文档库 最新最全的文档下载
当前位置:文档库 › 导航原理_捷联惯导系统

导航原理_捷联惯导系统

导航原理_捷联惯导系统
导航原理_捷联惯导系统

导航原理作业(惯性导航部分)

一枚导弹采用捷联惯性导航系统,三个速率陀螺仪Gx,

Gy, Gz 和三个加速度计Ax, Ay, Az 的敏感轴分别沿着着

弹体坐标系的Xb, Yb, Zb轴。初始时刻该导弹处在北纬

45.75度,东经126.63度。

第一种情形:正对导弹进行地面静态测试(导弹质心相对地面静止)。

初始时刻弹体坐标系和地理坐标系重合,如图所示,弹体的Xb轴指东,Yb轴指北,Zb轴指天。此后弹体坐标系Xb-Yb-Zb 相对地理坐标系的转动如下:

首先,弹体绕Zb(方位轴)转过-10 度;

接着,弹体绕Xb(俯仰轴)转过15 度;

然后,弹体绕Yb(滚动轴)转过20 度;

最后弹体相对地面停止旋转。

请分别用方向余弦矩阵和四元数两种方法计算:弹体经过三次旋转并停止之后,弹体上三个加速度计Ax, Ay, Az的输出。取重力加速度的大小g = 9.8m/s2。

第二种情形:导弹正在飞行中。

初始时刻弹体坐标系仍和地理坐标系重合;且导弹初始高度200m,初始北向速度1800 m/s,初始东向速度和垂直速度都为零。

陀螺仪和加速度计的输出都为脉冲数形式,陀螺输出的每个脉冲代表0.00001弧度的角增量。加速度计输出的每个脉冲代表1μg,1g = 9.8m/s2。陀螺仪和加速度计输出的采样频率都为10Hz,在200秒内三个陀螺仪和三个加速度计的输出存在了数据文件gaout.mat中,内含一矩阵变量ga,有2000行,6列。每一行中的数据代表每个采样时刻三个陀螺Gx, Gy, Gz和三个加速度计Ax, Ay, Az

的输出的脉冲数。格式如下表(前10行)

将地球视为理想的球体,半径6371.00公里,且不考虑仪表误差,也不考虑弹体高度对重力加速度的影响。选取弹体的姿态计算周期为0.1秒,速度和位置的计算周期为1秒。

(1)请计算200秒后弹体到达的经纬度和高度,东向和北向速度;

(2)请计算200秒后弹体相对当地地理坐标系的姿态四元数;

(3)请绘制出200秒内导弹的经、纬度变化曲线(以经度为横轴,纬度为纵轴);

(4)请绘制出200秒内导弹的高度变化曲线(以时间为横轴,高度为纵轴)。

二、程序设计说明及代码

1.第一种情形

(1)方向余弦矩阵法

1)程序代码

clear;clc;

thetax=15*pi/180;thetay=20*pi/180;thetaz=(-10)*pi/180;

A0=[0;0;-9.8];

Theta=[0,-thetaz,thetay;thetaz,0,-thetax;-thetay,thetax,0];

theta0=sqrt(thetax^2+thetay^2+thetaz^2);

S=(sin(theta0))/theta0;C=(1-cos(theta0))/theta0^2;

CT=eye(3)+S*Theta+C*(Theta^2);

CTN=inv(CT);

A1=CTN*A0

2)输出结果

(2)四元数法

1)程序代码

thetax=15*pi/180;thetay=20*pi/180;thetaz=-10*pi/180;

theta0=sqrt(thetax^2+thetay^2+thetaz^2);

Theta=[0,-thetax,-thetay,-thetaz;

thetax,0,thetaz,-thetay;

thetay,-thetaz,0,thetax;

thetaz,thetay,-thetax,0];

Q=[1;0;0;0];A0=[0;0;0;-9.8];

QY=(cos(theta0/2)*eye(4)+1/theta0*sin(theta0/2)*Theta)*Q;

QN=qinv(QY);

A1=qmul(qmul(QN,A0),QY)

2)输出结果

2.第二种情形

(1)程序代码

clear;clc;

%------------------定义初始四元数------------------%

Q=[1;0;0;0];

%-----------------定义初始地球参数-----------------%

R=6371000;g=9.8;omega=2*pi/(24*60*60); %-----------------定义初始位置参数-----------------%

lambda=zeros(1,201);phi=zeros(1,201);h=zeros(1,201);

lambda(1)=126.63;phi(1)=45.75;h(1,1)=200;

%-----------------定义初始速度参数-----------------%

VE=zeros(1,201);VN=zeros(1,201);VK=zeros(1,201);

VE(1)=0;VN(1)=1800;VK(1)=0;

%------------定义迭代和积分环节控制参数-------------%

Dt=0.1;k=10;DT=k*Dt;K=200;

%-------------------定义比力数组-------------------%

fe=zeros(1,201);fn=zeros(1,201);fk=zeros(1,201);

%--------------载入陀螺与加速度计输出---------------%

load('E:\gaout.mat');

%--------------------------------------------------%

for N=1:K %位、速迭代开始

for n=1:k %姿态子迭代开始

thetax=0.00001*ga((N-1)*10+n,1);

thetay=0.00001*ga((N-1)*10+n,2);

thetaz=0.00001*ga((N-1)*10+n,3); %读取陀螺输出的角增量

Theta=[0,-thetax,-thetay,-thetaz;thetax,0,thetaz,-thetay;thetay,-thetaz,0,thetax;t hetaz,thetay,-thetax,0];

theta=[thetax;thetay;thetaz];

theta0=sqrt(thetax^2+thetay^2+thetaz^2);

Q=(cos(theta0/2)*eye(4)+((1/theta0)*sin(theta0/2))*Theta)*Q;

end %姿态子迭代结束

omegae=-(VN(N)/R); %定义东向角速度分量

omegan=(VE(N)/R)+omega*cos(phi(N)*pi/180); %定义北向角速度分量

omegak=(VE(N)/R)*tan(phi(N)*pi/180)+omega*sin(phi(N)*pi/180); %定义地向角速度分量

%--------------用地理坐标系的转动四元数修正载体姿态四元数--------------%

gamma=[omegae;omegan;omegak]*DT;

gamma0=sqrt(omegae^2+omegan^2+omegak^2);

sn=gamma/gamma0;

qy=[cos(gamma0/2);(sin(gamma0/2))*sn(1);(sin(gamma0/2))*sn(2);(sin(gamma0/2))*sn(3 )];

qn=qinv(qy);

Q=qmul(qn,Q);

QN=qinv(Q);

%-------------------------------------------------------------------%

fx=(1e-6)*g*mean(ga(((N-1)*10+1):(N*10),4));

fy=(1e-6)*g*mean(ga(((N-1)*10+1):(N*10),5));

fz=(1e-6)*g*mean(ga(((N-1)*10+1):(N*10),6)); %读取加速度计测得的比力

fb=[0;fx;fy;fz]; %定义加速度计测得的比力向量

fg=qmul(qmul(Q,fb),QN);

fe(N)=fg(2,:);

fn(N)=fg(3,:);

fk(N)=fg(4,:);

AE=zeros(1,201);AN=zeros(1,201);AK=zeros(1,201);%定义加速度向量

%--------------------------计算载体相对加速度--------------------------%

AE(N)=fe(N)+((VE(N)*VN(N))/R)*tan(phi(N)*pi/180)-(VE(N)/R+2*omega*cos(phi(N)*pi/18 0))*VK(N)+2*VN(N)*omega*sin(phi(N)*pi/180);

AN(N)=fn(N)-2*VE(N)*omega*sin(phi(N)*pi/180)-(VE(N)^2/R)*tan(phi(N)*pi/180)-VN(N)* VK(N)/R;

