文档库 最新最全的文档下载
当前位置:文档库 › 导数复合函数的导数练习题

导数复合函数的导数练习题

导数复合函数的导数练习题
导数复合函数的导数练习题

函数求导

1. 简单函数的定义求导的方法(一差、二比、三取极限) (1)求函数的增量)()(00x f x x f y -?+=?;

(2)求平均变化率x

x f x x f x y ?-?+=

??)

()(00。 (3)取极限求导数=)(0'x f x

x f x x f x ?-?+→?)

()(lim 000

2.导数与导函数的关系:特殊与一般的关系。函数在某一点)(0'x f 的导数就是导函数)(x f ,当0x x =时的函数值。

3.常用的导数公式及求导法则: (1)公式 ①0'=C ,(C 是常数) ②x x cos )(sin '= ③x x sin )(cos '-= ④1')(-=n n nx x

⑤a a a x x ln )('= ⑥x x e e =')(

⑦a x x a ln 1)(log '= ⑧x x 1

)(ln '=

⑨x x 2'cos 1)(tan = ⑩(x

x 2'

sin 1)cot -

= (2)法则:''')]([)]([)]()([x g x f x g x f ±=±, 例:

(1)()324y x x =- (2)sin x

y x =

(3)3cos 4sin y x x =- (4)()2

23y x =+ (5)()ln 2y x =+

复合函数的导数

如果函数)(x ?在点x 处可导,函数f (u )在点u=)(x ?处可导,则复合函数y= f (u )=f [)(x ?]在点x 处也可导,并且

(f [)(x ?])ˊ= [])(x f ?')(x ?'

或记作 x y '=u

y '?x u ' 熟记链式法则

若y= f (u ),u=)(x ?? y= f [)(x ?],则

x y '=)()(x u f ?''

若y= f (u ),u=)(v ?,v=)(x ψ? y= f [))((x ψ?],则 x y '=)()()(x v u f ψ?'''

(2)复合函数求导的关键是正确分析已给复合函数是由哪些中间变量复合而成的,且要求这些中间变量均为基本初等函数或经过四则运算而成的初等函数。在求导时要由外到内,逐层求导。

例1函数4

)

31(1

x y -=

的导数. 解:4

)

31(1

x y -=

4)31(--=x . 设4-=u y ,x u 31-=,则

)3(45-?-=-u 55)31(1212---==x u 5

)

31(12

x -=

. 例2求5

1x

x

y -=的导数. 解:5

11???

??-=x x y ,

2

5

4)

1(1151x x x -???

?

??-=-5

6

5

4

)1(51---=x x . 例3 求下列函数的导数 解:(1)x y 23-= 令 u=3 -2x ,则有 y=u ,u=3 -2x

由复合函数求导法则x u x u y y '?'='

有y ′=

()x u

x u )23('-'

=x

u 231)2(21--=-?

在运用复合函数的求导法则达到一定的熟练程度之后,可以不再写出中间变量u ,于是

前面可以直接写出如下结果:

y ˊ=

x

x x

231)23(2321--

='-?-

在运用复合函数求导法则很熟练之后,可以更简练地写出求导过程:

y ˊ=

x

x

231)2(2321--

=-?-

例4求下列函数的导数

(1)y=x 21-cos x (2)y=ln (x +2

1x +) 解:(1)y=x 21-cos x

由于y=x 21-cos x 是两个函数x 21-与cos x 的乘积,而其中x 21-又是复合函数,所以在对此函数求导时应先用乘积求导法则,而在求x 21-导数时再用复合函数求导法则,于是

y ˊ=(x 21-)ˊcos x -x 21-sin x =

x x

cos 212)2(---x 21-sin x=

x

x 21cos ---x 21-sin x

(2)y=ln (x +2

1x +)

由于y=ln (x +2

1x +)是u= x +2

1x +与y=ln u 复合而成,所以对此函数求导时,应先用复合函数求导法则,在求x u '时用函数和的求导法则,而求(2

1x +)′的导数时再用一次复合函数的求导法则,所以

y ˊ=

2

11x x ++? [1+(2

1x +)ˊ]=

211

x x ++????

?

??++

2

1221x x =

2

11x

x ++?

2

2

11x

x x +++=

2

11x

+

例 5 设)1ln(++=x x y 求 y '. 解 利用复合函数求导法求导,得

])1(1

211[1

122

2

'+++

++=

x x x x 1

1]1

1[1

12

2

2

+=

++

++=

x x x x x .

1.求下函数的导数.

(1)cos 3

x

y = (2

)y =(1)y =(5x -3)4 (2)y =(2+3x )5 (3)y =(2-x 2)3 (4)y =(2x 3+x )2 (1)y =

3

2)12(1-x (2)y =41

31+x (3)y =sin(3x -6π) (4)y =cos(1+x 2)

⑴32)2(x y -=; ⑵2sin x y =;⑶)4

cos(x y -=π

; ⑷)13sin(ln -=x y .

1.求下列函数的导数

(1) y =sin x 3+sin 33x ; (2)1

22sin -=x x

y (3))2(log 2-x a

2.求)132ln(2++x x 的导数

一、选择题(本题共5小题,每题6分,共30分)

1. 函数y =2)13(1

-x 的导数是( )

A. 3)13(6-x

B. 2)13(6-x C . -3)13(6-x D. -2

)13(6

-x

3. 函数y =sin (3x +4π

)的导数为( )

A. 3sin (3x +4π)

B. 3cos (3x +4π

C. 3sin 2(3x +4π)

D. 3cos 2(3x +4

π

4. 曲线n x y =在x=2处的导数是12,则n=( )

A. 1

B. 2

C. 3

D. 4 5. 函数y =cos2x +sin x 的导数为( )

A. -2sin2x +x

x

2cos B. 2sin2x +

x x

2cos C. -2sin2x +

x x

2sin

D. 2sin2x -

x

x

2cos

6. 过点P (1,2)与曲线y=2x 2

相切的切线方程是( ) A. 4x -y -2=0 B. 4x+y -2=0 C. 4x+y=0 D. 4x -y+2=0 二、填空题(本题共5小题,每题6分,共30分)

8. 曲线y =sin3x 在点P (3π

,0)处切线的斜率为___________。

9. 函数y =x sin (2x -2π)cos (2x +2π

)的导数是 。

10. 函数y =)3

2cos(π

-x 的导数为 。

11. ___________,2)(,ln )(00'===x x f x x x f 则。 例2.计算下列定积分

(1)20(1)x x dx +?; (2)2211

()x e dx x +? (3)20sin xdx π?

