文档库 最新最全的文档下载
当前位置:文档库 › 德国梅尔编码器S58系列DP链接方式的使用方法(林聪)

德国梅尔编码器S58系列DP链接方式的使用方法(林聪)

德国梅尔编码器S58系列DP链接方式的使用方法(林聪)
德国梅尔编码器S58系列DP链接方式的使用方法(林聪)

梅尔编码器的使用方法简介

作者:林聪1硬件配置

编码器的站地址设定,在编码器后盖上有一排拨码开关,数字由1到9最后有个0,数字为9和0的拨码为DP网的终端电阻,数字1到8位DP站地址的拨码,对应二进制2的系数的0到7。设置好后正常配置STEP7硬件。

2参数说明

编号说明:1:码盘计数的方向clockwise为正向计数。

2:激活Class 2通讯类型,即当前配置的通讯类型激活,如果不激活下载后CPU将会进入STOP模式。

3:设置码盘转一圈输出的步数(脉冲数),设置值范围为1到16384。

4:设置最高计数圈数,设置为6时,圈数变化为

0-1-2-3-4-5-0-1-2-3-4-5-0(每65536个步数增加/减少一圈)。

5:设置减计数时首次的圈数,设置为2时,减计数首

次圈数为3,之后又跳到最大值循环,变化规律0-3-2-1-0-5-4-3-2-1-0-5。

计数圈数截图

减计数方向旋转后

减计数方向旋转过0圈后在旋转圈数由5开始下降

3码盘置数

码盘输入字1位圈数(piw512),输入字2位步数即脉冲数(piw514)

编码器的第一个字是圈数,第二字是步数,在设定过程中我们需要把自己需要设定的圈

数放在高16位,需要设定的步数放在低16位,然后把最高位置1(上升沿有效),输出到

倍加福编码器中。然后再把高16位、低16位全部设置为零,再输出到倍加福编码器中。

此编码器的起始地址为512,那么plc输出到编码器应该是PQD512,假如我们想把倍加

福的编码器圈数设定为0,步数设置为0的话。圈数0转换为二进制为0000_0000_0000_0000,步数0转换成二进制为0000_0000_0000_0000。置数的条件是第二个字的最高位应为1,所

以PQD512对应的二进制数为1000_0000_0000_0000_0000_0000_0000_0000,即16进制数w#16#80000000H,在程序中做一个上升沿的赋值给定。

执行置数指令后

所以,当我想让码盘初始圈数为0,脉冲数为16时,则

PQD512=W#16#8000000AH。

旋转编码器原理及其应用

旋转编码器的原理及其应用 摘要:本文介绍了常用编码器的原理、分类以及其应用的注意事项,并以德国P+F公司的编码器产品为参照,重点介绍了增量型编码器和绝对值型编码器的原理及应用,其中绝对值型编码器中以格雷码为主作了详细的介绍。 关键词:编码器增量型绝对值格雷码 一、前言 在自动化领域,旋转编码器是用来检测角度、速度、长度、位移和加速度的传感器。依靠轴杆、齿轮、测量轮或绳缆的控制,线性的移动能被检测。编码器也把实际的机械参数值转换成电气信号,这些电气信号可以被计数器、转速表、PLC和工业PC处理。 二、功能原理 由玻璃或塑料制成的圆盘被分成透明和非透明的区域,如果一个光源固定在圆盘的一侧,光敏元件固定在另一侧,旋转的移动没有接触就可获得。如果一束光打在透明的区域,接收器接收到,产生脉冲,当光束被 黑色区域隔断式,不产生脉冲。发光二极管 通常用作光源,发光范围在红外线范围内, 光敏二极管或光敏晶体管作为接收器。(见 右图) 如果按照此原理没有其它功能加入的 话,仅能推论出圆盘在转动,旋转的感应或 绝对值位置不能被确定。 编码器根据它们的功能原理和机械形式 和安装系统有不同的区别。 1、功能原理 1.1增量型旋转编码器 轴的每圈转动,增量型编码器提供一定数量的脉冲,周期性的测量或者单位时间内的脉冲数可以用来测量移动的速度。如果在一个参考点后面脉冲数被累加,计算值就代表了转动角度或行程的参数。双通道编码器输出脉冲之间相差900。能使接收脉冲的电子设备接收轴的旋转感应信号,因此可用来实现双向的定位控制。另外,三通道增量型编码器每一圈产生一个称之为零位信号的脉冲。 旋转增量型编码器以转动时输出脉冲,通过计数设备来计算其位置,当编码器不动或停电时,依靠计数设备的内部记忆来记住位置。这样,当停电后,编码器不能有任何的移动,当来电工作时,编码器输出脉冲过程中,也不能有干扰而丢失脉冲,不然,计数设备计算并记忆的零点就会偏移,而且这种偏移的量是无从知道的,只有错误的产生结果出现后才能知道。 解决的方法是增加参考点,编码器每经过参考点,将参考位置修正进计数设备的记忆位置。在参考点以前,是不能保证位置的准确性的。为此,在工控中就有每次操作先找参考点,开机找零等方法。 这样的方法对有些工控项目比较麻烦,甚至不允许开机找零(开机后就要知道准确位置),于是就有了绝对编码器的出现。 1.2绝对值旋转编码器 绝对编码器光码盘上有许多道光通道刻线,每道刻线依次以2线、4线、8线、16线编排,这样,在编码器的每一个位置,通过读取每道刻线的通、暗,获得一组从2的零次方到2的n-1次方的唯一的2进制编码(格雷码),这就称为n位绝对编码器。这样的编码器是由光电码盘的机械位置决定的,它不受停电、干扰的影响。特别是在定位控制应用中,绝对值编码器减轻了电子接收设备的计算任务,从而省去了复杂的和昂贵

