文档库 最新最全的文档下载
当前位置:文档库 › 碳纤维历史及应用

碳纤维历史及应用

碳纤维历史及应用
碳纤维历史及应用

什么是碳纤维

目前,碳纤维主要是制成碳纤维增强塑料这种复合材料来应用碳纤维是一种纤维状碳材料。它是一种强度比钢的大、密度比铝的小、比不锈钢还耐腐蚀、比耐热钢还耐高温、又能像铜那样导电,具有许多宝贵的电学、热学和力学性能的新型

材料。

碳纤维发展简史

1860年,斯旺制作碳丝灯泡

1878年,斯旺以棉纱试制碳丝

1879年,爱迪生以油烟与焦油、棉纱和竹丝试制碳丝(持续照明45小时)

1882年,碳丝电灯实用化1911年,钨丝电灯实用化

1950年,美国Wright--Patterson空军基地开始研制黏胶基碳纤维

1959年,美国UCC公司生产低模量黏胶基碳纤维“Thornel—25”,日本大阪工业试验所的进藤昭男发明了PAN基碳纤维

1962年,日本碳公司开始生产低模量PAN基碳纤维(0.5吨/月)

1963年,英国皇家航空研究所(RAE)的瓦特和约翰逊成功地打通了制造高性能PAN基碳纤维(在热处理时施加张力)的技术途径

1964年,英国Courtaulds,Morganite和Roii--Roys公司利用RAE技术生产PAN基碳纤维1965年,日本群马大学的大谷杉郎发明了沥青基碳纤维美国UCC公司开始生产高模量黏胶基碳纤维(石墨化过程中牵伸)

1970年,日本吴羽化学公司生产沥青基碳纤维(10吨/月),日本东丽公司与美国UCC进行技术合作

1971年,日本东丽公司工业规模生产PAN基碳纤维(1吨/月),碳纤维的牌号为T300,石墨纤维为M40

1972年,美国Hercules公司开始生产PAN基碳纤维日本用碳纤维制造钓竿,美国用碳纤维制造高尔夫球棒

1973年,日本东邦人造丝公司开始生产PAN基碳纤维(0.5吨/月)日本东丽公司扩产5吨/月1974年,碳纤维钓竿、高尔夫球棒迅速发展日本东丽公司扩产13吨/月

1975年,碳纤维网球拍商品化美国UCC公司公布利用中间相沥青制造高模量沥青基碳纤维“Thornel—P”美国UCC的高性能沥青基碳纤维商品化

1976年,东邦人造丝公司与美国塞兰尼斯进行技术合作住友化学与美国赫格里斯(Hercules)成立联合公司

1979年,日本碳公司与旭化成工业公司成立旭日碳纤维公司

1980年,美国波音公司提出需求高强度、大伸长的碳纤维

1981年,台湾台塑设立碳纤研究中心,日本三菱人造丝公司与美国Hitco公司进行技术合作1984年,台湾台塑与美国Hitco公司进行技术合作,日本东丽公司研制成功高强中模碳纤维T800 1986年,日本东丽公司研制成功高强中模碳纤维T1000

1989年,日本东丽公司研制成功高模中强碳纤维M60

1992年,日本东丽公司研制成功高模中强碳纤维M70J,杨氏摸量高达690GPa

“格林易能”一直使用日本东丽(TORAY)生产的优质长纤碳纤维材料

1971年,TORAY成了世界上第一人制造商,从事PAN基碳纤维的人型工业化生产,并将其产品命名为“TORAYCA”,是TORAY碳纤维的缩写。目前,TORAY是全球生产和营销碳纤维的领导者。目前,全世界主要生产两种碳纤维。一个是PAN基碳纤维以聚丙烯腈为原料,另一个是沥青基的碳纤维,由煤、石油利合成沥青蒸馏而成沥青,然后再聚合成纤维。

在强度上PAN基的碳纤维要优丁沥青基的碳纤维,因此在全世界的碳纤维生产中占有绝对性的压倒优势。

本公司早在1993年即开始接触碳纤维发热体,并在1994年为国内北方某大型钢铁企业的恒温工控机组设计安装了碳纤维发热板材料。1995年开始研究碳纤维地面发热材料,至2002年,研制过多种形式的碳纤维发热体,并取得了多项国家专利。期间一直与TORAY公司在技术上进行合作