AK(N)=fk(N)+2*VE(N)*omega*cos(phi(N)*pi/180)+((VE(N)^2+VN(N)^2)/R)-g;

%---------------------------------------------------------------------%

%------------------------积分计算载体相对速度--------------------------%

VE(N+1)=AE(N)*DT+VE(N);

VN(N+1)=AN(N)*DT+VN(N);

VK(N+1)=AK(N)*DT+VK(N);

%---------------------------------------------------------------------%

%---------------------------积分计算载体位置---------------------------%

lambda(N+1)=(VE(N)/(R*cos(phi(N)*pi/180)))*DT/pi*180+lambda(N);

phi(N+1)=(VN(N)/R)*DT/pi*180+phi(N);

h(N+1)=VK(N)*DT+h(N);

%---------------------------------------------------------------------% end %位、速迭代结束

%-------------------------------输出所求结果-------------------------------% fprintf('200秒后弹体到达的经度为 %7.4f\n',lambda(1,201));

fprintf('200秒后弹体到达的纬度为 %6.4f\n',phi(1,201));

fprintf('200秒后弹体到达的高度为 %6.4f\n',h(1,201));

fprintf('200秒后弹体到达的东向速度为 %8.4f\n',VE(1,201));

fprintf('200秒后弹体到达的北向速度为 %8.4f\n',VN(1,201));

fprintf('200秒后弹体相对当地地理坐标系的姿态四元数为

\t[%5.4f\t%5.4f\t%5.4f\t%5.4f]\n',Q);

%-------------------------------------------------------------------------%

%---------------------------------绘制图像---------------------------------% figure(1)

plot(lambda,phi)

title('经纬度变化曲线')

xlabel('经度')

ylabel('纬度')

grid on

figure(2)

plot(1:201,h)

title('高度变化曲线')

xlabel('时间')

ylabel('高度')

grid on

%----------------------------------结束-----------------------------------%

(2)输出结果

1)图像结果

经纬度变化曲线

高度变化曲线

2)文本结果

三、仿真结果分析编程过程中的问题探究

在第一种情形中,方向余弦矩阵和四元数的计算均采用增量算法。使用方向余弦矩阵法和四元数法求得的加速度计上的输出完全一致。方向余弦矩阵和四元数的计算采用其他算法时,由于各种算法间存在误差,导致最后计算得到的加速度计输出有微小差别。另外,重力加速度的方向设定也会影响加速度计输出的正负,但其绝对值相等。

相对于第一种情形,第二种情形要复杂的多,程序较长,逻辑复杂,易出错,更需要细心耐心的编程与调试。

第二种情形的输出结果基本符合要求。文本输出结果保留小数点后四位,仿真得到了200秒后弹体的位置、速度参数以及相对地理坐标的姿态四元数(应为列向量);图像输出也成功的获得了导弹的经纬度曲线和高度时间曲线。

四、编程过程中的问题探究与心得体会

在编程的过程中,遇到了如下的问题:

地球自传角速度的精确度对最后的仿真结果有很大影响,在实际运用中,应当尽量使用最精确的数值进行运算。当然,地球半径、重力加速度等参数也取的是近似值,在实际应用时,也要更加严格。

角度与弧度之间的数值转换是很关键的细节部分。如在进行三角函数值计算时,要注意将角度只转换成弧度值,而在最后的经纬度转化计算是,要将弧度值转化为角度值。忽略了它们之间的转换,会得到错误的结果,而且错误不易发现。

大量计算公式的编辑也是程序的重要部分,在编程的时候一定要细心耐心。一但出现错误,在调试和检查时也要仔细,不易被发现的错误都会导致结果的不准确。

算法的错误会令结果出现很大的偏差。在编程的过程中,要注意随时、分步的运行程序,并检查运行中的数据是否正确,这样,可以及时发现算法中的错误,节约时间,减少工作量。

在编程的过程中,要注意随时写程序的注释部分与说明,增加程序的可读性,对照流程图,也能在程序输出错误时更快、更容易地找到错误部分。

心得体会

本次大作业,应用Matlab对捷联惯导系统的问题进行解答,涉及到了方向余弦矩阵、四元数等各方面知识。在做这次大作业的过程中,应用Matlab独立的进行大段程序的编写,让我对Matlab 的应用有了新的体会和深刻的认识,熟练了很多Matlab中的语法和语句程序,另外,对问题和错误的总结,让我受益匪浅,相信我在以后的编程中也会更加的熟练。同时,也让我对捷联惯导系统有了更深刻的认识,对四元数和方向余弦矩阵的计算和应用都有了更直观的了解,能够更熟练的掌握课程中的知识。

在编程的过程中,与同学的交流,也是我的一大收获。不论在Matlab方面,还是导航原理课程方面,都让我有了极大的进步。最后,感谢在我完成大作业的过程中为我提供宝贵意见的同学,也感谢老师对作业的精心设计,让我们能够拥有这次锻炼的机会。

惯性导航技术的工作原理

惯性导航技术的工作原 理 Document number:PBGCG-0857-BTDO-0089-PTT1998

惯性导航系统基本工作原理 惯性导航系统是十分复杂的高精度机电综合系统,只有当科学技术发展到一定高度时工程上才能实现这种系统,但其基本工作原理却以经典的牛顿力学为基础。 设质量m受弹簧的约束,悬挂弹簧的壳体固定在载体上,载体以加速度a 作水平运动,则m处于平衡后,所受到的水平约束力F与a的关系满足牛顿第 二定律: F a m 。测量水平约束力F,求的a,对a积分一次,即得水平速 度,再积分一次即得水平位移。以上所述是简单化了的理性情况。由于运载体不可能只作水平运动,当有姿态变化时,必须测得沿固定坐标系的加速度,所以加速度计必须安装在惯性平台上,平台靠陀螺维持要求的空间角位置,导航计算和对平台的控制由计算机完成。 陀螺仪组件测取沿运载体坐标系3个轴的角速度信号,并被送入导航计算机,经误差补偿计算后进行姿态矩阵计算。加速度计组件测取沿运载体坐标系3个轴的加速度信号,并被送入导航计算机,经误差补偿计算后,进行由运载体坐标系至“平台坐标系”的坐标变换计算。他们沿机体坐标系三轴安装,并且与机体固连,它们所测得的都是机体坐标系下的物理量。 参与控制和测量的陀螺和加速度计称为惯性器件,这是因为陀螺和加速度计都是相对惯性空间测量的,也就是说加速度计输出的是运载体的绝对加速度,陀螺输出的是运载体相对惯性空间的角速度或角增量。而加速度和角速度或角增量包含了运载体全部的信息,所以惯导系统仅靠系统本身的惯性器件就能获得导航用的全部信息,它既不向外辐射任何信息,也不需要任何其他系统

