文档库 最新最全的文档下载
当前位置:文档库 › 某商用车白车身结构静强度分析

某商用车白车身结构静强度分析

某商用车白车身结构静强度分析
某商用车白车身结构静强度分析

某商用车白车身结构静强度分析

本论文依据有限元的基本理论,建立某型商用车白车身有限元模型,并在通用有限元分析系统MSC.Patran/Nastran中进行白车身结构的弯曲、单边扭曲、全扭曲三种工况的静态强度分析。

0 前言

从2000年法兰克福国际商用车展到2009年第37届美国中部卡车展,商用车(尤其是重型卡车)在国际主流车市上凸显强劲的增长势头和市场占有率。驾驶室作为商用车辆的一个主要产品总成,由于它是造型和结构功能的有机结合体,同时也是驾驶员和乘员工作和休息的空间,因此它在整车中体现出共性的技术应用和独有的发展特征。

本论文某型商用车驾驶室白车身作为研究对象,首先对白车身结构几何进行网格划分,检查网格划分质量,建立精确的有限元分析模型;进而基于此模型,施加适当约束,使用MSC.Patran/Nastran对白车身结构进行弯曲、单边扭曲、全扭曲等不同工况的静态强度仿真分析。

1 白车身有限元模型的建立

驾驶室白车身含有零件数目众多,并且常含有复杂的曲面,用网格准确描述其几何特征的难度较高,复杂的曲面会产生许多网格上的问题,如单元畸变、网格细小、网格失真等诸多问题。对数目繁多、曲面复杂的零部件划分高质量的网格工作量大、难度高。除此之外,白车身各个部件之间是通过焊接连接起来的,两部件在焊接处具有完全相同的自由度,为刚性连接,可用一维rigid单元模拟表示。在整个白车身模型中焊点多达上万个,需利用rigid 面板在焊点位置逐个施加。并且焊点与焊点、焊点与约束之间很容易出现过约束的情况。

文中将网格的检查标准设为Jacobin=0.6、aspect ratio=5、warpage=15°、skew=40°、min-angle=30°、max angle=120°,经检查后,不合格网格数为162个,网格失效百分比为0.0%,整体上网格的形状较为理想,网格质量较高,为计算结果的准确性提供了一个必要条件。图1为白车身整车的有限元模型。

点击图片查看大图

图1 白车身整车的有限元模型

2 白车身弯曲工况下的静强度分析

弯曲工况模拟白车身两前轮同时着地时,主副驾驶员重力、卧铺人员重力以及车身自重对白车身产生静态弯曲作用的情况。

载荷的分布如图2,驾驶座的重力均布于四个连接座椅的部件上,主副驾驶座受力均为1000N。卧铺人员的重力均布于卧铺板,合力为1000N。

点击图片查看大图

图2 弯曲工况载荷分布

约束的分布如图3,前面两处约束表示车身与两个前轮的连接,因为前轮始终着地,需限制Z方向的自由度;后面两处约束表示车身与车架的连接,限制了X、Y、Z三个方向的自由度,表示节点位置固定。

点击图片查看大图

图3 弯曲工况约束分布

图4左图为经静态分析后的白车身整体应力云图,最大应力为148MPa,但应力数值偏大。右图为主后杠为应力偏大的主要部件,主要集中在与车架连接的位置。

点击图片查看大图

图4 弯曲工况静态分析后的应力云图

2 白车身单边弯曲工况下的静强度分析

单边扭曲工况模拟白车身两前轮中主驾驶轮跳到悬空时,主驾驶员重力对白车身产生静态单边扭曲作用的情况。

单边扭曲工况主驾驶轮悬空,副驾驶轮着地,前副驾驶轮处存在约束,限制Z方向的自由度;后面两处约束表示车身与车架的连接,同样限制了X、Y、Z三个方向的自由度,约束节点位置固定。单边扭曲工况仅受主驾驶室处的重力,主驾驶员的重力均布于两个连接座椅的部件加载到车身上,主驾驶座处受扭力为1000N。

经Nastran分析后,与https://www.wendangku.net/doc/6713356073.html,/zsjm/弯曲工况类似,主后杠仍是主要应力部件,最大应力达210MPa超过屈服极限,其余部件的最高应力为90MPa,符合强度理论的要求。图5为单边扭曲静态分析的应变云图,最大应变为2.29mm。

点击图片查看大图

图5 单边扭曲工况静态分析应变云图

3 白车身全扭曲工况的静强度分析

全扭曲工况模拟白车身两前轮均悬空时,主副驾驶座上相对反向的作用力对白车身产生静态全扭曲作用的情况。此工况两前轮均悬空,车身前端两个与前轮连接位置均无约束;后端两处约束表示车身与车架的连接,同样限制了X、Y、Z三个方向的自由度,约束节点位置固定。

全扭曲工况主驾驶座从下至上均布于两个连接座椅的部件上施加了1000N的力,副驾驶座从上至下均布于两个连接座椅的部件上施加了1000N的力。经Nastran分析后,主后杠仍为主要应力部件,最大应力达403MPa,不仅超过材料屈服极限,而且超过了材料抗拉极限。图6为全扭曲静态分析的应变云图,最大变形为19.13mm。

点击图片查看大图

图6 全扭曲工况静态分析应变云图

4 小结

文中首先建立了某型商用车白车身的精确有限元模型,确定了合理的网格划分和精确的约束施加位置,并对其在三种不同工况下的静强度进行了分析。通过上述的分析,可以得到不同工况下白车身结构的应力和应变值,并能够准确判断应力较大区域。经比较,白车身结

构具有较大的优化空间。

白车身结构强度分析报告

目录 1.分析目的 (1) 2.使用软件说明 (1) 3.模型建立 (1) 4 边界条件 (3) 5.分析结果 (3) 6.结论 (21)

1.分析目的 白车身结构的静强度不足则会引起构件在使用过程中出现失效。本报告采用有限元方法对**白车身分别进行了满载、 1g制动、0.8g转弯、右前轮抬高150mm、左后轮抬高150mm、右前轮左后轮同时抬高150mm,6种工况的强度分析,观察整车受力状况,找出高应力区,考察其零部件的强度是否满足要求,定性地评价**白车身的结构设计,并提出相应建议。 2.使用软件说明 本次分析采用HyperMesh作前处理,Altair optistruct求解。HyperMesh是世界领先的、功能强大的CAE应用软件包,也是一个创新、开放的企业级CAE平台,它集成了设计与分析所需的各种工具,具有无与伦比的性能以及高度的开放性、灵活性和友好的用户界面,与多种CAD和CAE软件有良好的接口并具有高效的网格划分功能;Altair Optistruct 是一个综和隐式和显示求解器与一体的大规模有限元计算软件,几乎所有的线性和非线性问题都可以通过其进行求解。通过Altair Optistruct可以进行任何形状、尺寸、拓扑结构的优化,采用固定的内存分配技术,具有很高的计算精度和效率。 3.模型建立 对车身设计部门提供的**白车身CAD模型进行有限单元离散,CAD模型以及有限元模型如图3.1所示。白车身所有零部件均采用板壳单元进行离散,并尽量采用四边形板壳单 图3.1 **白车身CAD以及有限元模型 单元类型四边形单元三角形单元 单元数目46970015543 三角形单元比例 3.4% 焊接模拟Rbe单元及实体单元 涂胶模拟实体单元 单元质量良好

