文档库 最新最全的文档下载
当前位置:文档库 › 基于矩阵二值化的频率捷变雷达信号分选

基于矩阵二值化的频率捷变雷达信号分选

雷达原理

一、绪论 雷达:无线电探测与测距。利用电磁波对目标检测、定位、跟踪、成像和识别。 雷达利用目标对电磁波的反射或散射现象来发现目标并测定其位置的。 组成框图 雷达测量原理 雷达发射信号: 雷达接收信号: 雷达利用收发信号之间的相关性获取目标信息 雷达组成: 天线:向确定的方向发射和接收特定频段的电磁波 收发开关: 发射状态将发射机输出功率接到天线,保护接收机输入端 接收状态将天线接收信号接到接收机,防止发射机旁路信号 发射机:在特定的时间、以特定的频率和相位产生大功率电磁波 接收机:放大微弱的回波信号,解调目标信息 雷达的工作频率: 工作频率范围:22mhz--35ghz 扩展范围:2mhz--94ghz 绝大部分雷达工作在:200mhz--10000ghz 雷达的威力范围:最大作用距离、最小作用距离、最大仰角、最小仰角、方位角范围 分辨力:区分点目标在位置上靠近的能力 距离分辨力:同一方向上两个目标之间最小可区别的距离 角度分辨力:在同一距离上的两个不同方向的点目标之间最小能区别的角度 数据率:雷达对整个威力范围内完成一次搜索所需要的时间倒数,也就是单位时间内雷达所能提供对一个目标数据的次数。 跟踪速度:自动跟踪雷达连续跟踪运动目标的最大可能速度 发射功率的和调制波形: 发射功率的大小直接影响雷达的作用距离

发射信号的调制波形: 早期简单脉冲波形,近代采用复杂波形 脉冲宽度:脉冲雷达发射信号所占的时间。影响探测能力和距离分辨力 重复频率:发射机每秒发射的脉冲个数,其倒数是重复周期。决定单值测距的范围,影响不模糊速区域大小 天线波束形状天线:一般用水平面和垂直面内的波束宽度来表示 天线的扫描方式:搜索和跟踪目标时,天线的主瓣按照一定规律在空间所作的反复运动。机械性扫描和电扫描 接收机的灵敏度:通常规定在保证50%、90%的发现概率条件下,接收机输入端回波信号的功率作为接收机的最小可检测信号功率。这个功率越小接收机的灵敏度越高,雷达的作用距离越远。 显示器的形式和数量:雷达显示器是向操纵人员提供雷达信息的一种终端设备,是人际联系的一个环节。 电子战对抗中的雷达: 电子战(EW ):敌我双方利用无线电电子装备或器材所进行的电磁信息斗争,包括电子对抗和电子反对抗。 电子对抗(ECM ):为了探测敌方无线电电子装备的电磁信息(电磁侦察),削弱或破坏其使用效能所采取的一切战术、技术措施(电子干扰、伪装、隐身和摧毁) 电子反对抗(ECCM ):在敌方实施电子对抗的条件下,保证我方有效采用电磁信息所采取的一切战术、技术措施(反侦察、抗干扰、反伪装、反隐身、反摧毁) 雷达反干扰 天线抗干扰:低旁瓣、旁瓣对消、波束控制、随机扫描 发射机抗干扰:提高有效辐射功率、频率捷变、频率编码、频率分集、脉冲压缩、波形隐蔽、窄脉冲、重频时变 接收机、信号处理机抗干扰:接收机抗饱和、重频、脉宽鉴别、MTI 、MTD 、积累检测 二、发射机 发射机任务:产生大功率高频振荡发射信号。脉冲雷达要求发射机产生一定宽度、一定重复频率、一定波形的大功率射频脉冲列 基本类型:连续波发射机、脉冲调制发射机(单极振荡式发射机、主振荡式发射机) 输出功率:发射机送到天线输入端的功率 峰值功率:脉冲期间发射机输出功率的平均值(不要过分增大法设计的峰值功率) 平均功率:脉冲重复周期内输出功率的平均值: 工作比D: 常规脉冲雷达工作比0.001 脉冲多普勒雷达工作比10-2 ~10-1量级 连续波雷达工作比100% 总功率:发射机输出功率与输入功率之比 主振放大式发射机特别注意改善输出级效率 信号形式: 信号形式由雷达体制决定 常规脉冲雷达为简单脉冲波形,特殊体制雷达为复杂调制波形 t r av P T P τ=r r T F D ττ= =

雷达信号检测

科研报告 课程名称:信号检测与估值 题目:匹配滤波器在雷达信号中的应用院(系):信息与控制工程学院 专业方向:信号与信息处理 姓名:许娟 学号:1508210675 任课教师:毛力 2015 年1月14日

匹配滤波器在雷达信号中的应用 摘要 本文介绍了雷达系统及有关匹配滤波器的主要内容,着重介绍与分析了雷达系统信号处理的脉冲压缩(匹配滤波)现代雷达技术,雷达系统通过脉冲压缩解决解决雷达作用距离和距离分辨力之间的矛盾,最后实现对雷达目标的检测。关键词:雷达系统脉冲压缩

Abstract This paper introduces the radar system and the main content of the matched filter, this paper introduces and analyses emphatically the signal processing of the pulse compression radar system (matched filtering) of modern radar technology, by pulse compression radar system to solve the contradiction between the radar range and distance resolution,finally the realization of the radar target detection. Keywords:pulse compression radar system

