的差为1). 分别取n =1,2,3,…就得勾股数组(3,4,5),(5,12,13),(7,24,25),… 三、前两数为连续整数的勾股数 你知道(20,21,29),(119,120,169),(4059,4060,5741)…,这些都是前两数为连续整数的勾股数组。其公式为:(x ,x +1,1222++x x )(x 为正整数)。 设前两数为连续整数的勾股数组为(x ,x +1,y ),y=1222++x x 则()22 21y x x =++(*) 整理,得1222++x x =2y ,化为()121222-=-+y x ,即()y x 212++() y x 212-+=-1, 又()()2121-+=-1,∴()122 1++n ()1221+-n =-1(n∈N), 故取()y x 212++=()1221++n ,()y x 212-+=()1 221+-n , 解之,得x =41〔()1221++n +()1221+-n -2〕,y =42〔()1221++n -()1221+-n 〕, 故前两数为连续整数的勾股数组是(4 1〔()1221++n +()1221+-n -2〕,41〔()1221++n +()1221+-n -2〕+1,42〔()1221++n -()1221+-n 〕). 四、后两数为连续奇数的勾股数 如(8,15,17), (12,35,37) …其公式为:4(n+1),4(n+1)2-1,4(n+1)2+1(n 是正整数) . 五、其它的勾股数组公式: 1.a=2m,b=m 2-1,c=m 2+1(m 大于1的整数). 2.a=21(m 2-n 2),b=mn,c= 21(m 2+n 2 )(其中m>n 且是互质的奇数). 3.a=2m,b=m 2-n 2,c=m 2+n 2(m>n,互质且一奇一偶的任意正整数). 下面我们把100以内的勾股数组列出来,供同学们参考: 3 4 5;5 12 13;6 8 10;7 24 25;8 15 17;9 12 15;9 40 41;10 24 26;11 60 61;12 16 20; 12 35 37;13 84 85;14 48 50;15 20 25;15 36 39;15 112 113;16 30 34;16 63 65 17 144 145;18 24 30;18 80 82;19 180 181;20 21 29;20 48 52;20 99 101;21 28 35 21 72 75;21 220 221;22 120 122;23 264 265;24 32 40;24 45 51;24 70 74;24 143 145

勾股数的规律

精选范本 所谓勾股数,就是当组成一个直角三角形的三边长都 为正整数时,我们就称这一组数为勾股数 那么,组成一组勾股数的三个正整数之间, 是否具有一定的规律 可寻呢?下面我们一起来观察几组勾股数: 规律一:在勾股数(3, 4, 5)、( 5,12,13)、( 7, 24, 25)( 9, 40,41)中,我们发现 由(3, 4, 5)有: 3 2=9=4+5 由(5, 12, 13)有: 5 =25=12+13 由(7, 24, 25)有: 7 =49=24+25 由(9, 40, 41)有: 92=81=40+41. 即在一组勾股数中,当最小边为奇数时,它的平方刚好 等于 另外两个连续的正整数之和。 因此,我们把它推广到一般,从而 可得出以下公式: 2 2 2 2 ???(2n+1) =4n+4n+仁(2n +2n ) + (2n+2n+1) 2 2 2 2 2 ???(2n+1) + (2n+2n ) = (2n+2n+1) (n 为正整数) 勾股数公式一:(2n+1, 2n 2+2n , 2n 2+2n+1)(n 为正整数) 等于两个连续整数之和的二倍,推广到一般,从而可得出另一公式: 2 2 2 2 ???(2n ) =4n =2[ (n-1 ) + (n+1)] ???(2n ) + (n-1 ) = (n +1) (n 》2 且 n 为正整数) 勾股数公式二:(2n , n 2-1 , n 2+1)( n 》2且n 为正整 数) 禾U 用以上两个公式,我们可以快速写出各组勾股数。 规律二:在勾股数(6, 8, 26)中,我们发现 由(6, 8, 10)有: 由(8, 15, 17)有: 由(10, 24, 26)有: 即在 一组勾股数中, 10)、( 8, 15, 17)、( 10, 24, 2 6 =36=2X( 8+10) 82=64=2X( 15+17) 2 10 =100=2X( 24+26) 当最小边为偶数时,它的平方刚好

探究:关于勾股定理的那点事(勾股的历史、证明,勾股数探究等)

探究:关于勾股定理的证明的那点事 在我国,把直角三角形的两直角边的平方和等于斜边的平方这一特性叫做勾股定理或勾股弦定理,这个定理在中国又称为“商高定理”,在外国称为“毕达哥拉斯定理”(Pythagoras Theorem)。 数学公式中常写作a2+b2=c2 勾股定理(又称商高定理,毕达哥拉斯定理)是一个基本的几何定理,早在中国商代就由商高发现。据说毕达哥拉斯发现了这个定理后,即斩了百头牛作庆祝,因此又称“百牛定理”。 勾股定理指出: 直角三角形两直角边(即“勾”“股”)边长平方和等于斜边(即“弦”)边长的平方。 也就是说, 设直角三角形两直角边为a和b,斜边为c,那么 a^2+b^2=c^2 (为了编辑省时,以下“a2”用“a^2”代替)