交流,为碳纤维发热材料的发展做出了突出贡献。目前销售的产品为第三代碳纤维发热产品,碳纤维发热技术也已经经过了十几年的考验,我们认为,目前第三代的产品在形式、功能、效果和效率上属于业界最高水平,是最科学合理的碳纤维发热材料形式。

1.碳纤维的生产工艺

对于碳纤维的生产工艺,当生产PAN基碳纤维的时候,被称为“母体”的聚丙烯腈纤维首先要通过聚合和纺纱工艺加工聚丙烯腈而成。然后,将这些母体放入氧化炉中在200到300摄氏度进行氧化。另外,还要在碳化炉中,在温度为1000到2000摄氏度间进行碳化制成碳纤维。除了常规类型的细碳纤维之外,PAN基碳纤维还包括粗纤维,被称为“人丝束类型碳纤维”,这种粗纤维的生产成本比较低。

2.碳纤维特性

正如通常人们所说的,碳纤维比铝还要轻比钢还要硬,它们的比重是铁的四分之一,比强度是铁的十倍。通过与其它纤维的这种比较,你就可以初步了解碳纤维的特性。还有,碳纤维首先是一种物质,是由和钻石同等材质的碳制成的。出于这种原因,另外还有在优越的抗张强度利抗拉模量,碳纤维在化学组成上非常稳定,并且具有高抗腐蚀性。碳纤维的其它特性包括高度的X射线穿透性,较高的抗化学,抗热和抗低温能力。

碳纤维的这些特性也就意味着它除了发热领域外可以被应用于很多的领域。主要包括体育运动,例如高尔大球棒和钓鱼杆;航空应用包括飞机元件和工业应用。随着工业的不断进步,人们正在寻找很多具有新能的材料,碳纤维的需求在逐渐增长,广泛地应用于医疗设备、压力容器、土木工程和建筑材料、能源、其它新的工业应用上。碳纤维的生产成本也在逐渐降低,加工技术趋向多元化、细分化,制造商可以按照具体的应用提供一系列的碳纤维产品。所有的这些都支撑了以工业应用为中心的新型应用。

3.碳纤维的产品形式及制造工艺

碳纤维有四种产品形式:纤维,布料,预浸料坯,和切短纤维。布料指的是由碳纤维制成的织品。预浸料坯是一种产品,是将碳纤维按照一个方向一致排列,并将碳纤维或布料刚树脂浸泡使其转化成片状。切短纤维指的是短丝。

按照不同的配比,这些产品和树脂一起应用将形成碳纤维强化塑料(CFRP)。

将树脂附在纤维上可以制成压力容器和轧滚,将它们缠绕在一个芯儿上,然后进行塑化或硬化处理。这种方法被称为“缠绕成型法”。

将布料放入一个模型中,然后用树脂浸泡,可以川米生产卡=乍和划艇的车身部分。这就是所说的“树脂转注成型法(RTM)”。

飞机元件的制造是通过在高压釜中给预浸料坯加热,加压和塑化成型而成的。将预浸料坯缠绕在一个芯儿上,然后将其加热和塑化,这就是所说的“薄片缠绕法”,用这种方法可以用来制成高尔夫球棒利钓鱼杆。短丝与树脂混合可以形成混合物,经过加工后可以生产出机器元件和其它产品。

过去,预浸坯料是应用最广泛的碳纤维形式,通过在反应釜内利用薄片缠绕法预制而成。然而,近来,随着新的工业应用的开发,纤维缠绕成型法,混合物和其他的预制方法得到了更加广泛的发展。像RTM这样的成型法的应用,使得制造商可以更加有效地制成大型产品。碳纤维与最合适的树脂及预制工艺的结合使得碳纤维的应用更加具有吸引力。

4.其它应用的发展

目前,各种其它应用占碳纤维年需求的比例如下:体育应用大约为30%,航空应用为10%,工业应用为60%。

体育应用中的三项重要应用为高尔夫球棒,钓鱼杆和网球拍框架。目前,据估计每年的高尔大球棒的产量为3400万。按照《国家利地区分类,这些高尔大球棒主要产地为美国,中国,日本和中国台北,美国和日本是高尔夫球棒的主要消费地占80%以上。全世界40%的碳纤维高尔大球

