文档库 最新最全的文档下载
当前位置:文档库 › 五相平衡与相图

五相平衡与相图

五相平衡与相图
五相平衡与相图

1 .固体硫有两种晶型( 单斜硫、斜方硫) ,因此硫系统可能有四个相,如果某人实验得到这四个相平衡共存,试判断这个实验有无问题。

2 .图( 1 )是具有多晶转变的某物质的相图,其中DEF 线是熔体的蒸发曲线。KE 是晶型I 的升华曲线;GF 是晶型II 的升华曲线;JG 是晶型Ⅲ的升华曲线,回答下列问题:

(1) 在图中标明各相的相区,并把图中各无变点的平衡特征用式子表示出来。

(2) 系统中哪种晶型为稳定相? 那种晶型为介稳相?

(3) 各晶型之间的转变是单向转变还是双向转变?

3 .在SiO2系统相图中,找出两个可逆多晶转变和两个不可逆多晶转变的例子。

4 .根据Al2O3—SiO2系统相图说明:

(1) 铝硅质耐火材料,硅砖( 含SiO2>98 %) 、粘土砖( 含Al2O3 35 ~50 %) 、高铝砖( 含Al2O360 ~90 %) 、刚玉砖( 含Al2O3>90 %) 内,各有哪些主要的晶相。

(2) 为了保持较高的耐火度,在生产硅砖时应注意什么?

(3) 若耐火材料出现40 %液相便软化不能使用,试计算含40(mol) Al2O3的粘土砖的最高使用温度。

5 .在CaO-SiO2系统与Al2O3-SiO2系统中SiO2的液相线都很陡,为什么在硅砖中可掺人约 2 %的CaO 作矿化剂而不会降低硅砖的耐火度,但在硅砖中却要严格防止原料中混入Al2O3否则会使硅砖耐火度大大下降。

6 .加热粘土矿物高岭石(Al2O3· 2SiO2· 2H2O) 至600 ℃时,高岭石分解为水蒸气和Al2O3·2SiO2,继续加热到1595 ℃时会发生什么变化?在这温度下长时间保温达到平衡,系统的相组成如何?当系统生成40 %液相时,应达到什么温度?在什么温度下该粘土完全熔融?

7 .图(2)是最简单的三元系统投影图,图中等温线从高温到低温的次序是t 6 >t 5 >t 4 >t 3 >t 2 >t 1 根据此投影图回答:

(1) 三个组分A 、B 、C 熔点的高低次序是怎样排列的。

(2) 各液相面下降的陡势如何? 那一个最陡? 那一个最平坦?

(3) 指出组成为65 %A ,15 %B ,20 %C 的系统的相组成点,此系统在什么温度下开始结晶? 结晶过程怎样? (表明液、固相组成点的变化及

结晶过程各阶段中发生的变化过程)。

(4) 计算第一次析晶过程析出晶相的百分数是多少? 第二次析晶过程结束时,系统的相组成如何? 结晶结束时系统的相组成又如何?

8 .图(3)为生成二个一致熔融二元化合物的三元系统,据图回答下列问题:

(1) 可将其划分为几个简单的三元系统?

(2) 标出图中各边界及相区界线上温度下降方向,

(3) 判断各无变量点的性质,并将它们的平衡特征式子表示出来。

9 .图(4)是生成一致熔融二元化合物(BC) 的三元系统投影图。设有组成为:A :35 %,B :35 %,C :30 %的熔体,试确定其在图中的位置。冷却时该熔体在何温度下开始析出晶体。

10 .如图(5) A-B-C 三元系统相图,根据相图回答下列问题:

1 .在图上划分副三角形、用箭头表示各条界线上温度下降方向及界线的性质;

2 .判断化合物D 、M 的性质;

3 .写出各三元无变量点的性质及其对应的平衡关系式;

4 .写出组成点G 在完全平衡条件下的冷却结晶过程;

5 .写出组成点H 在完全平衡条件下进行加热时,开始出现液相的温度和完全熔融的温度;写出完全平衡条件下进行冷却,结晶结束时各物质的百分含量(用线段比表示)。

11 .根据图(6)回答下列问题:

(1) 说明化合物S1、S2的性质;

(2) 在图中划分分三元系统及用箭头指示出各界线的温度下降方向及性质;

(3) 指出各无变点的性质并写出各点的平衡关系;

(4) 写出1 、3 组成的熔体的冷却结晶过程( 表明液、固相组成点的变化及结晶过程各阶段系统中发生的变化过程) 。并总结判断结晶产物和结晶过程结束点的规律;

(5) 计算熔体l 结晶结束时各相百分含量,若在第三次结晶过程开始前将其急冷却( 这时液相凝固成为玻璃相) 各相的百分含量又如何?( 用线段表示即可) ;

(6) 加热组成2 的三元混合物将于哪一点温度开始出现液相? 在该温度下生成的最大液相量是多少? 在什么温度下完全熔融? 写出它的加热过程。

12 .下图为具有化合物生成的三元系统相图,根据此三元系统相图解答下列问题

(1)判断各化合物的性质;

(2) 用箭头表示相区界线温度变化方向及界线性质;

(3) 划分副三角形,并写出各三元无变量点的平衡过程及性质;

(4) 用规范化写法写出M 点对应组分的平衡结晶过程;

(5) N 点对应的三元组成点加热时在那一点温度下开始出现?哪一点温度下完全熔化?