勾股定理现发现约有500种证明方法,是数学定理中证明方法最多的定理之一。 勾股定理其实是余弦定理的一种特殊形式。 我国古代著名数学家商高说:“若勾三,股四,则弦五。”它被记录在了《九章算术》中。 勾股数组 满足勾股定理方程a^2+b^2=c^2的正整数组(a,b,c)。例如(3,4,5)就是一组勾股数组。 由于方程中含有3个未知数,故勾股数组有无数多组。 勾股数组的通式: a=m^2-n^2 b=2mn c=m^2+n^2 (m>n,m,n为正整数) 推广 1、如果将直角三角形的斜边看作二维平面上的向量,将两直角边看作在平面直角坐标系坐标轴上的投影,则可以从另一个角度考察勾股定理的意义。即,向量长度的平方等于它在其所在空间一组正交基上投影长度的平方之和。 2、勾股定理是余弦定理的特殊情况。

勾股定理 定理 如果直角三角形两直角边分别为a,b,斜边为c,那么a^2+b^ 2=c^2;;即直角三角形两直角边的平方和等于斜边的平方。 古埃及人利用打结作Rt 如果三角形的三条边a,b,c满足a^2+b^2=c^2;,还有变形公式:A B=根号(AC^2+BC^2),如:一条直角边是3,另一条直角边是4,斜边就是3×3+4×4=x×x,x=5。那么这个三角形是直角三角形。 (称勾股定理的逆定理) 勾股定理的来源

勾股数

勾股数 勾股数 勾股数又名毕氏三元数凡是可以构成一个直角三角形三边的一组正整数,称之为勾股数。 目录 常用套路 简介 所谓勾股数,一般是指能够构成直角三角形三条边的三个正整数(a,b,c)。 即a2+b2=c2,a,b,c∈N 又由于,任何一个勾股数组(a,b,c)内的三个数同时乘以一个整数n得到的新数组(na,nb,nc)仍然是勾股数,所以一般我们想找的是a,b,c互质的勾股数组。 关于这样的数组,比较常用也比较实用的套路有以下两种: 第一套路 当a为大于1的奇数2n+1时,b=2n^2+2n, c=2n^2+2n+1。 实际上就是把a的平方数拆成两个连续自然数,例如: n=1时(a,b,c)=(3,4,5) n=2时(a,b,c)=(5,12,13) n=3时(a,b,c)=(7,24,25) ... ... 这是最经典的一个套路,而且由于两个连续自然数必然互质,所以用这个套路得到的勾股数组全部都是互质的。 第二套路 2、当a为大于4的偶数2n时,b=n^2-1, c=n^2+1 也就是把a的一半的平方分别减1和加1,例如:

n=3时(a,b,c)=(6,8,10) n=4时(a,b,c)=(8,15,17) n=5时(a,b,c)=(10,24,26) n=6时(a,b,c)=(12,35,37) ... ... 这是次经典的套路,当n为奇数时由于(a,b,c)是三个偶数,所以该勾股数组必然不是互质的;而n为偶数时由于b、c是两个连续奇数必然互质,所以该勾股数组互质。 所以如果你只想得到互质的数组,这条可以改成,对于a=4n (n>=2), b=4n2-1, c=4n2+1,例如: n=2时(a,b,c)=(8,15,17) n=3时(a,b,c)=(12,35,37) n=4时(a,b,c)=(16,63,65) ... ... 公式证明 证明 a=2mn b=m^2-n^2 c=m^2+n^2 证: 假设a^2+b^2=c^2,这里研究(a,b)=1的情况(如果不等于1则(a,b)|c,两边除以(a,b)即可)如果a,b均奇数,则a^2 + b^2 = 2(mod 4)(奇数mod4余1),而2不是模4的二次剩余,矛盾,所以必定存在一个偶数。不妨设a=2k 等式化为4k^2 = (c+b)(c-b) 显然b,c同奇偶(否则右边等于奇数矛盾) 作代换:M=(c+b)/2, N=(c-b)/2,显然M,N为正整数 现在往证:(M,N)=1 如果存在质数p,使得p|M,p|N, 那么p|M+N(=c), p|M-N(=b), 从而p|c, p|b, 从而p|a,这与(a,b)=1矛盾 所以(M,N)=1得证。 依照算术基本定理,k^2 = p1^a1 * p2^a2 * p3^a3 * ...,其中a1,a2...均为偶数,p1,p2,p3...均为质数 如果对于某个pi,M的pi因子个数为奇数个,那N对应的pi因子必为奇数个(否则加起来不为偶数),从而pi|M, pi|N,(M,N)=pi>1与刚才的证明矛盾所以对于所有质因子,pi^2|M, pi^2|N,即M,N都是平方数。 设M = m^2, N = n^2 从而有c+b = 2m^2, c-b = 2n^2,解得c=m^2+n^2, b=m^2-n^2, 从而a=2mn 局限 目前,关于勾股数的公式还是有局限的。勾股数公式可以得到所有的基本勾股数,但是不可能得到所有的派生勾股数。比如3,4,5;6,8,10;9,12,15...,就不能全部有公式计算出来。 完全公式