5.4

2x

e dx -?的值等于 ( )

42()A e e -- (B) 42e e + (C) 422e e +- (D) 422e e -+-

9.计算由曲线36y x x =-和2y x =所围成的图形的面积.

复合函数的导数

1.C

2.B

3.B

4.A

5.A

6.A

7.y =u 3,u =1+sin3x

8.-3

9.y ′=21sin4x +2x cos4x 10.)

3

2cos()

32sin(π

π

---x x 11.x x x 1sin 1cos 122?

简单复合函数求导

简单复合函数的导数 一、基础知识梳理: (一)常用的求导公式 11.(),'()0;2.(),'();3.()sin ,'()cos ;4.()cos ,'()sin ;5.(),'()ln (0);6.(),'();1 7.()log ,'()(0,1); ln 8.n n x x x x a f x c f x f x x f x nx f x x f x x f x x f x x f x a f x a a a f x e f x e f x x f x a a x a -========-==>====>≠公式若则公式若则公式若则公式若则公式若则公式若则公式若则且公式若1()ln ,'();f x x f x x == 则 (二)复合函数的求导数公式 若u=u(x),v=v(x)在x 处可导,则 2 )()()()(v v u v u v u u c cu v u v u v u v u v u '-'='' =''+'='?'±'='± (三)复合函数求导法则 1、二重复合:若)(u f y =, )(x u φ= 且)(x u φ=在点x 处可导。 则)()('?'='x u f y φ 2、多次复合函数求导法则类推 二、典型例题分析: 例1、求下列函数的导数; 1)、3 (23)y x =- 2)、ln(51)y x =+

练习:求下列函数的导数 1)、2 (23)y x =+ 2)、3 (13)y x =- 例2、求下列函数的导数; 1)、1 31 y x = - 2)、cos(12)y x =- 练习:求导数; 1)、1ln y x = 2)、2x y e = 3)、求曲线sin 2y x =在点P (,0π)处的切线方程。 例题3 已知(5)5,'(5)3,(5)4,'(5)1f f g g ==== ,根据下列条件 求(5)h 及'(5)h 1)、()3()2()h x f x g x =+ 2)、 ()()()1h x f x g x =+ 3)、()2 ()() f x h x g x +=

最新复合函数求导练习题

复合函数求导练习题 一.选择题(共26小题) 1.设,则f′(2)=() A.B.C.D. 2.设函数f(x)=g(x)+x+lnx,曲线y=g(x)在点(1,g(1))处的切线方程为y=2x+1,则曲线y=f(x)在点(1,f(1))处的切线方程为() A.y=4x B.y=4x﹣8 C.y=2x+2 D. 3.下列式子不正确的是() A.(3x2+cosx)′=6x﹣sinx B.(lnx﹣2x)′=ln2 C.(2sin2x)′=2cos2x D.()′= 4.设f(x)=sin2x,则=() A.B.C.1 D.﹣1 5.函数y=cos(2x+1)的导数是() A.y′=sin(2x+1)B.y′=﹣2xsin(2x+1) C.y′=﹣2sin(2x+1)D.y′=2xsin(2x+1) 6.下列导数运算正确的是() A.(x+)′=1+B.(2x)′=x2x﹣1C.(cosx)′=sinx D.(xlnx)′=lnx+1 7.下列式子不正确的是() A.(3x2+xcosx)′=6x+cosx﹣xsinx B.(sin2x)′=2cos2x C.D. 8.已知函数f(x)=e2x+1﹣3x,则f′(0)=() A.0 B.﹣2 C.2e﹣3 D.e﹣3 9.函数的导数是() A. B. C.D. 10.已知函数f(x)=sin2x,则f′(x)等于() A.cos2x B.﹣cos2x C.sinxcosx D.2cos2x 11.y=e sinx cosx(sinx),则y′(0)等于() A.0 B.1 C.﹣1 D.2

12.下列求导运算正确的是() A. B. C.((2x+3)2)′=2(2x+3)D.(e2x)′=e2x 13.若,则函数f(x)可以是() A.B.C.D.lnx 14.设 ,则f2013(x)=() A.22012(cos2x﹣sin2x)B.22013(sin2x+cos2x) C.22012(cos2x+sin2x)D.22013(sin2x+cos2x) 15.设f(x)=cos22x,则=() A.2 B.C.﹣1 D.﹣2 16.函数的导数为() A.B. C.D. 17.函数y=cos(1+x2)的导数是() A.2xsin(1+x2) B.﹣sin(1+x2) C.﹣2xsin(1+x2)D.2cos(1+x2) 18.函数y=sin(﹣x)的导数为() A.﹣cos(+x)B.cos(﹣x)C.﹣sin(﹣x)D.﹣sin(x+) 19.已知函数f(x)在R上可导,对任意实数x,f'(x)>f(x);若a为任意的正实数,下列式子一定正确的是() A.f(a)>e a f(0)B.f(a)>f(0)C.f(a)<f(0)D.f(a)<e a f(0)20.函数y=sin(2x2+x)导数是() A.y′=cos(2x2+x)B.y′=2xsin(2x2+x) C.y′=(4x+1)cos(2x2+x)D.y′=4cos(2x2+x) 21.函数f(x)=sin2x的导数f′(x)=() A.2sinx B.2sin2x C.2cosx D.sin2x 22.函数的导函数是() A.f'(x)=2e2x B. C.D.