13 .根据图(7)回答下列问题:

(1) 用箭头标出各界线的温度下降方向及性质;

(2) 指出各无变点的性质,并写出其平衡关系;

(3) 写出熔体M 的结晶过程,说明液相离开R 点的原因;

(4) 画出AB 、BC 二元系统相图。

14 .比较各种三元无变量点( 低共熔点,双升点,双降点,过渡点和多晶转变点) 的特点。写出它们的相平衡关系。

15 .对课本的MgO-Al2O3-Si02系统和K2O —Al2O3-SiO2系统相图划分副三角形。

16 .参看CaO-Al2O3-Si02系统相图,回答下列问题:

(1) 组成为66 %CaO ,26 %Si02,8 %Al2O3,即书中3 点的水泥配料将于什么温度开始出现液相? 这时生成的最大液相量是多少( 根据详6 图CaO-C2S-C12A4部分系统计算) 。

(2) 为了得到较高的C2S 含量,题(1) 组成的水泥烧成后急冷好,还是缓冷让其充分结晶好?

(3) 欲得到题(1) 组成的水泥,若只用高岭土和石灰石(Al2O3·2Si02·2H20 和CaCO3) 配料,能否得到该水泥的组成点? 为什么? 若不能,需要加入何种原料? 并计算出所需各种原料的百分含量。

17 .根据Na2O-CaO-SiO2系统相图回答:

(1) 组成为13 %Na2O ,13 %CaO ,74 %SiO2玻璃配合料将于什么温度熔化? 在什么温度完全熔融?

(2) 上面组成的玻璃,当加热到1050 ℃,1000 ℃,900 ℃,800 ℃时,可能会析出什么晶体?

(3) NC2S6晶体加热时是否会不一致熔化? 分解出什么晶体,熔化温度如何?

18 .在陶瓷生产中一般出现35 %液相就足以使瓷坯玻化。而当液相达到45 %时,将使瓷坯变形,成为过烧。根据课本MgO-Al2O3-SiO2具体计算含10 %偏高岭,90 %偏滑石的配料的烧成温度范围。

19 .计算含50 %高岭石,30 %长石,20 %石英的一个瓷器配方在1250 ℃烧成达到平衡时的相组成及各相的相对量。

20 .根据课本图K20-Al2O3-SiO2系统相图。如果要使瓷器中仅含有40 %莫来石晶相及60 %的玻璃相、原料中应含K2O 若干? 若仅从长石石中获得,K2O 原料中长石的配比应是多少?

21 .高铝水泥的配料通常选择在CA相区范围内,生产时常烧至熔融后冷却制得,高铝水泥主要矿物CA ,而C2AS 没有水硬性,因此希望水泥中不含C2AS 。这样在CA 相区内应取什么范围的配料才好,为什么( 注意生产时不可能完全平衡.而会出现独立结晶过程)?

复习提纲

(1) 基本概念:相图、自由度、组元数与独立组元数、吉布斯向律、杠杆规则、初晶区规则、三角形规则、背向线规则、切线规则;

(2)掌握相图的表示方法,包括单元系统相图、二元系统相图、三元系统相图;对于单元系统相图,要求掌握点、线、区间的性质,会写无变量点的平衡式子;对于二元系统相图,要求掌握点、线、区间的性质,会写无变量点的平衡式子,掌握冷却结晶过程的分析以及过程量的计算;对于三元系统相图,要求掌握点、线、区间的性质,会写无变量点的平衡式子,掌握冷却结晶过程的分析以及过程量的计算。

图(1)图(2)图(3)

图(4)图(5)图(6)

图(7)图(8)

1 、解:有问题,根据相律,F=C-P+2=1-P+2=3-P,系统平衡时,F=0 ,则P=3 ,硫系统只能是三相平衡系统。

2 、解:(1) KEC 为晶型Ⅰ的相区,EFBC 过冷液体的介稳区,AGFB 晶型Ⅱ的介稳区,JGA 晶型Ⅲ的介稳区;

(2)晶型Ⅰ为稳定相,晶型Ⅱ、Ⅲ为介稳相;因为晶型Ⅱ、Ⅲ的蒸汽压高于晶型Ⅰ

的,即它们的自由能较高,有自发转变为自由能较低的晶型Ⅰ的趋势;

多晶转变点的温度高于两种晶型的熔点;

Ⅱ、Ⅲ转变可逆的,双向的,多晶转变点温

度低于Ⅱ、Ⅲ的熔点。

3 、解:可逆多晶转变:β-石英←→α-石英α-石英←→α-鳞石英

不可逆多晶转变:β-方石英←→β-石英γ-鳞石英←→β-石英

4 、解:(1) 硅砖(含SiO2 >98%) 主要晶相:SiO2、2Al203 · 2SiO 3 固溶体(莫来石)

粘土砖(含Al203 35 ~50%) 主要晶相:SiO2、A3S2

高铝砖(含Al203 60 ~90%) 主要晶相:60 ~72%A3S2

72 ~90% Al203、A3S2

(2)为了保持硅砖的耐火度,要严格防止原料中混如Al203。SiO2熔点为1723 ℃,SiO2液相很陡,加入少量的Al203后,硅砖中会产生大量的液相,SiO2的熔点剧烈下降。如加入1wt% Al203,在低共熔点(1595 ℃)时产生的液相量为1/5.5=18.2% ,会使硅砖的耐火度大大下降;

(3)略。

5 、解:SiO2中加入少量的CaO ,在低共熔点143

6 ℃时,液相量为2/37=5.4% ,液相量增加不多,不会降低硅砖的耐火度,故可加少量CaO 作矿化剂。

6 、解:Al203 · 2SiO2 · H2O Al203 · 2SiO2 + H2O

Al203 · 2SiO2相图中SiO2 %=33%mol

(1)加热到1595 ℃时,生成A3S2

(2) 1595 ℃长时间保温,系统中为液相和A3S2,L%= =21.8%

(3)略;

(4)完全熔融即固相完全消失,应为33% 直线与液相线交点处温度。

7 、解:(1)高→ 低B→C→A

(2) B 最陡,C 次之,A 最次;

(3)在M 点所在的温度下开始析晶,

液相组成点M→M→1→E (结晶结束)

固相组成点A→ A→ D→ M

(4)第一次析晶仅析出晶相A ,到M 1 时第一次析晶结束,晶相A 的百分数为65% ,

结晶结束时,析晶相A 、B 、C ,液相消失,固相组成点在M 点。

???

