文档库 最新最全的文档下载
当前位置:文档库 › 聚合物基复合材料层压板充填孔拉伸和压缩标准试验方法(D 6742)

聚合物基复合材料层压板充填孔拉伸和压缩标准试验方法(D 6742)

聚合物基复合材料层压板充填孔拉伸和压缩标准试验方法(D 6742)
聚合物基复合材料层压板充填孔拉伸和压缩标准试验方法(D 6742)

ASTM 标准:D6742/D6742M–02

聚合物基复合材料层压板充填孔拉伸和压缩标准试验方法1 Standard Practice for Filled-Hole Tension and Compression Testing

of Polymer Matrix Composite Laminates

本标准以固定标准号D 6742/6742M颁布;标准号后面的数字表示最初采用的或最近版本的年号。带括号的数据表明最近批准的年号。上标(ε)表明自最近版本或批准以后进行了版本修改。

1 范围

1.1 本试验方法提供了改进的开孔拉伸和压缩试验方法,以确定充填孔拉伸和压缩强度。复合材料形式限于连续纤维增强的聚合物基复合材料,且层压板相对于试验方向是对称均衡的。可以接受的试验层压板和厚度范围在8.

2.1节描述。

1.2 对于安装有紧配合紧固件或销钉的孔的试件,本方法对试验方法D 5766/D 5766M(对于拉伸)和D 6484/D 6484M(对于压缩)进行了补充规定。本试验方法对几个重要的试件参数(例如,紧固件的选择、紧固件安装方法、紧固件孔的公差)没有明确规定,但是,试验结果的重复性则要求对这些参数进行给定并在报告中注明。

1.3 以国际单位(SI)或英制单位(inch–pound)给出的数值可以单独作为标准。正文中,英制单位在括号内给出。每一种单位制之间的数值并不严格等值,因此,每一种单位制都必须单独使用。由两种单位制组合的数据可能导致与本标准的不一致。

1.4 本标准并未打算提及,如果存在的话,与使用有关的所有安全性问题。在使用本标准之前,本标准的用户有责任建立合适的安全与健康的操作方法,以及确定规章制度的适用性。

2 引用标准

2.1 ASTM标准

D 792 置换法测量塑料密度和比重(相对密度)试验方法2

Test Methods for Density and Specific Gravity (Relative Density) of Plastics by

Displacement

D 883 与塑料有关的术语2;

Terminology Relating to Plastics

D 3171 复合材料组分含量测试方法3

Test Method for Constituent Content of Composite Materials

D 3878 复合材料术语3

Materials

Composite

of

Terminology

D 5229/D 5229M 聚合物基复合材料吸湿性能及平衡状态调节试验方法3

Test Method for Moisture Absorption Properties and Equilibrium Conditioning of

1本试验方法由ASTM的复合材料委员会D30审定,并由单层和层压板试验方法专业委员会D30.05直接负责。

当前版本于2002年10月10日批准,2002年11月出版。最初出版号D6742/D6742M-01,上一版本号D6742/D6742M-01。

2Annual Book of ASTM Standards, V ol 08.01.

Polymer Matrix Composite Materials

D 5766/D 5766M 聚合物基复合材料开孔拉伸强度试验方法3

Test Method for Open Hole Tensile Strength of Polymer Matrix Composite

Laminates

D 6484/D 6484M 聚合物基复合材料开孔压缩强度试验方法3

Test Method for Open-Hole Compressive Strength of Polymer Matrix Composite

Laminates

D 6507 复合材料纤维增强方向编码方法3

Practice for Fiber Reinforcement Orientation Codes for Composite Materials

E 6 与力学试验方法有关的术语4;

Terminology Relating to Methods of Mechanical Testing

E 177 ASTM试验方法中各项精度和偏差的使用的操作规程5;

Practice for Use of the Terms Precision and Bias in ASTM Test Methods

E 456 与质量和统计有关的术语5;

Terminology Relating to Quality and Statistics

E 1309 数据库中纤维增强聚合物基复合材料的标识指南3

Guide for the Identification of Fiber-Reinforced Polymer Matrix Composite

Materials in Databases

E 1434 数据库中纤维增强聚合物基复合材料的力学性能试验数据记录指南3

Guide for Recording Mechanical Test Data of Fiber-Reinforced Composite

Materials in Databases

3 术语

3.1 术语D 3878定义了与高模量纤维及其复合材料有关的术语。术语D 883定义了与塑料有关的术语。术语E 6定义了与力学试验有关的术语。术语E 456和E 177定义了与统计有关的术语。当各个标准定义的术语之间发生矛盾时,术语D 3878优先于其他标准。

3.2 本标准专用术语定义:

注1——如果术语表示一个物理量,它的分析量纲以基本量纲的形式紧跟在该术语(或文字符号)后面予以说明。方括号内所示的基本量纲采用下面的ASTM标准符号:质量为[M],长度为[L],时间为[T],热力学温度为[Θ],无量纲量为[nd]。由于不带方括号时以上这些符号可能有其他的定义,因此这些符号在带方括号时的使用仅限于分析量纲。

3.2.1 名义值——仅存在于名称中的值,出于便于表示的目的,指定了一个可测量的性能。公差可能被作为一个名义值,用于为性能确定一个可接受的范围。

3.2.2 沉头孔平齐度(裕度)——紧固件安装后,沉头紧固件头部相对于层压板表面的突出深度。正值表示紧固件头部突出于层压板表面,负值则表示深度低于层压板表面。

3.2.3 沉头孔深度——为了正确安装沉头紧固件所要求的沉头孔深度,即沉头孔平齐度为零。沉头孔深度通常等于紧固件头的高度。

3.3 符号

A——试件的横截面积

d——紧固件直径

D——试件的孔径

4Annual Book of ASTM Standards, Vol 03.01.

d csk——沉头孔深度

d fl——沉头孔平齐度(裕度)

f——边距,即平行于载荷方向、从孔边缘到试件最近一个侧边的距离

fhcu

F——试验方向上的充填孔极限压缩强度

x

fhtu

F——试验方向上的充填孔极限拉伸强度

x

g——端距,即平行于载荷方向、从孔边到试件端部的距离

h——试件厚度

P max——试件承受的最大载荷

W——试件宽度

4 试验方法概述

4.1 充填孔拉伸强度——与试验方法D 5766/D 5766M一致,带有中心孔的对称均衡层压板进行单轴拉伸试验,但是,中心孔安装一个紧配合的紧固件或销钉。

4.2 充填孔压缩强度——与试验方法D 6484/D 6484M一致,带有中心孔的对称均衡层压板进行单轴压缩试验,但是,中心孔安装一个紧配合的紧固件或销钉。

注2——对于两种试验方法,极限强度的计算基于毛横截面积,而忽略充填孔的存在。虽然充填孔导致了应力集中并减少了净面积,但是,基于毛面积应力而建立的缺口设计许用强度则是航天界通常的实施方法,以便考虑各种形式的应力集中(紧固件孔、自由边、裂纹、损伤等),而无须在应力分析中明确模拟。

5 意义和用途

5.1 本方法对试验方法D 5766/D 5766M(对于拉伸)和D 6484/D 6484M(对于压缩)进行了补充规定,以得到用于材料规范、研究与开发、材料设计许用值及质量保证的充填孔拉伸和压缩强度数据。影响充填孔拉伸和压缩强度并应该在报告中给出的因素包括:材料、材料制备方法、铺贴精度、层压板铺层顺序和总厚度、试件几何形状、试件制备(特别是孔)、紧固件-孔的间隙、紧固件类型、紧固件尺寸、紧固件安装方法、紧固件拧紧力矩(如果使用)、沉头孔深度(如果使用)、试件状态调节、试验环境、试件对中度和夹持、试验速度、孔隙含量和增强体的体积百分比。本试验方法可以得到下列性能值:

F

5.1.1 充填孔拉伸(FHT)强度,fhtu

x

F

5.1.2 充填孔压缩(FHC)强度,fhcu

x

6 干扰因素

6.1 紧固件-孔间隙——孔与紧固件直径之间的间隙对压缩试验结果有特殊的影响。25μm[0.001in]的间隙可能明显改变破坏模式,并对强度结果的影响可达到25%(1)6,因此,必须精确测量偶记录孔和紧固件的直径。对于航空结构的紧固件孔,典型的紧固件-孔间隙的公差范围为+75/-0μm[+0.003/-0.000in]。对于拉伸载荷,紧固件-空的间隙也将影响充填孔试件的性能,但影响程度小于压缩载荷情况(2-3)。紧固件安装时,过小的间隙导致的损伤将对强度结果产生影响。沉头孔平齐度(紧固件头部在沉头孔中的深度或突出)将影响强度结果,因此,必须精确测量并记录。