(完整版)雷达组成及原理.doc

雷达的组成及其原理 课程名称:现代阵列并行信号处理技术 姓名:杜凯洋 学号: 2015010904025 教师:王文钦教授

一.简介 雷达( Radar,即 radio detecting and ranging),意为无线电搜索和测距。它是运用各种无线电定位方法,探测、识别各种目标,测定目标坐标和其它情报的装置。在现代军事和生产中,雷达的作用越来越显示其重要性,特别是第二次世界大战,英国空军和纳粹德国空军的“不列颠”空战,使雷达的重要性显露的非常清楚。雷达由天线系统、发射装置、接收装置、防干扰设备、显示器、信号处理器、电源等组成。其中,天线是雷达实现大空域、多功能、多目标的技术关键 之一;信号处理器是雷达具有多功能能力的核心组件之雷达种类很多,可按多种方法分类: (1)按定位方法可分为:有源雷达、半有源雷达和无源雷达。 (2)按装设地点可分为;地面雷达、舰载雷达、航空雷达、卫星雷达等。 (3)按辐射种类可分为:脉冲雷达和连续波雷达。 (4)按工作被长波段可分:米波雷达、分米波雷达、厘米波雷达和其它波段 雷达。 (5)按用途可分为:目标探测雷达、侦察雷达、武器控制雷达、飞行保障雷达、气象雷达、导航雷达等。 二.雷达的组成 (一)概述 1、天线:辐射能量和接收回波(单基地脉冲雷达),(天线形状,波束形状,扫描方式)。 2、收发开关:收发隔离。 3、发射机:直接振荡式(如磁控管振荡器),功率放大式(如主振放大式),(稳定,产生复杂波形,可相参处理)。 4、接收机:超外差,高 频放大,混频,中频放大,检波,视频放大等。(接收机部分也进行一些信号处理,如匹配滤波等),接收机中的检波器通常是包络检波,对于多普勒处理则采用相位检波器。 5、信号处理:消除不需要的信号及干扰而通过或加强由目标产生的回波信号,通常在检测 判决之前完成( MTI,多普勒滤波器组,脉冲压缩),许多现代雷达也在检测判决之后完成。 6、显示器(终端):原始视频,或经过处理的信息。 7、同步设备(视频综合器):是雷达机的频率和时间标准(只有功率放大式(主振放大式) 才有)。 (二)雷达发射机 1、单级振荡式:大功率电磁振荡产生与调制同时完成(一个器件)

雷达信号重频分选方法分析与讨论

龙源期刊网 https://www.wendangku.net/doc/6714781946.html, 雷达信号重频分选方法分析与讨论 作者:刘钊宏于林韬任帅 来源:《科技资讯》2014年第24期 摘要:雷达信号分选作为高科技战争中至关重要的组成部分,同时也是电子对抗环境中 不可或缺的关键技术。面对雷达体制的日益多样化,雷达信号变得更加复杂。如何实现雷达信号的正确分选已经成为国内外关注的焦点。本文分析与讨论了几种主要的雷达信号重频分选方法,并进行了matlab仿真实验。 关键词:雷达信号分选脉冲重复间隔动态扩展关联直方图 PRI变换 中图分类号:TN911 文献标识码:A 文章编号:1672-3791(2014)08(c)-0027-02 雷达信号分选是侦测系统不可或缺的技术,它能从大量脉冲信号流中分选出需要的信号,其实质是对脉冲串的去交叠、去交错过程。雷达信号分选主要利用到达时间(TOA)、到达方位角(DOA)、载频(RF)、脉宽(PW)、脉冲幅度(PA)等参数编码成的脉冲描述字(PDW)进行分选。TOA是主要的分选参数,它能提取出脉冲重复间隔(PRI),进而实现脉冲序列的去交错处理。基于PRI的重频分选算法主要有动态扩展关联法、累积差直方图法(CDIF)、序列差直方图法(SDIF)、和PRI变换法。 1 动态扩展关联法 基本思想是准PRI由两个脉冲之间的间隔确定,然后用这个准PRI在脉冲群里向前或者向后搜索下一个脉冲。步骤如下。 (1)形成准PRI。 通常选择第一个脉冲为基准脉冲,第二个脉冲为参考脉冲。当这两个脉冲的到达时间差(DTOA)介于雷达PRImin与PRImax之间时,则以此DTOA作为准PRI;当DTOA小于PRImin时,则另选参考脉冲;当DTOA大于PRImax时,则另选基准脉冲和参考脉冲。 (2)分选脉冲序列。 根据TOA测量误差等因素,确定PRI容差,以准PRI向前(或向后)进行扩展关联,如果能搜索到若干个脉冲(大于等于成功分选所需要的脉冲数),则认为分选出一个脉冲列,并继续分选出剩余脉冲。 (3)提取准雷达脉冲列。 准雷达脉冲列由成功分选出来的脉冲列构成,以备后续处理。

现代雷达信号检测及处理

现代雷达信号检测报告

现代雷达信号匹配滤波器报告 一 报告的目的 1.学习匹配滤波器原理并加深理解 2.初步掌握匹配滤波器的实现方法 3.不同信噪比情况下实现匹配滤波器检测 二 报告的原理 匹配滤波器是白噪声下对已知信号的最优线性处理器,下面从实信号的角度 来说明匹配滤波器的形式。一个观测信号)(t r 是信号与干扰之和,或是单纯的干扰)(t n ,即 ? ??+=)()()()(0t n t n t u a t r (1) 匹配滤波器是白噪声下对已知信号的最优线性处理器,对线性处理采用最大信噪比准则。以)(t h 代表线性系统的脉冲响应,当输入为(1)所示时,根据线性系统理论,滤波器的输出为 ?∞ +=-=0)()()()()(t t x d h t r t y ?τττ (2) 其中 ?∞ -=0 0)()()(τττd h t u a t x , ?∞ -=0 )()()(τττ?d h t n t (3) 在任意时刻,输出噪声成分的平均功率正比于 [ ] ??∞∞=?? ? ???-=0 20202 |)(|2)()(|)(|τττττ?d h N d h t n E t E (4) 另一方面,假定滤波器输出的信号成分在0t t =时刻形成了一个峰值,输出信 号成分的峰值功率正比于 2 02 2 0)()()(? ∞ -=τττd h t u a t x (5) 滤波器的输出信噪比用ρ表示,则