杆都是由TORAY的碳纤维制成的。

全世界碳纤维钓鱼杆的产量人约为每年2000万副,这就意味着这种应用对碳纤维有着稳定的需求。

网球拍框架的市场容量人约为每年600万副。其它的体育项目应用还包括冰球棍,滑雪杖,射箭,和自行车,同时,碳纤维还应用在划船,赛艇,冲浪,和其它的海洋运动项目中。

在1 992年问,航空应川中对碳纤维的需求开始有所减少,主要是受到了商业飞机业衰退的影响,但是在1995早期有得到了迅速的恢复。恢复的主要原因是由于生产效率在整体上都得到了提升,同时也开始全力生产波音777飞机,TORAY的碳纤维被用做结构材料,包括水平和垂直的横尾翼和横梁,这两部分结构是如此的重要,如果他们受损,那么整个飞机在飞行的过程中就可能坠毁。这些材料被称为“首要的结构材料”,因为他们是如此的重要,所以对他们的质量要求是极其苛刻的。对于波音777飞机,TORAY是波音公司指定的唯一有资格的碳纤维制造商。

欧洲空客也在他们的飞机上使用了大量的碳纤维,TORAY的TORAYCA碳纤维将被大量地应用在他们的新型客机A380上。

在工业领域,碳纤维的应用也相当广泛,作为材料,它们正在替代金属和混凝土来满足环境、安全和能源要求,在工业领域对碳纤维的需求量正在呈现上升趋势。

在土木工程和建筑领域,应用碳纤维的抗震修复和加强法是一项主要突破,正在此领域得到更加广泛的推广。在铁路建筑中,大型的顶部系统和隔音墙在未来会有很好的应用,这些也将是很有前景的应用。压力容器主要用在汽车的受压大然气(CNG)箱上,如图所示,还用在救火队员的固定式呼吸器(SCBA)上。CNG罐源于美国和欧洲国家,现在日本和其他的亚洲国家也对这项应用表现山了极大的兴趣。

碳纤维的其它应川包括机器元件、家用电器、微机、及与半导体相关的设备的复合材料的生产,可以用来起剑加强,防静电,和电磁波防护的作用,另外,在X射线仪器市场上,碳纤维的应用

可以减少人体住X射线下的暴露。

随着碳纤维成本的连续降低,和世界范同内的环保要求的提高,碳纤维开始被应用于汽车领域,将来它们会被应用做尾部沸腾器,发动机,传动轴和燃料箱材料,在未来将有很好的前景。5.碳纤维市场的历史

碳纤维的全方位商业化始丁20世纪70年代,70年代是高尔大球棒和钓鱼杆应用的引入和发展时期,主要是在日本。在80年代早期,碳纤维开始被广泛地川在客机和航空飞行器上作为结构材料,主要是用在欧洲和北美。

然后,人们提高了对碳纤维的认识,开始把它当成一种高质量的材料,并在20世纪80年代中期得到了飞速的增长。在80年代中期,空客公司开始将CFRP作为首要的结构材料应用在它们的飞机上,而且,随着碳纤维在网球和新的体育项目的应用,碳纤维市场得剑了稳步的扩展。尽管住1991年的海湾战争之后,航空业的发展走向衰退,全球经济开始停止不前,碳纤维的需求增长也趋向缓慢,自90年代中期以来,碳纤维的工业应刚开始成为新的需求增长点。尤其是,欧洲和北美开始将碳纤维应用与压力容器上,这种增长非常显著,应用碳纤维杰出的电热特点的发热材料也开始出现。由丁1995年的神户地震,加快了抗震加固应用的需求。在未来,预计碳纤维的主要应用领域将侧重于工业应用,而且这一需求将会稳步增加;碳纤维发热材料在工业和民用领域中的应用比例也会随着石油天然气价格的逐年飚升而迅速提升。

另外,新一带的航天计划和与汽下相关的应用都将促进碳纤维的工业化应用。

6.供需状况

在2004年,常规型的碳纤维的产能约为25000 吨,其中75%由和日本相关的制造商生产。另外,低成本的粗碳纤维一被称为“人丝束类型”的碳纤维的产量也有几千吨,人丝束类型已经开始被用于低端的体育和工业应用中,同时也被应用于过去只有玻璃纤维才涉及的领域。