8 、

解:

9 、解:M 点所在温度约1050 ℃,1050 ℃开始析晶。

10 、

(1)见图,付三角形3 分,界线性质1 分,界线上温度降低的方向;解:

(2) D ,一致熔融二元化合物,高温稳定、低温分解;M ,不一致熔融三

元化合物;

(3) E1 ,单转熔点,L+A←→C+M E2 ,低共熔点,L←→C+B+M

E3 ,单转熔点,L+A←→B+M E4 ,过渡点,

(4)L

(5) E2 温度,H 点所在温度;过H点做副三角形BCM的两条边CM 、

BM的平行线HH1、HH2,C%=BH2/BC ×100% ,B%=CH1/BC×100% ,C%=H1H2/BC×100% 。

12 、解:(1) S 组成点在三角形内且位于初晶区外,不一致熔融三元化合物;

(2)结晶过程2 点位于A 初晶区,在AS 连线上,结晶产物为A 、S

3 点位于A 初晶区,在△ BCS 内,结晶产物为B 、C 、S

(3) 5 点冷却过程

6 点冷却过程

12 、解:(1) S1 不一致熔融二元化合物,高温稳定,低温分解S2 一致熔融二元化合物

S3 不一致熔融二元化合物,低温稳定,高温分解

(2) 见图

(3) E1 ,过渡点,

E2 ,单转熔点,

E3 ,过渡点,

E4 ,低共熔点,

E5 ,低共熔点,

(4)

(5)在E5 点出现液相,在N 点所在温度完全熔融。

13 、略。

14 、略。

16 、解:(1) k 点开始出现液相,温度为1455 ℃,连接3k 交

CaO-C3S 线于6 点,

线段长度可直接量取;

(2)急冷好,k 点将进行转熔过程L +C3SC2S +C3A

这样C3S量会减少,急冷使转熔过程来不及进行,从而提高C3S含量;

(3)AS2与CaCO3配料,不能得到 3 点矿物组成

3 点组成66CaO 1.179mol 26SiO2 0.433mol 8Al203 0.078mol

化成mol% 69.76% 25.62% 4.62%

SiO2 mol%/Al203 mol%=5.55

题目中组成点Al203 · 2SiO2 · 2H2O 与CaCO3配料,SiO2 mol%/Al203 mol%=2 :1 二者比较,SiO2量不够,所以需加入SiO2。

设配料100g ,含66g CaO ,26g SiO2,8g Al203

66g CaO 化成CaCO3量66/56 × 100=117.86g

8g Al203化成Al203 · 2SiO2 · 2H2O 量8/102 × 258=20.24g

AS2 · 2H2O 提供SiO2 8/102 × 2 × 60=9.41g

还需SiO2量20.24-9.41=10.83g

CaCO3 wt%=79.14% ,AS2· 2H2O wt%=13.59% ,SiO2 wt%=7.27%

17 、解:(1)该点位于△NC3S6 -NCS 5 -SiO2中,Q 点附近β -CS 初晶区

对应无变量点H 点1:3:6+ α-石英+L 1:1:5

配料在827 ℃熔化,完全熔化为1050 ℃左右

(2)加热到1050 ℃ L→ β-CS

1000 ℃ L→1:3:6+ α-鳞石英

900 ℃ L→1:3:6+ α-石英

800 ℃加热到800 ℃时未熔化,冷却到800 ℃时三个晶相1:3:6 1:1:5

(3)NC3S6加热是不一致熔融,加热分解

1:3:6 析晶,先析出α-CS ,α -CS →β-CS ,RQ 线上L+ β-CS→1:3:6

1:3:6 加热到RQ 界线与CS-1:3:6 交点温度开始熔化(1050 ℃左右)分解出β-CS

18 、解:组成点确定下来,图中M 点,△ MS-M 2 Al2S35 -SiO2对应无变量点1 点(1355 ℃)加热该组成点,于 1 点开始出现液相,液相组成点在MS 与SiO2界线上移动,固相组成点在MS-SiO2连线上变化,以M 点为支点连成杠杆,当L%=35% 时,对应温度1390 ℃,L%=45% 时,对应温度1430 ℃,烧成温度范围为1390 ~1430 ℃。

19 、解:50%AS2 30%KAS6 20%SiO2组成点在△ QWD 中3 点,3 点位于初晶区,对应 E 点结晶结束985 ℃ L SiO2 +A3S2 + KAS 6 ,加热组成为3 物质,于E 点开始出现液相

升温于1250 ℃时,固相中有SiO2 ·A3S2及L 相,液相组成点在莫来石与石英界线上(与1250 ℃等温线交点),固相组成点在SiO2与A3S2连线上,用杠杆规则计算。

20 、解:40%A3S2 + 6% 液相

原始组成点在A3S2初晶区,在A3S2组点与E 点连线上,在图中12 点附近,过原始组成点做△ SiO2 -K20-Al203各边平行线,确定出K2O 、SiO2、Al203百分含量