[ ] ?? ∞ ∞ -= = 2 02 02 2 20|)(|2)()(| )(|) (τ ττ ττ?ρd h N d h t u a t E t x (6) 寻求)(τh 使得ρ达到最大,可以用Schwartz 不等式的方法来求解.根据Schwartz 不等式,有 ??? ∞ ∞ ∞ -≤-0 20 2 02 0|)(||)(|)()(τττττ ττd h d t u d h t u (7) 且等号只在 )()()(0*τττ-==t cu h h m (8) 时成立。由式(1)可知匹配滤波器的脉冲响应由待匹配的信号唯一确定,并且是该信号的共轭镜像。在0=t t 时刻,输出信噪比SNR 达到最大。 在频域方面,设信号的频谱为 ,根据傅里叶变换性质可知,匹配滤 波器的频率特性为 (9) 由式(9)可知除去复常数 c 和线性相位因子 之外,匹配滤波器的频率 特性恰好是输入信号频谱的复共轭。式 (2)可以写出如下形式: (10) (11) 匹配滤波器的幅频特性与输入信号的幅频特性一致,相频特性与信号的相位谱互补。匹配滤波器的作用之一是:对输入信号中较强的频率成分给予较大的加权,对较弱的频率成分给予较小的加权,这显然是从具有均匀功率谱的白噪声中过滤出信号的一种最有效的加权方式;式(11)说明不管输入信号有怎样复杂的非线性相位谱,经过匹配滤波器之后,这种非线性相位都被补偿掉了,输出信号仅保留保留线性相位谱。这意味着输出信号的各个频率分量在时刻达到同相位,同相相加形成输出信号的峰值,其他时刻做不到同相相加,输出低于峰值。 匹配滤波器的传输特性 ,当然还可用它的冲激响应 来表示,这时有:

一种复杂电磁环境下雷达信号综合分选方法

一种复杂电磁环境下雷达信号综合分选方法 0 引言 雷达脉冲信号分选是雷达对抗侦察系统的关键技术之一,是指从随机交叠的脉冲信号流中分离出各个雷达的脉冲信号并选出有用信号的过程。当前的分选算法主要基于分析截获信号的各种常规参数,例如到达时间、到达角、载频、脉宽等。其中利用到达时间的信号分选即PRI 分选在预分析完成后进行,是最终的分选,也是必不可少的分选。本文将介绍序列差直方图分选算法和改进的PRI 变换算法分选,重点分析由SDIF 和改进的PRI 变换相结合的信号分选算法。 1雷达信号的PRI 特征及其描述 雷达信号的PRI 参数是指同一部雷达相邻脉冲之间的时间间隔序列。一部雷达可能具有几种,甚至几十种工作样式和工作参数。PRI 是其中工作样式最多、参数范围最大、变化最快的参数。即使是同一型号的雷达,由于发射机硬件电路的原因,其PRI 也存在微小的变化。下图分别示出了其中固定PRI 、参差PRI 、抖动PRI 、参差抖动PRI 到达脉冲序列的波形。 图1典型雷达信号PRI 特征 其中T 是非变的固定常数,n 为周期参差数,T 1…Tn 为n 个确定性的常数, 每经过n 个脉冲,各PRI 值循环变化一次。n δ一般为在区间[-T ,T]对称分布的随机序列。 2几种常见PRI 估计算法 目前利用脉冲到达时间(TOA)来估计脉冲重复间隔已提出了多种算法。这些算法都是以计算脉冲序列的自相关函数为基础。下面简要介绍累计差值直方图

法、序列差值直方图法、改进的PRI 变化法这三种算法,重点分析由SDIF 和改进的PRI 变换相结合的信号分选算法。 2.1累计差值直方图法 累计差值直方图法(CDIF 算法)是基于周期信号脉冲时间相关原理的得一种去交错算法。它是将TOA 差值直方图法和序列搜索法相结合起来的一种方法。首先通过累积各级差值直方图来估计原始脉冲序列中可能存在的PRI ,然后以此PIU 来进行序列搜索。包括直方图估计和序列搜索两个步骤。首先计算TOA 差值,形成第一级差值直方图,然后从最小的脉冲间隔起,将第一级差值直方图中的每个间隔直方图值以及二倍间隔直方图值与门限比较。CDIF 算法的检测门限为: max() ()i T t D x ττ= (1) 其中为PRI 的估计值,x 可根据实际情况调节,一般取x ﹤1,i t 为脉冲到达时 间。 假如两个直方图值超过门限,则以该间隔作为PRI 值进行序列搜索。如果搜索成功,将此PRI 序列从采样脉冲序列中扣除,并且对剩余序列重新开始计算新的差值直方图,重复此过程直到没有足够的脉冲形成脉冲序列;如果搜索不成功,则以本级差值直方图的下一符合条件的脉冲间隔作为PRI 进行搜索;假如本级差值直方图中没有符合条件的脉冲间隔值,则计算下一级差值直方图值。虽然CDIF 算法有较大改进,但仍有不少问题。由于发射机电路的不稳定性造成PRI 的随机抖动,可能导致CDIF 算法的严重错误。一方面可使直方图PRI 峰值减小低于门限,无法搜索序列;另一方面,即使超过门限,也需要大容差来检测序列,使得其它信号有可能被错误的分选出来。在脉冲大量丢失时,将检测PRI 的子谐波,而PRI 反而没有被检测出来,造成分离出虚假序列。另外CDIF 算法需要将直方图中每个间隔PRI 的直方图值以及二倍间隔的直方图值与门限比较,若都超过门限,才进行序列搜索。这是针对二次谐波存在的情形。即存在足够数目的相邻间隔为PRI 的三个脉冲序列,而不是只存在足够数目的间隔为PRI 的两个脉冲序列。而解决此问题可在序列搜索中用三脉冲搜索的方法解决。这样做将耗费大量时间,因此提出了序列差值直方图法(SDIF)。 2.2序列差值直方图法(SDIF) 序列差值直方图算法是源于累计差值直方图算法的,也是由PRI 的估计和序列搜索两部分组成。不同的是SDIF 算法针对CDIF 算法存在的问题作了一些改进。 l)取消两倍脉冲间隔的直方图值与门限比较,节省了约一半的时间。 2)在计算第一级SDIF 时,若只有一个值超过门限,则用该值进行序列搜索,