对丁碳纤维来说,通常所说的70%的宣布的产能是实际的产能。所宣布的产能通常是以标准产

品类型为基础进行计算的,但是对于碳纤维,除了具有标准强度和模量的标准产品之外,还有很多其他的根据技术特性和应用领域而定的等级产品。纤维的粗度也不尽相同,因此,按照产品类型和纤维粗度来划分,他们的产能是不同的。在生产多种产品的时候,换产会很浪费时间。因此,实际的产能通常会低于宣布的产能。

从2003到2010年按照应用和领域来划分的全球需求和需求预测。到2010年的这段时间内,碳纤维的需求将每年增长7.5%。预计到2010年碳纤维的总需求量将达到32000吨。

碳纤维生产技术路线及应用领域

按原料体系的不同,碳纤维主要分为:黏胶基碳纤维、聚丙烯腈基碳纤维和沥青基碳纤维。

一、黏胶基碳纤维

黏胶基碳纤维主要用于耐烧蚀材料和隔热材料,目前, 黏胶基碳纤维仍占据着其他碳纤维不可取代的地位,是重要的战略物资。在民用市场方面,利用其柔软与导电性制作电热产品,利用其孔隙结构发达和容易调控的特性制造活性碳纤维系列制品,是良好的环保材料和医用卫生材料。

黏胶基碳纤维的产量不足世界碳纤维总产量的1%,它虽然不会有大的发展,但也不会被彻底淘汰出局。

二、聚丙烯腈基碳纤维

聚丙烯腈基碳纤维是目前的主流,占据了主要的市场费额:

1、瓦特的技术突破打通了制造高性能碳纤维的通道;

2、PAN原丝质量是制造高性能碳纤维的前提;

3、一条龙生产线得到发展,世界上几条著名的PAN基碳纤维生产线大多是从原丝开始,直到碳纤维以及中、下游产品开发。例如:日本东丽、东邦、三菱人造丝公司,美国的赫克利公司和阿莫科公司,以及中国台湾地区的台塑都是从聚合、纺丝开始,国外原丝主要生产工艺路线见下

(1~24K)的质量提高,普及是指大丝束碳纤维(48~540K)的产量大幅度增加,价格日趋下降。三、沥青基碳纤维

1965年,日本群马大学的大谷衫郎研制沥青基碳纤维获得成功,从此,沥青成为生产碳纤维

的新原料,是目前碳纤维领域中仅次于PAN基的第二大原料路线。

五、碳纤维及其复合材料的扩展应用领域(一)

上海馨舍实业有限公司与东丽公司技术合作历史悠久,长期以来使用日本东丽的优质碳纤维长纤,进行碳纤维产品的研发与生产。

上海馨舍实业有限公司可以提供整套基于碳纤维技术的采暖方案,适用于不同要求的环境,区别与其它以生产销售单一产品为主的公司和厂家。

碳纤维技术在世界上应用与发热方面已经有近20年的历史了。在国内应用于采暖也有近5年的历史了。在北方有很多小区、别墅、学校、养殖、娱乐场所使用,随着人们生活水平提高,对生活质量有更高的要求,碳纤维采暖在南方也已经进入各种市场了。

除了传统意义上的暖气片,地板采暖(地暖片和地热电缆分别适用与复合木地板,瓷砖,大理石地面)外。还有用于局部采暖的碳纤维发热画,用于中央空调节能的风口机(比较中央空调烧油热水采暖节能40-50%),用于保健的碳纤维理疗床,用于汗蒸的碳纤维汗蒸房,碳纤维桑拿房,碳纤维瑜伽房等等。。。

