文档库 最新最全的文档下载
当前位置:文档库 › 由两个三极管构成的流水电路

由两个三极管构成的流水电路

由两个三极管构成的流水电路

这是由两个三极管构成的无稳态多谐振荡电路,470Ω电阻限值流过发光二极管的电流不大于(9-3)/470=0.012A,即不大于12毫安。100K电阻为三极管的偏置电阻。这个电阻和电容器决定电路的振荡频率,理论值f=1/(2πRC)。电路的工作原理如下:

不看电容,只从直流来看,两个三极管是两个独立的放大电路。在接通电源的瞬间,由于元件的参数实际上不可能绝对完全一至,所以两个三极管的导通电流肯定是不同的,必然有一个大一个小的。设左面的三极管为Q1,右面的三极管为Q2,若Q1的导通电流大于Q2,则Q1的集电极电压VC1就低于VC2。因为电容两端电压不会突变,C2使Q1基极电流增加,使Q1的导通电流更大,VC 更低,C1使Q2基极电流下降,导通电流更小,VC更高。最终,Q1饱和,Q2截止,发光管D1发光。此时C2充电完毕,不能为Q1提供使之饱和的基极电流,Q1就应退出饱和,同时Q2在偏置作用下应重新导通。就是说Q1电流变小而Q2变大。与刚才的变化刚好相反,电容重新起作用,最终结果是Q2饱和,Q1截止,发光管D2发光。然后再重复这样的过程,两个三极管就这样形成振荡。

水位数字控制电路

华南农业大学珠江学院水位数字控制电路实训报告 院系:信息工程系 专业:电气工程及其自动化 班级:1202班 姓名:黄伟奇201225180211 组员:罗润 201225180235 赖梓聪201225180242 指导老师:詹庄春 2013年11月20日

第一章绪论 (3) 1.1 摘要 (3) 1.2 课题研究的目的和意义 (3) 第二章系统总体设计及方案认证系统 (4) 2.1 设计内容 (4) 2.2 电路原理 (4) 2.4方案认证 (5) 第三章硬件电路设计设 (6) 3.1 利用multisim绘制原理图 (6) 第四章硬件电路安装及调试 (7) 4.1 手工焊的工具 (7) 4.2 焊接原理 (7) 4.3 焊接注意事项 (7) 4.4 元件清单及其功能 (9) 4.5 调试要点 (11) 4.6 问题讨论 (11) 第五章总结 (12) 第六章后记 (12) 参考文献 (13)

第一章绪论 1.1 摘要 在日常生活及工农业生产中,往往需要对水位进行监测并加以控制,时下市场上有一些采用浮球来控制水位的球阀和简单水位控制开关,这些产品价格不高,但是没能做到自动控制水位的高低,下面介绍一款性能稳定的全自动水位控制器;该控制电路简单,使用灵活,可独立运作,也可作大型数字控制系统的外围控制器件。。 1.2 课题研究的目的和意义 研究目的:通过这次的课题研究我们希望在理清它的发展脉络上进一步了解它的发明原理,将平时所学习的知识运用到实验探索上,这对提高我们的动手能力,创新意识,及锻炼思维活动无疑是一个莫大的帮助。同时我们也希望这次的研究能让同学进一步了解照明灯,而不是仅局限于课本知识以内。从小的突破点入手,掌握又一项科技知识,从而实现课堂外的又一次提高,为现代教育科学尽一份力量! 研究意义:随着电子技术的发展,人类越来越脱离纯手工的检测,特别是水位检测的发展,更是迅猛发展。本报告介绍的是模拟水位数字控制电路。依靠水位,来控制水泵的运行,适时对河水进行加水控制,达到用户用水安全。适合于水利工厂适时控制水源,达到合理利用水源,保护环境。

三极管流水灯电路设计

三极管流水灯电路设计 王雅 20111041105;韦梦娜 20111041107 摘要:3组12只LED流水灯是特别针对电子装配与调试技能设计出来的,值得学习和电路分析。本文分析了该流水灯电路的特点及其电路工作原理的说明。 关键字:3组12只LED流水灯;电路设计;循环。 1 引言 随着科学技术的发展,电力电子设备与人们的工作、生活的关系日益密切。各种小套件层出不穷,功能多样。本文所设计的电子制作可以说是电子初学者学习电子的最佳入门制作!其制作方式容易,趣味横生,更能提高初学者的动手能力!让初学者在制作学习中感受电子技术带来的乐趣! 2 系统的功能描述 这款3组12只LED流水灯具有制作容易、有趣易学的特点,电路焊接成功后,装入电池,即可正常工作,3组12只发光二极管便会被轮流点亮,不断的循环发光,达到流动的效果。 3 设计原理 3.1 电路工作原理说明: 本电路是由3只三极管组成的循环驱动电路。每当电源接通时,3只三极管会争先导通,但由于元器件存在差异,只会有1只三极管最先导通。这里假设V1最先导通,则V1集电极电压下降,使得电容C2的左端下降,接近0V。由于电容两端的电压不能突变,因此此时V2的基极也被拉到近似0V,V2截止,V2的集电极为高电压,故接在它上面的发光二极管LED5-LED8被点亮。此时V2的高电压通过电容C3使V3基极电压升高,V3也将迅速导通,因此在这段时间里,V1、V3的集电极均为低电压,因此只有LED5-LED8被点亮,LED1-LED4、LED9-LED12熄灭。但随着电源通过电阻R3对C2的充电,V2的基极电压逐渐升高,当超过0.7V时,V2由截止状态变为导通状态,集电极电压下降,LED5-LED8熄灭。与此同时,V2的集电极下降的电压通过电容C3使V3的基极电压也降低,V3由导通变为截止,V3的集电极电压升高,LED9-LED12被点亮。接下来,电路按照上面叙述的过程循环,3组12只发光二极管便会被轮流点亮,不断的循环发光,达到流动的效果。改变电容C1、C2、C3的容量可以改变循环速度,容量越小,循环速度越快。电源使用2节5号干电池即可。 3.2元件清单: 3.3 电路图