6.2 紧固件拧紧力矩/预载——安装紧固件的预载(夹持压力)将对结果产生影响。对于拉伸和

压缩情况,紧固件预载的变化将使得层压板的破坏载荷和破坏模式发生显著的变化。临界预载条件(高或低的夹持压力)根据载荷类型、材料体系、层压板铺层顺序和试验环境而改变(3-5)。与开孔拉伸(OHT)强度相比,充填孔拉伸(FHT)强度可能高于或低于对应的OHT强度值,这取决于材料体系、铺层顺序、试验环境和紧固件的拧紧力矩。对于某些铺层,缺口拉伸强度可能具有较高的拧紧力矩临界值,而对于其他铺层,则具有较低的拧紧力矩临界值或开孔),这取决于材料体系的特征(树脂的脆性、纤维的破坏应变,等等)、试验环境和破坏模式。充填孔压缩(FHC)强度几乎总是高于对应的开孔压缩(OHC)强度,尽管夹持压力临界值的大小依赖于材料体系、铺层顺序和试验环境(5)。

6.3 紧固件类型/孔的制备——紧固件的几何形状和类型以及紧固件的安装方法都将对结果产生影响,孔的制备方法也将对结果产生影响。

6.4 环境——试验的环境条件将对结果产生影响,对于不同环境下进行试验的层压板,其破坏载荷和破坏模式发生显著的变化。已有的经验表明,对充填孔拉伸强度,低温环境通常是最严重的;而对充填孔压缩强度,湿热环境通常是最严重的。但是,对于每一种材料体系、铺层顺序和拧紧力矩条件,最严重的环境必须单独评定。

6.5 试件几何尺寸——除了试验方法D 5766/D 5766M和D 6484/D 6484M中指出的试件几何尺寸的影响因素外,沉头(埋头)深度-厚度之比将对结果产生影响,首选的比值范围为0.0-0.7,除非试验是为了研究该比值的影响。试件的宽度-紧固件直径之比也将对结果产生影响,根据特定采用的紧固件和孔的直径,该比值可以不保持为6。如果孔偏离长度或宽度的中心,也将对结果产生影响。

6.6 材料的正交各向异性——层压板的正交各向异性程度强烈地影响破坏模式及FHT和FHC强度的测量值。只记录有效的FHT和FHC强度值,此时观察到的破坏模式应与11.5节所规定的合适模式相符合。

6.7 其他——对于拉伸试验,试验方法D 5766/D 5766M给出了导致数据分散性的其他潜在的因素,对于压缩试验,试验方法D 6484/D 6484M给出了导致数据分散性的其他潜在的因素。

7 设备

7.1 普通夹具——普通夹具应与试验方法D 5766/D 5766M(拉伸试验)和D 6484/D 6484M(压缩试验)一致,只是将一个紧固件或销钉安装于试件的孔中。使用千分尺或测量仪器测量孔和紧固件的直径,其精度应达到±8μm[±0.0003in]。

7.2 紧固件——紧固件或销钉的类型应作为初始试验参数并记录,紧固件的公称直径为6mm[0.25in],除非试验为了研究孔径的变化范围。某些类型的紧固件(如封闭螺栓)不能用于该直径,对于这类情况,推荐采用孔径尽可能接近6mm[0.25in]的紧固件。安装的拧紧力矩(如果采用)应作为初始试验参数并记录。紧固件锁紧的拧紧力矩应当采用实际测量值或一个给定值。如果使用垫片,那么,垫片类型、垫片数量和垫片位置都应作为初始试验参数并记录。紧固件不能重复使用,因为对于一个给定的拧紧力矩,螺纹的磨损可能导致厚度方向的夹紧力发生变化。

7.3 扭力搬手——如果采用带拧紧力矩的紧固件,用于拧紧接头紧固件的扭力搬手应能够确定施加的力矩在给定值的±10%以内。

8 取样和试件

8.1 取样——对于拉伸试验,取样方法与试验方法D 5766/D 5766M一致,而对于压缩试验,取样方法与试验方法D 6484/D 6484M一致。

8.2 几何形状

8.2.1 铺层顺序——标准的预浸带和织物层压板应当含有多向纤维(至少有2个方向的纤维),且具有对称均衡的铺层顺序。对于拉伸试件,名义厚度为 2.5 mm[0.10 in],允许的范围为2~4 mm[0.080~0.160 in]。对于压缩试件,名义厚度为 4 mm[0.160 in],允许的范围为3~5 mm[0.125~0.200 in]。含有缎纹组织的机织物层压板应当具有对称的经纱表面,否则应在报告中给出并注明。

注3——通常应选择[45/0/-45/90]ns预浸带或[45i/0j]ms织物层压板,并且在四个主要方向上,每个方向纤维的单层至少为5%。已经发现这种层压板的设计最有可能呈现可接受的破坏模式。关于纤维方向的代码见D 6507。

8.2.2 试件结构形式——对于拉伸试验,试件结构形式与试验方法D 5766/D 5766M一致,而对于压缩试验,试件结构形式与试验方法D 6484/D 6484M一致。根据采用的紧固件类型,名义的孔径可能不同于试验方法D 5766/D 5766M和D 6484/D 6484M。

8.3 试件制备——对于拉伸试验,试件的制备与试验方法D 5766/D 5766M一致,而对于压缩试验,试件的制备与试验方法D 6484/D 6484M一致。采用试验提出方规定的合适方法进行孔的制备。

9 标定

9.1 所有测量仪器的精度应已标定过,并在有效使用期内。

10 状态调节

10.1 标准状态调节方法——作为试验的一部分,除非规定了不同的环境条件,否则应按试验方法D 5229/D 5229M中的方法C对试件进行状态调节,并在标准试验室大气环境(23±3°C[73±5°F]和50±10%相对湿度)中储存和试验。

11 试验步骤

11.1 试验前规定的参数

11.1.1 试件取样方法、试件类型和几何形状、紧固件类型和材料、沉头角度和深度(如果使用)、紧固件拧紧力矩(如果使用)、清理工艺以及状态调节的随炉件。

11.1.2 期望的试验方法(A或B)。

11.1.3 期望的数据记录格式。

注4——为了正确地选择仪器和数据记录设备,在试验之前应确定具体材料的性能、精度和数据记录要求。预计施加的挤压应力和挤压应变水平,有助于选择传感器、标定设备的和确定设备安装。

11.1.4 环境调节试验参数。

11.1.5 如果进行的话,引伸计的要求和有关的计算。

11.1.6 如果进行的话,用于确定密度和增强材料体积含量的取样方法、试件的几何形状和试验

参数。

11.2 一般指导

11.2.1 报告不同于本试验方法的任何偏差,不管是有意的或者是无意的。

11.2.2 如果报告了比重、密度、增强体体积或空隙体积,那么必须从进行试验的同一块壁板上取样。比重和密度由试验方法D 792得到。由试验方法D 3171的基体溶解方法,或者,对于特定的增强材料,例如玻璃和陶瓷,用试验方法D 2584中的基体蒸发方法,来计算组分材料的体积百分比。试验方法D 2734中的空隙含量计算公式可用于试验方法D 2584和基体溶解方法。11.2.3 要求对试件进行状态调节。如果试验环境与调节环境不同,应将试件储存在调节环境中直到试验开始。

11.2.4 在最终的试件机械加工和状态调节后,但在试验之前,测量孔附近的试件宽度w和试件厚度h,并测量孔径D、从孔边缘到试件最近一侧的距离f、从孔边缘到试件端部的距离g。所有测量值的精度应在相应尺寸的1%以内。以mm[in]为单位记录尺寸,结果保留三位有效数字。11.3 试验速度-设置的试验速度要使得试件在1~10分钟内破坏。如果不能够合理地预计材料的极限强度,则最初的试验应以标准速度进行,直到获得材料的极限强度和系统的柔度,从而可以调节试验速度。建议采用的标准夹头位移速率为2mm/min[0.05mm/min]。

11.4.2 试验环境—如果可能,在与状态调节的液体暴露水平相同的情况下进行试验。然而,有许多实例,如对一个潮湿的试件进行升温试验,将其放置在普通试验机环境箱中是不切实际的。这种情况下,就可能需要对力学试验环境进行改进,如在无液体暴露控制下进行升温试验,但从调节箱内取出到试件破坏要有一个规定的时间限制。应记录对试验环境的任何改进。

11.5 试件安装——将试件安装于开孔压缩夹具中,保证试件机械加工的两端与夹具两部分的端头平齐。这可使试件的孔位于夹具缺口的中心。拧紧4个螺栓,使试件正好固定于夹具安装的位置。