活性碳纤维的特性

活性碳纤维的特性 1) 吸附量大 活性碳纤维对有机气体及恶臭物质(如正丁基硫醇等)的吸附量比粒状活性炭( GAC )大几倍至十几倍。对无机气体也有较好的吸附能力。对水溶液中的无机物、染料、有机物及贵金属的吸附量比 GAC 高 5 — 6 倍。对微生物及细菌也有很好的吸附能力(如对大肠杆菌的吸附率可达 94 — 99% )。对低浓度吸附质的吸附能力特别优良。如对于吸附质的浓度在几 ppm 级时仍可保持很好的吸附量,而 GAC 等吸附材料往往在几十ppm浓度时才有良好的吸附能力。 2) 吸附速度快 对于从气相中吸附气态污染物的吸附速度非常快,对液体的吸附也可很快达到吸附平衡,其吸附速率比 GAC 高数十倍至数百倍。 3) 再生容易,脱附速度快 在多次吸附和脱附过程中,仍能保持原有的吸附性能。如用 120-150 ℃蒸汽或热空气再生处理 ACF 10-30 分钟即可达到完全脱附。 4) 耐热性好 在惰性气体中可耐高温 1000 ℃以上,在空气中的着火点高达 500 ℃以上。 5) 耐酸、耐碱,具有较好的导电性能和化学稳定性。 6) 灰份少。 7) 成型性好,易加工成毡、丝、布、纸等形态。 活性碳纤维的介绍 一般传统上所使用的活性炭可分为粉末状活性炭(AC)和颗粒状活性炭(GAC),上世纪六十年美、日、俄等国家相继研发出第三种形态的活性炭称为活性碳纤维( Activated Carbon Fibers, /ACF )。国内在七十年代末八十年初, 也研发出活性碳纤维。因为活性炭纤维其表面遍布微孔,以及可经二次加工,成为不同形态的毡及布状的材料,与传统的颗粒炭相比,具有较快的吸附、脱附的速度和更便利的操作维护等优点 活性碳纤维(以下简称ACF)的诞生在整个环保产业是一场革命。ACF是以粘胶基纤维为原料,经高温碳化、活化后制成的纤维状新型吸附材料,与社会上公认的比较好的吸附材料颗粒状活性炭相比,ACF具有以下显著的的特点:(一)、比表面积大,有效吸附量高。由于同样重量的纤维的表面积是颗粒的近

高性能碳纤维的性能及其应用

科技进展 高性能碳纤维的性能及其应用 张新元 何碧霞 李建利 张 元 (陕西省纺织科学研究所) 摘要: 探讨高性能碳纤维的性能及其应用领域。介绍了碳纤维的分类、制备、性能特征、应用以及国内 外产业发展状况,分析了国际碳纤维产业的情况和我国碳纤维产业的现状及发展趋势。碳纤维应用涉及航空航天、体育运动、一般制造业、土木建筑、能源开发等领域。随着科技的发展和碳纤维应用技术的不断完善,碳纤维产业的发展空间必将越来越广。 关键词: 碳纤维;强度;比电阻;结晶度;聚丙烯腈;碳纤维机织物 中图分类号:TS102 .52+7 2 文献标志码:A 文章编号:1001 7415(2011)04 0065 04Property and Application of H igh perfor m ance Carbon Fiber Zhang X i n yuan H e B i x ia L i J i a nli Zhang Y uan (Shaanx iT extil e Sc i ence and T echno logy Instit ute) A bstrac t H igh perfor m ance carbon fi ber prope rty and appli cati on we re d i scussed .C l assifi cation and m anu fact ure o f carbon fiber w ere i ntroduced ,carbon fi ber property ,appli cation ,deve l op m ent at hom e and abroad w ere i n troduced as w ell as .The applica ti on fie l d i nc l udes aerospace field ,spo rts field ,genera l m anufacturi ng field ,civ il constructi on fi e l d and energy dev elopment fi e l d et a.l Interna ti ona l carbon fi ber i ndustry situati on ,current situati on and deve lop m ent trend o f dom estic carbon fi be r industry w ere ana l y sed .carbon fiber i ndustry dev elopment w ou l d be m ore and mo re w i de l y as the deve lopment o f techno logy and the perfection o f carbon fibe r app licati on technology . K ey W ords Carbon F i ber ,Strength ,Specific R esistance ,Cry sta lli nity ,Po l yacrylon itr ile ,Carbon F i ber W oven F abr i c 高性能纤维具有高强度、高模量、耐高温、耐气候、耐化学试剂等特性,是近年来纤维高分子材料领域中发展迅速的一类特种纤维。高性能纤维品种较多,目前已规模化生产的有碳纤维、芳纶纤 维等,既可作为结构材料承载负荷,又可作为功能材料发挥作用,是性能优越的战略性新型材料。 目前,高性能纤维中碳纤维是大规模生产的一个品种,具有较高的比强度、比模量和较小的体积质量。碳纤维既具有碳材料的固有特性,又兼备纺织纤维的柔软可加工性,具有优异的力学性能,近年来被广泛应用于航空、航天、汽车、化工、能源、交通、建筑、电子、体育运动器材等领域。 1 碳纤维的制备及分类 碳纤维的制备目前是采用一些含碳的有机纤维(如尼龙丝、腈纶丝、人造丝等)做原料,将有机 作者简介:张新元(1962-),男,高级工程师,西安,710038 收稿日期:2010 12 23 纤维与塑料树脂结合在一起,放在稀有气体的环境中,在一定张力、温度、压强下,经过一定时间的 预氧化、碳化和石墨化处理等强热过程制成。碳纤维按原丝类型可分为聚丙烯腈(P AN )基碳纤维、沥青基碳纤维、粘胶基碳纤维和酚醛基碳纤维4类。P AN 基碳纤维是目前制备碳纤维的第一大原料,其产量约占世界总产量的95%左右。沥青基碳纤维约占4%,粘胶基碳纤维约占1%,酚醛基碳纤维尚处于实验室研究,未形成产业化。 碳纤维按形态可分为长丝、短纤维和短切纤维。长丝应用在工业结构件和宇航结构件中,短纤维主要应用在建筑行业,如短碳纤维石墨低频电磁屏蔽混凝土、工业用碳纤维毡等。碳纤维按力学性能分为通用型和高性能型。通用型碳纤维强度为1000M Pa 、模量为100GPa 左右。高性能型碳纤维又分为高强型(强度2000MPa 、模量250GPa )和高模型(模量300GPa 以上)。强度大于4000MPa 的又称为超高强型;模量大于450GPa 的称为超高模型。