简单复合函数的导数

简单复合函数的导数 1. 函数f(x)=cos(?2x)的导函数是( ) A.2cos2x B.?2cos2x C.2sin2x D.?2sin2x 2. 已知函数f(x)=e2x+1?3x,则f′(0)=( ) A.0 B.?2 C.2e?3 D.e?3 3. 设函数f(x)=?cos x?x4的导函数为g(x),则|g(x)|的图象大致是( ) A. B. C. D. 4. 设f(x)=sin x cos x,则f(x)在点(π 6,f(π 6 ))处的切线的斜率为( ) A.1 2B.√3 2 C.?1 2 D.?√3 2 5. 函数f(x)=ln x x ,则f′(e)值为( ) A.0 B.1 C.1 e D.1 e2 6. 若函数f(x)=(2x?x2)e x的导数为f′(x),则f′(x)=() A.2(x+1)e x B.(2?x2)e x C.(2+x?x2)e x D.2(x?1)e x 7. 已知函数f(x)=x3?2x2+x?3,则f′(2)=( ) A.?1 B.5 C.4 D.3 8. 已知函数,则的导函数() A. B. C. D. 9. 函数y=x2sin x的导函数为________. 10. 函数f(x)的导数为f′(x),且f(x)=x2+2f′(0)x+tan x,则f′(0)+f(0)=________. 11. 设函数f(x)=x2+1 e x . (1)求f(x)的导数f′(x);

(2)求曲线y=f(x)在点(0,f(0))处的切线方程. 12. 求下列函数的导数: (1)f(x)=x3+6x?2 ; x (2)f(x)=cos x ; e x x. (3)f(x)=(x?1)2log 2 13. 已知函数f(x)=(2x?1)2+5x. (1)求f′(x); (2)求曲线y=f(x)在点(2,19)处的切线方程.14. 分别求下列函数的导数. (1)y=e x ; x (2)y=(2x2?1)(2x+1)+2sin x?cos x.

导数 复合函数的导数练习题

导数--复合函数的导数练习题函数求导 1. 简单函数的定义求导的方法(一差、二比、三取极限) (1)求函数的增量; (2)求平均变化率。 (3)取极限求导数 2.导数与导函数的关系:特殊与一般的关系。函数在某一点的导数就是导函数,当时的函数值。 3.常用的导数公式及求导法则: (1)公式 ①,(C是常数)② ③④ ⑤⑥ ⑦⑧ ⑨⑩( (2)法则:, '''(x)f(x)x(x)g()?g(([fx)gx)]?f 例: ''(x)f?g(x)()f(xf(x)gx)'[]?2g(x)g(x) (1)(2) 导数--复合函数的导数练习题 (3)(4)

(5) 复合函数的导数如果函数在点x处可导,函数f (u)在点u=处可导,则复合函数y=f (u)=f []在点x处也可导,并且 (f [])ˊ= 或记作=? 熟记链式法则 若y= f (u),u= y= f [],则 = 若y= f (u),u=,v= y= f [],则 导数--复合函数的导数练习题 = (2)复合函数求导的关键是正确分析已给复合函数是由哪些中间变量复合而成的,且要求这些中间变量均为基本初等函数或经过四则运算而成的初等函数。在求导时要由外到内,逐层求导。 例1函数的导数. 解:. 设,,则 . ?4'uy'?y'?)'?(1u?(?3x)'xxuxu

例2求的导数. 解:, 44'??xx11?x?x(?x11)??????55??'y????????2x15?xx?151?)?(1x?????? --复合函数的导数练习题导数. 3 求下列函数的导数例y?3?2x 解:(1) 令u=3 -2x,则有 y=,u=3 -2x 由复合函数求导法则 有y′== 在运用复合函数的求导法则达到一定的熟练程度之后,可以不再写出中间变量u,于是前面可以直接写出如下结果: yˊ= 在运用复合函数求导法则很熟练之后,可以更简练地写出求导过程:yˊ= 导数--复合函数的导数练习题 例4求下列函数的导数 (1)y=cos x(2)y=ln (x+) 解:(1)y=cos x 由于y=cos x是两个函数与cos x的乘积,而其中又是复合函数,所

(完整版)导数的综合大题及其分类.

导数的综合应用是历年高考必考的热点,试题难度较大,多以压轴题形式出现,命题的热点主要有利用导数研究函数的单调性、极值、最值;利用导数研究不等式;利用导数研究方程的根(或函数的零点);利用导数研究恒成立问题等.体现了分类讨论、数形结合、函数与方程、转化与化归等数学思想的运用. 题型一 利用导数研究函数的单调性、极值与最值 题型概览:函数单调性和极值、最值综合问题的突破难点是分类讨论. (1)单调性讨论策略:单调性的讨论是以导数等于零的点为分界点,把函数定义域分段,在各段上讨论导数的符号,在不能确定导数等于零的点的相对位置时,还需要对导数等于零的点的位置关系进行讨论. (2)极值讨论策略:极值的讨论是以单调性的讨论为基础,根据函数的单调性确定函数的极值点. (3)最值讨论策略:图象连续的函数在闭区间上最值的讨论,是以函数在该区间上的极值和区间端点的函数值进行比较为标准进行的,在极值和区间端点函数值中最大的为最大值,最小的为最小值. 已知函数f (x )=x -1 x ,g (x )=a ln x (a ∈R ). (1)当a ≥-2时,求F (x )=f (x )-g (x )的单调区间; (2)设h (x )=f (x )+g (x ),且h (x )有两个极值点为x 1,x 2,其中x 1∈? ?? ?? 0,12,求 h (x 1)-h (x 2)的最小 值. [审题程序] 第一步:在定义域内,依据F ′(x )=0根的情况对F ′(x )的符号讨论; 第二步:整合讨论结果,确定单调区间; 第三步:建立x 1、x 2及a 间的关系及取值范围; 第四步:通过代换转化为关于x 1(或x 2)的函数,求出最小值. [规范解答] (1)由题意得F (x )=x -1 x -a ln x , 其定义域为(0,+∞),则F ′(x )=x 2-ax +1 x 2, 令m (x )=x 2-ax +1,则Δ=a 2-4. ①当-2≤a ≤2时,Δ≤0,从而F ′(x )≥0,∴F (x )的单调递增区间为(0,+∞); ②当a >2时,Δ>0,设F ′(x )=0的两根为x 1=a -a 2-42,x 2=a +a 2-4 2 ,