K20: wt%=4.12% Al203 :wt%=27.06% SiO2: wt%=68.82%

长石K2O ·Al203· 6SiO2 (94+102+360=556)

仅从长石中获得K2O

100gK2O: 4.12g Al203: 27.06g SiO2: 68.82g

4.12gK2O 化成长石4.12/94 × 556=24.34g

24.34g 长石提供Al203 4.47g SiO2 15.79g

另需加Al203: 27.06-4.47=22.59g SiO2: 68.82-15.79=53.03g

长石wt%= =24.35

21 、略。

铁碳平衡相图

铁碳平衡相图 又称铁碳相图或铁碳状态图。它以温度为纵坐标,碳含量为横坐标,表示在接近平衡条件(铁-石墨)和亚稳条件(铁-碳化铁)下(或极缓慢的冷却条件下)以铁、碳为组元的二元合金在不同温度下所呈现的相和这些相之间的平衡关系。 简史早期利用热分析法和金相法发现铁的加热和冷却曲线上出现两个驻点,即临界点A3和A2,它们的在 1868 年,俄国学者切尔诺夫(Д.к.Чернов)就注意到只有把钢加热到某一温度”a”以上再快冷,才能使钢淬硬,从而有了临界点的概念。至1887~1892年奥斯蒙(F.Osmond)温度视加热或冷却 (分别以A c和A r表示)过程而异。奥斯蒙认为这表明铁有同素异构体,他称在室温至A2温度之间保持稳定的相为α铁;A2~A3间为β铁;A3以上为γ铁。1895年,他又进一步证明,如铁中含有少量碳,则在690或710℃左右出现临界点,即A r1点,标志在此温度以上碳溶解在铁中,而在低于这一温度时,碳以渗碳体形式由固溶体中分解出来,随铁中碳量提高,A r3下降而与A r2 1合为一点。1904年又发现A4至熔点相合,然后断续下降,至含碳为0.8~0.9%时与A r 间为δ铁。以上述临界点工作的成果为基础,1899年罗伯茨-奥斯汀(W.C.Roberts-Austen)制定了第一张铁碳相图;而洛兹本 (H.W.Bakhius Roozeboom)更首先在合金系统中应用吉布斯(Gibbs)相律,于1990年制定出较完整的铁碳平衡图。随着科学技术的发展,铁碳平衡图不断得到修订,日臻完善。目前采用的铁碳平衡图示于图1,图中各重要点的温度、浓度及含义如下表所列。当铁中含碳量不同时,得到的典型组织如图2所示。

双液系的气液平衡相图

双液系的气-液平衡相图 1. 简述由实验绘制环己烷-乙醇气-液平衡T-x相图的基本原理。 答:通过测定不同沸点下组分的气、液相的折射率,在标准的工作曲线上找出该折射率对应的浓度,结合其沸点画出平衡相图。 2. 在双液系的气-液平衡相图实验中,作环己烷-乙醇的标准折光率-组成曲线的目的是什么? 答:作标准曲线的目的是通过测气、液相相得折射率从而在标准工作曲线上找出对应的浓度。 3. 用精馏的方法是否可把乙醇和环己烷混合液完全分离,为什么? 答:不能完全分离。因为环己烷-乙醇二组分具有最低恒沸点。 4. 测定纯环己烷和纯乙醇的沸点时,沸点仪中有水或其它物质行吗? 答:有水和其他物质都是不行的。因为有水和其他物质会使所测沸点改变。 5. 为什么工业上常生产95%酒精?只用精馏含水酒精的方法是否可能获得无水酒精? 答:因为水-乙醇二组分具有最低恒沸点,所以工业上常生产95%的酒精。用精馏的方法无法获得无水酒精,只能获得95%的酒精。 6. 在双液系的气-液平衡相图实验中,如何判断气-液相达平衡状态?

答:观察贝克曼温度计的读数,如果读数稳定3-5分钟,说明已达平衡状态。 7. 在双液系的气-液平衡相图实验中,每次加入沸点仪中的环己烷或乙醇是否应按记录表所规定的体积精确计量?为什么? 答:不需要按记录表的加。因为组分的浓度不是按所加物质的量计算得来的,而是通过测折射率间接得到的。 8. 在双液系的气-液平衡相图实验中,在测定沸点时,溶液出现分馏现象,将使绘出的相图图形发生什么变化? 答:出现馏分将使测得的沸点偏高,使相图向上移动。 9. 在双液系的气-液平衡相图实验中,蒸馏器中收集气相冷凝的小球大小对结果有何影响? 答:小球太小难以收集气相,小球太大,小球内的组分更新太慢,产生馏分,导致实验误差。 10. 在双液系的气-液平衡相图实验中,通过测定什么参数来测定双液系气-液平衡时气相和液相的组成? 答:通过测定组分的折射率来测定双液系气-液平衡时气相和液相的组成。 11. 在双液系的气-液平衡相图中,如何通过测定溶液的折光率来求得溶液的组成? 答:通过测得的折射率在标准曲线上找出对应的浓度,根据气、液相平衡浓度与测得的沸点作出平衡相图。