多种水位控制电路图

多种水位控制电路图 电气自动化2010-01-30 22:32:41 阅读92 评论0 字号:大中小 一、自动水位控制器 本电路能自动控制水泵电动机,当水箱中的水低于下限水位时,电动机自动接通电源而工作;当水灌满水箱时,电动机自动断开电源。该控制电路只用一只四组双输入与非门集成电路(CD4011),因而控制电路简单,结构紧凑而经济。供电电路采用12V直流电源,功耗非常小。 控制器电路如图1所示。指示器电路如图2所示。

图1是控制器电路图,在水箱中有两只检测探头"A"和"B",其中"A"是下限水位探头,"B"是上限水位探头,12V直流电源接到探头"C",它是水箱中储存水的最低水位。 下限水位探头"A"连接到晶体管T1(BC547)的基极,其集电极连到12V电源,发射极连到继电器RL1,继电器RL l接入与非门N3第○13脚。同样,上限水位探头"B"接到晶体管T2的基极(BC547),其集电极连到12V电源,发射极经电阻R3接地,并接入与非门N1第①、②脚,与非门N2的输出第④脚和与非门N3的第○12脚相连,N3第①脚输出端接到N2第⑥脚输入端,并经电阻R4与晶体管T3的基极相连,与晶体管T3发射极相连的继电器RL2用来驱动电动机M。 当水箱向水位在探头A以下,晶体管T1与T2均不导通,N3输出高电平,晶体管T3导通,使继电器RL2有电流通过而动作,因而电动机工作,开始将水抽入水箱。当水箱的水位在探头A以上、探头B 以下时,水箱中的水给晶体管T1提供了基极电压,使T1导通,继电器RLl得电吸合N3第○13 脚为高电平,由于晶体管T2并无基极电压,而处于截止状态,N1第①、②脚输入为低电平,第③脚输出则为高电平,而N2第⑥脚输入端仍为高电平,因而N2第④脚输出则为低电平,最终N3第11脚输出为高电平,电动机继续将水抽入水箱。当水箱的水位超过上限水位B时,晶体管T1仍得到基极电压,继电器RLl吸合。N3第○13脚仍为高电平,同时,水箱中的水也给晶体管T2提供基极电压使其导通,Nl第①、②脚输入端为高电平,第②脚输出端为低电平,N2第③脚输出端为高电平,N3第○11脚第终输出低电平,使T3截止,电动机停止抽水。 若水位下降低于探头B但高于探头A,水箱中的水依然供给晶体管T1的基极电压,继电器RLl继续吸合,使N3第○13脚仍为高电平,但晶体管T2不导通,N1第①、②脚输入端为低电平,其第③脚输出端为高电平,N2第⑥脚为低电平,则N2第④脚输出为高电平,最终N3第○11脚输出端继续保持低电平,电动机仍停止工作。若水位降到探头A以下,晶体管T1与T2均不导通,与非门N3输出高电平,驱动继

流水灯电路的制作

流水灯电路的制作 一、概述: 随着电子技术的快速发展尤其是数字技术的突飞猛进,多功能流水灯凭着简易,高效,稳定等特点得到普遍的应用。在各种娱乐场所、店铺门面装饰、家居装潢、城市墙壁更是随处可见,与此同时,还有一些城市采用不同的流水灯打造属于自己的城市文明,塑造自己的城市魅力。目前,多功能流水灯的种类已有数十种,如家居装饰灯、店铺招牌灯等等。所以,多功能流水灯的设计具有相当的代表性。 多功能流水灯,就是要具有一定的变化各种图案的功能,主要考察了数字电路中一些编码译码、计数器原理,555定时器构成时基电路,给其他的电路提供时序脉冲,制作过程中需要了解相关芯片(NE555、CD4017)的具体功能,引脚图,真值表,认真布局,在连接过程中更要细致耐心。 二、电路原理图 三、电路工作原理 多功能流水灯原理电路图如上图所示。原理电路图由振荡电路、译码电路和光源电路三部分组成。本文选用的脉冲发生器是由NE555与R2、R3及C1组成的多谐振荡器组成。主要是为灯光流动控制器提供流动控制的脉冲,灯光的流动速度可以通过电位器R3进行调节。由于R3的阻值较大,所以有较大的速度调节范围。灯光流动控制器由一个十进制计数脉冲分配器CD4017和若干电阻组成。 CD4017的CP端受脉冲发生器输出脉冲的控制,其输出端(Q0~Q9)将输入脉冲按输入顺序依次分配。输出控制的脉冲,其输出控制脉冲的速度由脉冲发生器输出的脉冲频率决定。10

个电阻与CD4017的10个输出端Q0~Q9相连,当Q0~Q9依次输出控制脉冲时10个发光二极管按照接通回路的顺序依次发光,形成流动发光状态,即实现正向流水和逆向流水的功能。电源电路所采用的电源为。 四、板的设计 五、元器件清单 六、电路的组装与调试 1、电路的组装方法和步骤 (1)筛选元器件。对所有购置的元器件进行检测,注意它们的型号、规格、极性,应该保质量。 (2)按草图在PCB板上组装并焊接。 要求:①元器件布局整齐、美观,同类型元器件高度一致;

CD4017流水灯电路设计

CD4017流水灯电路设计 摘要:随着LED技术的不断发展以及LED在低功耗、长寿命、环保等方面的优势,LED应用领域逐渐增多。同时,许多国家在看到LED巨大的市场潜力后,纷纷出台各项鼓励措施大力推动LED在各领域中的应用。目前,LED的应用已经从最初的指示灯应用转向更具发展潜力的显示屏,景观照明、背光源、汽车车灯、交通灯、照明等领域,LED应用正呈现出多样化发展趋势。 本次毕业设计就是用小功率LED作为发光体替代实验室中价格昂贵的钠光灯或白炽灯。并利用555定时器、可变电阻普通电阻、电解电容以及普通电容构成可调驱动电路,驱动CD4017计数器构成的译码电路,使LED依次循环发光,从而组成循环流水灯。 关键词: CD4017 555定时器 LED