雷达原理复习

第一章绪论 1、雷达的任务:测量目标的距离、方位、仰角、速度、形状、表面粗糙度、介电特性。 雷达是利用目标对电磁波的反射现象来发现目标并测定其位置。 当目标尺寸小于雷达分辨单元时,则可将其视为“点”目标,可对目标的距离和空间位置角度定位。目标不是一个点,可视为由多个散射点组成的,从而获得目标的尺寸和形状。采用不同的极化可以测定目标的对称性。 β任一目标P所在的位置在球坐标系中可用三个目标确定:目标斜距R,方位角α,仰角 在圆柱坐标系中表示为:水平距离D,方位角α,高度H 目标斜距的测量:测距的精度和分辨力力与发射信号的带宽有关,脉冲越窄,性能越好。目标角位置的测量:天线尺寸增加,波束变窄,测角精度和角分辨力会提高。 相对速度的测量:观测时间越长,速度测量精度越高。 目标尺寸和形状:比较目标对不同极化波的散射场,就可以提供目标形状不对称性的量度。 2、雷达的基本组成:发射机、天线、接收机、信号处理机、终端设备 3、雷达的工作频率:220MHZ-35GHZ。L波段代表以22cm为中心,1-2GHZ;S波段代表10cm,2-4GHZ;C波段代表5cm,4-8GHZ;X波段代表3cm,8-12GHZ;Ku代表2.2cm,12-18GHZ;Ka代表8mm,18-27GHZ。 第二章雷达发射机 1、雷达发射机的认为是为雷达系统提供一种满足特定要求的大功率发射信号,经过馈线和收发开关并由天线辐射到空间。 雷达发射机可分为脉冲调制发射机:单级振荡发射机、主振放大式发射机;连续波发射机。 2、单级振荡式发射机组成:大功率射频振荡器、脉冲调制器、电源 触发脉冲 脉冲调制器大功率射频振荡器收发开关 电源高压电源接收机 主要优点:结构简单,比较轻便,效率较高,成本低;缺点:频率稳定性差,难以产生复杂的波形,脉冲信号之间的相位不相等 3、主振放大式发射机:射频放大链、脉冲调制器、固态频率源、高压电源。射频放大链是发射机的核心,主要有前级放大器、中间射频功率放大器、输出射频功率放大器 射频输入前级放大器中间射频放大器输出射级放大器射频输出固态频率源脉冲调制器脉冲调制器 高压电源高压电源电源 脉冲调制器:软性开关调制器、刚性开关调制器、浮动板调制器 4、现代雷达对发射机的主要要求:发射全相参信号;具有很高的频域稳定度;能够产生复杂信号波形;适用于宽带的频率捷变雷达;全固态有源相控阵发射机 5、发射机的主要性能指标:

雷达信号分选关键技术研究综述

雷达信号分选关键技术研究综述 发表时间:2019-01-02T16:18:54.110Z 来源:《知识-力量》2019年3月中作者:姜如意 [导读] 雷达信号分选技术在雷达侦探干扰技术中占据重要位置,在较为复杂的电磁环境下进行信号分选技术是通过雷达将所需要研究的问题进行截取。 (32140部队,河北石家庄 050000) 摘要:雷达信号分选技术在雷达侦探干扰技术中占据重要位置,在较为复杂的电磁环境下进行信号分选技术是通过雷达将所需要研究的问题进行截取。本文结合近年来国内与国外的雷达分选技术的实际发展情况展开深入的研究,并针对其中存在的问题制定切实可行的解决方案。 关键词:雷达;信号;分选技术 雷达在军事方面发挥着重要的作用,在现代化技术的时代背景下,不论是在导弹、路基,还是舰载中都会存在雷达设备,这在很大程度上说明了雷达技术的重要。雷达分选技术是在截获脉冲流中将各种形式的辐射源进行筛选,在侦查工作中发挥着主要优势,只有将信号进行分选才能确保后期识别、分析、测量的工作有序完成。 1.雷达分选技术的发展现状 迄今为止,雷达技术在电子对抗中已经具有数十年的历史,信号分选由简单到复杂的过程逐渐深入,并在实际战场中得到充分的应用。 通过雷达在电磁环境中开展对抗主要是将侦查的雷达信号进行汇总。自雷达产生后,模拟电磁环境问题一直存在,这是由于电磁环境在侦查工作中处于关键的位置,并不能通过战场中真实的电磁环境进行检测与侦收,因此,需要借助模拟来进行。主要分为三种,即射频模拟、视频模拟、参数模拟。 射频模拟,是借助射频发射器在雷达信号平台中展开模拟,这种方式较适用于在真实的环境中,以此全面侦查雷达信号情报处理器或侦察机的性能,但是这一模式由于数量较多,需要微波屏蔽。 视频模拟,利用微机进行操控,结合视频雷达脉冲或者平台所具备特征展开真实的模拟,这种方式的主要功能是能及时监测情报系统中的信号与信号处理器,这一模拟形式在国防科大中较为重视,并得到深入的研究。 参数模拟,是通过微机来截获雷达数据中的数据。例如:信号的特性、信号的脉冲波形、信号参数等。由于侦查数据中含有大量的信息及数据,因此可以获取真实的结果。加上其设备简易,使用时较为方便。在监测情报体系时,要全方位地考虑多个方面,例如信号处理器、接收机、平台运转特性等。 2.雷达信号分选技术研究 2.1分选技术算法 信号分选技术在雷达侦查中发挥着重要的作用,自上世纪六七十年代开始,信号分选技术经历了若干个环境,即纯软件处理、与专业的器件相结合、PDW滤波器组、常规频率去交错器至捷变频去交错器这几个过程。分选技术的算法主要是在脉冲宽度、脉冲达到方向、脉冲载频的基础上将雷达信号分选中的相关技术进行处理,再通过稀释方式来处理密集脉冲流,其次,将是在脉冲重复间隔中将雷达信号进行分选,但是结合现阶段的实际发展情况分析,脉冲序列中的去交错技术是分选过程中的重点与难点。依据概率统计以及雷达信号分析的新算法,具有较强的实用性,并提升了预分选速。 总体上分析,雷达信号中的分选技术都是依据周期脉冲信号来实现,TOA差值直方图方法与动态扩展关联法都属于分选技术中最基础的两种方法。TOA差值直方图方法是将所有TOA与后续的TOA相减,并对其差值进行累积,以此得到全差直方图,但是在实际使用中这种方法存在一定的局限,经过大量的脉冲后有可能出现虚警信号。动态扩展关联法,是在同一个脉冲群内进行,将其中一个脉冲视为基准脉冲,假设它能够与下一个脉冲成对,进行前后扩展试探,保证信号能够取得稀释。 除此之外,在以上两种基础的算法上,即便存在一定的优势,但是由于所包含的计算量较大,因此,要想有效地改变GDIF的计算量,要对其算法进行优化改进,借助复值自相关积分算法将TOA差值转换至另一个谱内,能够有效地反映出各个脉冲系列之间存在的关联性,这种算法在该领域得到了广泛的认可。 2.2测量技术 对辐射源信号进行精准的测量会直接影响到信号参数最终的分选技术,这样能够在很大程度上提升信号的可信程度与真实性,并降低参数的模糊化与计算量。信号分选技术最为关键的四个部分即RF脉冲载频、DOA达到角、PRI重复间隔以及PW脉宽,只有将这四部分的分选工作做好,才能确保后续工作的有序进行。其中的参数量主要是指设计动态测量脉宽电路、研制天线瞬时测向技术以及研制天线瞬时测频技术。但是,结合现阶段的实际发展情况来看,测量技术缺乏一定的精度,致使后期的监测工作存在一定的困难。 2.3分选技术 为了保证分选技术能够在现代化的战场中得到充分利用,雷达反干扰借助了多种类型的捷变频信号,不论是参差还是抖动,都会导致信号出现交错或者是重叠的情况。目前,信号分选技术仍然不能够对捷变频信号高效地进行分选处理,致使相应的干扰技术未能达到理想的效果,能够满足雷达电子对抗的实际需求。 结束语 综上所述,在现代化的战争环境下,雷达分选技术不断被发展与完善,但是,在发展的过程中,信号的实时性与准确性面临着巨大的挑战,只有将其通过合理的方案予以解决,才能够确保后期工作的稳定发展。立足于原有的信号分选技术,要研制创新型的信号分选技术,实验小型化、系统化、低能耗的先进技术,保证雷达信号技术在前沿领域发挥自身的优势。 参考文献 [1]赵贵喜,刘永波,王岩,郑洪涛.数据场和K-Means算法融合的雷达信号分选[J].雷达科学与技术,2016,14(05):517-520+525.