双液体系气液平衡相图的绘制及思考题样本

双液体系气—液平衡相图的绘制 一、 实验目的 1. 绘制环己烷—异丙醇双液体系的沸点组成图, 确定其恒沸组成和恒沸温度。 2. 掌握回流冷凝管法测定溶液沸点的方法。 3.掌握阿贝折射仪的使用方法。 二、 实验原理 两种液体物质混合而成的两组分体系称为双液系。根据两组分间溶解度的不 同, 可分为完全互溶、 部分互溶和完全不互溶三种情况。两种挥发性液体混合形成完全互溶体系时, 如果该两组分的蒸气压不同, 则混合物的组成与平衡时气相的组成不同。当压力保持一定, 混合物沸点与两组分的相对含量有关。 恒定压力下, 真实的完全互溶双液系的气-液平衡相图( T -x ) , 根据体系对拉乌尔定律的偏差情况, 可分为3类: ( 1) 一般偏差: 混合物的沸点介于两种纯组分之间, 如甲苯-苯体系, 如图 (a)所示。 ( 2) 最大负偏差: 存在一个最小蒸汽压值, 比两个纯液体的蒸汽压都小, 混合物存在着最高沸点, 如盐酸—水体系, 如图 (b)所示。 ( 3) 最大正偏差: 存在一个最大蒸汽压值, 比两个纯液体的蒸汽压都大, 混合 物存在着最低沸点如图 (c)) 所示。 t A t A t A t B t B t B t / o C t / o t / o x B x B x B A B A A B B (a) (b) (c) x ' x '

上图为二组分真实液态混合物气—液平衡相图( T-x图) 后两种情况为具有恒沸点的双液系相图。它们在最低或最高恒沸点时的气相和液相组成相同, 因而不能象第一类那样经过重复蒸馏的方法而使双液系的两个组分相互分离, 而只能采取精馏等方法分离出一种纯物质和另一种恒沸混合物。 为了测定双液系的T-x相图, 需在气-液平衡后, 同时测定双液系的沸点和液相、气相的平衡组成。 本实验以环己烷-异丙醇为体系, 该体系属于上述第三种类型, 在沸点仪中蒸馏不同组成的混合物, 测定其沸点及相应的气、液二相的组成, 即可作出T -x相图。 本实验中两相的成分分析均采用折光率法测定。 三、仪器与试剂 1、仪器: 沸点仪1台; 调压变压器1台; 阿贝折射仪1台; 温度计(0-100℃) 1支; 长滴管1个; 短滴管2支; 2、试剂: 环己烷(分析纯); 异丙醇(分析纯) 异丙醇—环己烷标准溶液(异丙醇分别为0.20, 0.40, 0.50, 0.60, 0.80, 0.90) 四、主要实验步骤 1. 测定环己烷、异丙醇及标准溶液的折射率 调节阿贝折射仪, 用一支干燥的短滴管吸取环己烷数滴, 注入折射仪的加液孔内, 测定其折射率n, 读数两次, 取其平均值。然后打开棱镜组, 待环己烷挥发后, 再用擦镜纸轻轻吸去残留在镜面上的液体, 合上棱镜组。

二组分气液平衡相图的绘制

双液系气-液平衡相图的绘制 一、实验目的、要求 1. 测定常压下环己烷-乙醇二元系统的汽液平衡数据,绘制101325Pa下的沸点-组成的相图。 2. 掌握阿贝折射仪的原理和使用方法。 二、实验原理 液体混合物中各组分在同一温度下具有不同的挥发能力。因而,经过汽液见相变达到平衡后,各 组分在汽、液两相中的浓度是不相同的。根据这个特点,使二元混合物在精馏塔中进行反复蒸馏,就可分离得到各纯组分。为了得到预期的分离效果,设计精馏装置必须掌握精确的汽液平衡数据,也就是平衡时的汽、液两相的组成与温度、压力见的依赖关系。大量工业上重要的系统的平衡数据,很难由理论计算,必须由实验直接测定,即在恒压(或恒温)下测定平衡的蒸汽与液体的各 组分。其中,恒压数据应用更广,测定方法也较简便。 本实验测定的恒压下环己烷-乙醇二元汽液平衡相图。图中横坐标表示二元系的组成(以B的摩尔分数表示),纵坐标为温度。用不同组成的溶液进行测定,可得一系列数据,据此画出一张由液 相线与汽相线组成的完整相图。 分析汽液两相组成的方法很多,有化学方法和物理方法。本实验用阿贝折射仪测定溶液的折射率 以确定其组成。预先测定一定温度下一系列已知组成的溶液的折射率,得到折射率-组成对照表。以后即可根据待测溶液的折射率,由此表确定其组成。 三、使用仪器、材料 沸点仪1套,阿贝折射仪,移液管,环己烷,无水乙醇 四、实验步骤 1、测定折射率与组成的关系,绘制工作曲线 将9支小试管编号,依次移入 ml, ml, …, ml的环己烷,然后依次移入 ml, ml,…, ml 的无水乙醇,配成9份已知浓度的溶液,用阿贝折射仪测定每份溶液的折射率及纯环己烷和纯无水乙醇的折射率,以折射率对浓度作图。 2、测定环己烷-乙醇体系的沸点与组成的关系 (1) 右半部沸点-组成关系的测定取20 ml无水乙醇加入沸点仪中,然后依次加入环己烷, , , , , ml,测定溶液沸点,及气、液组分折射率n。完成后,将溶液倒入回收瓶。 (2) 左半部沸点-组成关系的测定取25 ml环己烷加入沸点仪中,然后依次加入无水乙醇, , , , , ml,测定溶液沸点,及气、液组分折射率n。完成后,将溶液倒入回收瓶。 五、实验过程原始记录(数据、图表、计算等) 标准曲线 V环己烷(ml) V乙醇(ml) xEtOH x环己烷折射率 0 1 1 0 1 0 0 1