目录 设计任务和要求 (3) 1.引言 (4) 2.总体设计方案选择与说明 (5) 2.1 方案选择 (5) 2.2 电路工作原理: (5) 3.单元硬件设计说明 (5) 3.1 555定时器 (6) 3.2 自激多谐振荡器 (10) 3.3 十进制计数/分频器CD4017 (11) 3.3.1 CD4017内容说明: (11) 3.3.2 CD4017十进制计数器内部电路图: (12) 3.3.3 CD4017时序波形图: (13) 3.3.4 CD4017引脚图如下: (14) 3.3.5 CD4017引脚功能: (14) 3.4 发光二极管(LED) (15) 3.4.1 LED 特点 (13) 3.4.2 LED光源的特点 (16) 3.5 元件明细表 (17) 4.软件说明 (18) 4.1 Protel99简介 (18) 4.2 Proteus简介 (19) 5.安装调试方法 (19) 5.1 安装方法 (19) 5.2 调试方法 (20) 6.总结 (20) 7.致谢 (21) 8.参考文献 (22) 附录一 (22) 附录二 (24) 附录三 (25) 附录四 (26)

水位自动控制电路

**大学信息学院 数字电路课程设计报告 题目:水位自动控制电路 专业、班级:电子信息科学与技术 学生姓名: 学号: 指导教师:

指导教师评语: 成绩: 教师签名:

一.任务书 二.目录 目录 1 设计目的 (4) 2 设计目的要求 (4) 3 设计方案选取与论证 (4) 4 仿真过程及结果 (5) 1 设计思路 (6) 2 现有设计方案 (6) 3 总体设计框图 (7) 5 结论故障分析及解决 (14) 6 参考文献 (15) 附录 (16)

三.内容 1. 设计目的 通过这次设计熟练对电子设计的动手技能,,提高电子设计的能力,同时也培养学生收集、整理、分析和刷选利用资料及各类信息的能力,也使得学生通过这次的设计对所学的数电和模电知识及各种电路、电路元件的功能更好的理解和运用。 2. 设计任务要求 功能:1、当水位低于最低点时,电路能自动加水。 2、当高于最高点时,电路能自动停水。 3、该电路的直流电源自行设计。(可采用W78××系列) 要求:1、选择适当的元器件,设计该电路。以实现上述功能。 2、利用Proteus绘制其电路原理图并进行仿真。 3. 设计方案选取与论证 3.1设计方案的选取: (1)继电器式自动上水控制装置 继电器式水位控制装置工作原理是通过接入220V继电器控制电路的3个探测电极来检测水位高低,使继电器闭合或开启,控制水泵电动机的开停,达到控制水位的目的,控制电路较简单,但要注意以下几点: 1)在维修水塔中的水位探测电极时,须断开主回路和控制回路电源开 来使N线带电,造成维修人员的触电危险。 2)在水塔的低水位探测电极C的引线端,必须进行N线的重复接地。接地电阻要求小于4Ω,使C点水位探测电极保持良好的零电位,以利于继电器的可靠吸合,使自控电路运行稳定。 3)在水泵向水塔供水时,由于水流的冲击,使水塔内的水位波动起伏,容易导致继电器吸合、断开的频繁跳动,影响自控电路的正常稳定运行。

光控流水灯设计

编号: 课程设计(论文)说明书 题目:光控流水灯设计 院(系):信息与通信学院 专业:电子信息工程 学生姓名:段超宁 学号: 0900220411 指导教师:蒋俊正 2012年12 月10 日

摘要:光控流水灯控制器是一个通过外界光线的强度来控制输出方波的频率,通过它可以自动实现一些控制,通过感光装置(光敏电阻),实现自动化开关有利于许多生产与生活,例如在车间里可以安装光控开关来控制车间里的照明灯,这样既利于车间的照明又有利于节约电,光足够亮时开关会自动关掉照明灯。在其他面也可以广泛应用。 光控流水灯在日常生活中的应用已经全面在市场上开始推广,但毫无疑问,这一设计的应用前景是很广阔的。本文概述了光敏电阻的基本原理和特点,并介绍了光敏电阻的基本结构和用于实现电路控制的功能;并介绍了其用于控制路灯的设计方案,并对程序进行调试及性能分析。 关键字:光敏电阻,光控流水灯

目录 1. 光敏电阻的结构与工作原理 (3) 2. 光敏电阻的主要参数 (5) 3.光敏电阻的特性 (5) 3.1 伏安特性 (5) 3.2 光谱特性 (6) 3.3 温度特性 (6) 3.4 频率特性 (6) 4 继电器的类型参数 (7) 5 稳压二极管参数 (7) 6. 三极管参数 (8) 7. 系统原理 (8) 8. 原理图 (9) 9. 工作原理及过程 (9) 10. 元件的选取列表及参数 (10) 11. 结束语 (10) 12. 附录:实物图参考 (11)

1. 光敏电阻的结构与工作原理 光敏电阻又称光导管,它几乎都是用半导体材料制成的光电器件。光敏电阻没有极性, 纯粹是一个电阻器件,使用时既可加直流电压,也可以加交流电压。无光照时,光敏电阻值(暗电阻)很大,电路中电流(暗电流)很小。当光敏电阻受到一定波长范围的光照时,它的阻值(亮电阻)急剧减小,电路中电流迅速增大。 一般希望暗电阻越大越好,亮电阻越小越好, 此时光敏电阻的灵敏度高。实际光敏电阻的暗电阻值一般在兆欧量级, 亮电阻值在几千欧以下。 它是利用半导体的光电效应制成的一种电阻值随入射光的强弱而改变的电阻器。它是在一块匀质的光电导体两端加上电极构成。两电极加上一定电压后,当光照射到光电导体上,由光照产生的光生载流子在外加电场作用下沿一定方向运动,在电路中产生电流,达到光电转换目的。它以其高度的稳定性而广泛地应用在自动化技术 (a) 光敏电阻结构; (b) 光敏电阻电极; (c) 光敏电阻接线图 光敏电阻结构图 金属电极 半导体 玻璃底板电源检流计R L E I (a ) (b )(c ) R a 0.050.100.150.200.25 0.300.350.40 00.20.40.60.81.01.21.4 I / m A / lm