勾股数

勾股数免费编辑添加义项名 勾股数勾股数又名毕氏三元数凡是可以构成一个直角三角形三边的一组正整数,称之为勾股数。为数学名词。 表达式 a^2+b^2=c^2,a,b,c∈N 别称 毕氏三元数 《周髀算经》 应用学科 几何 勾股数又名毕氏三元数。凡是可以构成一个直角三角形三边的一组正整数,称之为勾股数。 编辑本段常用套路 简介 所谓勾股数,一般是指能够构成直角三角形三条边的三个正整数(例如a,b,c)。 即a^2+b^2=c^2,a,b,c∈N 又由于,任何一个勾股数组(a,b,c)内的三个数同时乘以一个整数n得到的新数组(na,nb,nc)仍然是勾股数,所以一般我们想找的是a,b,c互质的勾股数组。 关于这样的数组,比较常用也比较实用的套路有以下两种: 第一套路 当a为大于1的奇数2n+1时,b=2n^2+2n, c=2n^2+2n+1。 实际上就是把a的平方数拆成两个连续自然数,例如: n=1时(a,b,c)=(3,4,5) n=2时(a,b,c)=(5,12,13) n=3时(a,b,c)=(7,24,25) ... ... 这是最经典的一个套路,而且由于两个连续自然数必然互质,所以用这个套路得到的勾股数组全部都是互质的。 第二套路 2、当a为大于4的偶数2n时,b=n^2-1, c=n^2+1 也就是把a的一半的平方分别减1和加1,例如: n=3时(a,b,c)=(6,8,10) n=4时(a,b,c)=(8,15,17)

n=5时(a,b,c)=(10,24,26) n=6时(a,b,c)=(12,35,37) ... ... 这是第二经典的套路,当n为奇数时由于(a,b,c)是三个偶数,所以该勾股数组必然不是互质的;而n为偶数时由于b、c是两个连续奇数必然互质,所以该勾股数组互质。 所以如果你只想得到互质的数组,这条可以改成,对于a=4n (n>=2), b=4n2-1, c=4n2+1,例如: n=2时(a,b,c)=(8,15,17) n=3时(a,b,c)=(12,35,37) n=4时(a,b,c)=(16,63,65) ... ... 编辑本段公式证明 证明 a=2mn b=m^2-n^2 c=m^2+n^2 证: 假设a^2+b^2=c^2,这里研究(a,b)=1的情况(如果不等于1则(a,b)|c,两边除以(a,b)即可) 如果a,b均奇数,则a^2 + b^2 = 2(mod 4)(奇数mod4余1),而2不是模4的二次剩余,矛盾,所以必定存在一个偶数。不妨设a=2k 等式化为4k^2 = (c+b)(c-b) 显然b,c同奇偶(否则右边等于奇数矛盾) 作代换:M=(c+b)/2, N=(c-b)/2,显然M,N为正整数 往证:(M,N)=1 如果存在质数p,使得p|M,p|N, 那么p|M+N(=c), p|M-N(=b), 从而p|c, p|b, 从而p|a,这与(a,b)=1矛盾 所以(M,N)=1得证。 依照算术基本定理,k^2 = p1^a1 * p2^a2 * p3^a3 * ...,其中a1,a2...均为偶数,p1,p2,p3...均为质数 如果对于某个pi,M的pi因子个数为奇数个,那N对应的pi因子必为奇数个(否则加起来不为偶数),从而pi|M, pi|N,(M,N)=pi>1与刚才的证明矛盾所以对于所有质因子,pi^2|M, pi^2|N,即M,N都是平方数。 设M = m^2, N = n^2

常见的勾股数及公式

常见的勾股数及公式

常见的勾股数及公式 武安市黄冈实验学校 翟升华搜集整理 我们知道,如果∠C=90°,a 、b 、c 是直角三角形的三边,则由勾股定理,得a 2+b 2=c 2;反之,若三角形的三边a 、b 、c 满足a 2+b 2=c 2,则该三角形是直角三角形,c 为斜边.与此相类似,如果三个正整数a 、b 、c 满足a 2+b 2=c 2,则称a 、b 、c 为勾股数,记为(a ,b ,c ).勾股数有无数多组,下面向同学们介绍几种: 一、三数为连续整数的勾股数 (3,4, 5)是我们所熟悉的一组三数为连续整数的勾股数,除此之外是否还有第二组或更多组呢 设三数为连续整数的勾股数组为(x -1,x ,x +1),则由勾股数的定义,得(x+1)2+x 2=(x+1)2,解得x =4或x =0(舍去),故三数为连续整数的勾股数只有一组(3,4,5);类似有3n,4n,5n (n 是正整数)都是勾股数 。 二、后两数为连续整数的勾股数 易知:(5,12,13),(9,40,41),(113,6338,6385),…,都是勾股数,如此许许多多的后两数为连续整数的勾股数,它的一般形式究竟是什么呢 a=2n+1,b=2n 2+2n,c=2n 2+2n+1(其特点是斜边与其中一股的差为1). 分别取n =1,2,3,…就得勾股数组(3,4,5),(5,12,13),(7,24,25),… 三、前两数为连续整数的勾股数 你知道(20,21,29),(119,120,169),(4059,4060,5741)…,这些都是前两数为连续整数的勾股数组。其公式为:(x ,x +1,1222++x x )(x 为正整数)。 设前两数为连续整数的勾股数组为(x ,x +1,y ),y=1222++x x 则()22 21y x x =++(*)