LGM AGM MGM

横向通过孔中心的层压板拉伸破坏模式,可能出现劈裂和分层在孔处层压板的典型拉伸破

坏,但通过孔的横向中心线还

保留角铺设层,可能出现劈裂

和分层

在孔处层压板的拉伸破坏,

在不同的子层出现多种破坏

模式,出现劈裂和分层。

图1 可接受的充填孔拉伸破坏模式

LGM AGM MGM

横向通过孔中心的压缩破坏模式(0°层控制的弯折/屈曲),可能出现劈裂和分层。在孔处的典型层压板压缩破坏,

但通过孔的横向中心线还保留角

铺设层(±45°层控制的基体失

效),可能出现劈裂和分层。

在孔处的层压板压缩破坏,

在不同的子层出现多种破

坏模式,出现劈裂和分层。

图2 靠近中心孔处可接受的充填孔压缩破坏模式

MGF

LGF

MGO

LGO

横向穿过试件紧固件孔处的层压板压缩破坏,但偏离孔中心(孔局部的挤压或表面破坏,伴随0°层控制的弯折/屈曲),可能出现劈裂和分层。偏离孔中心的层压板压缩

破坏,在不同子层出现多种

破坏模式,并出现劈裂和分

层。

偏离孔处,在紧固件、螺帽或

者垫片边缘处横向穿过试件

的层压板压缩破坏(表面破

坏,伴随0°层控制的弯折/屈

曲),可能出现劈裂和分层

在紧固件、螺帽或垫片边

缘处的层压板压缩破坏,

在不同的子层出现多种

破坏模式,并出现劈裂和

分层。

图3 偏离孔中心处可接受的充填孔压缩破坏模式

表1 破坏模式代码

第一个字母第二个字母第三个字母

破坏形状代码破坏区域代码破坏位置代码角形 A 在夹持/加强片内I 底部 B 边缘分层 D 在夹持/加强处 A 上部T

夹持/加强片G 离夹持/加强处

小于1倍宽度

W 左侧L

横向L 工作段G 右侧R 多模式M(xyz) 多区域M 中间,孔中心M 纵向劈裂S 多样V 偏离孔中心O 爆炸形X 未知U 偏离紧固件边缘 F 其他O

多样V

12 有效性

12.1 对于在某些明显缺陷部位发生破坏的试件,除非该缺陷是一个待研究的变量,否则,不应计算其极限性能值。对于不能计算其极限性能值的试件,要重新进行试验。

12.2 如果样本母体中有很大一部分试件在任何远离中心孔处发生破坏,则应重新检查材料的载荷引入方法。应该考虑的因素包括夹具对中度、夹持压力、夹头对中度、夹具两部分的分离、试件厚度的斜度以及试件机械加工端头的不平坦。

13 计算

13.1 极限强度

13.1.1 拉伸试验方法——采用式(1)计算充填孔的极限拉伸强度,记录保留三位有效数字。记录采用名义尺寸计算的名义强度值和采用测量尺寸计算的实际强度值。

A P F fhtu x /max =

(1)

式中:

fhtu x F =充填孔极限拉伸强度,MPa[psi]

P max =破坏前的最大载荷,N[lbf]

A =毛横截面积(忽略孔),=h ×w ,mm 2[in 2]

注4——拉伸强度计算时,忽略孔的直径,采用毛横截面积。

13.1.2 压缩试验方法——采用式(2)计算充填孔的极限压缩强度,记录保留三位有效数字。记录采用名义尺寸计算的名义强度值和采用测量尺寸计算的实际强度值。

A P F fhcu x /max =

(2)

式中:

fhcu x F =充填孔极限压缩强度,MPa[psi]

P max =破坏前的最大载荷,N[lbf]

A =毛横截面积(忽略孔),=h ×w ,mm 2[in 2]

注5——压缩强度计算时,忽略孔的直径,采用毛横截面积。

13.2 宽度-直径比——宽度-直径比的计算与试验方法D 5766/D 5766M (拉伸试验)和D 6484/D 6484M (压缩试验)一致,记录用名义尺寸计算的名义比值和用测量尺寸计算的实际比值。 13.3 直径-厚度比——直径-厚度比的计算与试验方法D 5766/D 5766M (拉伸试验)和D 6484/D 6484M (压缩试验)一致。记录用名义尺寸计算的名义比值和用测量尺寸计算的实际比值。 13.4 沉头深度-厚度比——如果孔中安装了沉头(埋头)紧固件,则采用式(3)计算沉头深度-厚度比。记录用名义尺寸计算的名义比值和用测量尺寸计算的实际比值。

h

d h d csk

csk =

比/ (3)

式中:

d csk =紧固件沉头深度,mm[in] h =靠近孔处的试件厚度,mm[in]

13.5 弯曲百分比——压缩试验时,如果在两侧都安装引伸计,采用试验方法D 6484/D 6484M 的计算方法计算侧向弯曲百分比。

13.6 统计——对于每一组试验,计算每一种测量性能(名义值和实际值)的平均值、标准差和离散系数(以百分比表示),计算方法与试验方法D 5766/D 5766M (拉伸试验)和D 6484/D 6484M

(压缩试验)一致。

14 报告

14.1 采用指南E 1309,E 1471,和E 1434的方法,报告与试验方法D 3039/D 3039M一致的所有合适的参数。

14.2 此外,报告应最大程度地给出下列信息或含有这些信息的参考文献(对超出一个给定试验室范围的事项,如关于材料细节或壁板加工参数,委托方有责任给出有关报告。):

14.2.1 本试验方法的修订版本或发布日期。

14.2.2 使用的试验方法(A或B)。

14.2.3 任何与本试验方法不同之处,试验时出现的异常情况以及试验时出现的设备问题。

14.2.4 每个试件的名义宽度-孔径比和实际宽度-孔径比。

14.2.5 每个试件的名义孔径-厚度比和实际孔径-厚度比。

14.2.6 用测隙规测量的支撑板与长夹板之间的间隙以及长夹板与试件工作段之间的间隙。

14.2.7 每个试件的极限开孔拉伸强度值,母体的平均值、标准差和离散系数(以百分数表示)。

14.2.8 引伸计的类型,每个试件的应力-应变曲线、表格形式的应力-应变数据或者弯曲百分比-载荷或横梁位移数据、或者它们的组合。

14.2.9 每个试件的破坏模式和位置。

15 精度和偏差

15.1 精度——本试验方法没有为编制精度陈述所需的数据。

15.2 偏差——本试验方法不能确定偏差,因为没有可接受的参考标准。

16 关键词

16.1 螺栓连接;复合材料;压缩试验;紧固件;充填孔压缩强度;充填孔拉伸强度;拉伸试验。

第二章轴向拉伸与压缩练习题

第二章 轴向拉伸与压缩练习题 一.单项选择题 1、在轴向拉伸或压缩杆件上正应力为零的截面是( ) A 、横截面 B 、与轴线成一定交角的斜截面 C 、沿轴线的截面 D 、不存在的 2、一圆杆受拉,在其弹性变形范围内,将直径增加一倍,则杆的相对变形将变为原来的( )倍。 A 、41; B 、21 ; C 、1; D 、2 3、由两杆铰接而成的三角架(如图所示),杆的横截面面积为A ,弹性模量为E ,当在节点C 处受到铅垂载荷P 作用时,铅垂杆AC 和斜杆BC 的变形应分别为( ) A 、EA Pl ,EA Pl 34; B 、0, EA Pl ; C 、EA Pl 2,EA Pl 3 D 、EA Pl ,0 4、几何尺寸相同的两根杆件,其弹性模量分别为E1=180Gpa,E2=60 Gpa,在弹性变形的范围内两者的轴力相同,这时产生的应变的比值21 εε 应力为( ) A 、31 B 、1; C 、2; D 、3 5、所有脆性材料,它与塑性材料相比,其拉伸力学性能的最大特点是( )。 A 、强度低,对应力集中不敏感; B 、相同拉力作用下变形小; C 、断裂前几乎没有塑性变形; D 、应力-应变关系严格遵循胡克定律 6、构件具有足够的抵抗破坏的能力,我们就说构件具有足够的( ) A 、刚度, B 、稳定性, C 、硬度, D 、强度。 7、构件具有足够的抵抗变形的能力,我们就说构件具有足够的( ) A 、强度, B 、稳定性, C 、刚度, D 、硬度。 8、单位面积上的内力称之为( ) A 、正应力, B 、应力, C 、拉应力, D 、压应力。

9、与截面垂直的应力称之为( ) A、正应力, B、拉应力, C、压应力, D、切应力。 10、轴向拉伸和压缩时,杆件横截面上产生的应力为( ) A、正应力, B、拉应力, C、压应力, D、切应力。 二、填空题 1、杆件轴向拉伸或压缩时,其受力特点是:作用于杆件外力的合力的作用线与杆件轴线相________。 2、轴向拉伸或压缩杆件的轴力垂直于杆件横截面,并通过截面________。 3、杆件轴向拉伸或压缩时,其横截面上的正应力是________分布的。 4、胡克定律的应力适用范围若更精确地讲则就是应力不超过材料的________极限。 5、杆件的弹必模量E表征了杆件材料抵抗弹性变形的能力,这说明杆件材料的弹性模量E值越大,其变形就越________。 6、在国际单位制中,弹性模量E的单位为________。 7、在应力不超过材料比例极限的范围内,若杆的抗拉(或抗压)刚度越________,则变形就越小。 8、为了保证构件安全,可靠地工作在工程设计时通常把________应力作为构件实际工作应力的最高限度。 9、安全系数取值大于1的目的是为了使工程构件具有足够的________储备。 10、设计构件时,若片面地强调安全而采用过大的________,则不仅浪费材料而且会使所设计的结构物笨重。 11、正方形截而的低碳钢直拉杆,其轴向向拉力3600N,若许用应力为100Mpa,由此拉杆横截面边长至少应为________mm。 12、轴力是指通过横截面形心垂直于横截面作用的内力,而求轴力的基本方法是_______________。 13、在低碳钢拉伸曲线中,其变形破坏全过程可分为______个变形阶段,它们依次