《雷达原理》知识点总结

【雷达任务:测目标距离、方位、仰角、速度;从目标回波中获取信息 【雷达工作原理:发射机在定时器控制下,产生高频大功率的脉冲串,通过收发开关到达定向天线,以电磁波形式向外辐射。在天线控制设备的控制下,天线波束按照指定方向在空间扫描,当电磁波照射到目标上,二次散射电磁波的一部分到达雷达天线,经收发开关至接收机,进行放大、混频和检波处理后,送到雷达终端设备,能判断目标的存在、方位、距离、速度等。 【影响雷达性能指标:脉冲宽度(窄),天线尺寸(大),波束(窄),方向性。 【测角:根据接收回波最强时的天线波束指向 【雷达是如何获取目标信息的? 【雷达组成:天线,发射机,接收机,信号处理机,终端设备(电源,显示屏),收发转换开关【发射机工作原理:为雷达提供一个载波受到调制的大功率射频信号,经馈线和收发开关由天线辐射出去。 【发射机基本组成:单级振荡式:脉冲调制器,大频率射频振荡器,电源。 主振放大式:脉冲调制器,中间和输出射频功放,电源,定时器,固体微波源(主控振荡器,用来产生射频信号) 工作过程:(1)单级振荡式:信号由振荡器产生,受调制 (2)主振放大式:信号由固体微波源经过倍频后产生,经射频放大链进行放大,各级都需调制(脉冲调制器),定时器协调工作。 优缺点:单击振荡式:简单经济轻便,频率稳定度差,无复杂波形; 主振放大式:频率稳定度高,相位相参信号,有复杂波形,适用频率捷变雷达 【发射机质量指标:(1)工作频率(波段)(2)输出功率:影响威力和抗干扰能力。峰值功率(脉冲期间射频振荡的平均功率)和平均功率(脉冲重复周期内输出功率的平均值)。(3)总效率Pt/P。(4)调制形式:调制器的脉冲宽度,重复频率,波形。(5)信号稳定度/频谱纯度,即信号各项参数。 【调制器组成:电源,能量储存,脉冲形成 【调制器任务与作用:为发射机的射频各级提供合适脉冲,将一个信号载到一个比它高的信号上 【仿真线:由于雷达的工作脉冲宽度多半在微秒级别以上,用真实线长度太长,因此在实际中是用集总参数的网络代替长线,即仿真线 【刚/软性开关:刚性开关的电容储能部分放电式调制器,特点为部分放电,通电利索;软性开关的人工线性调制器,特点为完全放电,效率高,功率大。 【接收机指标:(1)灵敏度:表示接收机接受微弱信号的能力。提高灵敏度,减小噪声电平,提高接收机增益。(2)工作频率宽度:表示接收机瞬时工频范围,提高:高频部件性能 (3)动态范围:表示正常工作时接收信号强度的范围,提高:用对数放大器增益控制电路抗干扰(4)中频滤波特性:减小噪声,带宽>回波时,噪声大。(5)工作稳定度(6)频率稳度(7)抗干扰能力(8)噪声系数 【收发软换开关工作原理:脉冲雷达天线收发共用,需要一个收发软换开关TR,发射时,TR使天线与发射机接通,与接收机断开,以免高功率发射信号进入接收机使之烧毁;接收时,天线与接收机接通,与发射机断开,以免因发射机旁路而使微弱接收信号受损。 【收发开关组成及类型:高频传输线,气体放电管。分为分支线型和平衡式。 【显示器分类:距离,平面,高度,情况和综合,光栅扫描。 【显示器列举:距离(A型J型A/R型)平面(PPI)高度(E式RHI) 【A型显示器组成:扫掠形成电路,视频放大电路,距标形成电路。 【怎样读取目标方位距离等参数(P显):方位角以正北为零方位角,顺时针计量;距离沿半

雷达信号

摘要 雷达通过对回波信号进行接收检测处理来识别复杂回波中的有用信息.其中,雷达信号波形的选择与设计有着相当重要的作用,它直接影响到雷达发射机形式的选择、信号处理方式、雷达的作用距离及抗于扰、抗截获等很多重要问题。所以,为了选择或者设计出适合特定用途的雷达信号形式,在对雷达系统设计之前有必要研究各种雷达信号的性能。雷达信号模糊函数全面地反映了雷达所发射的信号在距离和速度二维上的测量精度和分辨率,因此,雷达信号模糊函数理论对于雷达最优波形设计具有非常重要的意义。 现代信息技术的发展对现代雷达系统在有效作用距离、分辨率、测量精度以及电子对抗诸多方面提出了越来越高的要求。针对现代雷达的特殊用途,模糊函数理论为系统研究最优波形提供了基本的研究平台。模糊函数把雷达接收机输出信号的复包络描述为雷达目标距离和径向速度的函数,它可以提供分辨力、测量精度和杂波抑制等重要信息。模糊函数可以作为单一目标距离和速度的精度与分辨率评估尺度参数,根据这些参数还可以可靠区分多个目标.采用仿真的方法对雷达信号及其性能进行研究具有许多优越性。首先,通过仿真可以在不更改主要的硬件和软件的情况下,灵活地选择和改变参数值。第二,仿真可使雷达信号的设计人员通过改变参数,评价不同作战环境下各种参数对雷达系统性能的影响。第三,对关键技术及参数在仿真中加以研究,可节省大量的人力、物力和财力,并且具有很高的灵活性和可重复性,从而达到节省研制费用、缩短研制周期的目的。 本文基于雷达信号波形设计,从几类雷达发射信号出发,推导出不同雷达信号的模糊函数的数学模型,并绘制出模糊函数图,根据模糊函数图分析各类信号特点。在此基础上,根据雷达系统的要求(如分辨力、精度、抗干扰等),对线性调频信号雷达进行了仿真实验,评估所设计雷达信号的实用的价值。本文在波形设计过程中主要采用Matlab对各模块进行功能建模和仿真,取得了较好的仿真效果。仿真研究表明,模糊函数全面反映了雷达所发射的信号在距离和速度上的测量精度和分辨能力。在给定目标环境的条件下,模糊函数可以作为设计和选择合适的雷达信号的重要方法。 关键词:雷达信号,波形设计,模糊函数。模糊函数图 第1章引言 随着我国科学事业的迅速发展,雷达研制已进入一个崭新的阶段。人造地球卫星、飞船、火箭、导弹的发射成功,都离不开高精度的雷达设备,目标分辨已成为雷达设计中突出的实际问题。模糊函数是对雷达信号进行分析研究和波形设计的有效工具,是雷达信号理论中极为重要的一个概念。模糊函数最初是在研究雷达目标分辨力问题时提出的,并从衡量两个不同距离和不同径向速度目标的分辨度出发提出了模糊函数的定义。但模糊函数不仅可以说明分辨力,还可以说明测量精度,测量模糊度以及抗干扰状况等问题。 1.1雷达信号模糊函数研究的重要意义

频率信号发生器[为频率捷变应用选择信号发生器]