三种常见的勾股数

三种常见的勾股数 我们知道,如果a 、b 、c 是直角三角形的三边,则由勾股定理,得222c b a =+,反之,若三角形的三边a 、b 、c 满足222c b a =+,则该三角形是直角三角形.与此相类似,如果三个正整数a 、b 、c 满足222c b a =+,则称a 、b 、c 为勾股数,记为(a ,b ,c ).勾股数有无数多组,下面向同学们介绍三种: 一、三数为连续整数的勾股数 (3,4, 5)是我们所熟悉的一组三数为连续整数的勾股数,除此之外是否还有第二组或更多组呢? 设三数为连续整数的勾股数组为(x -1,x ,x +1),则由勾股数的定义,得()()2 2211+=+-x x x ,解得x =4或x =0(舍去),故三数为连续整数的勾股数只有一组(3,4,5); 二、后两数为连续整数的勾股数 易知:(5,12,13),(9,40,41),(113,6338,6385),…,都是勾股数,如此许许多多的后两数为连续整数的勾股数,它的一般形式究竟是什么呢? 设后两数为连续整数的勾股数组为(x ,y ,y +1),则 ()2 221+=+y y x , 整理,得122=-y x ,(*) 显然,x 不能是偶数,否则,当x 为偶数时,(*)式的左边是偶数,而右边是奇数,矛盾.故x 不能是偶数,因此, 取x =2m +1,则y =m m 222+(m ∈N), 故后两数为连续整数的勾股数组是 (2m +1,m m 222+,m m 222 ++1); 分别取m =1,2,3,…就得勾股数组(3,4,5),(5,12,13),(7,24,25),… 三、前两数为连续整数的勾股数 你知道(20,21,29),(119,120,169),(4059,4060,5741)…,这些前两数为连续整数的勾股数组是怎样构造出来的吗?下面我们仿照后两数为连续整数的勾股数组的导出老进行推导. 设前两数为连续整数的勾股数组为(x ,x +1,y ),则 ()2221y x x =++(*) 整理,得1222++x x =2 y ,化为 ()121222-=-+y x ,即

勾股数的常用套路

勾股数的常用套路 所谓勾股数,一般是指能够构成直角三角形三条边的三个正整数(a,b,c)。 即a^2+b^2=c^2,a,b,c∈N 又由于,任何一个勾股数组(a,b,c)内的三个数同时乘以一个整数n得到的新数组(na,nb,nc)仍然是勾股数,所以一般我们想找的是a,b,c互质的勾股数组。 关于这样的数组,比较常用也比较实用的套路有以下两种: 1、当a为大于1的奇数2n+1时,b=2*n^2+2*n, c=2*n^2+2*n+1。 实际上就是把a的平方数拆成两个连续自然数,例如: n=1时(a,b,c)=(3,4,5) n=2时(a,b,c)=(5,12,13) n=3时(a,b,c)=(7,24,25) ... ... 这是最经典的一个套路,而且由于两个连续自然数必然互质,所以用这个套路得到的勾股数组全部都是互质的。 2、当a为大于4的偶数2n时,b=n^2-1, c=n^2+1 也就是把a的一半的平方分别减1和加1,例如: n=3时(a,b,c)=(6,8,10) n=4时(a,b,c)=(8,15,17) n=5时(a,b,c)=(10,24,26) n=6时(a,b,c)=(12,35,37) ... ... 这是次经典的套路,当n为奇数时由于(a,b,c)是三个偶数,所以该勾股数组必然不是互质的;而n为偶数时由于b、c是两个连续奇数必然互质,所以该勾股数组互质。 所以如果你只想得到互质的数组,这条可以改成,对于a=4n (n>=2), b=4*n^2-1, c=4*n^2+1,例如: n=2时(a,b,c)=(8,15,17) n=3时(a,b,c)=(12,35,37) n=4时(a,b,c)=(16,63,65) ... ... ========Edward补充======== 对于N 为质因数比较多的和数时还可以参照其质因数进行取相应的勾股数补充,即1个N会有多对的勾股数,例如: n=9时(a,b,c)=(9,24,25)or (9,12,15) --------3* (3,4,5) n=12时(a,b,c)= (12,35,37) or (12,16,20) ----- 4*(3,4,5) =========ShangJingbo补充======= 还有诸如此类的勾股数,20、21、29; 119、120、169;