高清视频编码器中文说明书H265-H264汇总

H.265/H.264高清视频编码器 上海禾鸟电子科技有限公司荣誉出品

一、产品简介 H.265/H.264高清视频编码器有HDMI\SDI\VGA三种高清接口产品,是由上海禾鸟电子自主研发的用于高清视频信号编码及网络传输直播的硬件设备,采用最新高效 H.265/H.264高清数字视频压缩技术,具备稳定可靠、高清晰度、低码率、低延时等特点。输入高清HDMI、SDI、VGA高清视频、音频信号,进行编码处理,经过DSP芯片压缩处理,输出标准的TS网络流,直接取代了传统的采集卡或软件编码的方式,采用硬编码方式,系统更加稳定,图像效果更加完美,广泛用于各种需要对高清视频信号及高分辨率、高帧率进行采集并基于IP 网络传送的场合,强大的扩展性更可轻易应对不同的行业及需求,可作为视频直播编码器,录像,传输等应用。采用工业控制精密设计,体积小,方便安装,功率小于5W,更节能,更稳定。 特点: ●高性能硬件编码压缩 ●支持H.265高效视频编码 ●支持H.264 BP/MP/HP ●支持AAC/G.711高级音频质编码格式 ●CBR/VBR码率控制,16Kbps~12Mbps ●网络接口采用100M、1000M 全双工模式 ●主流,副流可推流不同的服务器 ●支持高达720P,1080P@60HZ的高清视频输入 ●支持图像参数设置 ●HDMI编码支持HDCP协议,支持蓝光高清 ●支持HTTP,UTP,RTSP,RTMP,ONVIF 协议 ●主流与副流采用不同的网络协议进行传输 ●WEB操作界面,中英文配置界面可选 ●WEB操作界面权限管理 ●支持广域网远程管理(WEB) ●支持流分辨率自定义输出设置 ●支持码流插入中英文字功能,字体背景、颜色可选 ●支持码流插入3幅透明图像水印功能,XY轴可设置 ●支持一键恢复出厂配置 二、产品应用: 1、4G移动直播高清前端采集 2、高清视频直播服务器 3、视频会议系统视频服务器 4、数字标牌高清流服务器 5、教学直播录像系统前端采集 6、IPTV电视系统前端采集

高清解码器快速使用说明书

高清解码器快速使用说明书 目录 第一章产品介绍 (2) 1.1产品概述 (2) 1.2产品主要功能特点 (2) 第二章设备线缆连接 (3) 第三章基本操作 (4) 3.1开机 (4) 3.2关机 (4) 3.3登录 (4) 3.4预览 (5) 3.5报警功能 (5) 3.5.1移动侦测 (5) 3.6网络设置 (6) 3.7通道管理 (6) 3.8公网访问设备(云操作) (7) 3.8.1向导 (7) 3.8.2按用户登录,管理设备(按用户登录,可以管理多台设备) (10) 3.8.3按序列号登录,访问设备 (12) 第四章远程监控 (13) 1.远程监控 (13) 1.1多机管理平台软件CMS (13) 1.2web监控 (13) 2.基本远程操控 (15) 2.1画面分割 (15) 2.2回放 (15) 2.3日志 (15) 2.4本地配置 (15) 2.5通道操控 (15) 2.6远程进行设备端配置 (15)

第一章产品介绍 1.1产品概述 本设备是专为安防领域设计的一款优秀的数字监控产品。采用嵌入式LINUX操作系统,使系统运行更稳定;采用标准的H.264MP视频压缩算法和独有的时空滤波算法,实现了高画质、低码率的同步音视频监控;采用TCP/IP等网络技术,具有强大的网络数据传输能力和远程操控能力。 本设备既可本地独立工作,也可连网组成一个强大的安全监控网,配合专业网络视频监控平台软件,充分体现出其强大的组网和远程监控能力。 1.2产品主要功能特点 本产品是由4块BLK3520A_N04A_H组合成的一款4路高清解码器,通过网络将数据接收进来,支持4路1080P解码,视频输出支持4路TV,4路VGA,4路HDMI同时输出。4块BLK3520A_N04A_H独立使用,共用1个电源和1个网口。

旋转编码器详解

增量式编码器的A.B.Z 编码器A、B、Z相及其关系

TTL编码器A相,B相信号,Z相信号,U相信号,V相信号,W相信号,分别有什么关系? 对于这个问题的回答我们从以下几个方面说明: 编码器只有A相、B相、Z相信号的概念。 所谓U相、V相、W相是指的电机的主电源的三相交流供电,与编码器没有任何关系。“A相、B相、Z相”与“U相、V相、W相”是完全没有什么关系的两种概念,前者是编码器的通道输出信号;后者是交流电机的三 相主回路供电。 而编码器的A相、B相、Z相信号中,A、B两个通道的信号一般是正交(即互差90°)脉冲信号;而Z相是零脉冲信号。详细来说,就是——一般编码器输出信号除A、B两相(A、B两通道的信号序列相位差为90度)外,每转一圈还输出一个零位脉冲Z。 当主轴以顺时针方向旋转时,输出脉冲A通道信号位于B通道之前;当主轴逆时针旋转时,A通道信号则位于B通道之后。从而由此判断主轴是正转还是反转。 另外,编码器每旋转一周发一个脉冲,称之为零位脉冲或标识脉冲(即Z相信号),零位脉冲用于决定零位置或标识位置。要准确测量零位脉冲,不论旋转方向,零位脉冲均被作为两个通道的高位组合输出。由于通道之间的相位差的存在,零位脉冲仅为脉冲长度的一半。 带U、V、W相的编码器,应该是伺服电机编码器 A、B相是两列脉冲,或正弦波、或方波,两者的相位相差90度,因此既可以测量转速,还可以测量电机的旋转方向Z相是参考脉冲,每转一圈输出一个脉冲,脉冲宽度往往只占1/4周期,其作用是编码器自我校正用的,使得编码器在断电或丢失脉冲的 时候也能正常使用。 ABZ是编码器的位置信号,UVW是电机的磁极信号,一般用于同步电机; AB对于TTL/HTL编码器来说,AB相根据编码器的细分度不同,每圈有很多个,但Z相每圈只有一个; UVW磁极信号之间相位差是120度,随着编码器的角度转动而转动,与ABZ 之间可以说没有直接关系。 /#############################################################