碳纤维的特性及应用

碳纤维的特性及应用 碳纤维是高级复合材料的增强材料,具有轻质、高强、高模、耐化学腐蚀、热膨胀系数小等一系列优点,归纳如下: 一、轻质、高强度、高模量 碳纤维的密度是1.6-2.5g/cm3,碳纤维拉伸强度在2.2Gpa以上。因此,具有高的比强度和比模量,它比绝大多数金属的比强度高7倍以上,比模量为金属的5倍以上。由于这个优点,其复合材料可广泛应用于航空航天、汽车工业、运动器材等。 二、热膨胀系数小 绝大多数碳纤维本身的热膨胀系数,室内为负数(-0.5~-1.6)×10-6/K,在200~400℃时为零,在小于1000℃时为1.5×10-6/K。由它制成的复合材料膨胀系数自然比较稳定,可作为标准衡器具。 三、导热性好 通常无机和有机材料的导热性均较差,但碳纤维的导热性接近于钢铁。利用这一优点可作为太阳能集热器材料、传热均匀的导热壳体材料。 四、耐化学腐蚀性好 从碳纤维的成分可以看出,它几乎是纯碳,而碳又是最稳定的元素之一。它除对强氧化酸以外,对酸、碱和有机化学药品都很稳定,可以制成各种各样的化学防腐制品。我国已从事这方面的应用研究,随着今后碳纤维的价格不断降低,其应用范围会越来越广。 五、耐磨性好 碳纤维与金属对磨时,很少磨损,用碳纤维来取代石棉制成高级的摩檫材料,已作为飞机和汽车的刹车片材料。 六、耐高温性能好 碳纤维在400℃以下性能非常稳定,甚至在1000℃时仍无太大变化。复合材料耐高温性能主要取决于基体的耐热性,树脂基复合材料其长期耐热性只达300℃左右,陶瓷基、碳基和金属基的复合材料耐高温性能可与碳纤维本身匹配。因此碳纤维复合材料作为耐高温材料广泛用于航空航天工业。 七、突出的阻尼与优良的透声纳 利用这二种特点可作为潜艇的结构材料,如潜艇的声纳导流罩等。 八、高X射线透射率 发挥此特点已经在医疗器材中得到应用。 九、疲劳强度高 碳纤维的结构稳定,制成的复合材料,经应力疲劳数百万次的循环试验后,其强度保留率仍有60%,而钢材为40%,铝材为30%,而玻璃钢则只有20%-25%.因此设计制品所取的安全系数,碳纤维复合材料为最低。