勾股数序列

勾股数序列 山东定陶一中刘述省 序言 两千多年前,中国人和希腊人发现了勾股定理,当是数学史上的伟大创举。a=2mn,b=m2-n2,c=m2+n2 则是近代中国人在数论领域的又一重大成就,它将勾股数的一般求法表述得如此简捷。然而迄今为止,未见一个具体详细的勾股数序列表。这是因为,用现代数学家的眼光来看,找素勾股数是一件很困难的事,更不用说全部勾股数的序列表了。 2002年,本人找到了一种极其初等的方法。初中学生即可做,可以将所有勾股数按照一定的顺序一个不漏地列出来,制作成表。(当然,由于勾股数的无限多, 只能列出一定范围内的)。此成果获得中国管理科学研究院颁发的中国新时期人文科学优秀成果一等奖。 学校有了自己的网站,给我们广大师生建立了互相交流的平台。自己多年的一点点积累,也很想与大家一起交流学习。下面的正文力图深入浅出,另有勾股数序列表一并附上。并指望有一天,看到有高手通过编程法打印出可观的勾股数序列表,学生人手一册。真正让勾股定理走进普通人之中。 正文 先找素勾股数,即勾a,股b,弦c三数互质(无公约数)的勾股数。故约定:a<b<c . a2 + b2 = c2且a b c 互质。因a2 = (c-b) (c+b) ,突破口选在 c-b上。并记满足c-b=k的素勾股数为d k 勾股数。(论文在后面将d k勾股数的倍数形成的勾股数叫做d k倍勾股数) 以下将按照k的取值从小到大依次探求结论。 k=1时,a2=k(b+c)=b+c=2b+1.知a是大于1的奇数。设a = 2m +1,则b = (a2 -1) / 2 , c=b+1.m依次从1开始取值,即得到d1 素勾股数序列如下: a b c 说明:1. a列从上到下依次多 2 ,b列从上到下依次多加4 . 3 4 5 5 12 13 2. 各列个位数五个数一循环。 7 24 25 9 40 41 3. 拟人法比喻,c为姐,b为弟,a为妹。可编口诀如下: 11 60 61 13 84 85 妹妹方一方,姐弟和相当; 15 112 113 17 144 145 姐大弟一年,三人勾股弦。 19 180 181 .。。。。。。。。。。。。。。。。。。。。。。。。 k=2时,a2=2(b+c)=2(2b+2)=4(b+1).设a=2m,则b=m2-1,c=b+2.得出通项公式后,还要注意考虑两点。第一, 要保证a b c 互质。这里a 已经确定是偶数,b 就不能再是偶数,所以知m 是偶数。第二,要保证b >a 。这里换算为m2 —1 >2m 。得到m >1+2。

以内的勾股数

100以内的勾股数: i=3j=4k=5 i=5j=12k=13 i=6j=8k=10 i=7j=24k=25 i=8j=15k=17 i=9j=12k=15 i=9j=40k=41 i=10j=24k=26 i=11j=60k=61 i=12j=16k=20 i=12j=35k=37 i=13j=84k=85 i=14j=48k=50 i=15j=20k=25 i=15j=36k=39 i=16j=30k=34 i=16j=63k=65 i=18j=24k=30 i=18j=80k=82 i=20j=21k=29 i=20j=48k=52 i=21j=28k=35 i=21j=72k=75 i=24j=32k=40 i=24j=45k=51 i=24j=70k=74 i=25j=60k=65 i=27j=36k=45 i=28j=45k=53 i=30j=40k=50

i=30j=72k=78 i=32j=60k=68 i=33j=44k=55 i=33j=56k=65 i=35j=84k=91 i=36j=48k=60 i=36j=77k=85 i=39j=52k=65 i=39j=80k=89 i=40j=42k=58 i=40j=75k=85 i=42j=56k=70 i=45j=60k=75 i=48j=55k=73 i=48j=64k=80 i=51j=68k=85 i=54j=72k=90 i=57j=76k=95 i=60j=63k=87 i=65j=72k=97 勾股数的常用套路 所谓勾股数,一般是指能够构成直角三角形三条边的三个正整数(a,b,c)。 即a^2+b^2=c^2,a,b,c∈N 又由于,任何一个勾股数组(a,b,c)内的三个数同时乘以一个整数n得到的新数组(na,nb,nc)仍然是勾股数,所以一般我们想找的是a,b,c互质的勾股数组。 关于这样的数组,比较常用也比较实用的套路有以下两种: 1、当a为大于1的奇数2n+1时,b=2*n^2+2*n,c=2*n^2+2*n+1。 实际上就是把a的平方数拆成两个连续自然数,例如: n=1时(a,b,c)=(3,4,5)

100以内的勾股数

100以内的 勾股数 i=3j=4k=5 i=5j=12k=13 i=6j=8k=10 i=7j=24k=25 i=8j=15k=17 i=9j=12k=15 i=9j=40k=41 i=10j=24k=26 i=11j=60k=61 i=12j=16k=20 i=12j=35k=37 i=13j=84k=85 i=14j=48k=50 i=15j=20k=25 i=15j=36k=39 i=16j=30k=34 i=16j=63k=65

i=18j=24k=30 i=18j=80k=82

i=65j=72k=97勾股数的常用套路 所谓勾股数, 条边的三个正整数 (a,b,c)o 即 a A 2+b A 2=c A 2,a,b,c € N 又由于,任何一个勾股数组(a,b,c)内的三个数同时乘以一个整数 n 得到的新 数组(n a, nb,nc)仍然是勾股数,所以一般我们想找的是a,b,c 互质的勾股数组。 i=20j=21k=29 i=24j=45k=51 i=30j=40k=50 i=35j=84k=91 i=40j=42k=58 i=40j=75k=85 i=42j=56k=70 i=45j=60k=75 i=48j=55k=73 i=48j=64k=80 i=51j=68k=85 i=54j=72k=90 i=57j=76k=95 i=60j=63k=87 i=20j=48k=52 i=24j=70k=74 i=30j=72k=78 i=36j=48k=60 i=21j=28k=35 i=25j=60k=65 i=32j=60k=68 i=36j=77k=85 i=21j=72k=75 i=27j=36k=45 i=33j=44k=55 i=39j=52k=65 i=24j=32k=40 i=28j=45k=53 i=33j=56k=65 i=39j=80k=89 一般是指能够构成直角三角形三