材料压缩实验报告

实验三 压缩实验 一、实验目的 1.测定压缩时低碳钢的屈服极限s σ和铸铁的强度极限b σ。 2.观察低碳钢和铸铁压缩时的变形和破坏现象,并进行比较和分析原因。 二、设备和量具 1.手动数显材料试验机sscs-100; 2.游标卡尺。 三、实验原理及步骤 低碳钢和铸铁等金属材料的压缩试样一般制成圆柱形,高h o 与直径d o 之比在1~3 的范围内。目前常用的压缩试验方法是两端平压法。这种压缩试验方法,试样的上下两端与试验机承垫之间会产生很大的摩擦力,它们阻碍着试样上部及下部的横向变形,导致测得的抗压强度较实际偏高。当试样的高度相对增加时,摩擦力对试样中部的影响就变得小了,因此抗压强度与比值h o /d o 有关。由此可见,压缩试验是与试验条件有关的。为了在相同的试验条件下,对不同材料的抗压性能进行比较,应对h o /d o 的值作出规定。实践表明,此值取在1~3的范围内为宜。若小于l ,则摩擦力的影响太大;若大于3,虽然摩擦力的影响减小,但稳定性的影响却突出起来。 低碳钢试样压缩时同样存在弹性极限、比例极限、屈服极限而且数值和拉伸所得的相应数值差不多,但是在屈服时却不象拉伸那样明显。从进入屈服开始,试样塑性变形就有较大的增长,试样截面面积随之增大。由于截面面积的增大,要维持屈服时的应力,载荷也就要相应增大。因此,在整个屈服阶段,载荷也是上升的,在测力盘上看不到指针倒退现象,这样,判定压缩时的P S 要特别小心地注意观察。在缓慢均匀加载下,测力指针是等速转动的,当材料发生屈服时,测力指针的转动将出现减慢,这时所对应的载荷即为屈服载荷

P S。由于指针转动速度的减慢不十分明显,故还要结合自动绘图装置上绘出的压缩曲线中的的拐点来判断和确定P S。 低碳钢的压缩图(即P一△1曲线)如图3—1所示,超过屈服之后,低碳钢试样由原来的圆柱形逐渐被压成鼓形,即如图3—3。继续不断加压,试样将愈压愈扁,但总不破坏。所以,低碳钢不具有抗压强度极限(也可将它的抗压强度极限理解为无限大),低碳钢的压缩曲线也可证实这一点。 图3-1 低碳钢压缩图图3-2 铸铁压缩图 灰铸铁在拉伸时是属于塑性很差的一种脆性材料,但在受压时,试件在达到最大载荷P b前将会产生较大的塑性变形,最后被压成鼓形而断裂。铸铁的压缩图(P一△1曲线)如图3—2所示,灰铸铁试样的断裂有两特点:一是断口为斜断口,如图3—4所示。 图3-3 压缩时低碳钢变形示意图图3-4 压缩时铸铁破坏断口 二是按P b/A0求得的 远比拉伸时为高,大致是拉伸时的 3—4倍。为什 b

实验拉伸与压缩验

实验拉伸与压缩验

————————————————————————————————作者:————————————————————————————————日期:

实验五 拉伸与压缩实验 一、实验目的 1.观察低碳钢和铸铁的拉伸过程,测定其主要机械性能指标屈服极限s σ、强度 极限b σ、延伸率δ和断面收缩率?,比较破坏情况。 2.观察、比较低碳钢和铸铁在压缩时的变形和破坏现象,测定低碳钢压缩时屈 服极限s σ和铸铁的强度极限b σ。 3.绘制拉伸图和压缩图。 二、实验设备、工具与试件 1.CMT5305型电子万能试验机 2.游标卡尺 3.低碳钢、铸铁拉伸件和压缩件 三、实验原理 1.拉伸实验 材料的力学性能屈服极限s σ、强度极限b σ、延伸率δ和断面收缩率?是由拉伸破坏试验来确定的。试验时,利用试验机自动绘制出低碳钢拉伸图和铸铁拉伸图。 图1低碳钢拉伸图 图2铸铁拉伸图 对于低碳钢,当应力基本保持不变,而应变显著增加时,称为屈服阶段,第一次下降的最小载荷为屈服载荷s p ,继续加载测得最大载荷b p 。 试件在达到最大载荷前,伸长变形在标距范围内是均匀分布的。从最大载荷开始,产生局部伸长和颈缩。颈缩出现后截面面积迅速减少,继续拉伸所需要的载荷也变小了,直至断裂。 铸铁试件在变形极小时,就达到了最大载荷,而突然断裂,没有屈服和颈缩

现象。其强度极限远低于低碳钢的强度极限。 2.压缩试验 低碳钢在弹性阶段同样具有比例极限和弹性极限,开始进入屈服阶段后只有很暂短的拐点,该载荷值即为s p 。在强化阶段,压缩图的变化是由于试件的长度不断缩短,横截面不断增大而使试件抗力随之不断增加,得不得极限状态。 所以低碳钢不具有抗压强度极限。 铸铁在拉伸时属于塑性很差的一种脆性材料,但在受压时,试件在达到最大载荷b p 前将会产生较大的塑性变形,最后被压成鼓形而断裂。灰铸铁试件的断裂有两特点:一是断口为斜断口,二是其抗压强度b σ远比拉伸时高,大致是拉伸时 的3~4倍。 图3低碳钢压缩图 图4铸铁压缩图 3.本次实验所用基本公式 0A p s s = σ ; 0A p b b =σ ; 00100001?-=l l l δ ; 001000 10?-=A A A ? 式中:s p -屈服载荷; b p -最大载荷; 1l -试件拉断后标距长; 0l -试件拉断前标距长; 0A -试件原始横截面面积; 1A -试件断裂处横截面面积。

轴向拉伸和压缩作业集及解

第二章 轴向拉伸和压缩 第一节 轴向拉压杆的内力 1.1 工程实际中的轴向受拉杆和轴向受压杆 在工程实际中,经常有承受轴向拉伸荷载或轴向压缩荷载的等直杆.例如图2-1a 所示桁架的竖杆、斜杆和上、下弦杆,图2-1b 所示起重机构架的各杆及起吊重物的钢索,图2-1c 所示的钢筋混凝土电杆上支承架空电缆的横担结构,BC 、AB 杆,此外,千斤顶的螺杆,连接气缸的螺栓及活塞连杆等都是轴间拉压杆. 钢木组合桁架 2 d 起重机 图 工程实际中的轴向受拉(压)杆 1.2 轴向拉压杆的内力——轴力和轴力图 b c x 图用截面法求杆的内力

为设计轴向拉压杆,需首先研究杆件的内力,为了显示杆中存在的内力和计算其大小,我们采用在上章中介绍过的截面法.(如图2-2a )所示等直杆,假想地用一截面m -m 将杆分割为I 和II 两部分.取其中的任一部分(例如I )为脱离体,并将另一部分(例如II )对脱离体部分的作用,用在截开面上的内力的合力N 来代替(图2-2b ),则可由静力学平衡条件: 0 0X N P =-=∑ 求得内力N P = 同样,若以部分II 为脱离体(图2-2c ),也可求得代表部分I 对部分II 作用的内力为N =P ,它与代表部分II 对部分I 的作用的内力等值而反向,因内力N 的作用线通过截面形心 即沿杆轴线作用,故称为轴力... 轴力量纲为[力],在国际单位制中常用的单位是N (牛)或kN (千牛). 为区别拉伸和压缩,并使同一截面内力符号一致,我们规定:轴力的指向离开截面时为正号轴力;指向朝向截面时为负号轴力.即拉力符号为正,压力符号为负.据此规定,图2-2所示m-m 截面的轴力无论取左脱离体还是右脱离体,其符号均为正. 1.3 轴力图 当杆受多个轴向外力作用时,杆不同截面上的轴力各不相同.为了形象表示轴力沿杆轴线的变化情况,以便于对杆进行强度计算,需要作出轴力图,通常用平行于杆轴线的坐标表示截面位置,用垂直杆轴线的坐标表示截面上轴力大小,从而给出表示轴力沿截面位置关系的图例,即为轴力图... . 下面用例题说明轴力的计算与轴力图的作法. 例题2-1:变截面杆受力情况如图2-3所示,试求杆各段轴力并作轴力图. 解:(1)先求支反力 固定端只有水平反力,设为X A ,由整个杆平衡条件 0X =∑,-X A +5-3+2=0,X A =5+2-3=4kN (2)求杆各段轴力 力作用点为分段的交界点,该题应分成AB 、BD 和DE 三段.在AB 段内用任一横截面1-1将杆截开后,研究左段杆的平衡.在截面上假设轴力N 1为拉力(如图2-3(b )).由平衡条件 0X =∑得 N 1-X A =0,N 1=4kN .结果为正,说明原假设拉力是正确的. x x x N 1X X X A N 2N 2kN N 图2-3 例题2-1图 c b e