铁路客车车体钢结构设计技术(精)

铁路客车车体钢结构设计技术 作者杜彦品 内容提要:本文叙述了铁路客车车体钢结构的特点及分类,重点介绍了25型客车碳钢车体钢结构的组成部分、结构设计及主要技术要求,对铁路客车车体钢结构材料的选用及结构设计将有积极的帮助。 ※※※ 1概述 车体钢结构是铁路客车最基本的结构,为铁路客车走行部、制动装置、连接缓冲装置、车辆内部设备以及内装提供了安装的空间和基础。新造25型客车车体钢结构为碳钢车体全钢焊接结构,由底架、侧墙、车顶和端墙等四部分焊接而成,俗称薄壁筒形车体结构。目前我国的新造25型车有两种承载结构:一种是无中梁薄壁筒型整体承载结构,另一种是有中梁薄壁筒型整体承载结构(如行李车和邮政车。随着车辆的用途和生产工艺条件的不同,各种25型客车的结构不全相同,但其外形尺寸和结构形式则基本一致。 2 车体结构的分类 车体结构按车体所用材料分为以下三种: 碳素结构钢车体——我国新造25型客车车体; 不锈钢车体——我公司正在研制的200km/h客车车体, CRH1“和谐号”动车组的车体; 铝合金车体——部分地铁车体、CRH2、CRH3、CRH5“和谐号”动车组的车体。 3 车体钢结构组成

车体钢结构按部位可分为四个大部件:底架钢结构、侧墙钢结构、车顶钢结构、端墙钢结构。车钩缓冲装置、风挡、脚蹬等安装在大部件上。现就YZ25G(T 型硬座车(无中梁薄壁筒型整体承载结构和XL25G型行李车(有中梁薄壁筒型整体承载结构来详细说明车体钢结构的构造和特点。YZ25G硬座车车体钢结构如图1所示。 4 底架钢结构 4.1 底架结构组成 底架钢结构由端牵枕、枕内横梁、枕外横梁、枕后纵向梁、侧梁、枕外铁地板和枕内波纹地板等组成,如图2所示。 端牵枕分为端梁、牵引梁和枕梁,如图3所示。 4.2 底架结构设计 4.2.1 端梁 端梁由6mm厚钢板压制而成,断面为“[”,YZ25G型硬座车端梁高400mm靠近侧梁处高180mm,称为“转角”。在转角下翼面焊有3mm的围板,围板可以在端部遮挡脚蹬,起到美观的作用。在端梁中部开有安装车钩用的缺口,宽度为345mm,俗称“钩门”。YZ25T型硬座车端梁高度为458mm,钩门的宽 度尺寸为790mm,端梁在钩门处与牵引梁相互组焊。 4.2.2 牵引梁 自枕梁到端梁间的中梁称为牵引梁,YZ25G型硬座车牵引梁由两根30b型槽钢及牵引梁上下盖板组焊而成。其上盖板厚4mm,宽464mm,下盖板厚8mm,宽 490mm。为了符合在牵引梁腹板间安装车钩和缓冲器的尺寸要求,两槽钢腹板间距为350mm,并将牵引梁靠近端梁的一端加高到400。在牵引梁两槽钢腹板内侧铆接有前后从板座、焊有磨耗板和防跳板。YZ25T型硬座车牵引梁由两根8mm的钢板

160kmh欧标内燃动车组车体钢结构研究

160kmh欧标内燃动车组车体钢结构研究 摘要:本文介绍了160km/h内燃动车组车体钢结构的主要技术参数、车体钢结构组成以及主要部件所采取的新的设计理念及特点等。并进行了结构强度分析,分析表明车体结构设计满足相应标准要求。 关键词:160km/h欧标内燃动车组;车体钢结构;强度校核;有限元 中图分类号:U270.32 文献标识码:A 文章编号:1671-2064(2018)15-0059-02 1 概述 随着铁道交通装备工程实践的推进,我国铁道车辆研发水平和制造能力的进一步提升,铁道车辆技术储备不断完善,并逐步扩展了国外市场,为实现铁路交通引领世界的目标奠定了基础[1-2]。但不同国家的列车具有不同的运行环境,如编组形式,定员特点,线路条件等等,设计列车需要与之相适应的系统构造和结构形式[3]。本文介绍160km/h欧标内燃动车组车体钢结构的设计与强度校核情况,为相应新型列车设计和既有列车改进提供参考。 160km/h欧标内燃动车组(以下简称动车组)项目是中国中车唐山机车车辆有限公司为满足欧盟TSI认证而进行研究的内燃动车组项目,用动车―拖车―动车3辆车编组方式,

运行环境满足EN 50125-1,线路选择意大利米兰-都灵的线路运用环境。公司按照TSI认证要求,制定了顶层设计指标。在该指标的指导下,综合限界要求、编组方式和定员特点等多因素,进行了车体钢结构的设计,并进行了强度校核和相应部分的结构优化设计,且完成了车体钢结构的模态分析,最终形成了该动车组的车体钢结构方案。 根据《TSI通用技术规范》(以下简称规范)要求,车体钢结构强度按照EN12663-1-2010《铁路应用铁路车辆车体结构要求》中P-II类的载荷规定;车体的耐碰撞性能设计及校核按照EN15227《车辆被动性安全设计》中C-I类的规定,司机室钢结构的强度按照UIC651-2002《机车、动车、动车组和带司机室拖?的司机室布置》中的载荷工况的规定设计。 2 主要技术参数 主要技术参数表1所示。 3 主要特点 本列车研发结合规范要求,结合了我国先进技术,其主要技术特点:(1)模块化设计。采用模块化设计是当今车辆的先进技术之一,为便于各个接口部位的统一,阿根廷内燃动车组采用模块化设计理念,减少了各大部件的附件的数量,零件要求尽量统一,工艺性好,生产率得到进一步提高。(2)顶置式动力包放置。以往碳钢内燃动车组车顶放置空调等设备,相比于动力包,空调重量较轻,欧标车体考虑当