视频网络高清编码器产品使用说明书

H.265/H.264 HDMI编码器 产品使用说明书

目录 一、产品概述 1.产品概述 2.应用场景 3.产品参数 二、浏览器使用说明 1.系统登录 2.预览界面 3.编码器设置 3.1 系统设置 3.2 网络设置 3.3 音视频设置 3.4 安全设置 三、VLC播放器设置 前言 感谢您使用本公司网络高清编码器产品,该产品是针对安防视频监控、IPTV网络直播、远程教学、远程医疗、庆典典礼、远程视频会议、自媒体直播应用的HDMI网络高清编码器。采用高性能、单片SOC 芯片实现集音视频采集、压缩、传输于一体的媒体处理器,标准的H.265和H.264 Baseline 以及 Mainprofile 编码算法确保了更清晰、更流畅的视频传输效果。内嵌 Web Server 允许用户通过 IE 浏览器方便地实现对前端视频的实时监看和远程控制。 该产品实际测试乐视云、百度云、目睹、Youtube和Wowza等服务媒体服务器,兼容海康威视H.265的NVR产品,支持TS流、RTMP、HTTP、RTSP和ONVIF等视频协议;支持AAC、G.711U和G.711A等音频编码。以及需要运用到远程网络视频传输及直播的各种场合,本产品易于安装,操作简便。 声明:我们保留随时更改产品和规格,恕不另行通知。这些信息不会被任何暗示或其他任何专利或其它权利转让任何许可。 读者对象:

本手册主要适用于以下工程师: 系统规化人员 现场技术支持与维护人员 负责系统安装、配置和维护的管理员 进行产品功能业务操作的用户 TS-H264-B 型号: 一、产品概述 1.产品概述,该产品采用华为最先进的H.265网络高清数字音视频芯片压缩技术,具有稳定可靠、高清晰、低码率、低延时等技术特点。该产品输入为高清HDMI视频信号,经过主芯片视频压缩编码处理,通过网络输出标准的TS流和RTMP视频流。该产品的推出填补了行业内空白,直接取代了传统的视频采集卡,使用嵌入式操作系统保证产品更加稳定。采用工业级铝合金外壳设计,体积小,方便安装。 2.应用场景,产品主要用于网络视频直播,点播和录像监控等场景。 3.产品参数

编码器内部PNP-NPN详解说明-有图示

编码器输出信号类型 一般情况下,从编码器的光电检测器件获取的信号电平较低,波形也不规则,不能直接用于控制、信号处理和远距离传输,所以在编码器内还需要对信号进行放大、整形等处理。经过处理的输出信号一般近似于正弦波或矩形波,因为矩形波输出信号容易进行数字处理,所以在控制系统中使用比较广泛。 增量式光电编码器的信号输出有集电极开路输出、电压输出、线驱动输出和推挽式输出等多种信号形式。 1集电极开路输出 集电极开路输出是以输出电路的晶体管发射极作为公共端,并且集电极悬空的输出电路。根据使用的晶体管类型不同,可以分为NPN集电极开路输出(也称作漏型输出,当逻辑1时输出电压为0V,如图2-1所示)和PNP集电极开路输出(也称作源型输出,当逻辑1时,输出电压为电源电压,如图2-2所示)两种形式。在编码器供电电压和信号接受装置的电压不一致的情况下可以使用这种类型的输出电路。 图2-1 NPN集电极开路输出 图2-2 PNP集电极开路输出 对于PNP型的集电极开路输出的编码器信号,可以接入到漏型输入的模块中,具体的接线原理如图2-3所示。 注意:PNP型的集电极开路输出的编码器信号不能直接接入源型输入的模块中。

图2-3 PNP型输出的接线原理 对于NPN型的集电极开路输出的编码器信号,可以接入到源型输入的模块中,具体的接线原理如图2-4所示。 注意:NPN型的集电极开路输出的编码器信号不能直接接入漏型输入的模块中。 图2-4 NPN型输出的接线原理 2.2电压输出型 电压输出是在集电极开路输出电路的基础上,在电源和集电极之间接了一个上拉电阻,这样就使得集电极和电源之间能有了一个稳定的电压状态,如图2-5。一般在编码器供电电压和信号接受装置的电压一致的情况下使用这种类型的输出电路。

旋转编码器的原理及应用

旋转编码器的原理及应用 旋转编码器是用来测量转速的装置。它分为单路输出和双路输出两种。技术参数主要有每转脉冲数(几十个到几千个都有),和供电电压等。单路输出是指旋转编码器的输出是一组脉冲,而双路输出的旋转编码器输出两组相位差90度的脉冲,通过这两组脉冲不仅可以测量转速,还可以判断旋转的方向。 什么是光电编码器? 工作原理:当光电编码器的轴转动时A、B两根线都产生脉冲输出,A、B两相脉冲相差90度相位角,由此可测出光电编码器转动方向与电机转速。如果A相脉冲比B相脉冲超前则光电编码器为正转,否则为反转.Z 线为零脉冲线,光电编码器每转一圈产生一个脉冲.主要用作计数。A线用来测量脉冲个数,B线与A线配合可测量出转动方向. N为电机转速Δn=ND测-ND理 例如:我们车的速度为1.5m/s,轮子的直径220mm,C=D*Pi,电机控制在21.7转/秒,根据伺服系统的指标, 设电机转速为1500转/分,故可求得当ND=21.7*60=130转/分时,光码盘每秒钟输出的脉冲数为: PD=130×600/60=1300个脉冲 当测出的脉冲个数与计算出的标准值有偏差时,可根据电压与脉冲 个数的对应关系计算出输出给伺服系统的增量电压△U,经过D/A转换,再计算出增量脉冲个数,等下减去。 当运行时间越长路线越长,离我们预制的路线偏离就多了。这时系统起动位置环,通过不断测量光电编码器每秒钟输出的脉冲个数,并与标准值PD(理想值)进行比较,计算出增量△P并将之转换成对应的D/A 输出数字量,通过控制器减少输个电机的脉冲个数,在原来输出电压的基础上减去增量,迫使电机转速降下来,当测出的△P近似为零时停止调节,这样可将电机转速始终控制在允许的范围内。

海湾电子编码器使用说明书

海湾电子编码器安装使用说明书 一、概述 GST-BMQ-2电子编码器(以下简称编码器)可对电子编码的探测器或模块进行地址码、灵敏度、设备类型等的读出和地址码、灵敏度的写入功能,还可以对火灾显示盘进行地址码、灯号及二次码的读出和写入。 二、特点 1. 该编码器采用手握式结构,外形小巧,携带方便,操作简单; 2. 该编码器可通过编码器后盖的总线接口,直接和总线型探测器旋接,进行编码等操 作,更加方便,如图2所示(略); 3. 可对公司生产的总线型探测器、模块等设备编码,可对ZF-GST8903火灾显示盘、 JTY-HM-GST102线型光束感烟火灾探测器、JTY-HF-GST102线型光束感烟火灾探测器、隔爆点型可燃气体探测器等I2C接口设备编码; 4. 四位段码式液晶显示,显示直观; 5. 低功耗睡眠和自动关机功能; 6. 电池欠压指示功能 三、技术特性