轴向拉伸与压缩

第七章 轴向拉伸和压缩 一、内容提要 轴向拉伸与压缩是杆件变形的基本形式之一,是建筑工程中常见的一种变形。 (一)、基本概念 1. 内力 由于外力的作用,而在构件相邻两部分之间产生的相互作用力。这里要注意产生内力的前提条件是构件受到外力的作用。 2. 轴力 轴向拉(压)时,杆件横截面上的内力。它通过截面形心,与横截面相垂直。拉力为正,压力为负。 3. 应力 截面上任一点处的分布内力集度称为该点的应力。与截面相垂直的分量σ称为正应力,与截面相切的分量τ称为切应力。轴拉(压)杆横截面上只有正应力。 4. 应变 单位尺寸上构件的变形量。 5. 轴向拉(压) 杆件受到与轴线相重合的合外力作用,产生沿着轴线方向的伸长或缩短的变形,称为轴向拉(压)。 6. 极限应力 材料固有的能承受应力的上限,用σ0表示。 7. 许用应力与安全系数 材料正常工作时容许采用的最大应力,称为许用应力。极限应力与许用应力的比值称为安全系数。 8. 应力集中 由于杆件截面的突然变化而引起局部应力急剧增大的现象,称为应力集中。 (二)、基本计算 1. 轴向拉(压)杆的轴力计算 求轴力的基本方法是截面法。用截面法求轴力的三个步骤:截开、代替和平衡。 求出轴力后要能准确地画出杆件的轴力图。 画轴向拉(压)杆的轴力图是本章的重点之一,要特别熟悉这一内容。 2. 轴向拉(压)杆横截面上应力的计算 任一截面的应力计算公式 A F N =σ 等直杆的最大应力计算公式 A F max N max = σ 3. 轴向拉(压)杆的变形计算 虎克定律 A E l F l N = ?εσE =或 虎克定律的适用范围为弹性范围。 泊松比 εε=μ' 4. 轴向拉(压)杆的强度计算 强度条件 塑性材料: σma x ≤[σ] 脆性材料: σt ma x ≤[σt ] σ c ma x ≤[σc ] 强度条件在工程中的三类应用

材料力学实验报告册概要

实验日期_____________教师签字_____________ 同组者_____________审批日期_____________ 实验名称:拉伸和压缩试验 一、试验目的 1.测定低碳钢材料拉伸的屈服极限σs 、抗拉强度σb、断后延伸率δ及断 面收缩率ψ。 2.测定灰铸铁材料的抗拉强度σb、压缩的强度极限σb。 3.观察低碳钢和灰铸铁材料拉伸、压缩试验过程中的变形现象,并分析 比较其破坏断口特征。 二、试验仪器设备 1.微机控制电子万能材料试验机系统 2.微机屏显式液压万能材料试验机 3.游标卡尺 4.做标记用工具 三、试验原理(简述) 1

四、试验原始数据记录 1.拉伸试验 低碳钢材料屈服载荷 最大载荷 灰铸铁材料最大载荷 2.灰铸铁材料压缩试验 直径d0 最大载荷 教师签字:2

五、试验数据处理及结果 1.拉伸试验数据结果 低碳钢材料: 铸铁材料: 2.低碳钢材料的拉伸曲线 3.压缩试验数据结果 铸铁材料: 3

4.灰铸铁材料的拉伸及压缩曲线: 5.低碳钢及灰铸铁材料拉伸时的破坏情况,并分析破坏原因 ①试样的形状(可作图表示)及断口特征 ②分析两种材料的破坏原因 低碳钢材料: 灰铸铁材料: 4

6.灰铸铁压缩时的破坏情况,并分析破坏原因 六、思考讨论题 1.简述低碳钢和灰铸铁两种材料的拉伸力学性能,以及力-变形特性曲线 的特征。 2.试说明冷作硬化工艺的利与弊。 3.某塑性材料,按照国家标准加工成直径相同标距不同的拉伸试样,试 判断用这两种不同试样测得的断后延伸率是否相同,并对结论给予分析。 5

七、小结(结论、心得、建议等)6

材料拉伸与压缩试验报告

材料的拉伸压缩实验 【实验目的】 1.研究低碳钢、铸铁的应力——应变曲线拉伸图。 2.确定低碳钢在拉伸时的机械性能(比例极限R p、下屈服强度R eL、强度极限R m、延伸率A、断面收缩率Z等等)。 3. 确定铸铁在拉伸时的力学机械性能。 4.研究和比较塑性材料与脆性材料在室温下单向压缩时的力学性能。 【实验设备】 1.微机控制电子万能试验机; 2.游标卡尺。 3、记号笔 4、低碳钢、铸铁试件 【实验原理】 1、拉伸实验 低碳钢试件拉伸过程中,通过力传感器和位移传感器进行数据采集,A/D转换和处理,并输入计算机,得到F-?l曲线,即低碳钢拉伸曲线,见图1。 对于低碳钢材料,由图1曲线中发现OA直线,说明F正比于?l,此阶段称为弹性阶段。屈服阶段(B-C)常呈锯齿形,表示载荷基本不变,变形增加很快,材料失去抵抗变形能力,这时产生两个屈服点。其中,B'点为上屈服点,它受变形大小和试件等因素影响;B点为下屈服点。下屈服点比较稳定,所以工程上均以下屈服点对应的载荷作为屈服载荷。测定屈服载荷Fs时,必须缓慢而均匀地加载,并应用σs=F s/ A0(A0为试件变形前的横截面积)计算屈服极限。 图1低碳钢拉伸曲线 屈服阶段终了后,要使试件继续变形,就必须增加载荷,材料进入强化阶段。

当载荷达到强度载荷F b后,在试件的某一局部发生显著变形,载荷逐渐减小,直至试件断裂。应用公式σb=F b/A0计算强度极限(A0为试件变形前的横截面积)。 根据拉伸前后试件的标距长度和横截面面积,计算出低碳钢的延伸率δ和端面收缩率ψ,即 % 100 1? - = l l l δ,% 100 1 0? - = A A A ψ 式中,l0、l1为试件拉伸前后的标距长度,A1为颈缩处的横截面积。 2、压缩实验 铸铁试件压缩过程中,通过力传感器和位移传感器进行数据采集,A/D转换和处理,并输入计算机,得到F-?l曲线,即铸铁压缩曲线,见图2。 对铸铁材料,当承受压缩载荷达到最大载荷F b时,突然发生破裂。铸铁试件破坏后表明出与试件横截面大约成45?~55?的倾斜断裂面,这是由于脆性材料的抗剪强度低于抗压强度,使试件被剪断。 材料压缩时的力学性质可以由压缩时的力与变形关系曲线表示。铸铁受压时曲线上没有屈服阶段,但曲线明显变弯,断裂时有明显的塑性变形。由于试件承受压缩时,上下两端面与压头之间有很大的摩擦力,使试件两端的横向变形受到阻碍,故压缩后试件呈鼓形。 铸铁压缩实验的强度极限:σb=F b/A0(A0为试件变形前的横截面积)。 【实验步骤及注意事项】 1、拉伸实验步骤 (1)试件准备:在试件上划出长度为l0的标距线,在标距的两端及中部三个位置上,沿两个相互垂直方向各测量一次直径取平均值,再从三个平均值中取最小值作为试件的直径d0。 (2)试验机准备:按试验机→计算机→打印机的顺序开机,开机后须预热十分钟才可使用。按照“软件使用手册”,运行配套软件。 (3)安装夹具:根据试件情况准备好夹具,并安装在夹具座上。若夹具已 图2 铸铁压缩曲线

材料拉伸与压缩实验报告参考

碳钢与铸铁的拉伸、压缩实验(实验一) 一、实验目的 1、测定碳钢在拉伸时的屈服极限s σ,强度极限b σ,延伸率δ和断面收缩率ψ,测定铸铁拉伸时的强度极限b σ。 2、观察碳钢、铸铁在拉伸过程中的变形规律及破坏现象,并进行比较,使用绘图装置绘制拉伸图(P-ΔL 曲线)。 二、实验设备 微机控制电子万能材料试验机、液压式万能材料试验机、游标卡尺。 三、实验试祥 1. 为使各种材料机械性质的数值能互相比较,避免试件的尺寸和形状对试验结果的影响,对试件的尺寸形状GB6397-86作了统一规定,如图1所示: 图1 用于测量拉伸变形的试件中段长度(标距L 0)与试件直径d 。必零满足L 0/d 0=10或5,其延伸率分别记做和δ10和δ5 2、压缩试样:低碳钢和铸铁等金属材料的压缩试件一般做成很短的圆柱形,避免压弯,一般规定试件高度h 直径d 的比值在下列范围之内: 1≤d h ≤3 为了保证试件承受轴向压力,加工时应使试件两 个端面尽可能平行,并与试件轴线垂直,为了减少 两端面与试验机承垫之间的摩擦力,试件两端面应 进行磨削加工,使其光滑。 四、实验原理 图2为试验机绘出的碳钢拉伸P-△L 曲线图, 拉伸变形ΔL 是整个试件的伸长,并且包括机器本身 的弹性变形和试件头部在夹头中的滑动,故绘出的 曲线图最初一段是曲线,流动阶段上限B ‘受变形速度和试件形式影响,下屈服点B 则比较稳定,工程上均以B 点对应的载荷作为材料屈服时的载荷P S ,以试样的初始横截面积A0除PS ,即得屈服极限: 0A Ps S =σ 图2