汽车 车身结构CAE 分析报告

BODY CAE Loadcase Description 1. BIW 1.1 BIW static bending stiffness 1) Model setup The model comprises BIW with CMS front (in blue), front sub frame (in red), CMS rear (in yellow). 2) Load and constraints The force Fz creats a total of 4000N, and applied at the H points. Constraints location: 1) Middle of the crash beam; 2) Front suspension supports; 3) Rear subframe mouting points on the side member 3) Software Nastran. 4) Targets The bending rocker stiffness is 11 200N/mm. 5) Post Calculation of deflection from vertical displacement indicated by reading points at 4000N: w i=A,B = max. vertical displacement of reading points A and B (on rocker); ? ? ? ??+++-??? ??+=42F E D C B A w w w w w w f

汽车白车身设计规范

汽车白车身设计规范 1. 范围 本标准归纳了[BIW]白车身结构设计的一些基本方法和注意事项。 本标准适用于长春宇创公司白车身结构设计及检查。 2. 基本原则 2.1白车身设计是一个复杂的系统并行设计过程,要彻底地摒弃孤立地单个零件设计方法,任何一个 零件只是其所处在的分总成的一个零件,设计时均应考虑其与周边相关零部件的相互关系。 评注:周边造型匹配[面差、分缝影响外观];周边安装匹配[焊接装配、安装件的连接、安装空间] 2.2任何一种车型的白车身结构均可按三层板的设计思想去构思结构设计,即最外层是外板,最内层是内板,中间是加强板,在车身附件安装连接部位应考虑设计加强板。 评注:结构的强度、刚度与横截面积有关系,与周边的展开的周长也有关系,“红旗3”轿车的一个 宣传点就是其前防撞横梁为六边型。 2.3所设计的白车身结构在满足整车性能上、结构上、四大工艺[冲压工艺、焊接工艺、涂装工艺、 总装工艺]是否比参考样车或其他车型更优越,是否符合国内(尤其是客户)的实际生产状况,以便预先确定结构及工艺的改良方案。 2.4白车身在结构与性能上应提供车身所需的承载能力,即强度和刚度要求。 3. 冲压工艺要求 3.1在设计钣金件时,对于影响拉延成型的圆角要尽可能放大,原则上内角R>5,以利于拉延成型; 对于折弯成型的圆角可以适当放小,原则上 R- 3即可,以减小折弯后的回弹。 1)板件最小弯曲半径 最小弯曲半径见下表:

h 》R+2t 。见上表。 R 中心的距离L 不得过小,其值L >2t 。见上表。 5)凸部的弯曲 避免如a 图情形的弯曲,使弯曲线让开 阶梯线如图 r >2t n=r m >2t k >1.5t L b ,或设计切口如c 、d 。 >t+R+k/2 孔径 如) 最大倾斜角度9 6罚 612 BWlh 2) 弯曲的直边高度不宜过小,其值 3) 弯曲边冲孔时,孔边到弯曲半径 4) 圆角弯曲处预留切口。 3.2在设计钣金件时,考虑防止成型时起皱,应在适当的地方(如材料聚集处)布置工艺缺口,或布 置工艺凸台、筋。 3.3孔与孔,孔与边界距离应大于 2t ,若在圆角处冲孔,孔与翻边的距离应大于 R+2t 。 拉深件或弯曲件冲孔的合适位置开孔时尽量不要开在倒角面上,以避免模具刃口早期磨损。 正冲孔孔径与最大倾斜角

白车身结构强度分析报告

广告: 一、整车碰撞分析教程视频,语音讲解,内容有: 1、软件基础操作 2、网格划分 3、材料属性(主要教大家引用材料硬化曲线) 4、整车模型装配(给零件附材料属性,二保焊,点焊,螺栓链接,球铰,柱铰,胶粘) 5、接触设置(防止变形过大网格穿透) 6、输出设置(布置传感器,检测碰撞过程中力,速度,加速度等信息) 7、提交计算(这个过程会遇到很多错误,需要调试,解决错误的能力是需要不断累积的)8后处理(查看变形动画,输出接触力,速度,加速等主要参数,查看乘员仓,踏板入侵,门框变形)。 8、结构、模态分析计算及查看变形应变应力云图。 资料包括6.2小时语音讲解,手把手教,赠送三辆整车碰撞模型(搭建好的,可直接提交计算)、假人模型、安全气囊、车企分析报告。 二、车架刚度强度模态分析教程(视频),手把手教。 三、ansa视频教程,画面高清,有语音2个小时详细讲解。 1、详细介绍了软件基本操作 2、几何处理所用到的命令 3、网格优化所用到的命令讲解 4、如何模拟缝焊(节点对齐) 5、简单实体网格划分 6、简单介绍约束和加载 7、总结前面命令使用方法 讲解很详细,没有基础的也可学会,工作多年所用到网格的命令都讲解清楚了,是大家不可或缺的学习帮手。 四、整车相关零部件分析培训,根据相关cae标准进行刚度、强度、模态分析(abaqus、nastran、ls-dyna),分析目的、分析流程、分析报告写法,修改意见。详细可咨询本人。 赠送:ansa15.0软件,ls-dyna求解器软件。 如若需要hypermesh画网格教程(视频+文档),可免费提供资料及解答。 可赠送abaqus、nastran、ls-dyna相关资料。 可提供整车网格画法答疑。 联系本人QQ:2422890367

25型客车车体结构

2型客车车体结 一、车体结构特点 25型客车车体钢结构为全钢焊接结构,由底架、侧墙、车顶和端墙等四部分焊接而成。在侧墙、端墙、车顶钢骨架外面,在底架钢骨架的上面分别焊有侧墙板、端墙板、车顶板和纵向波纹地板及平地板,形成一个上部带圆弧,下部为矩形的封闭壳体,俗称薄壁筒形车体结构。壳体内面或外面用纵向梁和横向梁、柱加强,形成整体承载的合理结构。 二、车体各部分构成 1996年以后生产的25型硬座车车体钢结构,如图1所示。 1、底架底架由牵引梁、枕梁、缓冲梁、下围梁(或称下侧梁)、枕梁间的纵向金属波纹地板及枕外金属平地板等组成。如图2所示。 底架自上心盘中心到缓冲梁间的中梁称为牵引梁,由两根30a型槽钢及牵引梁上下盖板组焊而成。缓冲梁由6mm厚钢板压制而成的槽形断面。枕梁、缓冲梁与牵引梁组成的结构被称为牵枕缓结构,如图3所示。 由于两枕梁间无贯通的中梁,因而作用于底架上的纵向拉压力均由波纹地板和底架侧梁来承担。由车体钢结构静强度试验表明,纵向波纹地板能承受三分之一以上的总纵向拉伸或压缩力,这种结构的底架称为无中梁底 架。. 图1 硬座车车体钢结构 1—底架钢结构;2—侧墙钢结构;3—车顶钢结构;4—端墙钢结构; 5—风挡;6—一、四位翻板安装;7—二、三位翻板安装;8—脚蹬组成; 水箱吊梁—12横梁;—11水箱横梁;—10钩缓装置;—