捷联式惯性导航系统

1 绪论 随着计算机和微电子技术的迅猛发展,利用计算机的强大解算和控制功能代替机电稳定系统成为可能。于是,一种新型惯导系统--捷联惯导系统从20世纪60年代初开始发展起来,尤其在1969年,捷联惯导系统作为"阿波罗"-13号登月飞船的应急备份装置,在其服务舱发生爆炸时将飞船成功地引导到返回地球的轨道上时起到了决定性作用,成为捷联式惯导系统发展中的一个里程碑。 捷联式惯性导航(strap-down inertial navigation),捷联(strap-down)的英语原义是“捆绑”的意思。因此捷联式惯性导航也就是将惯性测量元件(陀螺仪和加速度计)直接装在飞行器、舰艇、导弹等需要诸如姿态、速度、航向等导航信息的主体上,用计算机把测量信号变换为导航参数的一种导航技术。现代电子计算机技术的迅速发展为捷联式惯性导航系统创造了条件。惯性导航系统是利用惯性敏感器、基准方向及最初的位置信息来确定运载体的方位、位置和速度的自主式航位推算导航系统。在工作时不依赖外界信息,也不向外界辐射能量,不易受到干扰破坏。它完全是依靠载体自身设备独立自主地进行导航,它与外界不发生任何光、声、磁、电的联系,从而实现了与外界条件隔绝的假想的“封闭”空间内实现精确导航。所以它具有隐蔽性好,工作不受气象条件和人为的外界干扰等一系列的优点,这些优点使得惯性导航在航天、航空、航海和测量上都得到了广泛的运用[1] 1.1 捷联惯导系统工作原理及特点 惯导系统主要分为平台式惯导系统和捷联式惯导系统两大类。惯导系统(INS)是一种不依赖于任何外部信息、也不向外部辐射能量的自主式导航系统,具有隐蔽性好,可在空中、地面、水下等各种复杂环境下工作的特点。 捷联惯导系统(SINS)是在平台式惯导系统基础上发展而来的,它是一种无框架系统,由三个速率陀螺、三个线加速度计和微型计算机组成。平台式惯导系统和捷联式惯导系统的主要区别是:前者有实体的物理平台,陀螺和加速度计置于陀螺稳定的平台上,该平台跟踪导航坐标系,以实现速度和位置解算,姿态数据直接取自于平台的环架;后者的陀螺和加速度计直接固连在载体上作

惯性导航仪的工作原理

惯性导航仪的原理 惯性导航系统(INS,Inertial Navigation System)也称作惯性参考系统,是一种不依赖于外部信息、也不向外部辐射能量(如无线电导航那样)的自主式导航系统。其工作环境不仅包括空中、地面,还可以在水下。惯性导航的基本工作原理是以牛顿力学定律为基础,通过测量载体在惯性参考系的加速度,将它对时间进行积分,且把它变换到导航坐标系中,就能够得到在导航坐标系中的速度、偏航角和位置等信息。 惯性导航系统(英语:INS )惯性导航系统是以陀螺和加速度计为敏感器件的导航参数解算系统,该系统根据陀螺的输出建立导航坐标系,根据加速度计输出解算出运载体在导航坐标系中的速度和位置。 惯性导航系统属于推算导航方式,即从一已知点的位置根据连续测得的运动体航向角和速度推算出其下一点的位置,因而可连续测出运动体的当前位置。惯性导航系统中的陀螺仪用来形成一个导航坐标系,使加速度计的测量轴稳定在该坐标系中,并给出航向和姿态角;加速度计用来测量运动体的加速度,经过对时间的一次积分得到速度,速度再经过对时间的一次积分即可得到距离。 惯性导航系统至少包括计算机及含有加速度计、陀螺仪或其他运动传感器的平台(或模块)。开始时,有外界(操作人员、GPS接收器等)给 INS 提供初始位置及速度,此后 INS 通过对运动传感器的信息进行整合计算,不断更新当前位置及速度。 INS 的优势在于给定了初始条件后,不需要外部参照就可确定当前位置、方向及速度。 通过检测系统的加速度和角速度,惯性导航系统可以检测位置变化(如向东或向西的运动),速度变化(速度大小或方向)和姿态变化(绕各个轴的旋转)。它不需要外部参考的特点使它自然地不受外界的干扰或欺骗。 陀螺在惯性参照系中用于测量系统的角速率。通过以惯性参照系中系统初始方位作为初始条件,对角速率进行积分,就可以时刻得到系统的当前方向。这可以想象成被蒙上眼睛的乘客坐在汽车中,感觉汽车左转、右转、上坡、下坡,仅根据这些信息他知道了汽车朝哪里开,但不知道汽车是快,是慢或是否汽车滑向路边。 加速度计在惯性参照系中用于测量系统的线加速度,但只能测量相对于系统运动方向的加速度(由于加速度计与系统固定并随系统转动,不知道自身的方向)。这可以想象成一个被蒙上眼睛的乘客在汽车加速时向后挤压座位,汽车刹车时身体前倾,汽车加速上坡时下压座位,汽车越过山顶下坡时从座位上弹起,仅根据这些信息,乘客知道汽车相对自身怎样加速,即向前、向后、向上、向下、向左或向右,但不知道相对地面的方向。 然而,通过跟踪系统当前角速率及相对于运动系统测量到的当前线加速度,就可以确定参照系中系统当前线加速度。以起始速度作为初始条件,应用正确的运动学方程,对惯性加速度进行积分就可得到系统惯性速率,然后以起始位置座作初始条件再次积分就可得到惯性位置。

惯性导航技术经验的工作原理

精心整理 惯性导航系统基本工作原理 惯性导航系统是十分复杂的高精度机电综合系统,只有当科学技术发展到一定高度时工程上才能实现这种系统,但其基本工作原理却以经典的牛顿力学为基础。 设质量m 受弹簧的约束,悬挂弹簧的壳体固定在载体上,载体以加速度a 作水平运动,则m 处于平衡后,所受到的水平约束力F 与a 的关系满足牛顿第二定律:F a m =。测量水平约束力F ,求的a ,对a 积分一次,即得水平速度,再积分一次即得水平位移。以上所述是简单化了的理性情况。由于运载体不可能只作水平运动,当有姿态变化时,必须测得沿固定坐标系的加速度,所以加速度计必须安装在惯性平台上,平台靠陀螺维持要求的空间角位置,导航计算和对平台的控制由计算机完成。 陀螺仪组件测取沿运载体坐标系3个轴的角速度信号,并被送入导航计算机,经误差补偿计算后进行姿态矩阵计算。加速度计组件测取沿运载体坐标系3个轴的加速度信号,并被送入导航计算机,经误差补偿计算后,进行由运载体坐标系至“平台坐标系”的坐标变换计算。他们沿机体坐标系三轴安装,并且与机体固连,它们所测得的都是机体坐标系下的物理量。 参与控制和测量的陀螺和加速度计称为惯性器件,这是因为陀螺和加速度计都是相对惯性空间测量的,也就是说加速度计输出的是运载体的绝对加速度,陀螺输出的是运载体相对惯性空间的角速度或角增量。而加速度和角速度或角增量包含了运载体全部的信息,所以惯导系统仅靠系统本身的惯性器件就能获得导航用的全部信息,它既不向外辐射任何信息,也不需要任何其他系统提供外来信息,就能在全天候条件下,在全球范围内和所有介质环境里自主、隐蔽的进行三维导航,也可用于外层空间的三维导航。 惯导系统的比力方程 惯导系统根据与系统类型相应的数学方程(称之为力学编排)对惯性器件的输出作处理,从而获得导航数据。尽管各种类型的系统相应的力学编排各不相同,但他们都源自同一个方程:比力方程。比力方程描述了加速度计输出量与运载体速度之间的解析关系: 式中:eT v 为运载体的地速向量;f 为比力向量,是作用在加速度计质量块单位质量上的非引力外力,由加速度计测量;g 为重力加速度;ie ω为地球自转角速度;eT ω为惯性平台所模拟的平台 坐标系T 相对地球的旋转角速度;eT dv dt 表示在平台坐标系T 内观察到的地速向量的时间变化率。以上比力方程说明用加速度计的比力输出计算地速时,必须对比力输出中的三种有害加速度成分作补偿: (1)2ie eT v ω?,即由地球自转(牵连运动)和运载体相对地球运动(相对运动)引起的哥式加速度;