1. 电源:1节9V叠式电池 2. 工作电流≤8mA 3. 待机电流≤100чA 4. 使用环境: 温度:-10℃~+50℃ 相对湿度≤95%,不凝露 5. 尺寸:164mm×64mm×37mm 四、结构特征 外形示意图如图1所示(略) 1:电源开关 2:液晶屏 3:总线插口 4:火灾显示盘接口(I2C) 5:复位键 6:固定螺丝 7:电池盒后盖 8:铭牌 9:JTY-GD-G3、JTY-ZCD-G3N探测器总线接口 10:JTY-GM-GST9611、JTW-ZOM-GST9612型探测器总线接口11:电池盒后盖螺丝 12:保护盖 其中各部分名称和功能说明如下:

1. 电源开关:完成系统硬件开机和关机操作。 2. 液晶屏:显示有关探测器的一切信息和操作人员输入的相关信息,并且当电源欠压时给出指示。 3. 总线插口:编码器通过总线插口与探测器或模块相连。 4. 火灾显示盘接口(I2C):编码器通过此接口与ZF-GST8903火灾显示盘或以I2C编程方式编码的探测器相连。 5. 复位键:当编码器由于长时间不使用而自动关机后,按下复位键可以使系统重新上电并进入工作状态。 6. 固定螺丝:将编码器的印制板固定好,并且将编码器的前盖好后盖安装在一起。 7. 电池盒后盖:内部放置电池。 8. 铭牌:贴于编码器背面。 9. JTY-GD-G3、JTY-ZCD-G3N型探测器总线接口:旋接JTY-GD-G3、JTY-ZCD-G3N探测器。 10. JTY-GM-GST9611、JTW-ZOM-GST9611、JTW-ZOM-GST9612探测器。 11. 电池盖螺丝:将电池固定好。 12. 保护盖:保护后盖的总线接口,以免发生短路等事故。 五、使有及操作 1. 电池的初次安装 打开电池盖螺丝和电池盒后盖,将电池正确扣在电池扣上,装在电池盒内,盖好后盖,拧紧螺丝。

案例五旋转编码器的安装与应用

案例五旋转编码器的安装与应用 1.项目训练目的 掌握旋转编码器的安装与使用方法。 2.项目训练设备 旋转编码器及相应耦合器一套。 3.项目训练内容 先熟悉旋转编码器的使用说明书。 (1)旋转编码的安装步骤及注意事项 ①安装步骤: 第一步:把耦合器穿到轴上。不要用螺钉固定耦合器和轴。 第二步:固定旋转编码器。编码器的轴与耦合器连接时,插入量不能超过下列值。 E69-C04B型耦合器,插入量 5.2mm;E69-C06B型耦合器,插人量 5.5mm;E69-Cl0B型耦合器,插入量7.lmm。 第三步:固定耦合器。紧固力矩不能超过下列值。E69-C04B型耦合器,紧固力矩2.0kfg?cm;E69-C06B型耦合器,紧固力矩 2.5kgf?cm;E69B-Cl0B型耦合器,紧固力矩4.5kfg?cm。 第四步:连接电源输出线。配线时必须关断电源。 第五步:检查电源投入使用。 ②注意事项: 采用标准耦合器时,应在允许值内安装。如图5-1所示。 图5-1 标准耦合器安装 连接带及齿轮结合时,先用别的轴承支住,再将旋转编码器和耦合器结合起来。如图 5-2所示。 图5-2 旋转编码器安装 齿轮连接时,注意勿使轴受到过大荷重。 用螺钉紧固旋转编码器时,应用5kfg?cm左右的紧固力矩。 固定本体进行配线时,不要用大于3kg的力量拉线。 可逆旋转使用时,应注意本体的安装方向和加减法方向。 把设置的装置原点和编码器的Z相对准时,必须边确定Z相输出边安装耦合器。 使用时勿使本体上粘水滴和油污。如浸入内部会产生故障。 (2)配线及连接

①配线应在电源0FF状态下进行。电源接通时,若输出线接触电源线,则有时会损坏输出回路。 ②若配线错误,则有时会损坏内部回路,所以配线时应充分注意电源的极性等。 ③若和高压线、动力线并行配线,则有时会受到感应造成误动作或损坏。 ④延长电线时,应在10m以下。还由于电线的分布容量,波形的上升、下降时间会延长,所以有问题时,应采用施密特回路等对波形进行整形。 还有为了避免感应噪声等,也要尽量用最短距离配线。集成电路输人时,要特别注意。 ⑤电线延长时,因导体电阻及线间电容的影响。波形的上升、下降时间变长,容易产 生信号间的干扰(串音),因此应使用电阻小、线间电容低的电线(双绞线、屏蔽线)。

旋转编码器在S7-200的应用

运行工作方式,机器大概情况, 机器共18个工位,每个工位为一个机器过程,一个工件为5米(误差1CM)要求用2000线的轴式旋转编码器通过PLC协调控制完成每个工件。 每个工位都有一个人,1个绿启动按钮。一个绿灯,1个红色急停按钮,1个红灯。当1号工人按1号启动按钮后1号指示灯亮,2号工人按2号启动按钮后2号指示灯亮,直到第18个工人都按启动按钮后18灯全亮,机器开始运转,自动运转到5米后停止。绿灯全灭(记米自动复位)等待18个工人下一次继续给18个运行信号后运行。(红色按钮为紧急停车按钮:当工件工作到一半时紧急停车,手动不复位情况下,8个工人动启动后机器可继续当前的米数运转。手动复位则重新开始) 当18个工人无论哪个工人按红色按钮时机器立即停机(此时红色指示灯全亮,红色按钮释放后指示灯全灭)机器再次启动需18个工人都给启动信号才能运行。18个红色按钮共用PLC一个点。如果点富裕的话18个红按钮分为3组,一组6个共用一个点,用3个点实现这个功能。变频器运行过程,当给变频器运行信号时变频器缓慢启动逐渐加速到高速,指定记米到达时变频器缓慢减速到低速运行,记米到达后变频器立即停止刹车,18个工位如果少几个工位的把那几个工位短接,要不影响工作。