频率信号发生器[为频率捷变应用选择信号发生器] Agilent Technologies公司 John Stratton 合成仪器架构为商用和军用无线电系统的设计师提供了更多选择根据信号发生器的主要用途或公司的预算,设计师通常会采用传统的信号发生器设计,如YIG调谐或带状合成器。然而,最近出现的基于合成仪器(Synthetic-instrument,SI)架构的信号发生器有望改变这种选择。 当测试频率捷变无线电时,找到能够跟随所期望的跳频图案的信号发生器(跳变速率和延迟时间都很快的仪器)使用户受到了限制。如果测试系统只要求产生简单的频率调制,或仅作为快速跳变的本地振荡器,那么选择快速调谐信号发生器就行了。不过,这种信号发生器是无法产生最近商用无线或军用通信标准所需的复杂的调制信号。 因此,设计人员通常会购买两台或更多的信号发生器来完成该种应用的某一个任务,这就增加了相当可观的花费。合成仪器信号发生器――包括一个任意波形发生器(AWG)和一个矢量上变频器――的出现使得减少所需仪器的个数成为可能,从而降低了成本。 什么是合成仪器

SIWG(合成仪器工作组)将SI定义为:将硬件和软件模块结合在一起以实现仪器配置的灵活性,如图1所示,从而和传统仪器相匹敌。 SIWG被授权开发各模块间的接口标准,以提高不同厂商和模块之间的互换性。互换能力将提高测试系统的寿命和升级能力。 选择仪器的构架 在某个信号发生器中,硬件模块可能包括一个矢量上变频器和一个AWG,软件模块可能包括一些基带信号发生软件。软件部分可以装在PC中也可以装在AWG中。 采用SI信号发生器的好处是为设计师提供了依据被测设备选 择仪器性能的灵活性。例如,若所有被测设备都是窄带、低频,测试工程师就可以选用一个便宜的AWG和RF上变频器。又如,当某个公

雷达信号处理及目标识别分析系统方案

雷达信号处理及目标识别分系统方案 西安电子科技大学 雷达信号处理国家重点实验室 二○一○年八月

一 信号处理及目标识别分系统任务和组成 根据雷达系统总体要求,信号处理系统由测高通道目标识别通道组成。它应该在雷达操控台遥控指令和定时信号的操控下完成对接收机送来的中频信号的信号采集,目标检测和识别功能,并输出按距离门重排后的信号检测及识别结果到雷达数据处理系统,系统组成见图1-1。 220v 定时信号 目标指示数据 目标检测结果输出目标识别结果输出 图1-1 信号处理组成框图 二 测高通道信号处理 测高信号处理功能框图见图2-1。 s 图2-1 测高通道信号处理功能框图

接收机通道送来中频回波信号先经A/D 变换器转换成数字信号,再通过正交变换电路使其成为I 和Q 双通道信号,此信号经过脉冲压缩处理,根据不同的工作模式及杂波区所在的距离单元位置进行杂波抑制和反盲速处理,最后经过MTD 和CFAR 处理输出检测结果。 三 识别通道信号处理 识别通道信号处理首先根据雷达目标的运动特征进行初分类,然后再根据目标的回波特性做进一步识别处理。目标识别通道处理功能框图见图3-1所示。 图3-1 识别通道处理功能框图 四 数字正交变换 数字正交变换将模拟中频信号转换为互为正交的I 和Q 两路基带信号,A/D 变换器直接对中频模拟信号采样,通过数字的方法进行移频、滤波和抽取处理获得基带复信号,和模拟的正交变换方法相比,消除了两路A/D 不一致和移频、滤波等模拟电路引起的幅度相对误差和相位正交误差,减少了由于模拟滤波器精度低,稳定性差,两路难以完全一致所引起的镜频分量。 目标识别结果输出