全球碳纤维材料知名企业

全球碳纤维材料知名企业——全球碳纤维顶尖企业 东丽公司 东丽公司是一家综合型化工企业,以生产合成纤维为主,是世界最大的碳纤维生产公司,在塑料、复合材料、化工、水处理事业、电子材料、医药、医疗器械等领域在全世界各地展开着广泛的业务。创立日期 1926年1月总销售额 1兆5,460亿日元(2007年3月)员工人数约36,000人(日本国内约16,500人、海外20,100人)关连公司日本国内118家、海外在20个国家和地区有124家,合计238家经营内容(1)综合化学公司:合成纤维、树脂、薄膜、碳纤维、电子材料、医药医疗设备、水处理事业等(2)世界第一的纤维公司:从原料到聚合、纺丝、织布、印染、缝制的一条龙生产业务(3)积极开展的海外事业:为各国的经济发展(技术水平提高、扩大出口、增加就业机会)做贡献 1960年以来,在东南亚3国展开合成纤维一条龙事业、薄膜事业 1980 年以来,在欧美展开纤维、薄膜、碳纤维事业 1990年以来,在中国展开合成纤维的一条龙生产业务、塑料加工事业等 2000年以来,在经济增长地区设立控股管理公司,向地区本部制过渡(4)重视基础研究.基本技术(5)注重安全.防灾.环保及保护地球环境 西格里集团 西格里集团创建于 1992 年,由德国 SIGRI 集团与美国大湖碳素(Great Lakes Carbon)集团合并而成,总部位于德国威斯巴登。西格里集团(SGL Group - The Carbon Company)是全球领先的碳素石墨材料以及相关产品的制造商之一。拥有从碳石墨产品到碳纤维及复合材料在内的完整业务链。凭借对原材料透彻深入的了解、精湛的生产技术以及广泛的应用和工程技能,能够为客户提供量身定做的解决方案。通过遍布欧洲、北美和亚洲40 多个生产基地所形成的全球网络,我们与客户更加贴近。 三菱丽阳株式会社 三菱丽阳株式会社创立于1933年8月31日,是日本三菱集团旗下最著名的高分子材料制造商。所生产的聚乙烯中空纤维膜,被广泛应用在供水、排水、水处理设备及医院手术用的无菌水装置、发电厂的叶轮机液化水过滤等领域。 产品范围:MBR专用中空纤维微滤膜片、MBR专用膜组器、净水专用中空纤维微滤膜组件、水处理装置、商用/家庭用净水器、全屋净水装置。 三菱丽阳自1933年作为人造短纤维的生产公司创业以来,应用合成纤维和合成树脂领域所积累的高分子技术,不断拓展中空纤维膜、光纤、碳素纤维等新兴业务领域。现在,三菱丽阳集团已经建立了世界上独特且强有力的丙烯系列业务实体(MMA[甲基丙烯酸甲酯]系列及AN[丙烯腈]系列),发展成为以此为支柱业务的高分子化学制造企业。 Hexcel Composites

(完整word版)聚丙烯腈碳纤维用上浆剂汇总

聚丙烯腈碳纤维用上浆剂 上浆是碳纤维经表面处理后收绕成卷成为碳纤维成品前的最后一道工艺工序。上浆的主要作用是对碳纤维进行集束,类似黏合剂使碳纤维聚集在一起,改善工艺性能,便于加工,同时起到保护作用,减少碳纤维之间的摩擦,使其在后续收卷、包装、运输过程减少对纤维的损失。通过对碳纤维进行上浆处理,在碳纤维表面形成的聚合物层还可以起到类似偶联剂作用,改善碳纤维和树脂之间化学结合,提高复合材料的界面性能。碳纤维表面的聚合物还能改善炭纤维的浸润性能,便于树脂浸渍,减少复合材料的制备时间,提高复合材料的质量。碳纤维生产过程中不同上浆剂、上浆工艺对碳纤维力学性能、加工工艺性能和复合材料力学有着重要影响。 5.4.1 上浆剂种类 碳纤维上浆剂的品种很多,选择上浆剂需要综合考虑成膜性、对纤维的保护性能、环保性和成本等因素。在上浆剂研制生产时就需要考虑与最终增强基体树脂的相容性,为碳纤维在复合材料中发挥其高强高模特性提供基础准备。对于上浆剂主组分的选取,应根据相似相溶原理,选择与基体树脂材料类似的组分,比如环氧树脂基体选择环氧树脂系上浆剂,不饱和聚酯基体选择不饱和聚酯类上浆剂。表5.19为东丽公司碳纤维上浆剂与不同树脂相容性。 表5.19 东丽公司上浆剂类型与不同树脂的相容性 上浆剂类型相容树脂基体 1 环氧 3 环氧 4 环氧、酚醛、双马 5 通用:环氧、酚醛、聚酯、乙烯基酯 6 环氧 F 乙烯基酯、环氧 9 无上浆剂 目前工业及研究中所采用的上浆剂种类很多,通常为多官能型分子量较低的聚合物,包括含羧基或者醚键的化合物、含酰胺基或酯基的化合物、双酚类化合物、多氧化乙烯(多)苯基醚类化合物、多元醇-脂肪酸酯类、环氧树脂类以及其改性化合物、聚氨酯为主成分的改性物、聚酰亚胺及其改性化合物等。在最近的研究中,为了进一步改进碳纤维在复合材料制备过程的加工工艺性,研究人员尝试了微颗粒改性,如在常规上浆剂中加入硅酸铝、石墨、、云母、氧化铝、陶瓷等微颗粒,或者采用如碳纳米管、石墨烯、纳米二氧化硅等进行改性,获得了一定的改性效果。