程序分为3部分,主程序,指示灯输出,初始化。初始化中有两个中断程序,分别为当前值=设定值时中断以及复位时产生的中断。高速计数器HDEF的通道是HSC0,意思为编码器的A、B相接I0.0、I0.1,复位接在I0.2。事件号是10,意思是选择A/B正交计数器。中断ATCH的事件号12代表当前值=设定值时中断。事件号28代表HSC0当I0.2高电平时产生中断。 主程序:

旋转编码器定位使用说明

充注小车、运载小车定位使用说明 定位原理: 旋转编码器定位与老式的旋转变压器一样,实际上是一个计数器。我们目前使用的OMRON旋转编码器每旋转一周,能精确地发出1024脉冲,PLC依据旋转编码器发出的脉冲进行计数,再乖以固定机械变比与旋转半径的系数,就可以得出脉冲与实际行走距离的线性对应关系。 PLC利用高速计数模块QD62D读取旋转编码器的值并进行数字化处理,可以将脉冲数值转换成实际的距离值如mm。 目前我们设备都是利用旋转编码器的原始值进行处理的,所有触模屏上的距离值均为脉冲值而非实际距离值,这样在处理数据时比较方便直观。 根据这一对应关系利用普通变频器控制一般的三相鼠笼电机就能实现精度在1毫米左右定位系统,可以在许多定位要求不高的控制领域使用。 使用方法: 依据上述原理,定位系统定位首先必须选择一个参考点,以这点作为基准点,其它所有设置点均为到这一点的相对距离。当基点信号取的不稳定或不好,就会影响整个定位过程。 旋转编码器由一个联轴器与一套齿轮机构组合成一套测量机构。由于齿轮与齿轮之间存在间隙,运行一段时间后就会有误差积累,造成定位不准,这时不要改变屏上设定数据,而是在运行机构运行一段时间后,让运行机构回到基点,进行一次清零,就可以消除积累误差。 旋转编码器定位机构的故障主要有定位不准、或运行数据无变化等等。 定位不准主要是由测量机构之间的间隙,联轴器、齿轮相对打滑。 一种定位不准就是干扰,现场已采用了一端接地的屏蔽等措施。出错时请严格检查测量线路(包抱QD62D联接器)有无断线、短路、屏蔽不严、模块供电电压不足等问题。 还有一种定位不准表现在:由于测量机构所能测量的最大频率不超过500KHz,因此对于变化速度太快脉冲系统不能及时测量,造成定位不准。因此系统要运行平稳,不能有速度突变。

sdi高清编码器说明书

SDI高清编码器使用说明 一、产品图: 二、产品概述: SDI高清编码器是一款专业的高清音视频编码及复用产品,该产品具有1路SDI音视频输入接口,支持H.264编码格式,可同时对视频音频进行编码。输出TS双码流设计,可根据不同需要设置每一路的输出码流分辨率,该设备具有高集成,低成本的优势,可广泛应用于各种数字电视播出系统中。支持3U结构,一台机箱可插入16张采集卡,双电源冗余结构,系统更稳定。全面支持VLC解码操作。 三、应用范围: 1、网络电视高清编码器 2、可接入NVR硬盘录像机 2、数字标牌高清流服务器 3、视频会议系统视频服务器 4、网络会议系统视频采集 5、代替高清视频采集卡 6、酒店宾馆有线电视系统 四、主要特性: ·H.264 Baseline Profile编码 ·H.264 Main Profile编码 . H.264 High Profile编码 ·MJPEG/JPEG Baseline编码 ·音频编码支持MPEG1 Audio Layer 2 . CBR/VBR/ABR码率控制,16kbit/s~40Mbit/s . 网络接口采用1000M 全双工模式 · 1通道SDI输入,支持VGA转SDI输入 ·支持高达720P,1080P的高清视频输入 ·支持图像参数设置 ·支持HDCP协议,支持蓝光高清 ·支持HTTP,UTP,RTSP,RTMP,ONVIF 协议 · WEB操作界面,中英文配置界面可选 . WEB操作界面权限管理 ·支持广域网远程管理(WEB) ·支持双码流输出 . 主码流与副码流可以采用不同的网络协议进行传输 ·支持流分辨率设置

·支持音频MP3与AAC格式选择 ·支持音频输出流单声道与立体声切换 ·支持GOP帧率设置 . 支持码流增加水印功能,XY轴,字体可设置 . 支持一键恢复默认配置 ·支持机顶盒解码 ·低功耗电源设计 ·3U高档机箱,主备电源自动切换功能,保证了系统的稳定输入: 音频: 系统:

电机编码器对零点的方法

伺服电机编码器与转子磁极相位对齐方法[原创] 波恩 | 2008-10-05 12:12:05楼主 论坛中总是有人问及伺服电机编码器相位与转子磁极相位零点如何对齐的问题,这样的问题论坛中多有回答,本人也曾在多个帖子有所回复,鉴于本人的回复较为零散,早就想整理集中一下,只是一直未能如愿,今借十一长假之际,将自己对这一问题的经验和体会整理汇总一下,以供大家参考,或者有个全面的了解。 永磁交流伺服电机的编码器相位为何要与转子磁极相位对齐 其唯一目的就是要达成矢量控制的目标,使d轴励磁分量和q轴出力分量解耦,令永磁交流伺服电机定子绕组产生的电磁场始终正交于转子永磁场,从而获得最佳的出力效果,即“类直流特性”,这种控制方法也被称为磁场定向控制(FOC),达成FOC控制目标的外在表现就是永磁交流伺服电机的“相电流”波形始终与“相反电势”波形保持一致,如下图所示: 图1 因此反推可知,只要想办法令永磁交流伺服电机的“相电流”波形始终与“相反电势”波形保持一致,就可以达成FOC控制目标,使永磁交流伺服电机的初级电磁场与磁极永磁场正交,即波形间互差90度电角度,如下图所示: 图2