复合函数的求导法则(导案)

当堂检测 1.根据基本初等函数的导数公式和导数运算法则,求下列函数的导数. (1)4 x x y = ; (2)1ln 1ln x y x -=+. (3)2(251)x y x x e =-+?; (4)sin cos cos sin x x x y x x x -=+ 解: (1)''''224(4)144ln 41ln 4()4(4)(4)4 x x x x x x x x x x x x x y ?-??-?-====, '1ln 44x x y -=。 (2)''''221 1ln 212()(1)2()21ln 1ln 1ln (1ln )(1ln ) x x y x x x x x x -==-+==?=+++++ '2 2(1ln )y x x =+ (3)'2'2'(251)(251)()x x y x x e x x e =-+?+-+? 22(45)(251)(24)x x x x e x x e x x e =-?+-+?=--?, '2(24)x y x x e =--?。 (4)''sin cos ()cos sin x x x y x x x -=+ '' 2(sin cos )(cos sin )(sin cos )(cos sin )(cos sin ) x x x x x x x x x x x x x x x -?+--?+=+ 2 (cos cos sin )(cos sin )(sin cos )(sin sin s )(cos sin )x x x x x x x x x x x x xco x x x x -+?+--?-++= + 2 sin (cos sin )(sin cos )s (cos sin )x x x x x x x x xco x x x x ?+--?=+ 2 2 (cos sin )x x x x =+。 2 ' 2(cos sin )x y x x x =+

数学选择性必修二 第五章 5.2.3 简单复合函数的导数

5.2.3简单复合函数的导数 学习目标 1.进一步运用导数公式和导数运算法则求函数的导数.2.了解复合函数的概念,掌握复合函数的求导法则. 知识点复合函数的导数 1.复合函数的概念 一般地,对于两个函数y=f(u)和u=g(x),如果通过中间变量u,y可以表示成x的函数,那么称这个函数为函数y=f(u)和u=g(x)的复合函数,记作y=f(g(x)). 思考函数y=log2(x+1)是由哪些函数复合而成的? 答案函数y=log2(x+1)是由y=log2u及u=x+1两个函数复合而成的. 2.复合函数的求导法则 一般地,对于由函数y=f(u)和u=g(x)复合而成的函数y=f(g(x)),它的导数与函数y=f(u),u=g(x)的导数间的关系为y′x=y′u·u′x,即y对x的导数等于y对u的导数与u对x的导数的乘积. 1.y=cos 3x由函数y=cos u,u=3x复合而成.(√) 2.函数f(x)=sin(2x)的导数为f′(x)=cos 2x.(×) 3.函数f(x)=e2x-1的导数为f′(x)=2e2x-1.(√) 一、求复合函数的导数 例1求下列函数的导数: (1)y=1 (1-3x)4 ; (2)y=cos(x2); (3)y=log2(2x+1); (4)y=e3x+2. 解(1)令u=1-3x,则y=1 u4=u -4, 所以y′u=-4u-5,u′x=-3. 所以y′x=y′u·u′x=12u-5= 12 (1-3x)5 .

(2)令u =x 2,则y =cos u , 所以y ′x =y ′u ·u ′x =-sin u ·2x =-2x sin(x 2). (3)设y =log 2u ,u =2x +1, 则y x ′=y u ′u x ′=2u ln 2=2 (2x +1)ln 2. (4)设y =e u ,u =3x +2, 则y x ′=(e u )′·(3x +2)′ =3e u =3e 3x + 2. 反思感悟 (1)求复合函数的导数的步骤 (2)求复合函数的导数的注意点:①分解的函数通常为基本初等函数;②求导时分清是对哪个变量求导;③计算结果尽量简洁. 跟踪训练1 求下列函数的导数: (1)y = 1 1-2x ; (2)y =5log 2(1-x ); (3)y =sin ????2x +π3. 解 (1)() 12 =12,y x -- 设y =12 u -,u =1-2x , 则y ′x =()1212u 'x '?? - ???- ()32212u -?? -? ??? =- ()32 =12x .- - (2)函数y =5log 2(1-x )可看作函数y =5log 2u 和u =1-x 的复合函数, 所以y ′x =y ′u ·u ′x =5(log 2u )′·(1-x )′ = -5u ln 2=5 (x -1)ln 2 .

高考数学导数与三角函数压轴题综合归纳总结教师版

导数与三角函数压轴题归纳总结 近几年的高考数学试题中频频出现含导数与三角函数零点问题,内容主要包括函数零点个数的确定、根据函数零点个数求参数范围、隐零点问题及零点存在性赋值理论.其形式逐渐多样化、综合化. 一、零点存在定理 例1.【2019全国Ⅰ理20】函数()sin ln(1)f x x x =-+,()f x '为()f x 的导数.证明: (1)()f x '在区间(1,)2 π -存在唯一极大值点; (2)()f x 有且仅有2个零点. 【解析】(1)设()()g x f x '=,则()()() 2 11 cos ,sin 11g x x g x x x x '=- =-+++. 当1,2x π??∈- ?? ?时,()g'x 单调递减,而()00,02g g π?? ''>< ???, 可得()g'x 在1,2π?? - ?? ?有唯一零点,设为α. 则当()1,x α∈-时,()0g x '>;当,2x πα?? ∈ ??? 时,()0g'x <. 所以()g x 在()1,α-单调递增,在,2πα?? ???单调递减,故()g x 在1,2π?? - ???存在唯一极大 值点,即()f x '在1,2π?? - ?? ?存在唯一极大值点. (2)()f x 的定义域为(1,)-+∞. (i )由(1)知, ()f x '在()1,0-单调递增,而()00f '=,所以当(1,0)x ∈-时,()0f 'x <,故()f x 在(1,0)-单调递减,又(0)=0f ,从而0x =是()f x 在(1,0]-的唯一零点. (ii )当0,2x π?? ∈ ???时,由(1)知,()f 'x 在(0,)α单调递增,在,2απ?? ??? 单调递减,而