基于单片机的LED流水灯设计

基于单片机的LED流水灯设计 设计任务 1掌握MCS-51系列8051、8255的最小电路及外围扩展电路的设计方法 2了解单片机数据转换功能及工作过程 3设计LED流水灯系统,实现8个LED霓虹灯的左、右循环显示4完成主要功能模块的硬件电路设计 5用proteus软件完成原理电路图的绘制 一设计方法 本课题使用AT89C51单片机时无须外扩存储器。因此,本流水灯实际上就是一个带有八个发光二极管的单片机最小应用系统,即为由发光二极管、晶振、复位、电源等电路和必要的软件组成的单个单片机。如果要让接在P1.0口的LED1亮起来,那么只要把P1.0口的电平变为低电平就可以了;相反,如果要接在P1.0口的LED1熄灭,就要把P1.0口的电平变为高电平;同理,接在P1.1~P1.7口的其他7个LED 的点亮和熄灭的方法同LED1。因此,要实现流水灯功能,我们只要将发光二极管LED1~LED8依次点亮、熄灭,8只LED灯便会一亮一暗的做流水灯了。由于人眼的视觉暂留效应以及单片机执行每条指令的时间很短,我们在控制二极管亮灭的时候应该延时一段时间,否则我们就看不到

“流水”效果了。 二方案论证与比较 2.1循环移位法 在上个程序中我们是逐个控制P1端口的每个位来实现的,因此程序显得有点复杂,下面我们利用循环移位指令,采用循环程序结构进行编程。我们在程序一开始就给P1口送一个数,这个数本身就让P1.0先低,其他位为高,然后延时一段时间,再让这个数据向高位移动,然后再输出至P1口,这样就实现“流水”效果啦。由于8051系列单片机的指令中只有对累加器ACC中数据左移或右移的指令,因此实际编程中我们应把需移动的数据先放到ACC中,让其移动,然后将ACC移动后的数据再转送到P1口,这样同样可以实现“流水”效果。具体编程如下所示,程序结构确实简单了很多。 2.2查表法 上面的两个程序都是比较简单的流水灯程序,“流水”花样只能实现单一的“从左到右”流方式。运用查表法所编写的流水灯程序,能够实现任意方式流水,而且流水花样无限,只要更改流水花样数据表的流水数据就可以随意添加或改变流水花样,真正实现随心所欲的流水灯效果。我们首先把要显示流水花样的数据建在一个以TAB为标号的数据表中,然后通过查表指令“MOVC A,@A+DPTR”把数据取到累加器A中,然后再送到P1口进行显示。具体源程序如下,TAB标号处的数据表可以根据实

三极管三种电路的特点

三极管三种电路的特点 1.共发射极电路特点 共射极电路又称反相放大电路,其特点为电压增益大,输出电压与输入电压反相,低频性能差,适用于低频、和多级放大电路的中间级 共发射极放大电路 共发射极的放大电路,如图2所示。 图2 共发射极放大电路 因具有电流与电压放大增益,所以广泛应用在放大器电路。其电路特性归纳如下: 输入与输出阻抗中等(Ri约1k~5k ;RO约50k)。 电流增益: 电压增益: 负号表示输出信号与输入信号反相(相位差180°)。 功率增益: 功率增益在三种接法中最大。 共发射极放大电路偏压

图4自给偏压方式 又称为基极偏压电路,最简单的偏压电路,稳定性差,容易受β值的变动影响,温度每升高10℃时,逆向饱和电流ICO增加一倍。温度每升高1℃时,基射电压VBE减少2.5mV ,β随温度升高而增加(影响最大) 。

图5带电流反馈的基极偏压方式 三极管发射极加上电流反馈电阻,特性有所改善,但还是不太稳定。 图6分压式偏置电路 此为标准低频信号放大原理图电路,其R1(下拉电阻)及R2为三极管偏压电阻,为三极管基极提供必要偏置电流,R3为负载电阻,R4为电流反馈电阻(改善特性),C3为旁路电容,C1及C3为三极管输入及输出隔直流电容(直流电受到阻碍),信号放大值则为R3/R4倍数.设计上注意: 三极管Ft值需高于信号放大值与工作频率相乘积,选择适当三极管集电极偏压、以避免大信号上下顶部失真,注意C1及C3的容量大小对低频信号(尤其是脉波)有影响.在R4并联一个C2,放大倍数就会变大。而在交流时C2将R4短路。 为什么要接入R1及R4? 因为三极管是一种对温度非常敏感的半导体器件,温度变化将导致集电极电流的明显改变。温度升高,集电极电流增大;温度降低,集电极电流减小。这将造成静态工作点的移动,有可能使输出信号产生失真。在实际电路中,要求流过R1和R2串联支路的电流远大于基极电流IB。这样温度变化引起的IB的变化,对基极电位就没有多大的影响了,就可以用R1和R2的分压来确定基极电位。采用分压偏置以后,基极电位提高,为了保证发射结压降正常,就要串入发射极电阻R4。 R4的串入有稳定工作点的作用。如果集电极电流随温度升高而增大,则发射极对地电位升高,因基极电位基本不变,故UBE减小。从输入特性曲线可知,UBE的减小基极电流将随之下降,根据三极管的电流控制原理,集电极电流将下降,反之亦然。这就在一定程度上稳定了工作点。分压偏置基本放大电路具有稳定工作点的作用,这个电路具有工作点稳定的特性。当流过R1和R2串联支路的电流远大于基极电流IB(一般大于十倍以上)时,可以用下列方法计算工作