高精度捷联式惯性导航系统算法研究大学论文

高精度捷联式惯性导航系统算法研究 1. 引言 随着计算机技术的发展,捷联式惯性导航系统(strapdown Inertial Navigation System, SINS)的概念被提出,它取消了平台式惯性导航系统中复杂的机械平台装置,而将惯性传感器直接固联在载体上。SINS具有制造和维护成本低、体积小、重量轻以及可靠性高等优点,目前在高、中、低精度领域都得到了广泛使用。 捷联算法的基本框图如图1所示。 图1 捷联算法的基本框图 在捷联惯性导航系统中,惯性传感器直接固联在载体上,因此对惯性传感器的性能提出了更高的要求。SINS中使用的陀螺所承受的动态范围较大,一般能够达到100 /s,与此同时,SINS中的陀螺和加速度计与载体一起进行角运动和线运动,这增加了导航计算机输出数据的难度和复杂性。姿态实时计算是捷联惯导的关键技术,也是影响捷联惯导系统导航精度的重要因素。 载体的姿态和航向是载体坐标系和地理坐标系之间的方位关系,两坐标系之间的方位关系等效于力学中的刚体定点转动问题。在刚体定点转动理论中,描述动坐标系相对参考坐标系方位关系的方法有欧拉角法、四元数法、方向余弦法以及等效旋转矢量法。本报告对这四种姿态算法进行简单介绍,并结合研究对象对等效旋转矢量算法进行重点研究。针对角速率输入陀螺构成的捷联式惯性导航系统,本报告给出了一种改进的姿态算法,并在圆锥运动环境下对该算法进行数学仿真,验证了该方法的可能性。 2. 姿态算法介绍 2.1 欧拉角法

一个动坐标系相对参考坐标系的方位可以完全由动坐标系依次绕三个不同轴转动三个角度进行确定。把载体坐标系ox b y b z b 作为动坐标系,导航坐标系ox n y n z n (即地理坐标系)作为参考坐标系,导航系依次转过航向角H 、俯仰角P 、横摇角R 可得到载体坐标系,通过求解欧拉角微分方程得到三个欧拉角,从而进一步可以得到捷联姿态矩阵。欧拉角微分方程如下所示: cos cos 0sin cos 1sin sin cos cos sin cos sin 0cos b nbx b nby b nbz P P P R P R P R P P P P H R R ωωω????????????=-???? ????????-?????? (1) 式(1)即为欧拉角微分方程,求解方程可以得到三个欧拉角,也就是航向角、俯仰角以及横摇角,根据三个姿态角和姿态矩阵元素之间的关系即可以得到姿态矩阵n b C 。 2.2 方向余弦法 常用方向余弦姿态矩阵微分方程的形式为 b bk b n nb n =C C ω (1) 式中bk nb ω为载体坐标系相对地理坐标系的转动角速度在载体坐标轴向的分量的反对称矩 阵形式,具体表达式如式(2)。 00 0b b nbz nby bk b b nb nbz nbx b b nby nbx ωωωωωω??-??=-????-? ? ω (2) 用毕卡逼近法求解矩阵微分方程,其解为 2002 00sin 1cos ()()()b bk bk n nb nb t t t θθθθ???-?+?=+?+??????? C C I θθ (3) 式中 10 0n n b b nbz nby t bk bk b b nb nb nbz nbx t b b nby nbx dt θθθθθθ+??-?????==?-?????-??? ? ?θω 0θ?=2.3 四元数法 四元数微分方程的形式为

惯性导航的工作原理及惯性导航系统分类

惯性导航的工作原理及惯性导航系统分类 惯性导航系统(INS)是一种自主式的导航设备,能连续、实时地提供载体位置、姿态、速度等信息;特点是不依赖外界信息,不受气候条件和外部各种干扰因素。 惯性导航及控制系统最初主要为航空航天、地面及海上军事用户所应用,是现代国防系统的核心技术产品,被广泛应用于飞机、导弹、舰船、潜艇、坦克等国防领域。随着成本的降低和需求的增长,惯性导航技术已扩展到大地测量、资源勘测、地球物理测量、海洋探测、铁路、隧道等商用领域,甚至在机器人、摄像机、儿童玩具中也被广泛应用。 不同领域使用惯性传感器的目的、方法大致相同,但对器件性能要求的侧重各不相同。从精度方面来看,航天与航海领域对精度要求高,其连续工作时间也长;从系统寿命来看,卫星、空间站等航天器要求最高,因其发射升空后不可更换或维修;制导武器对系统寿命要求最短,但可能须要满足长时间战备的要求。涉及到军事应用等领域,对可靠性要求较高。 惯性导航的工作原理 惯性导航系统是一种自主式的导航方法,它完全依靠载体上的设备自主地确定载体的航向、位置、姿态和速度等导航参数,而不需要借助外界任何的光、电、磁等信息。 惯性导航是一门涉及精密机械、计算机技术、微电子、光学、自动控制、材料等多种学科和领域的综合技术。其基本工作原理是以牛顿力学定律为基础,通过测量载体在惯性参考系的加速度、角加速度,将它对时间进行一次积分,求得运动载体的速度、角速度,之后进行二次积分求得运动载体的位置信息,然后将其变换到导航坐标系,得到在导航坐标系中的速度、偏航角和位置信息等。百度搜索“乐晴智库”,获得更多行业深度研究报告 惯性导航系统分类

车载捷联惯导系统基本原理

车载捷联惯导系统基本原理 一、捷联惯导系统基本原理 捷联惯导系统基本原理如图2-1所示: 图中陀螺和加速度计直接与载体系b固联,用来测量载体的角运动信息和线运动信息。导航解算的本质是根据初值进行积分的过程,通过求解姿态微分方程完成对姿态和航向角的积分,通过求解比力微分方程完成对速度的积分,通过求解位置微分方程实现对位置的积分。捷联惯导的姿态矩阵C n 相当于“数学平台”,取代了平台惯导中的实体平台,而ω?相当于对数学平台“施矩”的指令角速率。

二、捷联惯导微分方程 (一)姿态微分方程 在捷联惯导系统中,导航坐标系n 和载体坐标系b 之间的角位置关系通常用姿态矩阵、四元数和欧拉角表示,相应也存在姿态矩阵微分方程、四元数微分方程和欧拉角微分方程三种形式。 姿态矩阵微分方程的表达式为:

在欧拉角微分方程式(2.2-7)中,当俯仰角θ趋于90o时,cosθ趋于0,tanθ趋于无穷,方程存在奇异性,所以这种方法不能在全姿态范围内正常工作;姿态矩阵微分方程式(2.2-1)可全姿态工作,但姿态矩阵更新相当于求解包含9个未知量的线性微分方程组,计算量大;四元数微分方程式(2.2-6)同样可以全姿态工作,且更新算法只需求解4个未知量的线性微分方程组,计算量小,算法简单,是较实用的工程算法。 (二)速度微分方程 速度微分方程即比力方程,是惯性导航解算的基本关系式: 三、捷联惯性导航算法 捷联惯导解算的目的是根据惯性器件输出求解载体姿

态、速度和位置等导航信息,实际上就是求解三个微分方程的过程,相应存在姿态更新算法、速度更新算法和位置更新算法。 (一)姿态更新算法 求解微分方程式(2.2-6)可得四元数姿态更新算法为:

惯性导航系统

惯性导航系统 一、惯性导航系统(Inertial Navigation System,INS) 1、基本概念 惯性导航系统(INS)是一种不依赖于外部信息、也不向外部辐射能量的自主式导航系统。其工作环境不仅包括空中、地面,还可以在水下。 惯性导航系统目前已经发展出挠性惯导、光纤惯导、激光惯导、微固 态惯性仪表等多种方式。陀螺仪由传统的绕线陀螺发展到静电陀螺、激光 陀螺、光纤陀螺、微机械陀螺等。激光陀螺测量动态范围宽,线性度好, 性能稳定,具有良好的温度稳定性和重复性,在高精度的应用领域中一直 占据着主导位置。由于科技进步,成本较低的光纤陀螺(FOG)和微机械陀螺(MEMS)精度越来越高,是未来陀螺技术发展的方向。我国的惯导技术 近年来已经取得了长足进步,液浮陀螺平台惯性导航系统、动力调谐陀螺 四轴平台系统已相继应用于长征系列运载火箭。其他各类小型化捷联惯导、光纤陀螺惯导、激光陀螺惯导以及匹配GPS修正的惯导装置等也已经大量应用于战术制导武器、飞机、舰艇、运载火箭、宇宙飞船等。如漂移率 0.01°-0.02°/h 的新型激光陀螺捷联系统在新型战机上试飞,漂移率 0.05°/h 以下的光纤陀螺、捷联惯导在舰艇、潜艇上的应用,以及小型化挠性捷联惯导在各类导弹制导武器上的应用,都极大的改善了我军装备的 性能。 惯性导航系统有如下主要优点:(1)由于它是不依赖于任何外部信息,也不向外部辐射能量的自主式系统,故隐蔽性好,也不受外界电磁干扰的 影响;(2)可全天流全球、全时间地工作于空中、地球表面乃至水下;(3)能提供位置、速度、航向和姿态角数据,所产生的导航信息连续性好而且 噪声低;(4)数据更新率高、短期精度和稳定性好。其缺点是:(1)由 于导航信息经过积分而产生,定位误差随时间而增大,长期精度差;(2)每次使用之前需要较长的初始对准时间;(3)设备的价格较昂贵;(4) 不能给出时间信息。但惯导有固定的漂移率,这样会造成物体运动的误差,因此射程远的武器通常会采用指令、GPS等对惯导进行定时修正,以获取持续准确的位置参数。 2、惯性导航原理 目前,惯性导航分为两大类:平台式惯导和捷联式惯导。它们的主要区别在于,前者有实体的物理平台,陀螺和加速度计置于由陀螺定的平台上,该平台跟踪导航坐标系,以实现速度和位置解算,姿态数据直接取自于平台的环架;在捷联式惯导中,陀螺和加速度计直接固连在载体上。惯性平台的功能由计算机完成,

捷联惯性导航系统在矿井机车定位中应用研究袁小平

煤矿机械Coal Mine Machinery Vol.34No.01 Jan.2013 第34卷第01期2013年01月 0引言 矿井机车通常用于井下生产资料、设备、人员的运输工作。与地面机车调度系统相比,井下空间有限,巷道狭窄,很难进行快速地错车;再加上调度手段相对简单、信息化程度较低,很容易造成道路拥挤、货物积压,从而对生产一线的采掘工作造成不良的影响。因此,有必要利用现代化的手段对矿井机车进行定位和管理,以降低事故发生率、提高煤矿生产效率。 目前,我国煤矿矿井机车监控系统多采用信号、集中、闭塞控制系统。该系统利用传统的点式传感技术测量机车位置并发送至调度中心,从而使调度员清楚地掌握机车位置,以便对道岔和信号机的开放进行集中控制。信集闭系统可以实现对机车的识别、定位,大大减少了机车碰撞事故的发生,提高了机车的运输效率,但是需要在机车轨道附近布置大量传感器,由于井下环境恶劣,电磁干扰严重,传感器容易出现故障,维护工作量较大;点式传感技术定位精确度较低,甚至会丢失机车位置。 视频测速技术可以按照摄像机安装的位置分为2种情况。 (1)摄像机安装在巷道内的固定位置为便于信息的处理,一般为矿机机车安装车牌,将地面常用的车牌识别技术应用于井下,通过对车牌进行图像处理,计算其在背景图像中的像素差来获取机车的速度,利用实时速度信息计算出机车所在位置。由于煤矿工作环境恶劣,湿度大、粉尘多,机车车牌很有可能处于被煤屑覆盖的状态,从而使得信息获取和处理的难度增大,因此,虽然该方法在理论上具有可行性,但其实用价值有待商榷。此外,由于摄像机价格相对较高,分布密度不会很大,必然会造成视频信息丢失的现象,从而降低了机车位置信息的实时性; (2)利用车载摄像机进行定位在机车上安装2台相同的摄像机用于采集巷道视频,然后分析图像特征,利用双目立体视觉测距技术来计算机车运行的实时速度。利用机载设备进行信息采集时,需要使用无线设备将采集到的信息传递至井下局域网,并利用光纤传递至地面调度室对视频信息进行处理,计算出机车的运行速度和所在位置。该方法减少了所使用摄像机的数量,并且能够获取可视化的视频信息,具有较好的发展前景。然而,该方法需要利用无线网络传输视频信息,这在无线通信环境极其恶劣的煤矿井下无疑是十分具有挑战性的。 通过以上分析可以发现,上述常用的机车定位方法不论是在理论上还是在实现上都存在一定的缺陷,因而有必要利用其他技术实现机车的定位,鉴于此,本文将捷联惯性导航系统(SINS)应用到井下机车的定位当中。SINS利用机载的加速度传感器、陀螺仪等设备获取机车的三维加速度、角速度信息,利用无线网络将信息传递至井下局域网,通过有线网络传递至地面调度室,使用SINS数学平台计算出机车的速度、位置、行驶方向和姿态信息。 捷联惯性导航系统在矿井机车定位中应用研究 袁小平,陈羲梅,鲍捷,池庆 (中国矿业大学信息与电气工程学院,江苏徐州221116) 摘要:介绍煤矿机车定位常用的信集闭系统以及2种视频测速定位技术,分析3种方法的优点和缺陷,并针对其所分析出的缺陷,提出将捷联式惯性导航系统引入到煤矿机车定位系统中。以SINS为核心的定位系统有较好的实时性,定位精度好,且易于实现。 关键词:捷联惯性导航;煤矿;机车定位 中图分类号:TP334;TD524文献标志码:B文章编号:1003-0794(2013)01-0208-02 Research of Step-down Inertial Navigation System Used in Mine Locomotive Localization YUAN Xiao-ping,CHEN Xi-mei,BAO Jie,CHI Qing (Information and Electrical Engineering Institute of China University of Mining and Technology,Xuzhou221116,China)Abstract:The article introduced the mine locomotive localization commonly used technologies block signals system and two speed measurements through video,analyzed the advantages and disadvantages of the three methods,and for the founding defects,put up that the step-down inertial navigation system is introduced into the coal mine locomotive localization system.Localization system taking SINS as the core has real-time performance,well location accuracy and easy to implement. Key words:step-down inertial navigation;coal mines;locomotive localization 208