复合函数的导数练习题

< 函数求导 1. 简单函数的定义求导的方法(一差、二比、三取极限) (1)求函数的增量)()(00x f x x f y -?+=?; (2)求平均变化率 x x f x x f x y ?-?+=??)()(00。 (3)取极限求导数=)(0' x f x x f x x f x ?-?+→?)()(lim 000 2.导数与导函数的关系:特殊与一般的关系。函数在某一点)(0' x f 的导数就是 导函数)(x f ,当0x x =时的函数值。 3.常用的导数公式及求导法则: ! (1)公式 ①0' =C ,(C 是常数) ②x x cos )(sin ' = ③x x sin )(cos ' -= ④1 ' )(-=n n nx x ⑤a a a x x ln )(' = ⑥x x e e =' )( ⑦a x x a ln 1)(log ' = ⑧x x 1)(ln ' = ⑨x x 2'cos 1)(tan = ⑩(x x 2 ' sin 1)cot -= (2)法则:' '')]([)]([)]()([x g x f x g x f ±=±, )()()()()]()(['''x f x g x g x f x g x f += / ) ()()()()(])()([2 '''x g x f x g x g x f x g x f -= 例: (1)() 324y x x =- (2)sin x y x = (3)3cos 4sin y x x =- (4)()2 23y x =+ ·

(5)()ln 2y x =+ 复合函数的导数 如果函数)(x ?在点x 处可导,函数f (u )在点u=)(x ?处可导,则复合函数 y= f (u )=f [)(x ?]在点x 处也可导,并且 (f [)(x ?])ˊ= [])(x f ?')(x ?' 或记作 x y '=u y '?x u ' 熟记链式法则 \ 若y= f (u ),u=)(x ?? y= f [)(x ?],则 x y '=)()(x u f ?'' 若y= f (u ),u=)(v ?,v=)(x ψ? y= f [))((x ψ?],则 x y '= )()()(x v u f ψ?''' (2)复合函数求导的关键是正确分析已给复合函数是由哪些中间变量复合而成 的,且要求这些中间变量均为基本初等函数或经过四则运算而成的初等函数。在求导时要由外到内,逐层求导。 例1函数4 ) 31(1 x y -= 的导数. 解:4 ) 31(1x y -= 4 )31(--=x . 设4 -=u y ,x u 31-=,则 ] x u x u y y '''?=x u x u )'31()'(4-?=-

高三数学复习教案:简单复合函数的导数

高三数学复习教案:简单复合函数的导数 【高考要求】:简单复合函数的导数(B). 【学习目标】:1.了解复合函数的概念,理解复合函数的求导法则,能求简单的复合函数(仅限于形如f(ax+b))的导数. 2.会用复合函数的导数研究函数图像或曲线的特征. 3.会用复合函数的导数研究函数的单调性、极值、最值. 【知识复习与自学质疑】 1.复合函数的求导法则是什么? 2.(1)若,则 ________.(2)若,则 _____.(3)若,则 ___________.(4)若,则 ___________. 3.函数在区间_____________________________上是增函数, 在区间__________________________上是减函数. 4.函数的单调性是_________________________________________. 5.函数的极大值是___________. 6.函数的值,最小值分别是______,_________. 【例题精讲】 1. 求下列函数的导数(1) ;(2) . 2.已知曲线在点处的切线与曲线在点处的切线相同,求的值. 【矫正反馈】 1.与曲线在点处的切线垂直的一条直线是___________________. 2.函数的极大值点是_______,极小值点是__________.

(不好解)3.设曲线在点处的切线斜率为 ,若 ,则函数的周期是 ____________. 4.已知曲线在点处的切线与曲线在点处的切线互相垂直, 为原点,且 ,则的面积为______________. 5.曲线上的点到直线的最短距离是___________. 【迁移应用】 1.设 , , 若存有 ,使得 ,求的取值范围. 2.已知 , ,若对任意都有 ,试求的取值范围.

导数练习题及答案:函数的极值

利用导数求函数的极值 例 求下列函数的极值: 1.x x x f 12)(3-=;2.x e x x f -=2)(;3..21 2)(2-+=x x x f 分析:按照求极值的基本方法,首先从方程0)(='x f 求出在函数)(x f 定义域内所有可能的极值点,然后按照函数极值的定义判断在这些点处是否取得极值. 解:1.函数定义域为R .).2)(2(3123)(2-+=-='x x x x f 令0)(='x f ,得2±=x . 当2>x 或2-'x f , ∴函数在()2,-∞-和()+∞,2上是增函数; 当22<<-x 时,0)(<'x f , ∴函数在(-2,2)上是减函数. ∴当2-=x 时,函数有极大值16)2(=-f , 当2=x 时,函数有极小值.16)2(-=f 2.函数定义域为R .x x x e x x e x xe x f ----=-=')2(2)(2 令0)(='x f ,得0=x 或2=x . 当0x 时,0)(<'x f , ∴函数)(x f 在()0,∞-和()+∞,2上是减函数; 当20<'x f , ∴函数)(x f 在(0,2)上是增函数. ∴当0=x 时,函数取得极小值0)0(=f , 当2=x 时,函数取得极大值2 4)2(-=e f . 3.函数的定义域为R . .) 1()1)(1(2)1(22)1(2)(22222++-=+?-+='x x x x x x x x f