100以内各数开方、100以内各数平方、常见勾股数

100以内各数开方 √1 = 1 √2 = 1.41421 √3 = 1.73205 √4 = 2 √5 = 2.23607 √6 = 2.44949 √7= 2.64575 √8 = 2.82843 √9 = 3 √10 = 3.16228 √11 = 3.31662 √12 = 3.4641 √13 = 3.60555 √14 = 3.74166 √15 = 3.87298 √16 = 4 √17 = 4.12311 √18 = 4.24264 √19 = 4.3589 √20 = 4.47214 √21 = 4.58258 √22 = 4.69042 √23 =4.79583 √24 = 4.89898 √25 = 5 √26 = 5.09902 √27 = 5.19615 √28 = 5.2915 √29 = 5.38516 √30 = 5.47723 √31 = 5.56776 √32 = 5.65685 √33 = 5.74456 √34 =5.83095 √35 = 5.91608 √36 = 6 √37 = 6.08276 √38 = 6.16441 √39 = 6.245 √40 = 6.32456 √41 = 6.40312 √42 = 6.48074 √43 = 6.55744 √44 = 6.63325 √45 = 6.7082 √46 = 6.78233 √47 = 6.85565 √48 = 6.9282 √49 = 7 √50 = 7.07107 √51 = 7.14143 √52 = 7.2111 √53 = 7.28011 √54 = 7.34847 √55 = 7.4162 √56 = 7.48331 √57 = 7.54983 √58 = 7.61577 √59 = 7.68115 √60 = 7.74597 √61 = 7.81025 √62 =7.87401 √63 = 7.93725 √64 = 8 √65 = 8.06226 √66 = 8.12404 √67 = 8.18535 √68 = 8.24621 √69 = 8.30662 √70 = 8.3666 √71 = 8.42615 √72 = 8.48528 √73 = 8.544 √74 = 8.60233 √75 = 8.66025 √76 = 8.7178 √77 = 8.77496 √78 = 8.83176 √79 = 8.88819 √80 = 8.94427 √81 = 9 √82 = 9.05539 √83 = 9.11043 √84 = 9.16515 √85 = 9.21954 √86 = 9.27362 √87 = 9.32738 √88 = 9.38083 √89 = 9.43398 √90 = 9.48683 √91 = 9.53939 √92 = 9.59166 √93 =9.64365 √94 = 9.69536 √95 = 9.74679 √96 = 9.79796 √97 = 9.84886 √98 = 9.89949 √99 = 9.94987 √100 = 10 100以内各数平方 12=1 22=432=9 42=16 52=25 62=36 72=49 82=64 92=81 102=100112=121 122=144 132=169 142=196 152=225 162=256 172=289 182=324 192=361 202=400

勾股数的整理及应用

首先要熟记1~30的平方 例如: 162 个位6乘以6 所以结果个位一定是6,个位不是6肯定错。 例如:可以用完全平方公式 192=(20-1)2=400-40+1=361 222=(20+2)2=400+80+4=484 整十的数比较好算。。。 某些学生觉得记上表很难,其实不然,部分已经是我们非常熟悉的数,像1~16、20、25…要记的不多,再加上上述的方法,再用心一下,就很好记的! 常用勾股数与上表有联系,涉及到xx的平方 常用勾股数: 3 4 5 (9+16=25) 5 12 13 (25+144=169) 7 24 25 (49+576=625) 8 15 17 (64+225=289) 9 40 41 (81+1600=1681) … 这些是要求学生熟悉并记住的。 例如:当你看见三个数,7/24/25时候,若你记得,马上可以做出判断。 常用勾股数的整数倍也可以构成勾股数。 6 8 10 9 12 15 12 16 20 15 20 25 10 24 26 15 36 39 …

常用勾股数的正实数倍,进而构成一组广义的勾股数 2.5 6 6.5 3.5 8.4 9.1 … 判定勾股数的方法:化整、约简、判断 例:3.5 8.4 9.1 → 35 84 91 → 5 12 13 例: 如图,为了求出湖两岸A 、B 两点之间的距离,一个观测者在点C 设桩,使三角形ABC 恰好为直角三角形.通过测量,得到AC 长160m ,BC 长128m ,则AB 长 m . 分析:很多学生会直接1602-1282=?这样算,不是不可以,而是数太大,一是易错,二是不好算。正确方法是 先约简: 160 128 ? 同除以32 5 4 3 ? =3x32=96 A C 160m