屈服阶段过后,进入强化阶段,试样又恢复了承载能力,载荷到达最大值P b ,时,试样某一局部的截面明显缩小,出现“颈缩”现象,这时示力盘的从动针停留在P b 不动,主动针则迅速倒退表明载荷迅速下降,试样即将被拉断。以试样的初始横截面面积A 。除P b 得强度极限为 0A P b b =σ 延伸率δ及断面收缩率φ的测定,试样的标距原长为L 0拉断后将两段试样紧密地对接在一起,量出拉断后的标距长为L 1延伸率应为 % 100001?-=l l l δ 断口附近塑性变形最大,所以L 1的量取与断口的部位有关,如断口发生于L ο的两端或在L ο之外,则试验无效,应重做,若断口距L 。的一端的距离不在标距长度的中央31 区域内,要采用断口移中的办法;以度量试件位断后的标距,设两标点CC 1之间共有10格,断口靠近左段,如图3,从临近断口的第一刻线d 起,向右取10/2=5格,记作a ,这就相当于把断口摆在标距中央,再看a 点到C 1点有多少格,就由a 点向左取相同的格数,记作b , 令L ˊ表示C 至b 的长度,L ’表示b 至a 的长度,则L ′+2L ‘′的长度中包含的格数等于 标距长度内的格数10,即 L ′+2L ‘′=L 1。 图3 试样拉断后,设颈缩处的最小横截面面积为A 1,由于断口不是规则的圆形,应在两个相互垂直的方向上量取最小截面的直径,以其平均值计算A 1,然后按下式计算断面收缩率: 010100%ψA -A =?A 铸铁试件在变形极小时,就达到最大载荷P b 而突然发生断裂。没有屈服和颈缩现象,其强度极限远小于低碳钢的强度极限。 图4为低碳钢试件的压缩图,在弹性阶段和屈服阶段,它与拉伸时的形状基本上是一致 图4 图5

轴向拉伸与压缩习题及解答1

轴向拉伸与压缩习题及解答1

轴向拉伸与压缩习题及解答 一、判断改错 1、构件内力的大小不但与外力大小有关,还与材料的截面形状有关。 答:错。 静定构件内力的大小之与外力的大小有关,与材料的截面无关。 2、杆件的某横截面上,若各点的正应力均为零,则该截面上的轴力为零。 答:对。 3、两根材料、长度都相同的等直柱子,一根的横截面积为1A ,另一根为2A ,且21A A 。如图所示。 两杆都受自重作用。则两杆最大压应力相等,最大压缩量也相等。 答:对。 自重作用时,最大压应力在两杆底端,l A 2 A 1 (a (b

即max max N Al l A A νσν=== 也就是说,最大应力与面积无关,只与杆长有关。所以两者的最大压应力相等。 最大压缩量为 2max max 22N Al l l l A EA E νν??=== 即最大压缩量与面积无关,只与杆长有关。所以两杆的最大压缩量也相等。 4、受集中力轴向拉伸的等直杆,在变形中任意两个横截面一定保持平行。所以宗乡纤维的伸长量都相等,从而在横截面上的内力是均匀分布的。 答:错 。在变形中,离开荷载作用处较远的两个横截面才保持平行,在荷载作用处,横截面不再保持平面,纵向纤维伸长不相等,应力分布复杂,不是均匀分布的。 5、若受力物体内某电测得x 和y 方向都有线应变x ε和y ε,则x 和y 方向肯定有正应力x σ和y σ。 答:错, 不一定。由于横向效应作用,轴在x 方向受拉(压),则有x σ;y 方向不受力,但横向效应使y 方向产生线应变,y x ε ενε'==-。 二、填空题

1、轴向拉伸的等直杆,杆内的任一点处最大剪应力的方向与轴线成(45o ) 2、受轴向拉伸的等直杆,在变形后其体积将(增大) 3、低碳钢经过冷做硬化处理后,它的(比例)极限得到了明显的提高。 4、工程上通常把延伸率δ>(5%)的材料成为塑性材料。 5、 一空心圆截面直杆,其内、外径之比为0.8,两端承受力力作用,如将内外径增加一倍,则其抗拉刚度将是原来的(4)倍。 6、两根长度及截面面积相同的等直杆,一根为钢杆,一根为铝杆,承受相同的轴向拉力,则钢杆的正应力(等于)铝杆的正应力,钢杆的伸长量(小于)铝杆的伸长量。 7、 结构受力如图(a )所示,已知各杆的材料和横截面面积均相同,面积2 200A mm =,材料的弹性模量E=200GPa ,屈服极限280s MPa σ =,强度极限460b MPa σ=,试填写下列空格。 当F=50kN ,各杆中的线应变分别为1ε= (46.2510-?),2ε=(0),3 ε=(4 6.2510-?),这是节点B 的水平位移Bx δ=(43.6110m -?),竖直位移By δ=

低碳钢和铸铁拉伸和压缩试验

低碳钢和铸铁拉伸压缩实验报告 摘要:材料的力学性能也称为机械性质,是指材料在外力作用下表现的变形、破坏等方面的特性。它是由试验来测定的。工程上常用的材料品种很多,下面我们以低碳钢和铸铁为主要代表,分析材料拉伸和压缩时的力学性能。 关键字:低碳钢 铸铁 拉伸压缩实验 破坏机理 一.拉伸实验 1. 低碳钢拉伸实验 拉伸实验试件 低碳钢拉伸图 在拉伸实验中,随着载荷的逐渐增大,材料呈现出不同的力学性能:

低碳钢拉伸应力-应变曲线 (1)弹性阶段(Ob段) 在拉伸的初始阶段,ζ-ε曲线(Oa段)为一直线,说明应力与应变成正比,即满足胡克定理,此阶段称为线形阶段。线性段的最高点则称为材料的比例极限(ζ p ),线性段的直线斜率即为材料的弹性摸量E。 线性阶段后,ζ-ε曲线不为直线(ab段),应力应变不再成正比,但若在整个弹性阶段卸载,应力应变曲线会沿原曲线返回,载荷卸到零时,变形也完全 消失。卸载后变形能完全消失的应力最大点称为材料的弹性极限(ζ e ),一般对于钢等许多材料,其弹性极限与比例极限非常接近。 (2)屈服阶段(bc段) 超过弹性阶段后,应力几乎不变,只是在某一微小范围内上下波动,而应变却急剧增长,这种现象成为屈服。使材料发生屈服的应力称为屈服应力或屈服极 限(ζ s )。 当材料屈服时,如果用砂纸将试件表面打磨,会发现试件表面呈现出与轴线成45°斜纹。这是由于试件的45°斜截面上作用有最大切应力,这些斜纹是由于材料沿最大切应力作用面产生滑移所造成的,故称为滑移线。 (3)强化阶段(ce段) 经过屈服阶段后,应力应变曲线呈现曲线上升趋势,这说明材料的抗变形能力又增强了,这种现象称为应变硬化。 若在此阶段卸载,则卸载过程的应力应变曲线为一条斜线(如d-d'斜线),其斜率与比例阶段的直线段斜率大致相等。当载荷卸载到零时,变形并未完全消失,应力减小至零时残留的应变称为塑性应变或残余应变,相应地应力减小至零时消失的应变称为弹性应变。卸载完之后,立即再加载,则加载时的应力应变关系基本上沿卸载时的直线变化。因此,如果将卸载后已有塑性变形的试样重新进行拉伸实验,其比例极限或弹性极限将得到提高,这一现象称为冷作硬化。 在硬化阶段应力应变曲线存在一个最高点,该最高点对应的应力称为材料的 强度极限(ζ b ),强度极限所对应的载荷为试件所能承受的最大载荷F b 。 (4)局部变形阶段(ef段) 试样拉伸达到强度极限ζ b 之前,在标距范围内的变形是均匀的。当应力增 大至强度极限ζ b 之后,试样出现局部显著收缩,这一现象称为颈缩。颈缩出现后,使试件继续变形所需载荷减小,故应力应变曲线呈现下降趋势,直至最后在f点断裂。试样的断裂位置处于颈缩处,断口形状呈杯状,这说明引起试样破坏的原因不仅有拉应力还有切应力。 (5)伸长率和断面收缩率 试样拉断后,由于保留了塑性变形,标距由原来的L变为L1。用百分比表示的比值 δ=(L1-L)/L*100% 称为伸长率。试样的塑性变形越大,δ也越大。因此,伸长率是衡量材料塑性的指标。 原始横截面面积为A的试样,拉断后缩颈处的最小横截面面积变为A1,用百分比表示的比值