9. 图2 底架 1—缓冲梁;2—牵引梁;3—端梁;4—枕梁;5—侧梁;6—枕外横梁; 加强板—10纵向梁;—9纵向加强梁;—8横梁;—7. 图3 底架牵枕缓组成 1—枕梁组成;2—缓冲梁组成;3—牵引梁组成;4、5、6—补强板;7—冲击座;8—上心盘;9、10—铆钉 2、侧墙25型客车车体钢结构的侧墙外表面为平板无压筋,在理整的外墙板内侧

新能源汽车特拉斯车身结构材料分析报告

新能源汽车特斯产车身结构材料分析报告

目录 1.车身结构的组成构件 (5) 1.1汽车结构件 (5) 1.2汽车加强件 (5) 1.3汽车覆盖件 (6) 1.3.1发动机盖 (6) 1.3.2翼子板 (7) 1.3.3保险杠 (7) 1.3.4车顶盖 (7) 1.3.5车门 (8) 1.3.6行李箱盖 (8) 2.97%全铝车身,实现极致轻量化 (8) 2.1全铝车身简介 (8) 2.2特斯拉Model S的铝合金结构件 (9) 2.2.1悬挂系统采用镂空锻造铝合金 (10) 2.2.2罕见的铸铝横梁 (11) 2.2.3汽车覆盖件 (11) 2.2.4铝合金制轮毂 (11) 2.3全铝车身“鼻祖”——奥迪ASF车身主要参数 (11) 3.关键区域的高强度钢应用提高乘员安全 (12) 3.1高强度硼钢加固 (12) 3.2汽车防撞梁 (13) 4.特斯拉其他材料使用情况 (13) 5.投资建议 (13) 6.风险提示 (13)

图目录 图1汽车结构件示意图 (5) 图2汽车加强件示意图 (6) 图3汽车覆盖件示意图 (6) 图4发动机盖结构示意图 (7) 图5发动机盖与前翼子板结构示意图 (7) 图6汽车前后保险杠示意图 (7) 图7汽车车门结构示意图 (8) 图8奥迪A8全铝车身 (9) 图9汽车“白车身”——结构件示意图 (9) 图10特斯拉全铝车身 (10) 图11特斯拉Model S悬挂系统 (11) 图12奥迪A8(D5)车身结构材料示意图 (12)

表目录 表1奥迪A8系列白车身重量 (12) 表2特斯拉MODEL S前后防撞梁强度表(MPa) (13) 表3特斯拉MODEL S其他关键构件所用材料 (13)

白车身结构强度分析报告

百度文库- 让每个人平等地提升自我 编号:********** 白车身结构强度分析报告 项目名称: 编制:日期: 校对:日期: 审核:日期: 批准:日期: xx汽车有限公司 2013年04月

目录 1.分析目的 (1) 2.使用软件说明 (1) 3.模型建立 (1) 4 边界条件 (3) 5.分析结果 (3) 6.结论 21

1.分析目的 白车身结构的静强度不足则会引起构件在使用过程中出现失效。本报告采用有限元方法对**白车身分别进行了满载、1g制动、转弯、右前轮抬高150mm、左后轮抬高150mm、右前轮左后轮同时抬高150mm,6种工况的强度分析,观察整车受力状况,找出高应力区,考察其零部件的强度是否满足要求,定性地评价**白车身的结构设计,并提出相应建议。 2.使用软件说明 本次分析采用HyperMesh作前处理,Altair optistruct求解。HyperMesh是世界领先的、功能强大的CAE应用软件包,也是一个创新、开放的企业级CAE平台,它集成了设计与分析所需的各种工具,具有无与伦比的性能以及高度的开放性、灵活性和友好的用户界面,与多种CAD和CAE软件有良好的接口并具有高效的网格划分功能;Altair Optistruct是一个综和隐式和显示求解器与一体的大规模有限元计算软件,几乎所有的线性和非线性问题都可以通过其进行求解。通过Altair Optistruct可以进行任何形状、尺寸、拓扑结构的优化,采用固定的内存分配技术,具有很高的计算精度和效率。 3.模型建立 对车身设计部门提供的**白车身CAD模型进行有限单元离散,CAD模型以及有限元模型如图所示。白车身所有零部件均采用板壳单元进行离散,并尽量采用四边形板壳单元模 图**白车身CAD以及有限元模型 单元类型四边形单元三角形单元 单元数目46970015543 三角形单元比例% 焊接模拟Rbe单元及实体单元 涂胶模拟实体单元 单元质量良好 强度分析模型质量按整车满载质量计算,其中的白车身附加质量(见表)用质量点单

铁路客车车体钢结构设计技术

铁路客车车体钢结构设计技术 作者 杜彦品 内容提要:本文叙述了铁路客车车体钢结构的特点及分类,重点介绍了25型客车碳钢车体钢结构的组成部分、结构设计及主要技术要求,对铁路客车车体钢结构材料的选用及结构设计将有积极的帮助。 ※ ※ ※ 1概述 车体钢结构是铁路客车最基本的结构,为铁路客车走行部、制动装置、连接缓冲装置、车辆内部设备以及内装提供了安装的空间和基础。新造25型客车车体钢结构为碳钢车体全钢焊接结构,由底架、侧墙、车顶和端墙等四部分焊接而成,俗称薄壁筒形车体结构。目前我国的新造25型车有两种承载结构:一种是无中梁薄壁筒型整体承载结构,另一种是有中梁薄壁筒型整体承载结构(如行李车和邮政车)。随着车辆的用途和生产工艺条件的不同,各种25型客车的结构不全相同,但其外形尺寸和结构形式则基本一致。 2 车体结构的分类 车体结构按车体所用材料分为以下三种: 碳素结构钢车体——我国新造25型客车车体; 不锈钢车体——我公司正在研制的200km/h客车车体, CRH1“和谐号”动车组的车体; 铝合金车体——部分地铁车体、CRH2、CRH3、CRH5“和谐号”动车组的车体。 3 车体钢结构组成 车体钢结构按部位可分为四个大部件:底架钢结构、侧墙钢结构、车顶钢结构、端墙钢结构。车钩缓冲装置、风挡、脚蹬等安装在大部件上。现就YZ25G(T)型硬座车(无中梁薄壁筒型整体承载结构)和XL25G型行李车(有中梁薄壁筒型整体承载结构)来详细说明车体钢结构的构造和特点。YZ25G硬座车车体钢结构如图1所示。 4 底架钢结构 4.1 底架结构组成 底架钢结构由端牵枕、枕内横梁、枕外横梁、枕后纵向梁、侧梁、枕外铁地板和枕内波纹地板等组成,如图2所示。 端牵枕分为端梁、牵引梁和枕梁,如图3所示。 4.2 底架结构设计 4.2.1 端梁 端梁由6mm厚钢板压制而成,断面为“[”,YZ25G型硬座车端梁高400mm靠近侧梁处高180mm,称为“转角”。在转角下翼面焊有3mm的围板,围板可以在端部遮挡脚蹬,起到美观的作用。在端梁中部开有安装车钩用的缺口,宽度为345mm,俗称 “钩门”。YZ25T型硬座车端梁高度为458mm,钩门的宽