如何想办法使永磁交流伺服电机的“相电流”波形始终与“相反电势”波形保持一致呢?由图1 可知,只要能够随时检测到正弦型反电势波形的电角度相位,然后就可以相对容易地根据电角度相位生成与反电势波形一致的正弦型相电流波形了。 在此需要明示的是,永磁交流伺服电机的所谓电角度就是a相(U相)相反电势波形的正弦(Sin)相位,因此相位对齐就可以转化为编码器相位与反电势波形相位的对齐关系;另一方面,电角度也是转子坐标系的d轴(直轴)与定子坐标系的a轴(U轴)或α轴之间的 夹角,这一点有助于图形化分析。 在实际操作中,欧美厂商习惯于采用给电机的绕组通以小于额定电流的直流电流使电机转子定向的方法来对齐编码器和转子磁极的相位。当电机的绕组通入小于额定电流的直流电流时,在无外力条件下,初级电磁场与磁极永磁场相互作用,会相互吸引并定位至互差0度相位 的平衡位置上,如下图所示: 图3 对比上面的图3和图2可见,虽然a相(U相)绕组(红色)的位置同处于电磁场波形的 峰值中心(特定角度),但FOC控制下,a相(U相)中心与永磁体的q轴对齐;而空载定向时,a相(U相)中心却与d轴对齐。也就是说相对于初级(定子)绕组而言,次级(转子)磁体坐标系的d轴在空载定向时有会左移90度电角度,与FOC控制下q轴的原有位 置重合,这样就实现了转子空载定向时a轴(U轴)或α轴与d轴间的对齐关系。 此时相位对齐到电角度0度,电机绕组中施加的转子定向电流的方向为bc相(VW相)入, a相(U相)出,由于b相(V相)与c相(W相)是并联关系,流经b相(V相)和c相(W相)的电流有可能出现不平衡,从而影响转子定向的准确性。 实用化的转子定向电流施加方法是b相(V相)入,a相(U相)出,即a相(U相)与b 相(V相)串联,可获得幅值完全一致的a相(U相)和b相(V相)电流,有利于定向的

旋转编码器应用注意事项

旋转编码器应用注意事项 有网友问:增量旋转编码器选型有哪些注意事项? 应注意三方面的参数: 1.械安装尺寸,包括定位止口,轴径,安装孔位;电缆出线方式;安装空间体积; 工作环境防护等级是否满足要求。 2.分辨率,即编码器工作时每圈输出的脉冲数,是否满足设计使用精度要求。 3.电气接口,编码器输出方式常见有推拉输出(F型HTL格式),电压输出(E), 集电极开路(C,常见C为NPN型管输出,C2为PNP型管输出),长线驱动器输出。其输出方式应和其控制系统的接口电路相匹配。 ■二.※有网友问:请教如何使用增量编码器? 1,增量型旋转编码器有分辨率的差异,使用每圈产生的脉冲数来计量,数目从 6到5400或更高,脉冲数越多,分辨率越高;这是选型的重要依据之一。 2,增量型编码器通常有三路信号输出(差分有六路信号):A,B和Z,一般采用 TTL电平,A脉冲在前,B脉冲在后,A,B脉冲相差90度,每圈发出一个Z脉冲,可作为参考机械零位。一般利用A超前B或B超前A进行判向,我公司增量型编码器定义为轴端看编码器顺时针旋转为正转,A超前B为90°,反之逆时针旋转为反转B超前A为90 °。也有不相同的,要看产品说明。 3,使用PLC采集数据,可选用高速计数模块;使用工控机采集数据,可选用高 速计数板卡;使用单片机采集数据,建议选用带光电耦合器的输入端口。 4,建议B脉冲做顺向(前向)脉冲,A脉冲做逆向(后向)脉冲,Z原点零位脉冲。 5,在电子装置中设立计数栈。 ■三.※关于户外使用或恶劣环境下使用 有网友来email问,他的设备在野外使用,现场环境脏,而且怕撞坏编码器。 我公司有铝合金(特殊要求可做不锈钢材质)密封保护外壳,双重轴承重载型 编码器,放在户外不怕脏,钢厂、重型设备里都可以用。 不过如果编码器安装部分有空间,我还是建议在编码器外部再加装一防护壳,以加 强对其进行保护,必竟编码器属精密元件,一台编码器和一个防护壳的价值比较还 是有一定差距的。 ■四.※从接近开关、光电开关到旋转编码器: 工业控制中的定位,接近开关、光电开关的应用已经相当成熟了,而且很好用 。可是,随着工控的不断发展,又有了新的要求,这样,选用旋转编码器的应用优 点就突出了: 信息化:除了定位,控制室还可知道其具体位置; 柔性化:定位可以在控制室柔性调整; 现场安装的方便和安全、长寿:拳头大小的一个旋转编码器,可以测量从几个 μ到几十、几百米的距离,n个工位,只要解决一个旋转编码器的安全安装问题,可 以避免诸多接近开关、光电开关在现场机械安装麻烦,容易被撞坏和遭高温、水气 困扰等问题。由于是光电码盘,无机械损耗,只要安装位置准确,其使用寿命往往 很长。 多功能化:除了定位,还可以远传当前位置,换算运动速度,对于变频器,步 进电机等的应用尤为重要。 经济化:对于多个控制工位,只需一个旋转编码器的成本,以及更主要的安装 、维护、损耗成本降低,使用寿命增长,其经济化逐渐突显出来。

欧姆龙PLC与旋转编码器的应用

旋转编码器的应用 例:E6C-N绝对型多旋转高精度型旋转编码器与CPM1A PLC连接进行定位控制 一、连接示意图 型号E6C-NN5C 型号CPM1A-40CD□-□ 二、配线表 【型号E6C-NN5C和型号CPM1A的配线】 型号E6C-NN5C输出信号型号CPM1A 输入信号 单旋转导线外皮褐(20) 00000 数据颜色橙(21) 00001 (灰)黄(22) 00002 绿(23) 00003 蓝(24) 00004 紫(25) 00005 灰(26) 00006 白(27) 00007 粉红(28) 00008 多旋转导线外皮茶(20) 00100 数据颜色橙(21) 00101 (黑)黄(22) 00102 绿(23) 00103 蓝(24) 00104 紫(25) 00105 符号+=0 灰(26) 00106 -=1 白(27) 00107 三、输出时间 【输出时间】 型号E6C-NN5C的绝对值数据 1旋转 2旋转 127旋转 63999