最新二元液系的气液平衡相图

实验二十八二元液系的气液平衡相图 1、实验目的 ①实验测定乙醇-环己烷二元液系的沸点-组成图,并由图决定其最低恒沸温度及最低恒沸混合物的组成。 ②学会阿贝折射仪的使用及维护方法。 2、实验原理 纯液体物质,组成一定的A、B两液体的混合物,在恒定的压力下沸点为确定值,液体混合物的沸点随组成不同而改变,因同样温度下,各组分挥发能力不同,即具有不同的饱和蒸气压,故平衡共存的气、液两相的组成通常并不相同。因此在恒定压力下对不同组成的二组分液体进行蒸馏,测定两相平衡温度及馏出物(气相)和蒸馏液(液相)的组成,就可绘制出该系统的沸点与两相组成关系的T-x 图,即沸点-组成图,通常称为蒸馏曲线。 二组分完全互溶液体系统蒸馏曲线可分为三类:(1)系统中两组分对拉乌尔定律的偏差都不大,在T-x图上溶液的沸点总是介于A、B两纯液体的沸点之间,如图6-1(a)所示。(2)两组分对拉乌尔定律都产生较大的负偏差,在p-x图上出现最小值时,在T-x图上将出现最高点,如图6-1(b)所示。(3)两组分对拉乌尔定律都产生较大的正偏差,在p-x图上出现最大值时,在T-x图上将出现最低点,如图6-1(c)所示。最高点和最低点分别称为最高恒沸点和最低恒沸点,对应的组成称为恒沸组成,其相应的混合物称为恒沸混合物。恒沸混合物蒸馏所得到的气、液两相组成相同,故不能用一次精馏的办法同时分出两个纯组分。 本实验是在某恒定压力下则定乙醇—环己烷二组分系统的沸点与组成平衡数据,并绘制该液体混合物的蒸馏曲线,其类型如图6-1(a)所示,这种类型的液态混合物中总是易挥发组分在平衡气相里的组成大于它在液相里的组成。图6-1(a)中,与沸点t1对应的气相线上D点的组成是w B(g)、液相线上C点的组成是w B(l)。t A<t B,A较B易挥发,故w B(l)>w B(g),而w A(g)>w A(l)。 测定混合物组成的方法分为物理法和化学法。物理法是通过测定与系统组成有一定关系的某—物理性质(如电导、折射率、旋光度、吸收光谱、体积、压力

相平衡课后解答

第四章 相平衡 复习题 1.判断下列说法是否正确,为什么? (1) 在一个密封的容器内,装满了373.2K的水,一点空隙也不留,这时水的蒸气压等于零;(2) 在室温和大气压力下,纯水的蒸气压为P*,若在水面上充入N2(g)以增加外压,则纯水的蒸气压下降; (3) 小水滴与水汽混在一起成雾状,因为它们都有相同的化学组成和性质,所以是一个相;(4) 面粉和米粉混合得十分均匀,肉眼已无法分清彼此,所以它们已成为一相; (5) 将金粉和银粉混合加热至熔融,再冷却至固态它们已成为一相; (6) 1molNaCl(s)溶于一定量的水中,在298K时,只有一个蒸气压; (7) 1molNaCl(s)溶于一定量的水中,再加少量的KNO3(S),在一定的外压下,当达到气—液平衡时,温度必有定值; (8) 纯水在三相点和冰点时,都是三相共存,根据相律,这两点的自由度都应该等于零。 答(1)不对 (2)不对 (3)不对,两相——气相与液相 (4)不对,两相 (5)正确。 (6)正确 (7)冰点时,两相共存,f=1。 2.指出下列平衡系统中的物种数、组分数、相数和自由度数。 (1)NH4Cl(s)在真空容器中,分解成NH3(g)和HCl(g)达平衡; (2)NH4Cl(s)在含有一定量NH3(g)的容器中,分解成NH3(g)和HCl(g)达平衡;(3)CaCO3(s)在真空容器中,分解成CO2(g)和CaO(s)达平衡; (4)NH4 HCO3(s)在真空容器中,分解成NH3(g),CO2(g)和H2O(g) 达平衡; (5)NaCl水溶液与纯水分置于某半透膜两边,达渗透平衡; (6)NaCl(s)与其饱和溶液达平衡; (7)过量的NH4Cl(s),NH4I(s)在真空容器中达成如下的分解平衡; NH4Cl(s)NH3(g)+HCl(g) NH4I(s) NH3(g)+ HI(g) i. 含有Na+ ,K+ ,SO42- ,NO3- 四种离子的均匀水溶液。 答(1) S=3, C=1, f=1. (2) S=3, C=2, f=1. (3) S=3, C=2, f=1. (4) S=4, C=1, f=1. (5) S=2,C=1, f=1. (6) S=2, C=1, f=1. (7) S=5, C=2, f=1. (8) S=5, C=4, f=5. 3.回答下列问题。 (1) 在同一温度下,某研究系统中有两相共存,但它们的压力不等,能否达成平衡?