勾股

勾股数 勾股数又名毕氏三元数。勾股数就是可以构成一个直角三角形三边的一组正整数。勾股定理:直角三角形两条直角边 a、b的平方和等于斜边c的平方(a2+b2=c2) 表达式 a2+b2=c2,a,b,c∈N 常用套路 简介 所谓勾股数,一般是指能够构成直角三角形三条边的三个正整数(例如a,b,c)。 即a^2+b^2=c^2,a,b,c∈N 又由于,任何一个勾股数组(a,b,c)内的三个数同时乘以一个整数n得到的新数组(na,nb,nc)仍然是勾股数,所以一般我们想找的是a,b,c互质的勾股数组。 关于这样的数组,比较常用也比较实用的套路有以下两种:[1] 第一套路 当a为大于1的奇数2n+1时,b=2n^2+2n, c=2n^2+2n+1。 实际上就是把a的平方数拆成两个连续自然数,例如: n=1时(a,b,c)=(3,4,5) n=2时(a,b,c)=(5,12,13)

n=3时(a,b,c)=(7,24,25)[1] ... ... 这是最经典的一个套路,而且由于两个连续自然数必然互质,所以用这个套路得到的勾股数组全部都是互质的。[1]第二套路 2、当a为大于4的偶数2n时,b=n^2-1, c=n^2+1 也就是把a的一半的平方分别减1和加1,例如: n=3时(a,b,c)=(6,8,10) n=4时(a,b,c)=(8,15,17) n=5时(a,b,c)=(10,24,26) n=6时(a,b,c)=(12,35,37)[1] ... ... 这是第二经典的套路,当n为奇数时由于(a,b,c)是三个偶数,所以该勾股数组必然不是互质的;而n为偶数时由于b、c是两个连续奇数必然互质,所以该勾股数组互质。 所以如果你只想得到互质的数组,这条可以改成,对于a=4n (大于等于2), b=4n2-1, c=4n2+1,例如: n=2时(a,b,c)=(8,15,17) n=3时(a,b,c)=(12,35,37) n=4时(a,b,c)=(16,63,65)[1] ... ... 公式证明

以内的勾股数

以内的勾股数 集团文件发布号:(9816-UATWW-MWUB-WUNN-INNUL-DQQTY-

100以内的勾股数:i=3j=4k=5 i=5j=12k=13 i=6j=8k=10 i=7j=24k=25 i=8j=15k=17 i=9j=12k=15 i=9j=40k=41 i=10j=24k=26 i=11j=60k=61 i=12j=16k=20 i=12j=35k=37 i=13j=84k=85 i=14j=48k=50 i=15j=20k=25 i=15j=36k=39 i=16j=30k=34 i=16j=63k=65 i=18j=24k=30 i=18j=80k=82 i=20j=21k=29 i=20j=48k=52

i=21j=72k=75 i=24j=32k=40 i=24j=45k=51 i=24j=70k=74 i=25j=60k=65 i=27j=36k=45 i=28j=45k=53 i=30j=40k=50 i=30j=72k=78 i=32j=60k=68 i=33j=44k=55 i=33j=56k=65 i=35j=84k=91 i=36j=48k=60 i=36j=77k=85 i=39j=52k=65 i=39j=80k=89 i=40j=42k=58 i=40j=75k=85 i=42j=56k=70 i=45j=60k=75 i=48j=55k=73

i=51j=68k=85 i=54j=72k=90 i=57j=76k=95 i=60j=63k=87 i=65j=72k=97 勾股数的常用套路 所谓勾股数,一般是指能够构成直角三角形三条边的三个正整数(a,b,c)。 即a^2+b^2=c^2,a,b,c∈N 又由于,任何一个(a,b,c)内的三个数同时乘以一个整数n得到的新数组(na,nb,n c)仍然是勾股数,所以一般我们想找的是a,b,c互质的勾股数组。 关于这样的数组,比较常用也比较实用的套路有以下两种: 1、当a为大于1的奇数2n+1时,b=2*n^2+2*n,c=2*n^2+2*n+1。 实际上就是把a的平方数拆成两个连续自然数,例如: n=1时(a,b,c)=(3,4,5) n=2时(a,b,c)=(5,12,13) n=3时(a,b,c)=(7,24,25) ...... 这是最经典的一个套路,而且由于两个连续自然数必然互质,所以用这个套路得到的勾股数组全部都是互质的。 2、当a为大于4的偶数2n时,b=n^2-1,c=n^2+1 也就是把a的一半的平方分别减1和加1,例如: n=3时(a,b,c)=(6,8,10)