四、梯形图程序 000通道的0 接点,输送到 (单旋转数 BIN) BIN BCD 001通道的 0~7接点,输送 到DM0003(多旋转 数据BIN) BIN 转换到BCD BCD)× 500(单旋转分辨率) 的结果存入 DM0005~6 比较带在DM0010/11的值与DM0012/13 的值间在线性绝对值数据时,输出01000 接点。(限正旋转时进行带域比较)

五、DM设定 【DM设定】 DM0000 0001 0002 0000 数据程序用工作区域 0003 0004 0005 0006 0007 线性绝对值数据 0008 0009 比较数据 0010 9000 0011 0000 上限值设定 0012 0500 0013 0001 下限值设定 注:上述梯形程序为参考例,有时会因程序控制器的数据读入时间而产生数据读取错误。这时,比较上次读入的数据与当前读入的数据。若超过100以上,则该数据作废。(多旋转数据变化时,同时读入单旋转数据与多旋转数据,则错误的数据也被读入。

POSITAL编码器说明书

P O S I T A L编码器说明书 Prepared on 24 November 2020

POSITAL编码器资料 FRABA 编码器 德国博思特POSITAL编码器、POSITAL工业编码器、POSITAL倾角仪,POSITAL传感器、POSITAL线性传感器,POSITAL绝对值编码器、POSITAL旋转编码器等。 编码器行业领导者上海精芬德国博思特POSITAL编码器、POSITAL工业编码器、POSITAL倾角仪,POSITAL 传感器、POSITAL线性传感器,POSITAL绝对值编码器、POSITAL旋转编码器等,如需询价或详细信息,方案选型与精芬联系。德国POSITAL公司成立于1918年,致力于高端机电产品的研发及生产,是欧洲绝对值编码器产品的领跑者。该公司产品广泛应用于冶金、汽车制造、水利、物流、机械制造、木材加工、造船等行业。 以下021列举部分型号:OCD-S200G-1412-B15S-PRL、OCD-S200G-1212-B150-PRL、OCD-S200G-1212-B15S-CRW、OCD-S200G-1213-B150-CAW、OCD-S200B-1213-SA1C-CRS-150、OCD-S200G-1416-S060-PRL、OCD-S200G-1213-B15C-CAS-182、OCD-S200G-1416- S100-CAW、OCD-S200G-1212-C100-PRL、OCD-S200G-1412-B150-PRL、OCD-S100G-1212-B150-PAL、OCD-

S100G-0012-C100-PRL、OCD-S100G-1212-C10S-CRW-5m、OCD-S100G-1212-S100-PRL、OCD-S100G-1212- B15V-CAW-5m、OCD-S100G-0013-S100-PRL、OCD- S100G-1212-S10S-PRL、OCD-S100G-0016-S10S-PAL、OCD-S100B-1212-C10S-PRL、OCD-S100G-1416-C100-PRL、OCD-S100G-1213-C100-PA9、OCD-S100G-1213-C100-PAL、OCD-S100G-1212-S060-PRL-050、OCD- S100G-1212-B150-PRL、OCD-S100G-1213-C100-PRL、OCD-S100B-0016-B15S-CRW-136、OCD-S100G-1212-C100-PRL、OCD-S100G-1212-C100-CRW、OCD-S100G-1212-S060-PAL、OCD-S100B-0016-S060-PAL-135、OCD-S100G-0013-C100-PAL OCD-S100G-1213-T120-PRL、OCD-S100B-1212-S060-CRW、OCD-S100G-0016-T12C-CRW-163、OCD-S100G-1416-C10V-CAW-5m、OCD-S100G-1216-S10S-PRL、OCD-S100G-0016-T120-CRW、OCD-S100B-1212-C100-PRL、OCD-S100B-1212-B15V-CAW-5m、OCD-S100G-1212-B15S-PAL、OCD-S100B-0016-C100-CAW-5m、OCD-S100G-1212-C10S-PRL、OCD-S100B-0016-T120-CRW、OCD-S100G-1213-S10S-PRL、OCD-S100B-1213-C10S-PRL、OCD-S100G-0013-S060-PRL、OCD-S100B-0016-T120-PRL、OCD-SL00G-1213-SA1C-CRS-159、OCD-S100B-0016-B150-CRW、

编码器使用说明

编码器使用说明 光电编码器基础 1.1 概述 光电编码器是一种集光、机、电为一体的数字化检测装置,它具有分辨率高、精度高、结构简单、体积小、使用可靠、易于维护、性价比高等优点。近10几年来,发展为一种成熟的多规格、高性能的系列工业化产品,在数控机床、机器人、雷达、光电经纬仪、地面指挥仪、高精度闭环调速系统、伺服系统等诸多领域中得到了广泛的应用。光电编码器可以定义为:一种通过光电转换,将输至轴上的机械、几何位移量转换成脉冲或数字量的传感器,它主要用于速度或位置(角度)的检测。典型的光电编码器由码盘(Disk)、检测光栅(Mask)、光电转换电路(包括光源、光敏器件、信号转换电路)、机械部件等组成。 一般来说,根据光电编码器产生脉冲的方式不同,可以分为增量式、绝对式以及复合式三大类。按编码器运动部件的运动方式来分,可以分为旋转式和直线式两种。由于直线式运动可以借助机械连接转变为旋转式运动,反之亦然。因此,只有在那些结构形式和运动方式都有利于使用直线式光电编码器的场合才予使用。旋转式光电编码器容易做成全封闭型式,易于实现小型化,传感长度较长,具有较长的环境适用能力,因而在实际工业生产中得到广泛的应用,在本书中主要针对旋转式光电编码器,如不特别说明,所提到的光电编码器则指旋转式光电编码器。 1.2 增量式光电编码器 1.2.1 原理及其结构 增量式光电编码器的特点是每产生一个输出脉冲信号就对应于一个增量位移,但是不能通过输出脉冲区别出在哪个位置上的增量。它能够产生与位移增量等值的脉冲信号,其作用是提供一种对连续位移量离散化或增量化以及位移变化(速度)的传感方法,它是相对于某个基准点的相对位置增量,不能够直接检测出轴的绝对位置信息。一般来说,增量式光电编码器输出A、B两相互差电度角的脉冲信号(即所谓的两组正交输出信号),从而可方便地判断出旋转方向。同时还有用作参考零位的Z相标志(指示)脉冲信号,码盘每旋转一周,只发出一个标志信号。标志脉冲通常用来指示机械位置或对积累量清零。 增量式光电编码器主要由光源、码盘、检测光栅、光电检测器件和转换电路组成,如图1-1所示。码盘上刻有节距相等的辐射状透光缝隙,相邻两个透光缝隙之间代表一个增量周期;检测光栅上刻有A、B两组与码盘相对应的透光缝隙,用以通过或阻挡光源和光电检测器件之间的光线。它们的节距和码盘上的节距相等,并且两组透光缝隙错开1/4节距,使得光电检测器件输出的信号在相位上相差电度角。当码盘随着被测转轴转动时,检测光栅不动,光线透过码盘和检测光栅上的透过缝隙照射到光电检测器件上,光电检