水泵液位控制电路原理图

西安祥天和电子科技有限公司详情咨询官网https://www.wendangku.net/doc/6715111898.html, 主营产品:液位传感器水泵控制箱报警器GKY仪表液位控制系统,液位控制器,无线传输收发器等 水泵液位控制电路原理图 水泵液位自动控制系统的主要由以下三个部分组成: 液位信号的采集液位信号的传输水泵控制系统 1.液位信号的采集 液位信号的采集主要是选择合适的液位传感器。液位传感器的发展从最早的电极式、UQK/GSK传统浮子、到现在的压力式、光电式和GKY液位传感器等,形成了多种液位控制方式。电极式便宜简单,但在水中会吸附杂质,使用寿命短。传统浮子与相对滑动轨道之间只有1mm 左右的细缝,很容易被脏东西卡住,可靠性较低。这些是不能在污水中使用的。光电式也不能用于污水,因为玻璃反射面脏了就会出现误判断。GKY液位传感器可以弥补这些缺陷,在污水和清水中可以使用。所以液位控制的系统设计应该根据具体使用环境慎重选择传感器,如果选择不当,将会导致控制系统故障频发,甚至瘫痪,这是导致现有很多液位自动控制系统使用不到一年就失灵的重要原因。 不同液位传感器检测液位的原理是不同的,具体可参见百度文库中“如何选择液位传感器”“什么是液位开关液位开关原理”等文章。 2.液位信号的传输 液位信号的传输可以有有线和无线两种方式。有线就是通过普通电缆线或屏蔽线传输,大部分传统液位传感器通过普通的BV线就可以了,传输信号易受干扰的压力式、电容式传感器需要用屏蔽线传输而且距离不能太远。 在传输距离远或不方便铺设传输线路的场所,需要使用无线液位传输系统。无线液位传输系统可以有多种方式:第一种是直接采用无线收发设备传输液位信号,如GKY-WX。第二种是借助于通讯网络的短信收发功能将液位信号传达到目的地,如GKY-DXSF。第三种是目前最流行一种传输方式,就是借助中间服务器平台,采用流量卡来传输液位信号,如 GKY-GPRSSF。

三极管制作流水灯控制方法

通俗易懂的三极管工作原理 理解三极管的工作原理首先从以下两个方面来认识: 其一、制造工艺上的两个特点:(1)基区的宽度做的非常薄;(2)发射区掺杂浓度高。 其二、三极管工作必要条件是(a)在B极和E极之间施加正向电压(此电压的大小不能超过1V);(b)在C极和E极之间施加反向电压;(c) 如要取得输出必须加负载电阻。 当三极管满足必要的工作条件后,其工作原理如下: (1)基极有电流流动时。由于B极和E极之间有正向电压,所以电子从发射极向基极移动,又因为C极和E极间施加了反向电压,因此,从发射极向基极移动的电子,在高电压的作用下,通过基极进入集电极。于是,在基极所加的正电压的作用下,发射极的大量电子被输送到集电极,产生很大的集电极电流。 (2)基极无电流流动时。在B极和E极之间不能施加电压的状态时,由于C极和E极间施加了反向电压, 所以集电极的电子受电源正电压吸引而在C极和E极之间产生空间电荷区,阻碍了从发射极向集电极的电子流动,因而就没有集电极电流产生。综上所述,在晶体三极管中很小的基极电流可以导致很大的集电极电流,这就是三极管的电流放大作用。此外,三极管还能通过基极电流来控制集电极电流的导通和截止,这就是三极管的开关作用(开关特性)。参见晶体三极管特性曲线5.2图所示:晶体三极管共发射极放大原理如下图所示:A、vt是一个npn型三极管 画外音:我们可以用水龙头与闸门放水的关系,来想象或者说是理解三极管的放大原理。其示意图如下图2-20 所示

图2-20 三极管放大原理参考示意图 ①如图 2.20 (a)所示:当发射结无电压或施加电压在门限电压以下,相当于闸门关紧时,水未从水龙头底部通过水嘴流出来。此时,ec 之间电阻值无穷大,ec 之间的电流处于截止状态,或者说是开关的OFF 状态。

LED流水灯设计

单片机课程设计报告 LED流水灯的设计 专业: 姓名:学号: 姓名:学号: 姓名:学号: 2015年月日

目录 LED流水灯的设计0 第一章绪论1 设计目的1 设计任务1 设计方法1 第二章设计内容与所用器件1 基本功能1 LED彩灯错误!未定义书签。 循环移位法2 第三章硬件系统设计2 单片机时钟电路2 第四章软件设计2 汇编语言和C语言的特点及编程 2 LED显示原理3 第五章系统调试与存在的问题4 程序下载4 硬件调试5 软件调试5 总结5 参考文献 6 LED流水灯的设计 [摘要]:当今社会,随着人们物质生活的不断提高,电子产品已经走进了家家户户,无论是生活或学习,还是娱乐和消遣几乎样样都离不开电子产品,大型复杂的计算能力是人脑所不能胜任的,而且比较容易出错。计算器作为一种快速通用的计算工具方便了用户的使用。计算器可谓是我们最亲密的电子伙伴之一。本设计着重在于分析计算器软件和开发过程中的环节和步骤,并从实践经验出发对计算器设计做了详细的分析和研究。 单片机由于其微小的体积和极低的成本,广泛的应用于家用电器、工业控制等领域中。在工业生产中。单片微型计算机是微型计算机称单片机,特别适用于控制领域,故又称为微控制器。 本系统就是充分利用了8051芯片的I/O引脚。系统以采用MCS-51系列单片机Intel8051为中心器件来设计LED流水灯系统,实现8个LED霓虹灯的左、右循环显示,并实现循环的速度可调。 [关键字]:单片机技术;系统设计;LED流水灯