(汽车行业)汽车车身结构设计与结构分析学习

(汽车行业)汽车车身结构设计与结构分析学习

2004.11.17from:《汽车超级读本》 0.汽车的基本构造 汽车壹般由发动机、底盘、车身和电气设备等四个基本部分组成。 汽车发动机:发动机是汽车的动力装置。由机体,曲柄连杆机构,配气机构,冷却系,润滑系,燃料系和点火系(柴油机没有点火系)等组成。按燃料分发动机有汽油和柴油发动机俩种;按工作方式分有二冲程和四冲程俩种,壹般发动机为四冲程发动机。 四冲程发动机的工作过程:四冲程发动机是活塞往复四个行程完成壹个工作循环,包括进气、压缩、作功、排气四个过程。四行程柴油机和汽油机壹样经历进气、压缩、作功、排气的过程。但和汽油机的不同之处在于:汽油机是点燃,柴油机是压燃。 冷却系:壹般由水箱、水泵、散热器、风扇、节温器、水温表和放水开关组成。汽车发动机采用俩种冷却方式,即空气冷却和水冷却。壹般汽车发动机多采用水冷却。 润滑系:发动机润滑系由机油泵、集滤器、机油滤清器、油道、限压阀、机油表、感压塞及油尺等组成。 燃料系:汽油机燃料系由汽油箱、汽油表、汽油管、汽油滤清器、汽油泵、化油器、空气滤清器、进排气歧管等组成。 化油器:是将汽油和空气以壹定的比例混合为壹种雾化气体的装置,这种雾化气体叫可燃混合气,及时适量供入气缸。 汽车的底盘: 传动系:主要是由离合器、变速器、万向节、传动轴和驱动桥等组成。 离合器:其作用是使发动机的动力和传动装置平稳地接合或暂时地分离,以便于驾驶员进行汽车的起步、停车、换档等操作。 变速器:由变速器壳、变速器盖、第壹轴、第二轴、中间轴、倒档轴、齿轮、轴承、操纵机构等机件构成,用于汽车变速、变输出扭矩。 行驶系:由车架、车桥、悬架和车轮等部分组成。它的基本功用是支持全车质量且保证汽车的行驶。 钢板弹簧和减震器:钢板弹簧的作用是使车架和车身和车轮或车桥之间保持弹性联系。减震器的作用是当汽车受到震动冲击时使震动得到缓和。减震器和钢板弹簧且联使用。 转向系:由方向盘、转向器、转向节、转向节臂、横拉杆、直拉杆等组成,作用是转向。 前轮定位:为了使汽车保持稳定直线行驶,转向轻便,减少汽车在行驶中轮胎和转向机件的磨损,前轮、转向主销、前轴三者之间的安装具有壹定的相对位置,这就叫“前轮定位”。它包括主销后倾、产销内倾、前轮前束。前束值是指俩前轮的前边缘距离小于后边缘距离的差值。制动系:机动车的制动性能是指车辆在最短的时间内强制停车的效能。 手制动器的作用:手制动器是壹种使汽车停放时不致溜滑,在特殊情况下,配合脚制动的装置。 液压制动构造:液压制动装置由制动踏板、制动总泵、分泵、鼓式(车轮)制动器和油管等机件组成。 气压制动装置:由制动踏板、空气压缩机、气压表、制动阀、制动气室、鼓式(车轮)制动器和气管等机件组成。 电气设备: 汽车电气设备主要由蓄电池、发电机、调节器、起动机、点火系、仪表、照明装置、音响装置、雨刷器等组成。 蓄电池:蓄电池的作用是供给起动机用电,在发动机起动或低速运转时向发动机点火系及其他用电设备供电。当发动机高速运转时发电机发电充足,蓄电池能够储存多余的电能。蓄电池上每个单电池都有正、负极柱。其识别方法为:正极柱上刻有“+”号,呈深褐色;负极

钢结构(2018年郑州大学考试题和答案)

相同直径,相同摩擦系数情况下,高强度螺栓摩擦型连接与承压性连接的承载能力完全一样,只是变形不一样。 收藏 错误 正确 实腹式偏心受压构件在弯矩作用平面内整体稳定验算公式中的γx主要是考虑 收藏 A. 初偏心的影响 B. 残余应力的影响 C. 初弯矩的影响 D. 截面塑性发展对承载力的影响 图示T型截面拉弯构件弯曲正应力强度计算的最不利点为() 收藏 A. 截面中和轴处3点 B. 可能是1点也可能是2点 C. 截面上边缘1点 D. 截面下边缘2点 需要进行疲劳计算条件是:直接承受动力荷载重复作用的应力循环次数n大于或等于()收藏 A. 5×105 B. 5×104 C. 2×104 D. 若轴心受压构件的截面形式为焊接圆管,则该构件对x轴、对y轴的截面分类分别是() A.

b类和b类 B. a类和a类 C. a类和b类 D. b类和a类 当截面为T形截面,弯矩作用在非对称轴,并使翼缘受压的压弯杆件,计算截面抵抗矩Wx时,应当计算()。 A. 受拉翼缘 B. 受压腹板 C. 受拉腹板 D. 受压翼缘 钢结构对动力荷载适应性较强,是由于钢材具有() A. 高强度 B. 良好的韧性 C. 质地均匀、各向同性 D. 良好的塑性 计算梁的()时,应用净截面的几何参数。 A. 稳定应力 B. 正应力 C. 局部应力 D. 剪应力 高强度螺栓的抗剪承载能力与螺栓直径无关() 错误 正确 由于剪切变形使格构式柱轴压刚度降低。 正确 错误 钢材的容重大,所以结构的自重大。 错误 正确

下列用于区分同牌号钢材的不同质量等级的力学性能指标是()A. 冲击韧性 B. 冷弯试验 C. 屈服强度 D. 抗拉强度 轴压杆的承载能力由下面哪一个确定() A. 由A、B、C确定 B. 由杆件截面形状及几何尺寸 C. 由杆件长细比 D. 由材料强度及截面积 钢结构设计采用的是容许应力法 正确 错误 对于承重焊接结构的钢材质量要求必须合格保证的有() A. 抗拉强度,屈服强度,伸长率,硫、磷含量,含碳量,冷弯试验合格; B. 抗拉强度,伸长率,硫、磷含量,冷弯试验合格; C. 屈服强度,伸长率,硫、磷含量,含碳量,冷弯试验合格; D. 抗拉强度,屈服强度,伸长率,硫、磷含量,含碳量,冲击韧性合格; 轴心受压构件整体稳定的计算公式N/(φA)≤f,其物理意义是()。 A. 截面最大应力不超过钢材强度设计值 B. 截面平均应力不超过钢材强度设计值 C. 构件轴力设计值不超过构件稳定极限承载力设计值 D. 截面平均应力不超过构件欧拉临界应力设计值 高强度螺栓的材料强度大,承载能力比普通螺栓大。 正确 错误