参数灵活配置的通用雷达捷变频源设计

DOI:10.3969/j.issn.1672-2337.2016.04.015 参数灵活配置的通用雷达捷变频源设计 付钱华1,2,易淼3 (1.西华大学电气与电子信息学院,四川成都610039; 2.电子科技大学信息与软件工程学院,四川成都610054; 3.宜春学院物理科学与工程技术学院,江西宜春336000) 一一摘一要:设计了一种支持点频二脉内线性调频二频率捷变的雷达通用型频率源方案三利用双DDS克服了单DDS无法同时兼顾频率捷变和线性调频的缺陷,通过有效的频率规划,解决了双DDS相互干扰的问题,具有良好的相噪杂散性能,支持多普勒频移二脉内线性调频时间二带宽二斜率参数均可大范围小步进灵活配置三整个组件形成模块化,适用于扩展成不同频段二不同模式的多普勒雷达频率源及其目标模拟器,并给出了一种毫米波段扩展方案三实测结果表明,系统在725~775MHz输出带宽范围内可按照50Hz的频率步进任意设置中心频点和频率捷变范围,多普勒频移分辨率为1Hz,脉内线性调频斜率正负可设置,调频时间和带宽可在4~4000μs和100kHz~40MHz按照最小步长4ns和5Hz任意设置,捷变频时间小于890ns三关键词:雷达技术;频率合成;线性调频;频率捷变;参数可配置 中图分类号:TN91;TN957一一文献标志码:A一一文章编号:1672-2337(2016)04-0427-06 Desi g n of a General Radar Fre q uenc y S y nthesizer with Confi g urable Parameters FU Qianhua1,2,YI Miao3 (1.School o f Electrical En g ineerin g and Electronic In f ormation,Xihua Universit y,Chen g du610039,China; 2.School o f In f ormation and So f tware En g ineerin g,Universit y o f Electronic Science and Technolo g y o f China, Chen g du610054,China;3.School o f Ph y sics Science and Technolo g y,Yichun Universit y,Yichun336000,China)一一Abstract:A g eneral radar fre q uenc y s y nthesizer scheme is desi g ned in this p a p er,which su pp orts tone fre q uenc y,linear fre q uenc y modulation and fre q uenc y a g ilit y.The double DDS are used for overco-min g the defect of sin g le DDS not su pp ortin g fre q uenc y a g ilit y and linear fre q uenc y modulation at the same time.The interference p roblem was solved between the two DDS throu g h effective fre q uenc y p lan-nin g,while g ood p erformance on p hase noise and s p urious is achieved.The time,bandwidth,slo p e of linear fre q uenc y modulation and the Do pp ler fre q uenc y shift can be confi g ured flexibl y in lar g e ran g e and small ste p.The whole p art is modularized suitable for extendin g to different fre q uenc y bands and modes of the fre q uenc y s y nthesizers of Do pp ler radars and their tar g et simulators.A ex p ansion scheme of milli-meter wave band is g iven.The ex p erimental results show that the out p ut fre q uenc y ran g e is725~775 MHz,the center and ho pp in g fre q uenc y can be set b y the50Hz ste p,and the resolution of Do pp ler fre-q uenc y is1Hz.The slo p e of linear fre q uenc y modulation si g nal can be set to be p ositive or ne g ative,the time of linearl y fre q uenc y modulated can be set in the ran g e of4~4000μs,and its minimal ste p is4ns. The bandwidth of linear fre q uenc y modulation can be set in the ran g e of100kHz~40MHz,and its mini-mal ste p is5Hz,the ho pp in g time is less than890ns. Ke y words:radar technolo gy;fre q uenc y s y nthesis;LFM;fre q uenc y a g ilit y;confi g urable p arameters 0一引言 一一在现代雷达应用中,由于工作空间和时间的限制,加之快速反应能力和系统综合性的要求,雷达必须具备多功能和综合应用的能力[1]三雷达及其目标模拟器系统的激励信号二各种定时信号和具有复杂调制波形的信号均由雷达系统的频率源来完成[2],所以频率源已成为雷达系统十分关键的技术之一,其是一种复杂的多功能组件三常见的方 第4期 2016年8月一一一一一一一一一一一 雷达科学与技术 Rada r Sc i ence a nd Tec hno l og y一一一一一一一一一 Vol.14No.4 Au g ust2016 ?????????????????????????????????????????????????收稿日期:2015-09-12;修回日期:2015-11-28

一种密集信号环境下雷达脉冲分选方法

第34卷 第3期 电 子 科 技 大 学 学 报 V ol.34 No.3 2005年6月 Journal of UEST of China Jun. 2005 一种密集信号环境下雷达脉冲分选方法 魏 娟1 ,杨万麟1,植 强2,王松煜2 (1. 电子科技大学电子工程学院 成都 610054; 2. 中国电子科技集团第二十九研究所 成都 610036) 【摘要】针对电子战所面临的高密度,占空比大,脉冲重叠丢失率高的信号环境,构建了一个实时的脉冲信号预分选系统,改进了基于概率统计的分选算法,并提出一个剔除TOA 倍数及加和关系的算法,通过试验证明了该系统和算法的可行性。通过硬件电路进行了具体实现,该系统能实时的对雷达脉冲序列进行分选,并在密集的信号环境下具有良好的分选正确率。 关 键 词 信号分选; 到达时间; 关联比较器; 去交错 中图分类号 TB114.3 文献标识码 A A Signal Sorting Algorithm for Radar Pulses in High Pulse-Density Environment WEI Juan 1,YANG Wan-lin 1,ZHI Qiang 2,WANG Song-yu 2 (1. School of Electronic Engineering, UEST of China Chengdu 610054; 2. China Electronics Technology Group Corporation No.29 Research Institute Chengdu 610036) Abstract A real-time signal sorting system and an improved sorting algorithm based on the probability statistics is introduced. It is for the special radar signal environment of high pulse-density and high pulse-losing probability in electronic warfsre. The feasibility of this sorting system and algorithm is verified through lots of experiments. By designing the hardware circuits, the signal sorting system is realized. It performs well for duplex requirement of high-accuracy and real-time processing in high pulse-density environment. Key words signal sorting; toa; associative comparator; deinterleaving 信号分选的任务是完成雷达脉冲的去交错和提取辐射源的详细特征参数,可用来识别不同雷达的脉冲,也可用于稀释信号密度,减轻后续处理环节的速度压力。寻求处理速度快,正确率高的分选方法是信号分选的宗旨。目前国内外提出的主要方法有:基于脉冲到达时间(TOA)差值直方图和序列搜索相结合的方法;基于神经网络模型的人工智能系统];基于平面变换技术的信号分选等]1[2[[3]。这些方法各有优缺点:直方图方法直观,计算速度快,但在信号密集,丢失概率较高的情况下虚警率较高;神经网络识别性能较好,但事先需要经过大量样本进行迭代训练,在未知辐射源的情况下很难做到实时处理;平面变换技术需要接受同一信号的脉冲数很多,才能在平面显示中利用信号累计显示出特征曲线,但搜索雷达信号分析时,大量脉冲数的条件往往并不满足,所以其在实际中的应用受到限制。因此,基于准确性和实时性的双重要求,本文将构建一个实时分选系统,并针对所面临的信号环境,对基于概率统计的预分选算法进行改进。 收稿日期:2004 ? 8 ? 26 作者简介:魏 娟(1980 ? ),女,硕士生,主要从事数字信号处理方面的研究.

相关文档