惯性导航的原理是什么

惯性导航的原理是什么? 添加评论 分享 按投票排序按时间排序 10 个回答 6赞同反对,不会显示你的姓名 知乎用户,玩摄影的航空人 6 人赞同 惯性导航基于惯性器件陀螺仪和加速度计实现对自身姿态、位置的测量。陀螺仪可以测出系统在三维空间的旋转角度,加速度计可以测出系统在x,y,z三个轴的加速度值。如果已知系统初始位置,就可以利用对加速度值多次积分,依次得到速度,距离,进而结合初始位置,得到系统实时位置。 发布于2015-02-24添加评论感谢 分享 收藏?没有帮助?举报?作者保留权利 37赞同反对,不会显示你的姓名 张斯托洛夫斯基,删除自己发出的评论基本是为了改错字。 37 人赞同 导航解决的其实就是从哪儿来到哪儿去的问题。对此我们总是能想到指南针。 但是有一个经典的笑话,说一个人带着指南针迷路了:“我知道北在哪儿,可是我在哪儿啊?”所以要完成导航,需要知道我在哪儿,还有北在哪儿,如果有目的地的话,还得知道目的地在哪儿,从而告诉用户,通往目的地的道路。其中,【我在哪儿】是非常重要的。 地上铺了方砖,你知道自己一开始在哪块砖上,然后向左三步,往前五步,向左转,再往后退四步,向后转,再往左走两步,等等,每一步都是一块砖的长度。 把这些告诉一个没在房间里的人,他在纸上画画,不看你也知道你现在应该在哪块砖上,朝向哪里。 惯性导航和一些其它导航方法的基本原理差不多就是这样。 你知道自己的初始位置,知道自己的初始朝向(姿态),知道自己每一时刻如何改变了朝向,知道自己每一时刻相对朝向是怎样走的,把这些加一起不停地推,走一步推一步,在不考虑各种误差时,得出的结果就应该正好是你现在的朝向和位置。 但是要怎么知道自己的方向和位置是怎么改变的呢?不同的导航系统用不同的传感器,有不同的方法,比如里程计用车辆上轮子转的周数,多普勒计程仪像蝙蝠一样往水底发射声波……而惯性导航之所以叫【惯性】导航,就是因为使用的是【惯性器件】,也就是加速度计和陀螺仪。

捷联惯导作业

一、原理分析: 捷联式惯导系统是将惯性器件(陀螺仪和加速度计)直接固连在载体上的系统。图1为捷联式惯导系统的原理图,陀螺仪和加速度计输出分别送入姿态矩阵计算和由载体坐标系至平台坐标系的方向余弦矩阵的计算。有了姿态矩阵,其一可以实现把载体坐标系轴向加速度信息变换到导航坐标系轴,进而可以进行所需的导航参数计算,其二利用姿态矩阵的元素,提取方位和姿态信息。 图1. 捷联式惯导系统的原理图 姿态速率微分方程为: 12b tb ωΛ=Λ (1) 其中; () b b b t t tb ib t ie et C ωωωω=-- (2) b ib ω为陀螺仪测量经补偿后的值;

0cos sin t iex t t ie iey ie t ie iez L L ωωωωωω?? ? ????? ??==???????????? ,为地球自转角速率; tan t ety t yt etx t t t etx et ety xt t etz t etx xt V R V R V L R ωωωω??-?? ? ???? ????? ??==?????????????????? ,为地理坐标系相对地球坐标系的转动角速率; 导航坐标系到载体坐标系的姿态矩阵为: cos cos sin sin sin sin cos cos sin sin cos sin sin cos cos cos sin cos sin sin sin cos sin sin cos sin cos cos cos t t C ψ?ψθ? ψ?ψθ? θ?ψθ ψθ θ ψ?ψθ? ψ?ψθ? θ?-+-?? ?? =-?? ??+-?? (3) 对应的四元素初值为: 0123cos cos cos sin sin sin 2 2 2 22 2 cos sin cos sin cos sin 2 2 2 2 2 2 cos cos sin sin sin cos 2 2 2 2 2 2 cos sin sin sin cos cos 2 2 2 2 2 2ψ θ ? ψ θ ? λψ θ ? ψθ ? λψ θ ? ψ θ ? λψ θ ? ψ θ ? λ? =-???=-???=+???=+? (4) 四元素姿态矩阵为: 22220123120313022 2 2 2 12030123 230122221302230101232() 2()2() 2()2() 2() b t C λλλλλλλλλλλλλλλλλλλλλλλλλλλλλλλλλλλλ?? +++++?? =--+-+????----+? ? (5) 将姿态速率微分方程展开成矩阵形式: 0112233001020b b b tbx tby tbx b b b tbx tbz tby b b b tby tbz tbx b b b tbz tby tbx λλωωωλλωωωωωωλλωωωλλ???? ??---??????-??????=??????-??????-???????????? (6)

导航原理_捷联惯导系统

导航原理作业(惯性导航部分)

一枚导弹采用捷联惯性导航系统,三个速率陀螺仪Gx, Gy, Gz 和三个加速度计Ax, Ay, Az 的敏感轴分别沿着着 弹体坐标系的Xb, Yb, Zb轴。初始时刻该导弹处在北纬 45.75度,东经126.63度。 第一种情形:正对导弹进行地面静态测试(导弹质心相对地面静止)。 初始时刻弹体坐标系和地理坐标系重合,如图所示,弹体的Xb轴指东,Yb轴指北,Zb轴指天。此后弹体坐标系Xb-Yb-Zb 相对地理坐标系的转动如下: 首先,弹体绕Zb(方位轴)转过-10 度; 接着,弹体绕Xb(俯仰轴)转过15 度; 然后,弹体绕Yb(滚动轴)转过20 度; 最后弹体相对地面停止旋转。 请分别用方向余弦矩阵和四元数两种方法计算:弹体经过三次旋转并停止之后,弹体上三个加速度计Ax, Ay, Az的输出。取重力加速度的大小g = 9.8m/s2。 第二种情形:导弹正在飞行中。 初始时刻弹体坐标系仍和地理坐标系重合;且导弹初始高度200m,初始北向速度1800 m/s,初始东向速度和垂直速度都为零。 陀螺仪和加速度计的输出都为脉冲数形式,陀螺输出的每个脉冲代表0.00001弧度的角增量。加速度计输出的每个脉冲代表1μg,1g = 9.8m/s2。陀螺仪和加速度计输出的采样频率都为10Hz,在200秒内三个陀螺仪和三个加速度计的输出存在了数据文件gaout.mat中,内含一矩阵变量ga,有2000行,6列。每一行中的数据代表每个采样时刻三个陀螺Gx, Gy, Gz和三个加速度计Ax, Ay, Az 的输出的脉冲数。格式如下表(前10行)

将地球视为理想的球体,半径6371.00公里,且不考虑仪表误差,也不考虑弹体高度对重力加速度的影响。选取弹体的姿态计算周期为0.1秒,速度和位置的计算周期为1秒。 (1)请计算200秒后弹体到达的经纬度和高度,东向和北向速度; (2)请计算200秒后弹体相对当地地理坐标系的姿态四元数; (3)请绘制出200秒内导弹的经、纬度变化曲线(以经度为横轴,纬度为纵轴); (4)请绘制出200秒内导弹的高度变化曲线(以时间为横轴,高度为纵轴)。 二、程序设计说明及代码 1.第一种情形 (1)方向余弦矩阵法 1)程序代码 clear;clc; thetax=15*pi/180;thetay=20*pi/180;thetaz=(-10)*pi/180; A0=[0;0;-9.8]; Theta=[0,-thetaz,thetay;thetaz,0,-thetax;-thetay,thetax,0]; theta0=sqrt(thetax^2+thetay^2+thetaz^2); S=(sin(theta0))/theta0;C=(1-cos(theta0))/theta0^2; CT=eye(3)+S*Theta+C*(Theta^2); CTN=inv(CT); A1=CTN*A0 2)输出结果 (2)四元数法 1)程序代码