某商用车白车身结构疲劳寿命分析与优化设计

某商用车白车身结构疲劳寿命分析与优化设计 作者:湖南工业李明李源陈斌 摘要:本文基于应力分析结果,采用有效的疲劳寿命预估方法,利用专业耐久性疲劳寿命分析系统MSC.Fatigue 对该型商用车白车身进行S-N 全寿命分析,得其疲劳寿命分布与危险点的寿命值。采用结构优化、合理选材等方法,提高白车身结构的疲劳寿命。 关键词:白车身;有限元;静态分析;疲劳寿命分析;优化 前言 在车身结构疲劳领域的国内研究中,1994 年,江苏理工大学陈龙在建立了车辆驾驶室疲劳强度计算的力学和数学模型基础上,提出了车辆驾驶室疲劳强度研究方法[1]。2001 年,清华大学孙凌玉[2]等首次计算机模拟了汽车随机振动过程。2002 年,上海汇众汽车制造有限公司王成龙[3]等应用FATIGUE 软件的分析,结合疲劳台架试验,探讨了疲劳强度理论在汽车产品零部件疲劳寿命计算中的应用,提出了提高零部件疲劳强度的方法。2004 年,同济大学汽车学院靳晓雄[4]等人提到进行零部件疲劳寿命预估,精确的有限元模型和可靠的材料疲劳数据是必需的,另外获得准确的实际运行工况下的道路输入载荷也非常关键。但由于客观条件的限制,国内这方面的研究非常有限,理论分析的多,对局部零部件研究的多,把车身整体作为研究对象的很少。 本文以某型商用车疲劳寿命仿真分析及优化提高为内容,研究中,首先对白车身结构几何进行网格划分;之后使用MSC.Patran/Nastran 对白车身结构进行静态仿真;然后导入MSC.Fatigue 对白车身结构进行疲劳寿命仿真。在分析的基础上采用结构优化设计的方法优化结构、合理选择材料等,提高白车身结构的静态力学性能与动态疲劳寿命。 1 疲劳寿命计算方法 疲劳寿命计算需要载荷的变化历程、结构的几何参数,以及有关的材料性能参数或曲线[4]。 图1为基于有限元分析结果的疲劳寿命分析流程。

白车身结构设计的原则

QJ/ZX 03.0X—2007 Array 5 白车身结构设计的原则 5.1 基本原则 5.1.1 白车身设计是一个复杂的系统并行设计过程,要彻底地摒弃孤立地单个零件设计方法,任何一个零件只是其所处在的分总成的一个零件,设计时均应考虑其与周边相关零部件的相互关系。 5.1.2 任何一种车型的白车身结构均可按三层板的设计思想去构思结构设计,即最外层是外板,最内层是内板,中间是加强板,在车身附件安装连接部位应考虑设计加强板。 5.1.3 所设计的白车身结构应首先确定在满足整车性能、结构、冲压工艺、焊接工艺、涂装工艺、总装工艺上是否比参考样车或其他车型更优越,是否符合本公司或国内(客户)的实际生产状况,以便预先确定结构及工艺的改良方案。 5.1.4 白车身在结构与性能上应满足车身所需的承载能力,即强度和刚度要求。 5.1.5 除非有更优越的结构,逆向设计时应尽量保持与样车一致。 5.1.6 白车身设计应坚持经济性原则。 5.2 零部件结构选用原则 5.2.1 新开发零部件应采用当前国内外技术成熟、性能先进、质量可靠的零部件。 5.2.2 改型产品应尽可能选用基础车型中的技术成熟、性能先进、质量可靠的零部件,以提高零部件的通用化程度,减少产品的开发费用和零部件的管理费用。 5.2.3 对于有产品系列规格要求的零部件,应按标准规定的规格选择设计。 5.3 钣金件设计的原则 5.3.1 结构复杂化,以求最大强度、刚度设计 车身钣金结构尽可能复杂化,在大于50x50mm的区域内布置加强凹坑、筋等特征; 车身钣金结构尽可能复杂化,尽可能用自由曲面代替平面。 5.3.2 轻量化设计 在满足强度和刚度的前提下,应选取较薄的料厚; 在满足强度和刚度的前提下,应考虑布置减重孔; 在满足强度和刚度的前提下,不应出现不必要的零件。 5.3.3同一零件设计 对于一些零部件(如一些小的加强板,比较规则的纵横梁等),可以考虑设计成自身是关于某一面对称

钢结构(2018年郑州大学考试题和答案)

图示T型截面拉弯构件弯曲正应力强度计算的最不利点为() 收藏 D. 若轴心受压构件的截面形式为焊接圆管,则该构件对x轴、对y轴的截面分类

b类和b类 B. a类和a类 C. a类和b类 D. b类和a类 当截面为T形截面,弯矩作用在非对称轴,并使翼缘受压的压弯杆件,计算截面抵抗矩Wx 时,应当计算()。 A. 受拉翼缘 B. 受压腹板 C. 受拉腹板 D. 受压翼缘 钢结构对动力荷载适应性较强,是由于钢材具有() A. 高强度 B. 良好的韧性 C. 质地均匀、各向同性 D. 良好的塑性 计算梁的()时,应用净截面的几何参数。 A. 稳定应力 B. 正应力 C. 局部应力 D. 剪应力 高强度螺栓的抗剪承载能力与螺栓直径无关() 错误 正确 由于剪切变形使格构式柱轴压刚度降低。 正确 错误 钢材的容重大,所以结构的自重大。 错误

下列用于区分同牌号钢材的不同质量等级的力学性能指标是()A. 冲击韧性 B. 冷弯试验 C. 屈服强度 D. 抗拉强度 轴压杆的承载能力由下面哪一个确定() A. 由A、B、C确定 B. 由杆件截面形状及几何尺寸 C. 由杆件长细比 D. 由材料强度及截面积 钢结构设计采用的是容许应力法 正确 错误 对于承重焊接结构的钢材质量要求必须合格保证的有() A. 抗拉强度,屈服强度,伸长率,硫、磷含量,含碳量,冷弯试验合格; B. 抗拉强度,伸长率,硫、磷含量,冷弯试验合格; C. 屈服强度,伸长率,硫、磷含量,含碳量,冷弯试验合格; D. 抗拉强度,屈服强度,伸长率,硫、磷含量,含碳量,冲击韧性合格; 轴心受压构件整体稳定的计算公式N/(φA)≤f,其物理意义是()。 A. 截面最大应力不超过钢材强度设计值 B. 截面平均应力不超过钢材强度设计值 C. 构件轴力设计值不超过构件稳定极限承载力设计值 D. 截面平均应力不超过构件欧拉临界应力设计值 高强度螺栓的材料强度大,承载能力比普通螺栓大。