勾股数填空选择及详解中考题

一、填空题(共20小题) 1、附加题:观察以下几组勾股数,并寻找规律: ①3,4,5; ②5,12,13; ③7,24,25; ④9,40,41;… 请你写出有以上规律的第⑤组勾股数:_________ . 2、观察下列一组数: 列举:3、4、5,猜想:32=4+5; 列举:5、12、13,猜想:52=12+13; 列举:7、24、25,猜想:72=24+25; … 列举:13、b、c,猜想:132=b+c; 请你分析上述数据的规律,结合相关知识求得b= _________ ,c= _________ . 3、满足a2+b2=c2的三个正整数,称为_________ . 4、观察下列一类勾股数:3,4,5;5,12,13;7,24,25;…请你根据规律写出第4组勾股数为_________ . 5、观察右面几组勾股数,①3,4,5;②5,12,13;③7,24,25;④9,40,41;并寻找规律,请你写出有以上规律的第⑤组勾股数:_________ ,第n组勾股数是_________ . 6、能够成为直角三角形三条边长的三个正整数,称为勾股数,试写出两种勾股数_________ ,_________ . 7、在数3,5,12,13四个数中,构成勾股数的三个数是_________ . 8、将勾股数3,4,5扩大2倍,3倍,4倍,…,可以得到勾股数6,8,10;9,12,15;12,16,20;…,则我 们把3,4,5这样的勾股数称为基本勾股数,请你也写出三组基本勾股数_________ ,_________ ,_________ . 9、有一组勾股数,最大的一个是37,最小的一个是12,则另一个是_________ . 10、观察下列各式:32+42=52;82+62=102;152+82=172;242+102=262;…;你有没有发现其中的规律?请用你 发现的规律写出接下来的式子:_________ . 11、一个直角三角形的三边长是不大于10的偶数,则它的周长为_________ . 12、观察下面几组勾股数,并寻找规律: 市菁优网络科技

勾股数的规律总结

勾股数的规律总结 我们知道,像15,8,17这样,能够成为直角三角形三条边长的三个正整数,称为勾股数.勾股数有什么规律吗?下面就让我们分类探究一下. 一、最短边的长度为奇数 观察下表中的勾股数: 根据上面的表格,我们可以发现以上勾股数(,,无公约数)具备一定的特征,很显然,当21a n =+(n ≥1)时,()21b n n =+,()211c n n =++.同时我们容易验证: () ()()22 2 2121211n n n n n +++=++????????, 即当最短边的长度为奇数时,勾股数有此规律. 二、最短边的长度为偶数 最短边的长度为偶数时,没有公约数的勾股数又有什么规律呢? 首先,最短边为偶数时,其他两边不可能再是偶数,否则就有了公约数2,所以另外两个勾股数必为奇数,而且这两个奇数的平方差是8的倍数(八年级上册曾学过).这是因为两个奇数可以表示为21m +和21n +,这里的m 、n 都是正整数,不妨设m n >,则 ()() ()22 222121441441m n m m n n +-+=++-++ ( )()22 44m n m n =-+- ()()41m n m n =-++. 因为m 、n 都为正整数,而任意两个正整数的和与差具有同奇同偶性,所以m n -与 1m n ++这两个数中,有且只有一个偶数,所以()()41m n m n -++必定能被8整除.这说 明,一组无公约数的勾股数中,如果最小的数为偶数,则它的平方必为8的倍数,而另外两数必为奇数. 由此表格中的数据可以得出,该表格中的无公约数的勾股数具备这样的特征:当(n ≥1)时,2161b n =-,2 161c n =+,同时我们容易验证:

100以内的勾股数

100以内的勾股数

100以内的勾股数:i=3 j=4 k=5 i=5 j=12 k=13 i=6 j=8 k=10 i=7 j=24 k=25 i=8 j=15 k=17 i=9 j=12 k=15 i=9 j=40 k=41 i=10 j=24 k=26 i=11 j=60 k=61 i=12 j=16 k=20 i=12 j=35 k=37 i=13 j=84 k=85 i=14 j=48 k=50 i=15 j=20 k=25 i=15 j=36 k=39 i=16 j=30 k=34 i=16 j=63 k=65 i=18 j=24 k=30 i=18 j=80 k=82 i=20 j=21 k=29 i=20 j=48 k=52 i=21 j=28 k=35 i=21 j=72 k=75 i=24 j=32 k=40 i=24 j=45 k=51 i=24 j=70 k=74 i=25 j=60 k=65 i=27 j=36 k=45 i=28 j=45 k=53 i=30 j=40 k=50 i=30 j=72 k=78 i=32 j=60 k=68 i=33 j=44 k=55 i=33 j=56 k=65 i=35 j=84 k=91 i=36 j=48 k=60 i=36 j=77 k=85

i=39 j=52 k=65 i=39 j=80 k=89 i=40 j=42 k=58 i=40 j=75 k=85 i=42 j=56 k=70 i=45 j=60 k=75 i=48 j=55 k=73 i=48 j=64 k=80 i=51 j=68 k=85 i=54 j=72 k=90 i=57 j=76 k=95 i=60 j=63 k=87 i=65 j=72 k=97 勾股数的常用套路 所谓勾股数,一般是指能够构成直角三角形三条边的三个正整数(a, b,c)。即a^2+b^2=c^2,a,b,c∈N2 又由于,任何一个勾股数组(a,b,c)内的三个数同时乘以一个整数n 得到的新数组(na,nb,nc)仍然是勾股数,所以一般我们想找的是a,b,c互质的勾股数组。关于这样的数组,比较常用也比较实用的套路有以下两种: 1、当a为大于1的奇数2n+1时,b=2*n^2+2*n, c=2*n^2+2*n+1。实际上就是把a的平方数拆成两个连续自然数,例如: n=1时(a,b,c)=(3,4,5) 第2 / 4页n=2时(a,b,c)=(5,12,13) n=3时(a,b,c)=(7,24,25) ... ...

相关文档