第一章绪论 设计目的 通过本次课题设计,应用《单片机原理及应用》等所学相关知识及查阅资料,完成简易LED流水灯系统设计,以达到理论与实践更好的结合、进一步提高综合运用所学知识和设计的能力的目的。 通过本次设计的训练,可以使我在基本思路和基本方法上对基于MCS-51单片机的嵌入式系统设计有一个比较感性的认识,并具备一定程度的设计能力。 设计任务 在本次课程设计中,主要完成如下方面的设计任务: 1、掌握MCS-51系列8051的最小电路及外围扩展电路的设计方法; 2、了解单片机数据转换功能及工作过程; 3、设计LED流水灯系统,实现8个LED霓虹灯的左、右循环显示; 4、完成主要功能模块的硬件电路设计。 设计方法 本课题使用STC89C52RC单片机时无须外扩存储器。因此,本流水灯实际上就是一个带有八个发光二极管的单片机最小应用系统,即为由发光二极管、晶振、复位、电源等电路和必要的软件组成的单个单片机。 如果要让接在口的LED1亮起来,那么只要把口的电平变为低电平就可以了;相反,如果要接在口的LED1熄灭,就要把口的电平变为高电平;同理,接在~口的其他7个LED的点亮和熄灭的方法同LED1。因此,要实现流水灯功能,我们只要将发光二极管LED1~LED8依次点亮、熄灭,8只LED灯便会一亮一暗的做流水灯了。 由于人眼的视觉暂留效应以及单片机执行每条指令的时间很短,我们在控制二极管亮灭的时候应该延时一段时间,否则我们就看不到“流水”效果了。 第二章设计内容与所用器件 基本功能 利用STC89C52RC作为主控器组成一个LED流水灯系统,实现8个LED霓虹灯的左、右循环显示。 可选器件 51系列单片机、电容C104、、18?和1K的电阻、LED灯、按键、晶振等。 总体框架图

如何快速确定三极管的工作状态三极管的三种工作状态分析判断

如何快速确定三极管的工作状态三极管的三种工作状态分析判断有放大、饱和、截止三种工作状态,放大电路中的三极管是否处于放大状态或处于何种工作状态,对于学生是一个难点。笔者在长期的教学实践中发现,只要深刻理解三极管三种工作状态的特点,分析电路中三极管处于何种工作状态就会容易得多,下面结合例题来进行分析。 一、三种工作状态的特点 1.三极管饱和状态下的特点 要使三极管处于饱和状态,必须基极电流足够大,即IB≥IBS。三极管在饱和时,集电极与发射极间的饱和电压(UCES)很小,根据三极管输出电压与输出电流关系式UCE=EC-ICRC,所以IBS=ICS/β=EC-UCES/β≈EC/βRC。三极管饱和时,基极电流很大,对硅管来说,发射结的饱和压降UBES=0.7V(锗管UBES=-0.3V),而UCES=0.3V,可见,UBE>0,UBC>0,也就是说,发射结和集电结均为正偏。三极管饱和后,C、E 间的饱和电阻RCE=UCES/ICS,UCES 很小,ICS 最大,故饱和电阻RCES很小。所以说三极管饱和后G、E 间视为短路,饱和状态的NPN 型三极管等效电路如图1a 所示。 2.三极管截止状态下的特点要使三极管处于截止状态,必须基极电流IB=0,此时集电极IC=ICEO≈0(ICEO 为穿透电流,极小),根据三极管输出电压与输出电流关系式UCE=EC-ICRC,集电极与发射极间的电压UCE≈EC。 三极管截止时,基极电流IB=0,而集电极与发射极间的电压UCE≈ECO 可见,UBE≤0,UBC1V 以上,UBE>0,UBC 二、确定电路中三极管的工作状态 下面利用三极管三种工作状态的特点和等效电路来分析实际电路中三极管的工作状态。 例题:图2 所示放大电路中,已知EC=12V,β=50,Ri=1kΩ,Rb=220kΩ,Rc=2kΩ,其中Ri 为输入耦合电容在该位置的等效阻抗。问:1.当输入信号最大值为+730mV,最小值为-730mV 时,能否经该电路顺利放大?2.当β=150 时,该电路能否起到正常放大作用?

水位控制电路设计报告

水位控制电路设计 一、设计任务与要求 1、控制器能准确测量出水箱内的水位。 2、水位过低时控制器讲导通水泵自动供水,水位达到一定程度时便自动停止供水。 二、方案设计与论证 设五个水位分别为:最低水位、水箱1/3处,水箱1/2处、水箱3/4处、最高水位。五个发光二极管分别对应以上不同的水位。在水箱中插入一根绝缘棒,在绝缘棒对应位置上按上五个电极,拉出五根导线连在发光二极管上,并提供电源。若水位满过探头电极,利用不纯净水导电这一性质,电路导通,对应的发光二极管亮。利用水位是否满过电极控制水泵工作,实现自动供水功能。设水箱1/2处为水位下限点A,设水箱最高水位为上限B,当水位高于B点时,利用设计电路使水泵不导通,当水位低于B点时,水泵通过设计电路导通工作。导通关断工作可利用继电器、三极管等元件进行。 方案一、 本电路用一块555时基电路和少量外围元件,依靠电平变化来触发翻转使J吸合或释放控制电机工作。当水位低于B点时,Ic(555)

②、⑥脚电压小于1/3Vcc③脚为高电平,J吸合抽水机工作。当水位升至a点时,②、⑥脚为高电平,③脚为低电平,J释放抽水停止,在此由R1使水位保持在A、B两点之间。重要部位就是A、B两接点。为了防止氧化,我用炭棒作接点材料。要使这两点悬空离池边3~10cm,c点用螺栓固定在水泵或水管任一部位。 方案二、