车身结构分析与设计

车身结构分析与设计 1 概述 在进行汽车车身结构设计之前,必须首先确定车身的承载型式。 当车身总体尺寸和形状,以及承载的结构型式确定后,即可着手进行细致的结构分析与设计。 一、车身结构设计的步骤 1.确定车身由哪些主要的和次要的构件组成,使其成为一个连续的完 整的系统; 2.确定主要杆件采取何种截面形式——闭式或开式; 3.确定:·如何构成这样的截面; ·截面与其它部件的配合关系; ·密封或外形的要求; ·壳体上内外装饰板或压条的固定方法; ·组成截面的各部分的制造方法及装配方法。 4.绘制由一个截面过渡到另一个截面的草图、各部件连接草图,以及 与此同时所形成的外覆盖件(骨架、蒙皮)草图; 5.将车身总成划分为几个分总成——地板、侧围、前后围、顶盖等, 绘制各分总成草图;——注意标明各总成的连接型式,以便与工艺 部分进行协商; 6.应力分析计算; 7.详细的结构设计(包括主图板设计),画出零件图。 在进行上述具体设计前,首先要了解对车身结构设计的要求,以及如何实现这些要求。 二、大客车的车身结构 1. 组成: 有车架式结构——可以独立行走; 无车架式结构——必须与车厢成为一体方可行走。 按作用于车身上的外力由车身的哪一部分承担,车身构件结构可分为: ②骨架结构—利用车身骨架作为强度部件。 2.特点 ①应力蒙皮结构 一般与无车架结构配合使用,亦称薄壳结构。 优:·骨架比较细小,承力相对较小—由飞机演变; ·整体刚度、强度较高,自重较轻,生产率高。 缺:·车窗开口不能太大,窗立柱较粗; 式结构两种。有车架式结构和无车架—下部结构性。 一整体,保持车身的刚其构成, 盖及内饰、附件等组成前后围、左右侧围、顶—上部结构车身结构 2 1度部件。 利用车身内蒙皮作为强—应力内蒙皮构造度部件;利用车身外蒙皮作为强—应力外蒙皮构造 应力蒙皮结构 ①

现代汽车白车身焊接夹具结构设计概述

现代汽车白车身焊接夹具结构设计概述汽车工业装备是最近兴起并迅猛发展的一个新兴行业。其实在这之前它也存在着,但由于汽车制造厂的车型更换没有现在这么的频繁,种类这么的多样化,且车型更换时变化最大的就是白车身。这就要求其对应的焊装线能跟上汽车车型和种类的变换。在这种情况下突出了焊装线在汽车生产和制造中的作用,使得人们越来越重视它。在汽车焊接流水线上,真正用于焊接操作的工作量仅占30%~40%,而60%~70%为工件的辅助和装夹工作。因为工件的装夹是在焊接夹具上完成的,所以夹具在整个焊接流程中起着重要作用。 在焊接过程中,合理的夹具结构,有利于合理安排流水线生产,便于平衡工位时间,降低非生产用时节降低生产成本。对于具有多种车型的企业,比如说一汽、沈汽、上汽等。如能科学地考虑共用或混型夹具,还有利于建造混型流水线,提高生产效率。 为提高我们汽车焊接夹具的设计水平,对汽车焊接夹具原理、结构及设计方法、原则有一个更深入的了解,在此把我自己的一些见解和经验与大家一起探讨。 一、汽车焊接工艺特点 (一)白车身的材料与结构 汽车焊接材料主要是低碳钢的冷轧钢板,镀锌钢板等。它们可焊性好,适宜大多数的焊接方法,但由于是薄板件,因而刚性差、易变形。在结构上,焊接散件大多数是具有空间曲面的冲压成形件,形状、结构复杂。有些型腔很深的冲压件,除存在因刚性差而引起的变形外,还存在回弹变形。这都是在夹具设计构成中应该考虑的问题。

(二)焊接方法 汽车焊接方法主要有CO2气体保护焊和电阻焊。CO2气体保护焊应用范围较广,且对夹具结构要求不十分严格。主要注意防止焊接产生的飞溅。相应采取的措施有主要有夹具表面镀铜、主要夹紧定位部件包铜皮、加装保护盖板等措施。 电阻焊是在汽车白车身焊接中主要采用的一种焊接方法。对夹具要求严格,尤其是多点焊和机器人点焊。要求焊接夹具对工件定位准确,操作方便且焊接牢固可靠。 (三)焊接工艺流程 汽车焊接的基本特征就是单个零件到部件再到总成的一个组合再组合的过程。从零件到白车身焊接总成的每一个过程,既相互独立,又相互联系,因此组件的焊接精度决定着部件总成的焊接精度,最后影响和决定着车身焊接总成的焊接精度与质量,这就要求相互关联的组件、部件及车身焊接总成夹具的定位基准应具有统一性和继承性,只有这样才能保证最终产品质量,即使出现质量问题也易于分析原因,便于纠正和控制。 白车身的焊接过程以流水线生产为主,所以夹具设计应有利于流水线的布置和设计,同时也考虑给生产管理提供方便。 (四)可操作性 我们这里讲的科操作性就是指焊接夹具的使用操作是否方便灵活。一台焊接夹具不仅要保证工件的定位准确,夹紧牢固可靠。还要保证操作者能方便的把零件摆放到夹具上定位夹紧,方便的操作焊枪进行焊接,方便的取出工件。我总结为“三个方便”。要实现这三个方便就要从整体去考

汽车结构-白车身知识

汽车结构-白车身知识-CAL-FENGHAI-(2020YEAR-YICAI)_JINGBIAN

1车身结构: 车身分类: 一般来讲,比较明确而又合理的分类形式是从结构和设计观点出发,按车身承载型式来分,可将车身分为:非承载式、半承载式和承载式三大类: 1. 非承载式(有车架式) 一般,货车(除微型货车)、大客车、专用汽车及大部分高级轿车上都装有单独的车架,车身上的载荷主要由车架来承担,但车身仍在一定程度上承受由车架弯曲和扭转变形所引起的载荷。 2. 半承载式 半承载式是一种过度型的结构,车身下部仍保留有车架,不过它的强度和刚度要低于非承载式的车架,一般将它称之为底架。它之所以被命名为半承载式是出于以下考虑:让车身也分担部分载荷,以此来减轻车架的自重力。这种结构型式主要体现在大客车上。 3. 承载式(无车架式) 承载式车身无车架,车身的强度和刚度通常主要由车身下部来予以保证,一般中低档轿车车身属于承载式车身。以S11车身为例,如下图所示:(少图)