二组分完全互溶系统的气—液平衡相图

实验报告 课程名称:______大学化学实验(P)__________ 指导老师:____曹发和_____成绩:__________________ 实验名称:二组分完全互溶系统的气液平衡相图 实验类型:_____________同组学生姓名:__________ 一、实验目的和要求(必填) 二、实验内容和原理(必填) 三、主要仪器设备(必填) 四、操作方法和实验步骤 五、实验数据记录和处理 六、实验结果与分析(必填) 七、讨论、心得 一、实验目的和要求 1. 学习测定气—液平衡数据及绘制二元系统相图的方法,加深理解相律和相图等概念。 2. 掌握正确测量纯液体和液体混合物沸点的方法。 3. 熟悉阿贝折光仪的原理及操作,熟练掌握超级恒温槽的使用和液体折射率的测量。 4. 了解运用物理化学性质确定混合物组成的方法。 二、实验内容和原理 两种液态物质若能以任意比例混合,则称为二组分完全互溶液态混合物系统。当纯液体或液态混合物的蒸气压与外压相等时就会沸腾,此时的温度就是沸点。在一定的外压下,纯液体的沸点有确定的值,通常说的液体沸点是指101.325Kpa 下的沸点。对于完全互溶的混合物系统,沸点不仅与外界压力有关,还与系统的组成有关。 在一定压力下,二组分完全互溶液态混合物系统的沸点与组成关系可分为三类:(1)液态混合物的沸点介于两纯组分沸点之间(2)液态混合物有沸点极大值(3)液态混合物有沸点极小值。对于(1)类,在系统处于沸点时,气、液两相的组成不相同,可以通过精馏使系统的两个组分完全分离。(2)、(3)类是由于实际系统与Raoult 定律产生严重偏差导致。相图中出现极值的那一点,称为恒沸点。具有恒沸点组成的二组分混合物,在蒸馏时的气相组成和液相组成完全一样,整个蒸馏过程中沸点恒定不变,因此称为恒沸混合物。对有恒沸点的混合物进行简单蒸馏,只能获得某一纯组分和恒沸混合物。 液态混合物组成的分析是相平衡实验的关键。本实验采用折射率法。采用制作工作曲线的内插法得到未知液态混合物的组成。折射率是温度的函数,测定时必须严格控制温度。 三、主要仪器设备 仪器:沸点仪,阿贝折光仪,超级恒温槽,调压变压器。 试剂:环己烷(AR ),无水乙醇(AR )。 四、操作方法和实验步骤 1. 工作曲线的制定(实验室已完成)。 2. 相图数据的测定。 (1)安装沸点仪 检查带有温度计的软木塞是否塞紧及温度计的位置。加热用的电热丝要靠近容器底部中心。 (2)测定沸点 取样口中加入20~25ml 乙醇,开冷却水,缓缓加热,沸腾液体喷在水银球上,蒸汽在冷凝管中凝聚,温度计读数稳定,记录温度计度数。 (3)取样分析 冷却,吸取蒸汽冷凝液及残留液。测定蒸汽冷凝液和残留液的折射率各平行三次。加料口加入1,1,2,3, 姓名: 徐泰川 学号: 37 日期:________________ 地点:________________

相平衡和相图 (7)

学前指导将学习到的知识点: 知识点094.具有一个低温分解、高温稳定二元化合物的三元 系统相图

6.4.3.6 具有一个低温稳定、高温分解的二元 化合物的三元系统相图 ●化合物S的组成点在AB边上,化合物在 T R温度以下才能稳定存在,温度高于T R, 则分解为A、B两种晶相。 ●由于其分解温度低于A、B两组元的低共 熔温度,因而不可能从A、B二元的液相 线A′e3′和B′e3′直接析出 S晶体,即S晶体 的初晶区不会与AB边相接触。

E和R,但只能划分出与P和E对应的两个副三 角形。 ●P点在对应的△ASC外的交叉位置,是双升点。 E点在对应的△BSC内的重心位置,是低共熔 ●R点周围的三个初晶区是(A)、(S)、 (B),对应的三种晶相的组成点A、S、B在 一条直线上,不能形成一个副三角形。

在R点上进行的过程是化合物的形成或分解过程,即: A+B<-> S(A m B n)。 ●这种无变量点称为过渡点。从R点周围三条界 线上的温降方向看,类似于双降点,所以R点 ●在过渡点上由于F=0。系统的温度不变,液相 组成在R点上不变,实际上液相量也不变,这 个情况和前面介绍的各种无变量点有所不同。

●M点在副三角形SBC内,对应的无变量点E, 最终析晶产物为晶相B、S、C ●M的初晶区在A内,冷却先析出A,P=2, F=2,液相组成沿着AM背向线变化,固相组成在A, ●液相组成到达界线Re3上的a后析出A和B, P=3,F=1,液相组成沿着界线aR变化,固相组成离开A沿着AB变化。

●液相组成到R点,固相组成在D点, A+B->S, P=4,F=0,系统不能继续降温,直到A消失。 ●液相组成才沿RE界线变化,不断析出B、S。P=3,F=1,固相离开D,向G变化,固相组 成为B、S ●最后在E点,液相中同时析出B、S、C,固相 组成由G离开AB边进入三角形内部,当固相 组成与M重合,液相消耗完毕,析晶结束。

气液平衡相图与精馏

23 气液平衡相图与精馏 不同于二组分理想混合物的气液平衡相图,实际混合物的气液平衡相图必须通过实验测定来制作。鉴于相图不仅能显示系统的强度性质与相态间的关系,而且还能表示相转变的过程,这对相图的工业应用具有重要的价值。本专题旨在说明各种类型的气液平衡相图与精馏或蒸馏的关系。 1. 气液平衡相图的分类 在专题22中,已详细地叙述了二组分理想混合物的气液平衡相图,它是实际气液平衡相图分类的基础。由于理想液体混合物组分的逸度或蒸气压遵守Raoult 定律,而实际液体 混合物组分的逸度或蒸气压可在这个定律的基础上通过引入活度因子i γ来修正, 1>i γ的称为正偏差系统;1