在水箱绝缘棒最低水位处设一个C点,C点连接电源。当水位低于A 点或者在A、B之间的时候,利用与非门、三极管和继电器接通水泵,当水位处于B点时,A、B进入与非门,与非门输出为高电平,通过继电器导通水泵。 方案二容易成功,我们选择了方案二 三、单元设计电路与参数计算 一、电路与参数计算 图1是控制器电路图,在水箱中有两只检测探头"A"和"B",其中"A"是下限水位探头,"B"是上限水位探头,12V直流电源接到探头"C",它是水箱中储存水的最低水位。 下限水位探头"A"连接到晶体管T1(BC547)的基极,其集电极连到12V 电源,发射极连到继电器RL1,继电器RL l接入与非门N3第○13脚。同样,上限水位探头"B"接到晶体管T2的基极(BC547),其集电极连到12V电源,发射极经电阻R3接地,并接入与非门N1第①、②脚,与非门N2的输出第④脚和与非门N3的第○12脚相连,N3第①脚输出端接到N2第⑥脚输入端,并经电阻R4与晶体管T3的基极相连,与晶体管T3发射极相连的继电器RL2用来驱动电动机M。 当水箱向水位在探头A以下,晶体管T1与T2均不导通,N3输出高电平,晶体管T3导通,使继电器RL2有电流通过而动作,因而电动机工作,开始将水抽入水箱。当水箱的水位在探头A以上、探头B以下时,水箱中的水给晶体管T1提供了基极电压,使T1导通,继电器RLl得电吸合N3第○13 脚为高电平,由于晶体管T2并无基极电压,而处于截止状态,N1第①、②脚输入为低电平,第③脚输出则为高电平,而N2第⑥脚输入端仍为高电平,因而N2第④脚输出则为低电平,最终N3第11脚输出为高电平,电动机继续将水抽入水箱。 当水箱的水位超过上限水位B时,晶体管T1仍得到基极电压,继电器RLl吸合。N3第○13脚仍为高电平,同时,水箱中的水也给晶体管T2提供基极电压使其导通,Nl第①、②脚输入端为高电平,

多变流水灯控制电路.doc

(1)电路结构与特点 多变流水灯控制电路如图2S所示。图中的多谐振荡器由非门U5;A、U5:B及R1、R2、C1组成,其振荡频率为2H2。三极管开关电路由R3、v1组成,它并联在R2(决定频率的元件之一)的两端。当v1饱和时,相当于R2两端并联一电阻,多谐振荡器的频率将 变为原来的3倍。多谐振荡器产生的方波由两路输出,其中b4日1u5:A输出的一路输入U4的12级串行二进制计数分频器。该计数分频器将输入端信号输出,分频作用于v1。在U4的13脚输出的一个方波的前半段,其输出电平为“o”,v1截止,振荡器频率保持2H2;在后半段v1饱和,使振荡频率变为6Hz。非门U5:B输出至U1的BCD可预置数同步可逆计数器。其4、12、13、3脚为BCD码数据预置端,6、11、14、2脚为BCD码数据输出端。9脚为清零端,当其为高电平时,输出的数据为咖零数。l脚为置数允许端,当其为 高电平而9脚为低电平时,输出的数据与4、12、13、3脚预置数相同。I o脚为加、减计数

控制端,高电平为加计数,低电乎为减计数。5脚为进位输入端,无进位时,固定为低电乎。15脚为时钟脉冲输入端,脉冲上升沿有效。U1输出直接至U2的咖十进制译码器,将BcD码数据译为十进制码,从相应的十进制码数输出端输出。电路中Ul的4、12脚接高电乎,13、3脚接低电乎,故预置数为o011,即十进制数的3。u1的10脚由U4的输出端提供控制信号,当U1的15脚连续不断地输入时钟脉冲时,如果u1的10脚为高电平,则U1输出的比D码数据经U2译码,U2的3、14、2、15脚依次输出高电平。当U2的1 脚输出高电平时,经R5、C2稍加延时输入非门U5:D、U5lc整形,将经RC延时使前 沿变得较平滑的波形重新整形为方波,以避免ul同步计数器产生信号丢失。整形后的高 电乎至U1的9脚时,U2的3脚迅速变为高电乎输出。于是开始了3、14、2、15脚依次输出高电乎的重复过程。当u1的10脚为低电平时,计数器按逆向过程15、2、14、3脚顺序输出高电乎,原理同前所述。由u2输出的信号分成两路,其中一路输入u3四双向开关,其任一组开头在控制端为高电平时呈低阻通态,而在控制端为低电平时为高阻断态。由 U4的12、14脚输出端经V3、V4、R15组成“或”门电路,同时控制U3四组开关的通、断。 当开关通时,u2的一个输出端的高电乎可以使两个三极管饱和,而开关为断态时,此高电乎只能使一个三极管饱和。三极管由集电极反相输出,控制双向可控硅vsl—vs4的通、断,从而实现对彩灯的控制。 (2)无路件选择 在图23中,U1选用CD45lo,U2选用凹4028,U3选用CD4066,U4选用CD4040,

三极管三种电路的特点

三极管三种电路的特点 1.共发射极电路特点 共射极电路又称反相放大电路,其特点为电压增益大,输出电压与输入电压反相, 低频性能差,适用于低频、和多级放大电路的中间级 共发射极放大电路 共发射极的放大电路,如图2所示。 图2 共发射极放大电路 因具有电流与电压放大增益,所以广泛应用在放大器电路。其电路特性归纳如下:输入与输出阻抗中等(Ri约1k?5k ;RO约50k)。 电流增益: 禺*=令》1 电压增益: 一T一〒7 瓦 负号表示输出信号与输入信号反相(相位差180°。 *卫二比j '丄=仔 功率增益: 功率增益在三种接法中最大。 共发射极放大电路偏压

V : 输入信号 图4自给偏压方式 又称为基极偏压电路,最简单的偏压电路,稳定性差,容易受B 值的变动影 响,温度每升高10C 时,逆向饱和电流ICO 增加一倍。温度每升高「C 时,基射 电压VBE 减少2.5mV ,B 随温度升高而增加(影响最大)。 O VCC 图5带电流反馈的基极偏压方式 三极管发射极加上电流反馈电阻,特性有所改善,但还是不太稳定 Cl ?tr Vo 3