令0)(='x f ,得1±=x . 当1-x 时,0)(<'x f , ∴函数)(x f 在()1,-∞-和()+∞,1上是减函数; 当11<<-x 时,0)(>'x f , ∴函数)(x f 在(-1,1)上是增函数. ∴当1-=x 时,函数取得极小值3)1(-=-f , 当1=x 时,函数取得极大值.1)1(-=f 说明:思维的周密性是解决问题的基础,在解题过程中,要全面、系统地考虑问题,注意各种条件 综合运用,方可实现解题的正确性.解答本题时应注意0)(0='x f 只是函数 )(x f 在0x 处有极值的必要条件, 如果再加之0x 附近导数的符号相反,才能断定函数在0x 处取得极值.反映在解题上,错误判断极值点或漏掉极值点是学生经常出现的失误. 复杂函数的极值 例 求下列函数的极值: 1.)5()(32-=x x x f ;2..6)(2--=x x x f 分析:利用求导的方法,先确定可能取到极值的点,然后依据极值的定义判定.在函数)(x f 的定义域内寻求可能取到极值的“可疑点”,除了确定其导数为零的点外,还必须确定函数定义域内所有不可导的点.这两类点就是函数)(x f 在定义内可能取到极值的全部“可疑点”. 解:1..3)2(533)5(2)5(32 )(33323x x x x x x x x x f -=+-=+-=' 令0)(='x f ,解得2=x ,但0=x 也可能是极值点. 当0x 时,0)(>'x f , ∴函数)(x f 在()0,∞-和()+∞,2上是增函数; 当20<

高中数学 第一章 导数及其应用 1.2.3 简单复合函数的导数习题 苏教版选修2-2

1.2.3 简单复合函数的导数 明目标、知重点 1.了解复合函数的概念,掌握复合函数的求导法则.2.能够利用复合函数的求导法则,并结合已经学过的公式、法则进行一些复合函数的求导(仅限于形如f(ax+b)的导数). 1.复合函数的概念 一般地,对于两个函数y=f(u)和u=g(x),如果通过变量u,y可以表示成x的函数,那么称这个函数为y=f(u)和u=g(x)的复合函数,记作y=f(g(x)). 2.复合函数的求导法则 复合函数y=f(g(x))的导数和函数y=f(u),u=g(x)的导数之间的关系为y x′=y u′·u x′.即y对x的导数是y对u的导数与u对x的导数的乘积. 探究点一复合函数的定义 思考1 观察函数y=2x cos x及y=ln(x+2)的结构特点,说明它们分别是由哪些基本函数组成的? 答y=2x cos x是由u=2x及v=cos x相乘得到的;而y=ln(x+2)是由u=x+2与y=ln u(x>-2)经过“复合”得到的,即y可以通过中间变量u表示为自变量x的函数,所以y=ln(x+2)称为复合函数. 思考2 对一个复合函数,怎样判断函数的复合关系? 答复合函数是因变量通过中间变量表示为自变量的函数的过程.在分析时可以从外向里出发,先根据最外层的主体函数结构找出y=f(u);再根据内层的主体函数结构找出函数u=g(x),函数y=f(u)和u=g(x)复合而成函数y=f(g(x)). 思考3 在复合函数中,内层函数的值域A与外层函数的定义域B有何关系? 答A?B. 小结要特别注意两个函数的积与复合函数的区别,对于复合函数,要掌握引入中间变量,将其分拆成几个基本初等函数的方法. 例1 指出下列函数是怎样复合而成的: (1)y=(3+5x)2;(2)y=log3(x2-2x+5); (3)y=cos 3x. 解(1)y=(3+5x)2是由函数y=u2,u=3+5x复合而成的; (2)y=log3(x2-2x+5)是由函数y=log3u,u=x2-2x+5复合而成的;

复合函数求导试题及答案

设因数广⑴具有任意阶导数,且厂(X) = [/(X)F,则严(X)=()? B w![∕(x)Γ÷, D (//+1)![√W 设因数/■⑴和X(X)都可导,且v = [∕(x)fτs则),= ()? A 皿)L∕(χ)]"∏ B [/(X)严愜(X)In/⑴+豹fM CLf(X)严図⑴ 1n∕(x)+旳)今?] f(χ) 设V = (SinXr M,则# =(). A. simlnsinx +COSACtgx B COS-V(Siru)CeM , + (Siar)CQM CO^ C. (SillY)cαM[co&vct^v - siαvlnsiar] I). (siιιγ)?αM[co&vctgv + Siavlnsinr] 设厂(X)-X(Xh 则/(Sin2X)W于()? ax A. 2χ(x)SirU B J¢(X)SinZ V C. g(sin2x) 设心出r,≡rφ=o. 参考 参考 参考 B √3(ln3-ln2) 参考 A.w[∕ωr+, C (Λ÷i)[∕ωr D g(sin2x)sin2Λ

■ I 设/⑴可导,则y≈ Λ√r 2Ti )M 导数(). ax 设 φ(.v)? W(X)为可导函数,y = arctan '), y∕(.v)≠0,则 j ,(.v)=(). y 心) P(X)<∣∕(x) - (.τ)"(x) “⑴ + φ2(x) 一 ”(.丫)机.丫) 一 0(x) W(A?) Ψ2(x) + Φ2(x) A λZX Jx 2+ I B /(ce(χ) - 0(γ)p(χ) √(χ) ÷ Φ2(x) 一哝.X )0(.丫)一 e (x )“(x ) A. 4[COS 22X /M (SilI2X ) 一 sin2x∕l (sin2x)] C. 4[cos 22xf n (sin2x) - sin 2x∕l (sin2x)] B 4[cos 22x∕n (sin2x) - Siav∕,(sin2x)] D. 4[ COS 2Λ∕rf (sin2x) 一 ∣

北师大版版高考数学一轮复习函数导数及其应用导数的应用导数与函数的综合问题最值教学案理解析版

利用导数解决不等式的有关问题 ?考法1证明不等式 【例1】(2018·郑州二模)已知函数f(x)=ln x—2ax+1(a∈R). (1)讨论函数g(x)=x2+f(x)的单调性; (2)若a=错误!,证明:|f(x)—1|>错误!+错误!. [解] (1)由题意知函数y=g(x)的定义域为(0,+∞), g(x)=x2+ln x—2ax+1, 则g′(x)=错误!+2x—2a=错误!(x>0), 记h(x)=2x2—2ax+1, 1当a≤0时,因为x>0,所以h(x)>0,故函数g(x)在(0,+∞)上递增; 2当0<a≤错误!时,因为Δ=4(a2—2)≤0, 所以h(x)≥0,故函数g(x)在(0,+∞)上递增; 3当a>错误!时,由g′(x)<0,解得x∈错误!,所以函数g(x)在区间错误!上递减,同理可得函数g(x)在区间错误!,错误!上递增. (2)证明:当a=错误!时,设H(x)=f(x)—1=ln x—x, 故H′(x)=错误!, 故H′(x)<0,得x>1,由H′(x)>0,得0<x<1, 所以H(x)m ax=f(1)—1=—1,所以|H(x)|min=1. 设G(x)=错误!+错误!, 则G′(x)=错误!, 由G′(x)<0,得x>e, 由G′(x)>0,得0<x<e, 故G(x)m ax=G(e)=错误!+错误!<1, 所以G(x)m ax<|H(x)|min, 所以|f(x)—1|>错误!+错误!.