第一章轴向拉伸和压缩习题

第一章轴向拉伸和压缩习题 一、单项选择题 1、构件具有足够的抵抗破坏的能力,我们就说构件具有足够的 A、刚度, B、稳定性, C、硬度, D、强度。 2、构件具有足够的抵抗变形的能力,我们就说构件具有足够的 A、强度, B、稳定性, C、刚度, D、硬度。 3、单位面积上的内力称之为 A、正应力, B、应力, C、拉应力, D、压应力。 4、与截面垂直的应力称之为 A、正应力, B、拉应力, C、压应力, D、切应力。 5、轴向拉伸和压缩时,杆件横截面上产生的应力为 A、正应力, B、拉应力, C、压应力, D、切应力。 6、胡克定律在下述哪个范围内成立? A、屈服极限, B、比例极限, C、强度极限, D、名义屈服极限。 时,试样将 7、当低碳钢试样横截面上的实验应力σ =σ s A、完全失去承载能力, B、断裂, C、产生较大变形, D、局部出现颈缩。 8、脆性材料具有以下哪种力学性质? A、试样拉伸过程中出现屈服现象, B、抗冲击性能比塑性材料好, C、若构件开孔造成应力集中现象,对强度没有影响。 D、抗压强度极限比抗拉强度极限大得多。 9、灰铸铁压缩实验时,出现的裂纹 A、沿着试样的横截面, B、沿着与试样轴线平行的纵截面, C、裂纹无规律, D、沿着与试样轴线成45。角的斜截面。 10、横截面都为圆的两个杆,直径分别为d和D ,并且d=0.5D。两杆横截面上轴力相

等两杆横截面上应力之比 D d σσ为 A 、2倍, B 、4倍, C 、8倍, D 、16倍。 二、填空题 1、求内力常用的方法是 。 2、轴向拉伸和压缩时,虎克定律的两种表达形式为 , 3、通过低碳钢拉伸试验可知,反映材料抵抗弹性变形能力的指标是 ;反映材料强度的指标是 ;反映材料塑性的指标是 。 4、σ0.2表示材料的 。 5、与截面平行的应力称为 ;与截面垂直的应力称之为 。 6、 钢的弹性模量E=200Gpa ,铝的弹性模量E=71Gpa,试比较在同一应力作用下,哪种材料应变大? 。 7、轴向拉伸和压缩时,杆上所受外力或外力的合力与杆件的轴线 。而杆的纵向变形为,沿杆的轴线 或 。 8、延伸率(伸长率)δ是代表材料塑性的性能指标。一般δ>5﹪的材料称为 材料,δ<5﹪的材料称为 材料。 9、两根材料不同横截面不同的拉杆,受相同的拉力,它们横截面上的内力是否相同? 。 10、轴力和横截面面积相等,而横截面形状和材料不同,它们横截面上的应力是否相同? 。 11、塑性材料许用应力由式[σ]= s n s σ 确定,式中的σS 表示材料的 极限。脆性材料许用应力由式[σ]= b b n σ确定,式中的σb 表示材料的 极限。 12、理论力学中所讲的《力的可传性》,能否应用到材料力学中的受力杆件? 。

轴向拉伸与压缩习题及解答

轴向拉伸与压缩习题及解 答 Prepared on 22 November 2020

轴向拉伸与压缩习题及解答 一、判断改错 1、构件内力的大小不但与外力大小有关,还与材料的截面形状有关。 答:错。 静定构件内力的大小之与外力的大小有关,与材料的截面无关。 2、杆件的某横截面上,若各点的正应力均为零,则该截面上的轴力为零。 答:对。 3、两根材料、长度都相同的等直柱子,一根的横截面积为1A ,另一根为2A ,且21A A >。如图所示。两杆都受自重作用。则两杆最大压应力相等,最大压缩量也相等。 答:对。 自重作用时,最大压应力在两杆底端,即max max N Al l A A νσν= == 也就是说,最大应力与面积无关,只与杆长有关。所以两者的最大压应力相等。 最大压缩量为 2 max max 22N Al l l l A EA E νν??=== 即最大压缩量与面积无关,只与杆长有关。所以两杆的最大压缩量也相等。 A 1 (a) (b)

4、受集中力轴向拉伸的等直杆,在变形中任意两个横截面一定保持平行。所以宗乡纤维的伸长量都相等,从而在横截面上的内力是均匀分布的。 答:错 。在变形中,离开荷载作用处较远的两个横截面才保持平行,在荷载作用处,横截面不再保持平面,纵向纤维伸长不相等,应力分布复杂,不是均匀分布的。 5、若受力物体内某电测得x 和y 方向都有线应变x ε和y ε,则x 和y 方向肯定有正应力x σ和y σ。 答:错, 不一定。由于横向效应作用,轴在x 方向受拉(压),则有x σ;y 方向不受力,但横向效应使y 方向产生线应变,y x εενε'==-。 二、填空题 1、轴向拉伸的等直杆,杆内的任一点处最大剪应力的方向与轴线成(45) 2、受轴向拉伸的等直杆,在变形后其体积将(增大) 3、低碳钢经过冷做硬化处理后,它的(比例)极限得到了明显的提高。 4、工程上通常把延伸率δ>(5%)的材料成为塑性材料。 5、 一空心圆截面直杆,其内、外径之比为,两端承受力力作用,如将内外径增加一倍,则其抗拉刚度将是原来的(4)倍。 6、两根长度及截面面积相同的等直杆,一根为钢杆,一根为铝杆,承受相同的轴向拉力,则钢杆的正应力(等于)铝杆的正应力,钢杆的伸长量(小于)铝杆的伸长量。 7、 结构受力如图(a )所示,已知各杆的材料和横截面面积均相同,面积 2200A mm =,材料的弹性模量E=200GPa ,屈服极限280s MPa σ=,强度极限 460b MPa σ=,试填写下列空格。

金属材料的拉伸与压缩实验

机械学基础实验 指导书 力学实验中心 金属材料的拉伸与压缩实验 1.1 金属材料的拉伸实验 拉伸实验是材料力学实验中最重要的实验之一。任何一种材料受力后都要产生变形,变形到一定程度就可能发生断裂破坏。材料在受力——变形——断裂的这一破坏过程中,不仅有一定的变形能力,而且对变形和断裂有一定的抵抗能力,这些能力称为材料的力学机械性能。通过拉伸实验,可以确定材料的许多重要而又最基本的力学机械性能。例如:弹性模量E 、比例极限R p 、上和下屈服强度R eH 和R eL 、强度极限R m 、延伸率A 、收缩率Z 。除此而外,通过拉伸实验的结果,往往还可以大致判定某种其它机械性能,如硬度等。 我们以两种材料——低碳钢,铸铁做拉伸试验,以便对于塑性材料和脆性材料的力学机械性能进行比较。 这个实验是研究材料在静载和常温条件下的拉断过程。利用电子万能材料试验机自动绘出的载荷——变形图,及试验前后试件的尺寸来确定其机械性能。 试件的形式和尺寸对实验的结果有很大影响,就是同一材料由于试件的计算长度不同,其延伸率变动的范围就很大。例如: 对45#钢:当L 0=10d 0时(L 0为试件计算长度,d 0为直径),延伸率A 10=24~29%,当L 0=5d 0时,A 5=23~25%。 为了能够准确的比较材料的性质,对拉伸试件的尺寸有一定的标准规定。按国标GB/T228-2002、GB/P7314-2005的要求,拉伸试件一般采用下面两种形式: 图1-1 1. 10倍试件; 圆形截面时,L 0=10d 0 矩形截面时,L 0=11.30S 2. 5倍试件 圆形截面时,L 0=5d 矩形截面时, L 0=5.650S = 045 S d 0——试验前试件计算部分的直径;

轴向拉伸与压缩练习题

第二章轴向拉伸与压缩练习题 ?单项选择题 1、 在轴向拉伸或压缩杆件上正应力为零的截面是( ) A 、横截面 B 、与轴线成一定交角的斜截面 C 、沿轴线的截面 D 、不存在的 2、 一圆杆受拉,在其弹性变形范围内,将直径增加一倍,则杆的相对变形将变为原 来的( )倍。 1 1 A 、4 ; B 2 ; C 、1 ; D 2 变形的范围内两者的轴力相同,这时产生的应变的比值 2应力为( ) A 、3 B 、1 ; C 2; D 、3 5、 所有脆性材料,它与塑性材料相比,其拉伸力学性能的最大特点是( )。 A 、 强度低,对应力集中不敏感; B 、 相同拉力作用下变形小; C 、 断裂前几乎没有塑性变形; D 、 应力-应变关系严格遵循胡克定律 6、 构件具有足够的抵抗破坏的能力,我们就说构件具有足够的 ( ) A 、刚度, B 、稳定性, C 、硬度, D 、强度。 7、 构件具有足够的抵抗变形的能力,我们就说构件具有足够的 ( ) A 、强度, B 、稳定性, C 、刚度, D 、硬度。 &单位面积上的内力称之为 ( ) 为( ) Pl 4Pl Pl Pl Pl Pl A 、 EA 3EA ? B 0, EA ; C 2EA 3EA 5 D EA ,0 3、 由两杆铰接而成的三角架(如图所示) ,杆的横截面面积为 A ,弹性模量为 E ,当在节点C 处受到铅垂载荷 P 作用时,铅垂杆 AC 和斜杆BC 的变形应分别 4、几何尺寸相同的两根杆件, 其弹性模量分别为 E 仁180Gpa,E2=60 Gpa 在弹性