其前端由两根前纵梁、前围板,轮罩形成一刚性较强的框架;车身中部、后部由左、右侧围(包括顶梁、门槛梁、A柱、B柱、C柱等)和地板、顶盖及后备门框等构成的盒形结构 随着立体交叉道路和高速公路的普及,轿车车速不断增高,在轿车轻量化的同时,还必须从保护乘员人身安全的角度出发来仔细研究车身的结构设计。一般车身结构分为刚性结构和弹性结构,如果在车身前部和后部均为弹性结构而中部为刚性结构的情况下,就能确保乘员安全。所以,在车身开发的前期阶段,CAE分析尤为重要。 车身结构: 车身总体尺寸和形状以及承载的结构型式确定后,即可着手进行细致的结构分析与设计。设计车体结构大致按以下步骤进行: 1)确定整个车体应由哪些主要的和次要的构件组成,使其成为一个连续的完整的受力系统;确定主要杆件采取怎样的截面型式-闭式的或开式的。 2)确定如何构成这样的截面,截面与其他部件的配合关系,密封或外形的要求,壳体上内外装饰板或压条的固定方法以及组成截面的各部分的制造方法及其装配方法等。 3)对各个截面的初步方案制定以后,可以绘制由一个截面过渡到另一个截面的草图,杆件连接结构草图以及与此同时所形成的外覆盖件(壳体、蒙皮)草图。 4)将车体分成几个分总成,例如S11可以分为四门两

HyperMesh白车身结构强度分析报告

编号白车身结构强度分析报告 编制:日期: 校对:日期: 审核:日期: 批准:日期:

目录 1.分析目的 (1) 2.使用软件说明 (1) 3.模型建立 (1) 4边界条件 (3) 5.分析结果 (3) 6.结论 (21)

1.分析目的 白车身结构的静强度不足则会引起构件在使用过程中出现失效。本报告采用有限元方法对Q11白车身分别进行了满载、1g制动、0.8g转弯、右前轮抬高150mm、左后轮抬高150mm、右前轮左后轮同时抬高150mm,6种工况的强度分析,观察整车受力状况,找出高应力区,考察其零部件的强度是否满足要求,定性地评价Q11白车身的结构设计,并提出相应建议。 2.使用软件说明 本次分析采用HyperMesh作前处理,Altair optistruct求解。HyperMesh是世界领先的、功能强大的CAE应用软件包,也是一个创新、开放的企业级CAE平台,它集成了设计与分析所需的各种工具,具有无与伦比的性能以及高度的开放性、灵活性和友好的用户界面,与多种CAD和CAE软件有良好的接口并具有高效的网格划分功能;Altair Optistruct是一个综和隐式和显示求解器与一体的大规模有限元计算软件,几乎所有的线性和非线性问题都可以通过其进行求解。通过Altair Optistruct可以进行任何形状、尺寸、拓扑结构的优化,采用固定的内存分配技术,具有很高的计算精度和效率。 3.模型建立 对车身设计部门提供的Q11白车身CAD模型进行有限单元离散,CAD模型以及有限元模型如图3.1所示。白车身所有零部件均采用板壳单元进行离散,并尽量采用四边形板壳单元模拟,少量三角形单元以满足高质量网格的过渡需要,网格描述见表3.1。 图3.1Q11白车身CAD以及有限元模型 表3.1网格描述 单元类型四边形单元三角形单元 单元数目46970015543 三角形单元比例 3.4% 焊接模拟Rbe单元及实体单元 涂胶模拟实体单元 单元质量良好

汽车车身的结构分析

汽车车身的结构 车顶盖通常分为固定式顶盖和敞篷式顶盖两种,固定式顶盖是常见的轿车顶盖形式,属于轮廓尺寸较大的大型覆盖件,车身整体结构的一部分。它具有刚性强,安全性好,汽车侧翻时起到保护乘员的作用,缺点是固定不变,无通风性,无法享受到阳光及兜风的乐趣。 敞篷式顶盖一般用于档次较高的轿车或跑车上,通过电动和机械传动移动部分或全部顶盖,可以充分享受阳光和空气,体验兜风的乐趣。缺点是机构复杂,安全性和密封性较差。敞篷式顶盖有两种形式,一种称为“硬顶”,可移动顶盖用轻质金属或树脂材料做成。另一种称为“软顶”,顶盖用篷布做成。 目前新型敞篷车多用硬顶形式,例如著名的标致206CC跑车。按动电钮使后行李舱盖向后揭开,顶盖自动折叠并随支柱(车厢后柱)的摆动而向后移动,移至行李舱处降下,降入行李舱内,然后合上行李舱盖,此时整车成为一辆敞篷车。 硬顶式敞篷车的各部件之间配合相当精密,整个电控操纵机构比较复杂,但由于采用硬性材料,恢复车厢顶盖后的密封性较好。而软顶敞篷车由篷布及支撑框架构成,将篷布及支撑框架向后折叠就可以获得敞开式车厢。由于篷布质地柔软,折叠起来比较紧凑,整个机构也相对简单,但密封性及耐用性较差。 固定式顶盖和敞篷式顶盖有各自的优缺点,可不可以去除缺点而保留两者优点?设计师想出了一个折中的办法,在固定顶盖上开窗口,

即“天窗”,既可保持固定顶盖的优点,又可在一定程度上获得敞篷效果,两者兼顾,还可增加厢内光线。这种方式受到汽车消费者的欢迎,在20世纪80年代后,开天窗的轿车迅速流行起来。 一般来说,天窗主要由玻璃窗、密封橡胶条和驱动机构组成。开启的形式一般分为外滑板式、内滑板式及倾斜式。外滑板式的玻璃窗在顶盖上面滑动;内滑板式的玻璃窗在顶盖下面与篷顶内饰衬之间滑动;倾斜式的玻璃窗前端或后端向上倾斜呈开启状态;目前多采用后两种形式。 滑板式驱动机构由支架导轨、驱动电动机、减速齿轮器、离合器、钢索带、位置传感器及限位开关构成。整个驱动机构装置在车顶前面,由钢索带动玻璃窗在导轨上移动。当驱动机构工作时,限位开关可检测出玻璃窗全开、全闭、倾斜向上等状态,为防止发生玻璃窗移动时受阻导致电动机超负荷运转,还设置了超载保护离合器。 顶盖天窗设计中最重要的问题是防漏水。天窗内侧应设流水槽和嵌有密封橡胶条的框架,从缝隙漏入的水通过流水槽和排水管流出车外。移动玻璃窗一般为褐色,可反射阳光,内则设有遮阳板,打开遮阳板后光线可射入车厢。 汽车车身从整体上分为非承载式车身和承载式车身两种。 非承载式车身的汽车有一刚性车架,又称底盘大梁架。发动机、传动系的一部分,车身等总成部件用悬架装置固定在车架上,车架通过前后悬架装置与车轮联接。这种非承载式车身比较笨重,质量大,高度高,

相关文档
相关文档 最新文档