?考法2由不等式恒(能)成立求参数的范围 【例2】已知函数f(x)=错误!. (1)如果当x≥1时,不等式f(x)≥错误!恒成立,求实数k的取值范围; (2)若存在x0∈[1,e],使不等式f(x0)≥错误!成立,求实数k的取值范围. [解] (1)当x≥1时,k≤错误!恒成立, 令g(x)=错误!(x≥1), 则g′(x)=错误!=错误!. 再令h(x)=x—ln x(x≥1), 则h′(x)=1—错误!≥0, 所以h(x)≥h(1)=1,所以g′(x)>0, 所以g(x)为增函数, 所以g(x)≥g(1)=2, 故k≤2,即实数k的取值范围是(—∞,2]. (2)当x∈[1,e]时,k≤错误!有解, 令g(x)=错误!(x∈[1,e]), 由(1)题知,g(x)为增函数, 所以g(x)m ax=g(e)=2+错误!, 所以k≤2+错误!,即实数k的取值范围是错误!. [规律方法] 1.利用导数证明含“x”不等式方法,即证明:f x>g x.,法一:移项,f x—g x>0,构造函数F x=f x—g x,转化证明F x min>0,利用导数研究F x 单调性,用上定义域的端点值.,法二:转化证明:f x min>g x m ax.,法三:先对所求证不等式进行变形,分组或整合,再用法一或法二. 2.利用导数解决不等式的恒成立问题的策略,1首先要构造函数,利用导数研究函数的单调性,求出最值,进而得出相应的含参数不等式,从而求出参数的取值范围.,2也可分离变量,构造函数,直接把问题转化为函数的最值问题. 32 (1)如果存在x1,x2∈[0,2]使得g(x1)—g(x2)≥M成立,求满足上述条件的最大整数M;

5.简单复合函数的求导法则导学案

主备人: 审核: 包科领导: 年级组长: 使用时间: §5简单复合函数的求导法则 【学习目标】 1、理解复合函数的概念,了解简单复合函数的求导法则; 2、会用简单复合函数的求导法则求一些复合函数的导数。 【重点、难点】 重点:简单复合函数的求导法则; 难点:复合函数的导数。 【使用说明与学法指导】 1、根据学习目标,自学课本内容,限时独立完成导学案; 1、用红笔勾画出疑难点,提交小组讨论; 【自主探究】 1.复合函数 对两个函数)(x f y =和)(x g y =,如果通过变量u ,y 表示成______的函数,我们称这个函数为函数)(x f y =和)(x g y =的复合函数,记作,_________其中为________变量. 2.复合函数的导数 如果函数)(x f 、)(x u 有导数,那么_____='x y 【合作探究】 求下列函数的导数 (1)82)21(x y += (2)33x x y += (3))(cos 2b ax y += (4) )12ln(+-=x y 1、 )ln 1(2x xe y x += (6)x x y -+=11ln 2、曲线x e y x 3cos 2=在)1,0(处的切线与直线l 的距离为5,求直线l 的方程。 3、已知函数2()(2)2x f x ln x a =--,a 为常数。(1)求(3)f '的值;(2)当3x =时,曲线() y f x =在点0(3)y ,处的切线经过点(11)--,,求a 的值。 【巩固提高】 1、求下列函数的导数

(1)y = 2)13(1-x (2)y =21sin2x +sin x (3)y =sin 3(3x +4π) (4)22cos 53sin x x y += 2、已知,)1()(102x x x f ++=求)0()0(f f ' 3、已知曲线23-+=x x y 在点0P 处的切线1l 平行直线014=--y x ,且点0P 在第三象限 (1)求点0P 的坐标 (2)若直线1l l ⊥,且l 也过切点0P ,求直线l 的方程。 【课堂小结】

高中数学典型例题分析与解答:复合函数的导数

复合函数的导数 求分段函数的导数 例 求函数?????=≠=0 ,00,1sin )(2x x x x x f 的导数 分析:当0=x 时因为)0(f '存在,所以应当用导数定义求)0(f ',当0≠x 时,)(x f 的关系式是初等函数x x 1sin 2,可以按各种求导法同求它的导数. 解:当0=x 时,01sin lim 1sin lim )0()(lim )0(0200===-='→?→?→?x x x x x x f x f f x x x 当0≠x 时,x x x x x x x x x x x x x x x f 1cos 1sin 2)1cos 1(1sin 2)1(sin 1sin )()1sin ()(22222-=-+='+'='=' 说明:如果一个函数)(x g 在点0x 连续,则有)(lim )(0 0x g x g x x →=,但如果我们不能断定)(x f 的导数)(x f '是否在点00=x 连续,不能认为)(lim )0(0 x f f x →='. 指出函数的复合关系 例 指出下列函数的复合关系. 1.m n bx a y )(+=;2.32ln +=x e y ; 3.)32(log 322+-=x x y ;4.)1sin(x x y +=。 分析:由复合函数的定义可知,中间变量的选择应是基本函数的结构,解决这类问题的关键是正确分析函数的复合层次,一般是从最外层开始,由外及里,一层一层地分析,把复合函数分解成若干个常见的基本函数,逐步确定复合过程. 解:函数的复合关系分别是 1.n m bx a u u y +==,; 2.2,3,ln +===x e v v u u y ; 3.32,log ,32 2+-===x x v v u y u ;