图6分压式偏置电路 此为标准低频信号放大原理图电路,其R1 (下拉电阻)及R2为三极管偏压电阻,为三极管基极提供必要偏置电流,R3为负载电阻,R4为电流反馈电阻(改善特性),C3为旁路电容,C1及C3为三极管输入及输出隔直流电容(直流电受到阻碍),信号放大值则为R3/R4倍数.设计上注意:三极管Ft值需高于信号放大值与工作频率相乘积,选择适当三极管集电极偏压、以避免大信号上下顶部失真 , 注意C1及C3的容量大小对低频信号(尤其是脉波)有影响?在R4并联一个C2,放大倍数就会变大。而在交流时C2将R4短路。 为什么要接入R1及R4? 因为三极管是一种对温度非常敏感的半导体器件,温度变化将导致集电极电 流的明显改变。温度升高,集电极电流增大;温度降低,集电极电流减小。这将造成静态工作点的移动,有可能使输出信号产生失真。在实际电路中,要求流过R1和R2串联支路的电流远大于基极电流IB。这样温度变化引起的IB的变化,对基极电位就没有多大的影响了,就可以用R1和R2的分压来确定基极电位。采用分压偏置以后,基极电位提高,为了保证发射结压降正常,就要串入发射极电阻R4。 R4的串入有稳定工作点的作用。如果集电极电流随温度升高而增大,则发射极对地电位升高,因基极电位基本不变,故UBE减小。从输入特性曲线可知,UBE的减小基极电流将随之下降,根据三极管的电流控制原理,集电极电流将下降,反之亦然。这就在一定程度上稳定了工作点。分压偏置基本放大电路具有稳定工作点的作用,这个电路具有工作点稳定的特性。当流过R1和R2串联支路的电流远大于基极电流IB (一般大于十倍以上)时,可以用下列方法计算工作

花样流水灯设计

一、原理图设计的目的: 利用AT89C51,通过控制按键来实现六种流水灯花样的转换,实现花样流水灯的设计,同时通过外部中断0,来控制流水灯的速度。 二、各器件的功能作用: 1、AT89C51 AT89C51有40个引脚,每个引脚都有其功能。本次设计中,利用P0口当输出口,输出低电平来驱动发光二极管点亮。利用P1.0~P1.5六个引脚,通过按键接地,然后采用扫描的方式,判断哪个引脚所接按键按下,从而来控制六种流水灯的花样。利用P3.2引脚外接按键接地,通过控制按键来减慢流水灯的速度,利用P3.3引脚外接按键接地,通过控制按键来提高流水灯的速度。利用P3.7输出低电平,导通三极管Q1,从而给八个发光二极管的阳极加高电平,一旦P0口输出低电平就可以驱动发光二极管。 2、八个发光二极管: 通过八个发光二极管来实现流水灯的变化,用低电平驱动发光二级管亮,同时,用高电平使其熄灭 。 3、按键 通过P1.0-P1.5外接的按键来实现流水灯各种花样的变化,当按键按下时,驱动一种流水灯花样的闪烁。同时,利用按键来提供外部

中断,当按下按键时,产生一个外部中断,向CPU申请中断,CPU 响应其中断,因此可以用按键来实现提高流水灯闪烁的速度。 通过在RST口处加上一个按钮手动复位电路,利用复位按钮可以使运行中的流水灯复位到初始的状态。 4、排阻 因为P0口作为输出口时需要外接上拉电阻 三、设计原理图: 四、程序如下: #include //51系列单片机定义文件 #define uchar unsigned char //定义无符号字符 #define uint unsigned int //定义无符号整数

花样流水灯设计

单片机课程设计 2014年 6月 15日 课 程 单片机课程设计 题 目 花样流水灯 院 系 电气工程及其自动化系 专业班级 1112班 学生姓名 温亿锋 学生学号 201111631227 指导教师 张瑛

一丶任务 设计一款以AT89C51单片机作为主控核心,按键控制电路、流水灯显示电路以及单片机最小系统等模块组成的核心主控制电路。 二丶设计要求 通过发光二极管显示不同的花样(至少有六种花样),并且可以通过按键来控制流水灯的速度。 三丶设计方案 本方案主要是通过对基于单片机的多控制、多闪烁方式的LED流水灯循环系统的设计,来达到本设计的要求。其硬件构成框图如下图所示,以单片机为核心控制,由单片机最小系统(时钟电路、复位电路、电源)、按键控制电路、LED 发光二极管和5V直流电源组成。 单片机流水灯循环控制系统硬件框图 此设计方案中单片机的P1口接5路按键控制电路,实现流水灯花型的切换功能;单片机的P3.7引脚接上一个按钮开关以实现对流水灯闪烁频率的控制,即实现了快慢两种节拍实现花型的变换;单片机上的P2口接八路LED发光二极管组成流水灯电路,显示流水灯循环情况。 四丶系统硬件设计 4.1 直流稳压电源电路

对于一个完整的电子设计来讲,首要问题就是为整个系统提供电源供电模块,电源电路的稳定可靠是系统平稳运行的前提和基础。电子设备除用电池供电外,还采用市电(交流电网)供电。通过变压、整流、滤波和稳压后,得到稳定的直流电。直流稳压电源是电子设备的重要组成部分。本项目直流稳压电源为+5V。 直流稳压电源的制作一般有3种制作形式,分别是分立元件构成的稳压电源、线性集成稳压电源和开关稳压电源。下图为稳压电源采用的是三端集成稳压器7805构成的正5V直流电源。 三端固定式集成稳压电源电路图 AT89C51单片机的工作电压范围:4.0V---5.5V,所以通常给单片机外接5V 直流电源。此处用3节1.5V的干电池供电。 4.2 单片机最小系统 要使单片机工作起来,最基本的电路的构成由单片机、时钟电路、复位电路等组成,单片机最小系统如图所示。 时钟电路:本系统采用单片机内部方式产生时钟信号,用于外接一个12MHz 石英晶体振荡器和2个30pF微调电容,构成稳定的的自激振荡器,其发出的脉冲直接送入内部的时钟电路。 复位电路:确定单片机工作的起始状态,完成单片机的启动过程。单片机系统的复位方式有上电自动复位和手动按键复位。本设计采用手动按键复位,该复位方式同样具有上电自动复位功能。

相关文档
相关文档 最新文档