A、正应力, B、应力, 9、与截面垂直的应力称之为( ) C、拉应力,D压应力。

实验二低碳钢和铸铁的压缩实验

实验二金属材料(低碳钢和铸铁)的压缩实验 一、实验目的 (1)比较低碳钢和铸铁压缩变形和破坏现象。 (2)测定低碳钢的屈服极限σs和铸铁的强度极限σb。 (3)比较铸铁在拉伸和压缩两种受力形式下的机械性能、分析其破坏原因。 二、验仪器和设备 (1)万能材料试验机。 (2)游标卡尺。 三、试件介绍 根据国家有关标准,低碳钢和铸铁等金属材料的压缩试件一般制成圆柱形试件。低碳钢压缩试件的高度和直径的比例为3:2,铸铁压缩试件的高度和直径的比例为2:1。试件均为圆柱体。 四、实验原理及方法 压缩实验是研究材料性能常用的实验方法。对铸铁、铸造合金、建筑材料等脆性材料尤为合适。通过压缩实验观察材料的变形过程、破坏形式,并与拉伸实验进行比较,可以分析不同应力状态对材料强度、塑性的影响,从而对材料的机械性能有比较全面的认识。 压缩试验在压力试验机上进行。当试件受压时,其上下两端面与试验机支撑之间产生很大的摩擦力,使试件两端的横向变形受到阻碍,故压缩后试件呈鼓形。摩擦力的存在会

影响试件的抗压能力甚至破坏形式。为了尽量减少摩擦力的影响,实验时试件两端必须保证平行,并与轴线垂直,使试件受轴向压力。另外。端面加工应有较高的光洁度。 低碳钢压缩时也会发生屈服,但并不象拉伸那样有明显的屈服阶段。因此,在测定Ps 时要特别注意观察。在缓慢均匀加载下,测力指针等速转动,当材料发生屈服时,测力指针转动将减慢,甚至倒退。这时对应的载荷即为屈服载荷Ps。屈服之后加载到试件产生明显变形即停止加载。这是因为低碳钢受压时变形较大而不破裂,因此愈压愈扁。横截面增 ,因此也得不到强度极大时,其实际应力不随外载荷增加而增加,故不可能得到最大载荷P b ,所以在实验中是以变形来控制加载的。 限 b 前出现较明显的变形然后破裂,此时试验机测力铸铁试件压缩时,在达到最大载荷P b 指针迅速倒退,从动针读取最大载荷P 值,铸铁试件最后略呈故形,断裂面与试件轴线大 b 约呈450。 图2—2 低碳钢压缩图铸铁压缩图 五、实验步骤 (1)试验机准备。根据估算的最大载荷,选择合适的示力度盘(量程)按相应的操作规程进行操作。 (2)测量试件的直径和高度。测量试件两端及中部三处的截面直径,取三处中最小一处的平均直径计算横截面面积。 (3)将试件放在试验机活动台球形支撑板中心处。 (4)开动试验机,使活动台上升,对试件进行缓慢均匀加载,加载速度为0.5mm/min。对于低碳钢,要及时记录其屈服载荷,超过屈服载荷后,继续加载,将试件压成鼓形即可停

实验二金属材料地压缩试验1

实验二金属材料的压缩试验 实验时间:设备编号:温度:湿度一、实验目的 二、实验设备和仪器 三、实验数据及处理 材料 直径d o(mm)高度 l(mm) L d o 截面积A0 (mm 2 ) 屈服载荷 F s (K N) 最大载荷 F b (K N) 1 2 平均 低碳钢铸铁

载荷一变形曲线(F—△l曲线)及结果 材料低碳钢铸铁F—△l曲线 断口形状 实验结果屈服极限ós=屈服极限ób= 四、问题讨论 (1)观察铸铁试样的破坏断口,分析破坏原因; (2)公析比较两种材料拉伸和压缩性质的异同。

金属村翻盖的压缩试验 原始试验数据记录 实验指导老师: 200 年月日

实验四金属扭破坏实验、剪切弹性模量测定 实验时间:设备编号:温度:湿度一、实验目的 二、实验设备和仪器 三、实验数据及处理 弹性模量E= 泊松比μ= 实验前 材料标距 L0(mm) 直径d0(mm)平均极惯 性矩I p (mm4) 最小抗扭 截面模量 W T (mm3)截面I 截面II 截面III 1 2 平均 1 2 平均 1 2 平均 低碳钢铸铁

低碳钢钢剪切弹性模量测定 扭矩T(K N)扭转角(rad)扭转角度增量(rad)△φT0= T1 T2 T0 T3 T4 T5 △T= 理论值相对误差 截荷-变形曲线(F-△l曲线及结果) 材料低碳钢铸铁 T—φ曲线 断口形状 实验记录屈服扭矩T s 破坏扭矩T b 破坏扭矩T b 实验结果屈服极限t s 强度极限t b

四、问题讨论 (1)为什么低碳钢试样扭转破坏断面与横截面重合,而铸铁试样是与试样轴线成450螺旋断裂面? (2)根据低碳钢和铸铁拉伸、压缩、扭转试验的强度指标和断口形貌,分析总结两类材料的抗拉、抗压、抗剪能力。

材料力学拉伸实验报告

材料的拉伸压缩实验 徐浩20 机械一班 一、实验目的 1.观察试件受力和变形之间的相互关系; 2.观察低碳钢在拉伸过程中表现出的弹性、屈服、强化、颈缩、断裂等物 理现象。观察铸铁在压缩时的破坏现象。 3.测定拉伸时低碳钢的强度指标(s 、b )和塑性指标(、)。测定 压缩时铸铁的强度极限b。 二、实验设备 1.微机控制电子万能试验机; 2.游标卡尺。 三、实验材料 拉伸实验所用试件(材料:低碳钢)如图所示, d l0 l 四、实验原理 低碳钢试件拉伸过程中,通过力传感器和位移传感器进行数据采集,A/D转换和处理,并输入计算机,得到F-l曲线,即低碳钢拉伸曲线,见图2。 对于低碳钢材料,由图2曲线中发现OA直线,说明F 正比于l,此阶段称为弹性阶段。屈服阶段(B-C)常呈锯齿形,表示载荷基本不变,变形增加很快,材料失去抵抗变形能力,这时产生两个屈服点。其中,B点为上屈服点,它受变形大小和试件等因素影响;B点为下屈服点。下屈服点比较稳定,所以工程上均以下屈服点对应的载荷作为屈服载荷。测定屈服载荷Fs时,必须缓慢而均匀地加载,并应用s=F s/ A0(A0为试件变形前的横截面积)计算屈服极限。

图2 低碳钢拉伸曲线 屈服阶段终了后,要使试件继续变形,就必须增加载荷,材料进入强化阶段。当载荷达到强度载荷F b 后,在试件的某一局部发生显著变形,载荷逐渐减小,直至试件断裂。应用公式b =F b /A 0计算强度极限(A 0为试件变形前的横截面积)。 根据拉伸前后试件的标距长度和横截面面积,计算出低碳钢的延伸率和端 面收缩率,即 %100001?-= l l l δ,%1000 1 0?-=A A A ψ 式中,l 0、l 1为试件拉伸前后的标距长度,A 1为颈缩处的横截面积。 五、实验步骤及注意事项 1、拉伸实验步骤 (1)试件准备:在试件上划出长度为l 0的标距线,在标距的两端及中部三 个位置上,沿两个相互垂直方向各测量一次直径取平均值,再从三个平均值中取最小值作为试件的直径d 0。 (2)试验机准备:按试验机计算机打印机的顺序开机,开机后须预热十分钟才可使用。按照“软件使用手册”,运行配套软件。 (3)安装夹具:根据试件情况准备好夹具,并安装在夹具座上。 (4)夹持试件:若在上空间试验,则先将试件夹持在上夹头上,力清零消除试件自重后再夹持试件的另一端;若在下空间试验,则先将试件夹持在下夹头上,力清零消除试件自重后再夹持试件的另一端。 (5)开始实验:消除夹持力;位移清零;按运行命令按钮,按照软件设定的方案进行实验。 (6)记录数据:试件拉断后,取下试件,将断裂试件的两端对齐、靠紧,用游标卡尺测出试件断裂后的标距长度l 1及断口处的最小直径d 1(一般从相

相关文档
相关文档 最新文档