2020高考数学函数与导数综合题型分类总结

函数综合题分类复习 题型一:关于函数的单调区间(若单调区间有多个用“和”字连接或用“逗号”隔开),极值,最值;不等式恒成立;此类问题提倡按以下三个步骤进行解决: 第一步:令 0)('=x f 得到两个根;第二步:列表如下;第三步:由表可知; 不等式恒成立问题的实质是函数的最值问题,常见处理方法有四种: 第一种:变更主元(即关于某字母的一次函数)-----题型特征(已知谁的范围就把谁作为主元);第二种:分离变量求最值(请同学们参考例5);第三种:关于二次函数的不等式恒成立;第四种:构造函数求最值----题型特征 )()(x g x f >恒成立 0)()()(>-=?x g x f x h 恒成立;参考例4; 例1.已知函数32 1()23 f x x bx x a =-++,2x =是)(x f 的一个极值点. (Ⅰ)求()f x 的单调递增区间;(Ⅱ)若当[1, 3]x ∈时,2 2()3 f x a ->恒成立,求a 的取值范围. 例2.已知函数b ax ax x x f +++=2 3)(的图象过点)2,0(P . (1)若函数)(x f 在1-=x 处的切线斜率为6,求函数)(x f y =的解析式;(2)若3>a ,求函数)(x f y =的单调区间。 例3.设2 2(),1 x f x x = +()52(0)g x ax a a =+->。 (1)求()f x 在[0,1]x ∈上的值域; (2)若对于任意1[0,1]x ∈,总存在0[0,1]x ∈,使得01()()g x f x =成立,求a 的取值范围。 例4.已知函数 32()f x x ax =+图象上一点(1,)P b 的切线斜率为3-, 32 6()(1)3(0)2 t g x x x t x t -=+-++> (Ⅰ)求,a b 的值; (Ⅱ)当[1,4]x ∈-时,求()f x 的值域; (Ⅲ)当[1,4]x ∈时,不等式()()f x g x ≤恒成立,求实数t 的取值范围。 例5.已知定义在R 上的函数 32()2f x ax ax b =-+) (0>a 在区间[]2,1-上的最大值是5,最小值是-11. (Ⅰ)求函数()f x 的解析式;(Ⅱ)若]1,1[-∈t 时,0(≤+'tx x f )恒成立,求实数x 的取值范围. 例6.已知函数 2233)(m nx mx x x f +++=,在1-=x 时有极值0,则=+n m 例7.已知函数23)(a x x f =图象上斜率为3的两条切线间的距离为 510 2,函数33)()(2 2 +-=a bx x f x g . (1) 若函数)(x g 在1=x 处有极值,求)(x g 的解析式; (2) 若函数)(x g 在区间]1,1[-上为增函数,且)(42 x g mb b ≥+-在区间]1,1[-上都成立,求实数m 的取值范围. 答案: 1、解:(Ⅰ) '2()22f x x bx =-+. ∵2x =是)(x f 的一个极值点, ∴2x =是方程2 220x bx -+=的一个根,解得32 b =. 令'()0f x >,则2 320x x -+>,解得1x <或2x >. ∴函数()y f x =的单调递增区间为(, 1)-∞,(2, +)∞. (Ⅱ)∵当(1,2)x ∈时 '()0f x <,(2,3)x ∈时'()0f x >, ∴ ()f x 在(1,2)上单调递减,()f x 在(2,3)上单调递增. ∴(2)f 是()f x 在区间[1,3]上的最小值,且 2 (2)3 f a = +. 若当[1, 3]x ∈时,要使 22()3f x a -> 恒成立,只需22(2)3f a >+, 即2 2233 a a +>+,解得 01a <<. 2、解:(Ⅰ)a ax x x f ++='23)(2 . 由题意知? ??=+-=-'==623)1(2)0(a a f b f ,得 ???=-=23b a . ∴ 233)(23+--=x x x x f . (Ⅱ)023)(2=++='a ax x x f . ∵ 3>a ,∴ 01242>-=?a a .

函数导数综合题2020

一、证明不等式 (一) 1. 证明: ()21ln 1,01221x x x x x x x x x x ??<<+<+<> ?+++?? 2. 证明:()21ln 1+,0 2x x x x x -<<<> 3. 证明: ()2111ln ,112x x x x x x -?? <<-> ?+?? 4、证明:() 2111ln ,0121x x x x x x -? ? -<< << ?+?? (二) 1、证明1x e x ≥+ 2、证明2 10)x e x x ≥+>( 3、()*11!2!3!! n x x x x x e n N n >++++???+∈ 4、()2101x x e x x -->>+ (三) 1、 02 x π << 时,求证: 2 sin tan x x x x π <<< 2、9 02 x π <<时,求证:3 sin 6x x x >- 3、02 x π <<时,求证:3 tan 3x x x >+ 4、 0x >求证:2sin cos 1x x x x +>+- 5、 02 x π <<时,求证:sin tan 2x x x +>

(四) 1、证明() ()()2 11110n ,22 n n n x nx x x N n -+<++-<<∈≥ 2、证明1(1),,3n n n n n N n +≥+∈≥ (五) 1、证明:()()21ln 1,0x e x x x -+≥≥ 2、证明:()()1 2ln 2,0,x x e e ex x x x --+≥∈+∞ 3、求证:()1ln 10x x e e x x +---≥ 4、求证:2 ln x e ex x ex +≥ 5、求证:( )22ln 22 x xe e x e x x -≥-+ 6、 【2014全国1理21】(12分)设函数 ,曲线 在点 处的切线方程为 (I )求 (II )证明: (六) 1、已知x x f ln )(= ,当b a <<0时,求证:2 2) (2)()(b a a b a a f b f +->- 2、若x >0,y >0,证明:ln x +ln y ≤. 3、证明:2 2 x y x y x y e e e e e x y +-+<<- 4. 证明:()()ln ln ln ,0,0,2 x y x x y y x y x y x y ++>+>>≠ 3 2 xy x y ++-

相关文档
相关文档 最新文档