捷联惯导详细讲解

捷联惯导系统从20世纪60年代初开始发展起来,在1969年,捷联惯导系统作为"阿波罗"-13号登月飞船的应急备份装臵,在其服务舱发生爆炸时将飞船成功地引导到返回地球的轨道上时起到了决定性作用,成为捷联式惯导系统发展中的一个里程碑。 捷联式惯性导航(strap-downinertialnavigation),捷联(strap-down)的英语原义是“捆绑”的意思。因此捷联式惯性导航也就是将惯性测量元件(陀螺仪和加速度计)直接装在导弹需要诸如姿态、速度、航向等导航信息的主体上,用计算机把测量信号变换为导航参数的一种导航技术。 一、捷联惯导系统工作原理及特点 惯导系统基本工作原理是以牛顿力学定律为基础,通过测量载体在惯性参考系的加速度,将它对时间进行积分,之后将其变换到导航坐标系,得到在导航坐标系中的速度、偏航角和位臵信息等。 捷联惯导系统(SINS)是一种无框架系统,由三个速率陀螺、三个线加速度计和微型计算机组成。由于惯性元器件有固定漂移率,会造成导航误差,因此导弹通常采用指令、GPS或其组合等方式对惯导进行定时修正,以获取持续准确的位臵参数。如采用指令+捷联式惯导 捷联惯导系统能精确提供载体的姿态、地速、经纬度等导航参数,是利用惯性敏感器、基准方向及最初的位臵信息

来确定运载体的方位、位臵和速度的自主式航位推算导航系统。在工作时不依赖外界信息,也不向外界辐射能量,不易受到干扰破坏。它完全是依靠载体自身设备独立自主地进行导航,它与外界不发生任何光、声、磁、电的联系,从而实现了与外界条件隔绝的假想的“封闭”空间内实现精确导航。所以它具有隐蔽性好,工作不受气象条件和人为的外界干扰等一系列的优点。 除此以外捷联惯导系统的最大特点是没有实体平台,即将陀螺仪和加速度计直接安装在机动载体上,在计算机中实时的计算姿态矩阵,通过姿态矩阵把导航加速度计测量的载体沿机体坐标系轴向的加速度信息变换到导航坐标系,然后进行导航计算。同时,从姿态矩阵的元素中提取姿态和航向信息.由此可见,在捷联惯导系统中平台的作用已由计算机及其软件的作用代替了,捷联式惯导系统采用的是数学平台。力学编排就是按照合适的数学模型由观测量计算出导航定位参数。具体地讲,利用陀螺仪测得的载体相对于惯性参照系的旋转角速度,计算出载体坐标系至导航计算坐标系之问的坐标转换矩阵;将测量的比力(加速度计测量载体相对于惯性空间的线加速度)变换至导航坐标系,并经过两次积分得到所需的速度位臵信息。 二、捷联惯导系统有以下独特优点: (1)去掉了复杂的平台机械系统,系统结构极为简单,

惯性导航技术的工作原理

惯性导航系统基本工作原理 惯性导航系统是十分复杂的高精度机电综合系统,只有当科学技术发展到一定高度时工程上才能实现这种系统,但其基本工作原理却以经典的牛顿力学为基础。 设质量m受弹簧的约束,悬挂弹簧的壳体固定在载体上,载体以加速度a 作水平运动,则m处于平衡后,所受到的水平约束力F与a的关系满足牛顿第二 定律: F a m =。测量水平约束力F,求的a,对a积分一次,即得水平速度,再 积分一次即得水平位移。以上所述是简单化了的理性情况。由于运载体不可能只作水平运动,当有姿态变化时,必须测得沿固定坐标系的加速度,所以加速度计必须安装在惯性平台上,平台靠陀螺维持要求的空间角位置,导航计算和对平台的控制由计算机完成。 陀螺仪组件测取沿运载体坐标系3个轴的角速度信号,并被送入导航计算机,经误差补偿计算后进行姿态矩阵计算。加速度计组件测取沿运载体坐标系3个轴的加速度信号,并被送入导航计算机,经误差补偿计算后,进行由运载体坐标系至“平台坐标系”的坐标变换计算。他们沿机体坐标系三轴安装,并且与机体固连,它们所测得的都是机体坐标系下的物理量。 参与控制和测量的陀螺和加速度计称为惯性器件,这是因为陀螺和加速度计都是相对惯性空间测量的,也就是说加速度计输出的是运载体的绝对加速度,陀螺输出的是运载体相对惯性空间的角速度或角增量。而加速度和角速度或角增量包含了运载体全部的信息,所以惯导系统仅靠系统本身的惯性器件就能获得导航用的全部信息,它既不向外辐射任何信息,也不需要任何其他系统提供外来信息,就能在全天候条件下,在全球范围内和所有介质环境里自主、隐蔽的进行三维导航,也可用于外层空间的三维导航。 惯导系统的比力方程 惯导系统根据与系统类型相应的数学方程(称之为力学编排)对惯性器件的输出作处理,从而获得导航数据。尽管各种类型的系统相应的力学编排各不相同,但他们都源自同一个方程:比力方程。比力方程描述了加速度计输出量与运载体速度之间的解析关系: 式中: eT v为运载体的地速向量;f为比力向量,是作用在加速度计质量块 单位质量上的非引力外力,由加速度计测量;g为重力加速度; ie ω为地球自转

惯导(惯性导航系统)

惯导(惯性导航系统) 概述 惯性导航系统(INS,以下简称惯导)是一种不依赖于外部信息、也不向外部辐射能量的自主式导航系统。其工作环境不仅包括空中、地面,还可以在水下。惯导的基本工作原理是以牛顿力学定律为基础,通过测量载体在惯性参考系的加速度,将它对时间进行积分,且把它变换到导航坐标系中,就能够得到在导航坐标系中的速度、偏航角和位置等信息。 惯性导航系统(英语:INS)惯性导航系统是以陀螺和加速度计为敏感器件的导航参数解算系统,该系统根据陀螺的输出建立导航坐标系,根据加速度计输出解算出运载体在导航坐标系中的速度和位置。 运用领域 现代惯性技术在各国政府雄厚资金的支持下,己经从最初的军事应用渗透到民用领域。惯性技术在国防装备技术中占有非常重要的地位。对于惯性制导的中远程导弹,一般说来命中精度70%取决于制导系统的精度。对于导弹核潜艇,由于潜航时间长,其位置和速度是变化的,而这些数据是发射导弹的初始参数,直接影响导弹的命中精度,因而需要提供高精度位置、速度和垂直对准信号。目前适用于潜艇的唯一导航设备就是惯性导航系统。惯性导航完全是依靠运载体自身设备独立自主地进行导航,不依赖外部信息,具有隐蔽性好、工作不受气象条件和人为干扰影响的优点,而且精度高。对于远程巡航导弹,惯性制导系统加上地图匹配技术或其它制导技术,可保证它飞越几千公里之后仍能以很高的精度击中目标。惯性技术己经逐步推广到航天、航空、航海、石油开发、大地测量、海洋调查、地质钻控、机器人技术和铁路等领域,随着新型惯性敏感器件的出现,惯性技术在汽车工业、医疗电子设备中都得到了应用。因此惯性技术不仅在国防现代化中占有十分重要的地位,在国民经济各个领域中也日益显示出它的巨大作用。