负偏差系统 图23-1 各种类型的二组分气液平衡相图 图23-1分类实质上是以组分A和B分子间作用力的强弱作为基础。已知理想混合物的组分A和B分子间的作用力F A-B与A分子间的作用力F A-A和B分子间的作用力F B-B相等,故正偏差系统意味着F A-BF A-A和F A-B >F B-B。因为F A-B小于纯组分分子间的作用力时,混合使A和B的逸出能力提高;反之,若F A-B大于纯组分分子间的作用力,则混合使A和B的逸出能力降低。然而,偏差尚有强弱之别,这便表现出图23-1中的七种情况:一般正偏差如情况(1)所示。强正偏差如情况(2)所示,此时在恒温相图中的液相线出现了极大值,在恒压相图中的液相线相应地出现了极小值,且在极点处气液两相组成相同。由于此组成时沸点恒定且最低,故称最低恒沸点,相应组成的混合物称为最低恒沸混合物。倘若超强的正偏差,则如情况(3)和情况(4)所示,A与B分子间的弱作用使两个组分不能以任意比例互溶,于是液相出现部分互溶。甚至可像情况(5)所示,两个组分间完全不互溶。负偏差也有强弱之别,就像情况(6)和情况(7)所示,后者出现了最高恒沸点和相应的最高恒沸混合物,但不会出现液相部分互溶和不互溶的情况,因为A与B 分子间的强作用,只会使它们间溶解得更好。大多数液体混合物都呈正偏差。 2. 精馏原理 在工业和实验室中,混合物的气液相平衡与原料和产品的精馏提纯有密切的关系,基于精馏通常是在恒压的条件下进行,故恒压相图与它直接相关,精馏的原理可在恒压相图中得到清晰的表示。 图23-2是一个一般正偏差系统的恒压相图,就像图23-1中的情况(1)那样,精馏的原理就示意于这一图中。将组成为x o的液体混合物加热到温度T o,即图23-2中的系统点o,此时系统呈气液两相。气相以V o代表,液相以L o代表。暂不顾及液相,而将气相冷却到 T1温度,则气相部分冷凝而变成液相L1和气相V1。再撇开液相不顾,将气相冷却到T2温度,气相再次部分冷凝而变成液相L2和气相V2,…,如此反复进行,气相中易挥发组分B T温度,因温度升高,L o 的含量不断增高,直至得到纯组分B。再看液相L o,将它加热到 3 V和液相3L。若撇开气相不顾,继续将液相升温至4T,则3L再次部便部分气化而变成气相 3

双液系气—液平衡相图绘制实验报告

双液系气—液平衡相图绘制 实验目的: ① 用回流冷凝法测定沸点时气相与液相的组成,绘制双液系相图。找出恒沸点混合物的组成及恒沸点的温度。 ② 掌握测定双组分液体的沸点及正常沸点的测定方法。 ③ 了解阿贝折射计的构造原理,熟悉掌握阿贝折射计的使用方法。 实验原理: 液体的沸点是液体饱和蒸气压和外压相等时的温度,在外压一定时,纯液体的沸点有一个确定值。但双液系的沸点不仅与外压有关,而且还与两种液体的相对含量有关。理想的二组分体系在全部浓度范围内符合拉乌尔定律。结构相似,性质相近的组分间可以形成近似的理想体系,这样可以形成简单的T-x(y)图。大多数情况下,曲线将出现或正或负的偏差。当这一偏差足够大时,在T-x(y)曲线上将出现极大点(负偏差)或极小点(正偏差)。这种最高和最低沸点称为恒沸点,所对应的溶液称为恒沸混合物。考虑综合因素,实验选择具有最低恒沸点的乙醇—乙酸乙酯双液系。根据相平衡原理,对二组分体系,当压力恒定时,在气液平衡两相区,体系的自由度为 1.当温度一定时,则气液两相的组成也随之而定。当气液两相的相对量一定,则体系的温度也随之而定。沸点测定仪就是根据这一原理设计的,它利用回流的方法保持气液两相相对量一定,测量体系温度不发生改变时,即两相平衡后,取两相的样品,用阿贝折射计测定气液平衡气相、液相的折射率,再通过预先测定的折射率—组成工作曲线来确定平衡时气相、液相的组成(即该温度下气液两相平衡成分的坐标点。)改变体系总成分,再如上法找出另一对坐标点。这样得若干对坐标点后,分别按气相点和液相点连成气相线和液相线,即得T-x 平衡图。 仪器与试剂: 沸点仪 一套 调压变压器 一台 阿贝折射计 一台 超级恒温槽 1/10温度计(50~100℃) 一支 1/10温度计(0~50℃) 一支 小烧杯 一个 小试管(5ml 带软木塞) (若干) 吸管 2支 红外线干燥箱(风筒) 一台 搽镜纸 乙酸乙酯(AR ) 无水乙醇(AR ) 不同配比的乙醇—乙酸乙酯混合液 丙酮(C 、P) 重蒸水 实验步骤: (1)、乙醇—乙酸乙酯溶液的折射率组成工作曲线的测绘 ①折射率—体积分数工作曲线。对于乙醇—乙酸乙酯等部分有机液体混合体系,当使用体积分数(?)表示时,能得到直线的工作曲线,故只要分别准确测出25℃时纯乙醇、乙酸乙酯的折射率,将其连成直线,就得到?-25 D n (%)工作曲线(n~V )。 ②折射率—摩尔分数工作曲线。在?-25D n (%)线上取8个点,利用乙醇、乙酸乙酯的密度合量比(%)等条件将以上点对应的体积分数换算成摩尔分数,按对应的折射率重新绘

相关文档