旋转编码器的安装与应用

旋转编码器的安装与应用 1.项目训练目的 掌握旋转编码器的安装与使用方法。 2.项目训练设备 旋转编码器及相应耦合器一套。 3.项目训练内容 先熟悉旋转编码器的使用说明书。 (1)旋转编码的安装步骤及注意事项 ①安装步骤: 第一步:把耦合器穿到轴上。不要用螺钉固定耦合器和轴。 第二步:固定旋转编码器。编码器的轴与耦合器连接时,插入量不能超过下列值。E69-C04B型耦合器,插入量5.2mm;E69-C06B型耦合器,插人量5.5mm;E69-Cl0B型耦合器,插入量7.lmm。 第三步:固定耦合器。紧固力矩不能超过下列值。E69-C04B型耦合器,紧固力矩2.0kfg·cm;E69-C06B 型耦合器,紧固力矩2.5kgf·cm;E69B-Cl0B型耦合器,紧固力矩4.5kfg·cm。 第四步:连接电源输出线。配线时必须关断电源。 第五步:检查电源投入使用。 ②注意事项: 采用标准耦合器时,应在允许值内安装。如图5-1所示。 图5-1 标准耦合器安装 连接带及齿轮结合时,先用别的轴承支住,再将旋转编码器和耦合器结合起来。如图5-2所示。 图5-2 旋转编码器安装 齿轮连接时,注意勿使轴受到过大荷重。 用螺钉紧固旋转编码器时,应用5kfg·cm左右的紧固力矩。 固定本体进行配线时,不要用大于3kg的力量拉线。 可逆旋转使用时,应注意本体的安装方向和加减法方向。 把设置的装置原点和编码器的Z相对准时,必须边确定Z相输出边安装耦合器。 使用时勿使本体上粘水滴和油污。如浸入内部会产生故障。 (2)配线及连接 ①配线应在电源0FF状态下进行。电源接通时,若输出线接触电源线,则有时会损坏输出回路。 ②若配线错误,则有时会损坏内部回路,所以配线时应充分注意电源的极性等。 ③若和高压线、动力线并行配线,则有时会受到感应造成误动作或损坏。 ④延长电线时,应在10m以下。还由于电线的分布容量,波形的上升、下降时间会延长,所以有问题时,应采用施密特回路等对波形进行整形。 还有为了避免感应噪声等,也要尽量用最短距离配线。集成电路输人时,要特别注意。 ⑤电线延长时,因导体电阻及线间电容的影响。波形的上升、下降时间变长,容易产生信号间的干扰(串音),因此应使用电阻小、线间电容低的电线(双绞线、屏蔽线)。

旋转编码器工作方式图解

旋转编码器 旋转编码器是由光栅盘(又叫分度码盘)和光电检测装置(又叫接收器)组成。光栅盘是在一定直径的圆板上等分地开通若干个长方形孔。由于光栅盘与电机同轴,电机旋转时,光栅盘与电机同速旋转,发光二极管垂直照射光栅盘,把光栅盘图像投射到由光敏元件构成的光电检测装置(接收器)上,光栅盘转动所产生的光变化经转换后以相应的脉冲信号的变化输出。 编码器码盘的材料有玻璃、金属、塑料等。玻璃码盘是在玻璃上沉积很薄的刻线,其热稳定性好,精度高。金属码盘直接以通和不通刻线,不易碎,但由于金属有一定的厚度,精度就有限制,其热稳定性也比玻璃的差一个数量级。塑料码盘成本低廉,但精度、热稳定性、寿命均要差一些。 编码器以信号原理来分,有增量式编码器(SPC)和绝对式编码器(APC),顾名思义,绝对式编码器可以记录编码器在一个绝对坐标系上的位置,而增量式编码器可以输出编码器从预定义的起始位置发生的增量变化。增量式编码器需要使用额外的电子设备(通常是PLC、计数器或变频器)以进行脉冲计数,并将脉冲数据转换为速度或运动数据,而绝对式编码器可产生能够识别绝对位置的数字信号。综上所述,增量式编码器通常更适用于低性能的简单应用,而绝对式编码器则是更为复杂的关键应用的最佳选择--这些应用具有更高的速度和位置控制要求。输出类型取决于具体应用。 一:增量式旋转编码器工作原理 增量式旋转编码器通过两个光敏接收管来转化角度码盘的时序和相位关系,得到角度码盘角度位移量的增加(正方向)或减少(负方向)。

增量式旋转编码器的工作原理如下图所示。 图中A、B两点的间距为S2,分别对应两个光敏接收管,角度码盘的光栅间距分别为S0和S1。 当角度码盘匀速转动时,可知输出波形图中的S0:S1:S2比值与实际图的S0:S1:S2比值相同,同理,当角度码盘变速转动时,输出波形图中的S0:S1:S2比值与实际图的S0:S1:S2比值仍相同。 通过输出波形图可知每个运动周期的时序为: 我们把当前的A、B输出值保存起来,与下一个到来的A、B输出值做比较,就可以得出角度码盘转动的方向, 如果光栅格S0等于S1时,也就是S0和S1弧度夹角相同,且S2等于S0的1/2,那么可得到此次角度码盘运动位移角度为S0弧度夹角的1/2,再除以所用的时间,就得到此次角度码盘运动的角速度。 S0等于S1时,且S2等于S0的1/2时,1/4个运动周期就可以得到运动方向位和位移角度,如果S0不等于S1,S2不等于S0的1/2,那么要1个运动周期才可以得到运动方向位和位移角度了。

相关文档
相关文档 最新文档