捷联式惯导系统初始对准

捷联式惯导系统初始对准 惯性技术是惯导(惯性导航与惯性制导)技术、惯性仪表技术、惯性测量技术以及有关设备和装置技术的统称。惯性导航与惯性制导是当今非常重要的综合技术之一,它广泛用于航空、航海、航天及陆地各领域。惯性导航系统是和用陀螺与加速度计通过最初的方向基准和位置信息来确定运载体在一特定坐标系内的姿态、位置、速度和加速度的自主式导航系统。惯性制导系统是利用运载体内部的陀螺、加速度计测量其运动参数,经过计算机发出控制指令,从而把运载体按照预定的路线准确地引导到目的地的制导系统。自主性是惯性系统最重要的特点。确定运动对象导航参数的方法和仪器有许多,例如磁、天文、无线电、水声、全球卫星定位系统等等,然而它们都有一个致命的弱点,即不是自主的,不是要向外界发出信息,就是要依赖对外观测信息,而惯性系统与上述诸方法的基本区别就在于是完全自主的,即导弹、潜艇、飞船等可以在一个完全与外界条件以及电磁波隔绝的假想“封闭”空间内实现精确导航。因此,惯导系统具有隐蔽性好、抗干扰、不受任何气象条件限制的优点,且数据更新速率高,可以提供连续实时的导航参数。 惯性系统在国防科学技术中占有非常重要的地位,因而是世界各工业强国重点发展的技术领域之一。随着惯性技术的不断发展,许多国家已将其应用领域扩大到现代化交通运输,海洋开发,大地测量与勘探,石油钻井,矿井、隧道的掘进与贯通,机器人控制,现代化医疗器械,摄影技术以及森林防护,农业播种、施肥等民用领域。惯性技术的发展表明:从传统的机械转子型陀螺向固态陀螺仪(激光、光纤陀螺仪)转移,并进一步向以半导体硅为基本材料的微机械振动陀螺发展;从框架式平台系统向捷联系统转移,从纯惯性捷联系统向以惯性系统为基础的多体制组合导航系统发展,成为今后惯性技术发展的总趋势。 捷联式惯性导航系统,导航用的加速度计是直接捆绑在运载体上,它测量的是运载体坐标系轴向比力,只要把这个比力转换到惯性坐标系上,则其他计算就和空间稳定的平台式惯性导航系统一样,而比力转换的关键就是要实时地进行姿态基准计算来提供数学平台,即实时更新姿态矩阵b C,有些资料上称姿态矩阵 g 为捷联矩阵或方向余弦矩阵b C。一般选择地理坐标系为导航坐标系,那么捷联 g 矩阵也可表示为i C,其导航原理图如下所示: g

2捷联惯性导航系统初始对准原理

第二章 捷联惯导系统的初试对准 2.1引言 惯导系统是一种自主式导航系统。它不需要任何人为的外部信息,只要给定导航的初始条件(例如初始速度、位置等),便可根据系统中的惯性敏感元件测量的比力和角速率通过计算机实时地计算出各种导航参数。由于“平台”是测量比力的基准,因此“平台”的初始对准就非常重要。对于平台惯导系统,初试对准的任务就是要将平台调整在给定的导航坐标系的方向上。若采用游动方位系统,则需要将平台调水平---称为水平对准,并将平台的方位角调至某个方位角处---称为方位对准。对于捷联惯导系统,由于捷联矩阵T 起到了平台的作用,因此导航工作一开始就需要获得捷联矩阵T 的初始值,以便完成导航的任务。显然捷联惯导系统的初始对准就是确定捷联矩阵的初始值。在静基座条件下,捷联惯导系统的加速度计的输入量为---b g ,陀螺的输入量为地球自转角速率b ie ω。因此b g 与 b ie ω就成为初始对准的基准。将陀螺与加速度计的输入引出计算机,通过计算机 就可以计算出捷联矩阵T 的初始值。 由以上的分析可以看出,陀螺与加速度计的误差会导致对准误差;对准飞行器的干扰运动也是产生对准误差的重要因素。因此滤波技术对捷联系统尤其重要。由于初始对准的误差将会对捷联惯导系统的工作造成难以消除的影响,因此研究初始对准的误差传播方程也是非常必要的。 2.2 捷联惯导系统的基本工作原理 捷联式惯性导航系统,陀螺仪和加速度计直接与载体固联,加速度计测量是载体坐标系轴向比力,只要把这个比力转换到导航坐标系上,则其它计算就与平台式惯性导航系统一样,而比力转换的关键就是要实时地进行姿态基准计算来提供数学平台,即实时更新姿态矩阵n b C ,姿态矩阵也称为捷联矩阵。一般选择地理坐标系为导航坐标系,那么捷联矩阵n b C 也可表示为t b C , 其导航原理图如图2.1所示。

捷联惯导系统快速罗经初始对准方法研究

捷联惯导系统快速罗经初始对准方法研究1 严恭敏1,严卫生1,2,徐德民1,2 1西北工业大学航海学院,西安(710072) 2水下信息处理与控制国家级重点实验室,西安(710072) E-mail:yangongmin@https://www.wendangku.net/doc/638102183.html, 摘要:在分析平台罗经初始对准原理基础上,提出了捷联罗经初始对准的原理并推导了适合于软件编程的算法。将捷联罗经对准的具体实现划分为四个阶段:方位角未知情况下的水平对准、粗略方位自对准、重新水平对准和罗经方位对准,通过对大方位误差角捷联惯导非线性误差方程的简化,推导了粗略方位自对准的算法公式。如果导航计算机存储容量足够大并且计算能力足够强,根据捷联惯导系统数学平台多样性和可进行逆向姿态控制的特点,设计了一种用于缩短捷联罗经初始对准时间的具体步骤。最后,试验表明快速捷联罗经对准方案是有效的。 关键词:捷联惯导系统,罗经效应,初始对准,逆向控制 中图分类号:V249.3 1. 引言 平台惯导系统罗经初始对准过程通常可分为两步,先是水平调平,然后是方位对准。方位对准在水平调平的基础上进行,一般采样罗经方位对准方法。方位罗经对准利用的是罗经效应,也就是,在正确的平台跟踪当地地理坐标系的角速率控制指令下,如果平台存在方位轴向的偏差角,平台将产生绕东向轴的倾斜,该倾斜能由北向加速度计感测到,利用北向加速度计的输出并设计适当的控制规律,控制平台方位轴朝减小方位偏差方向转动,实现平台自动寻北。捷联惯导系统初始对准通常可分为粗对准和精对准两个阶段:在粗对准阶段,利用地球自转角速度和重力加速度作为参考量,通过惯性器件的测量输出建立粗略的导航计算坐标系;在精对准阶段,通过现代控制理论最优估计方法估计出失准角,获得准确的姿态矩阵[1,2]。 捷联惯导系统经典解析式粗对准方法难以适应晃动干扰环境,有不少文献研究了晃动基座下的初始对准问题并且也出现一些应用实例,激光陀螺和光纤陀螺的发展和不断成熟为捷联罗经的研究注入了新的活力[3-6]。从本质上说,捷联惯导系统与平台惯导系统是相同的,前者以数学平台(利用姿态矩阵、四元数或欧拉角等数学工具)模拟后者的实体平台,描述捷联惯导系统相对于参考坐标系的空间方位。平台惯导系统中实体平台具有隔离外界干扰的作用,因而平台罗经能够实现晃动基座下的初始对准,同理,在捷联惯导系统初始对准中也可以根据平台罗经初始对准的特点,建立相应的数学平台隔离晃动影响。经典控制理论与现代最优估计方法相比,前者的优点之一是勿需精确的数学模型与噪声模型,应用经典控制理论进行罗经对准的设计方法已经非常成熟,为捷联罗经对准方案设计提供了大量的参考,然而初始对准时间长是平台罗经的一大缺点。快速初始对准是国内在捷联罗经对准方法研究中亟待解决的一个主要问题,该问题在某些西方国家已得到较好解决,例如法国iXSea公司的OctansIII型光纤陀螺罗经在动态环境下,能在3min内完成初始对准,达到0.2o×sec(L)的精度[5],成为捷联罗经研究与应用中的佼佼者,它为我们的研究和工程开发目标提供了参考。 本文从分析平台罗经初始对准的原理出发,提出了捷联罗经初始对准的原理并推导了便于软件编程的算法,通过对大方位误差角捷联惯导非线性误差方程的简化,推导了粗略方位 1本课题得到水下信息处理与控制国家级重点实验室基金(9140C230206070C2306)的资助。

相关文档
相关文档 最新文档