活性炭纤维研究与应用进展_程祥珍

第21卷 第2期V ol 121 N o 12 材 料 科 学 与 工 程 学 报Journal of Materials Science &Engineering 总第82期Apr.2003 文章编号:10042793X (2003)022******* 收稿日期:2002208211;修订日期:2002210223 作者简介:程祥珍(1977-),女,国防科技大学航天与材料工程学院博士生,现从事高性能S iC 纤维研究. 活性炭纤维研究与应用进展 程祥珍,肖加余,谢征芳,宋永才 (国防科技大学航天与材料工程学院CFC 重点实验室,湖南长沙 410073) 【摘 要】 活性炭纤维(ACF )是由有机纤维先驱体制得的一种理想的高效吸附材料。ACF 以其特殊的表面 化学结构和物理吸附特性广泛应用于环境保护、电子工业、化工、医疗卫生、低成本S iC 纤维制备等领域。本文就ACF 的结构与吸附特性、制备与应用等做了较系统的综述,并对其发展趋势做出了展望。 【关键词】 活性炭纤维;制备;结构;吸附特性;应用中图分类号:T Q342+174 文献标识码:A R esearch and Application Progress of Activated C arbon Fiber CHENG Xiang 2zhen ,XIAO Jia 2yu ,XIE Zheng 2fang ,SONG Yong 2cai (College of Aerosp ace &Materials E ngineering ,N ational U niversity of Defense T echnology ,Ch angsh a 410073,China) 【Abstract 】 As high effective ideal ads orbents ,activated carbon fibers (ACF )are prepared from the precurs ors of s ome organic fibers.Due to the special sur face structure and ads orption properties ,ACF are widely used in the fields such as environmental protection ,electronic industry ,medical treatment ,chemical engineering ,and low 2cost S iC fiber.The microstructures ,ads orption properties ,preparation methods ,and applications of activated carbon fibers are briefly reviewed.Meanwhile ,the next research objective is prospected. 【K ey w ords 】 activated carbon fiber ;preparation ;structure ;ads orption properties ;application 1 前 言 活性炭纤维(Activated Carbon Fiber ,ACF )作为一种理想的高效吸附材料,是在碳纤维技术和活性炭技术相结合的基础上发展起来的,是继粉状和粒状活性炭(G ranular Activated Carbon ,G AC )之后的第三代活性炭产品[1~4] ,并以 其特殊的表面化学结构和物理吸附特性广泛应用于环保、电子、医用卫生、化工等领域。 1962年,美国专利首次涉及到ACF 技术,Abbott 以粘胶 纤维为原料,进行炭化和活化等处理后成功地制成了ACF ;同年,日本进藤以特种聚丙烯腈为原料,制得PAN 基ACF ; 1972年,Arons 和Macnair 以酚醛为原料制得ACF ;1975年, 东洋纺织公司制成高性能粘胶基ACF 和再生ACF ;1983年,日本炭素公司和尤尼吉卡公司开发生产沥青基ACF ; 1977年,商品粘胶(纤维素)基ACF 问世,其后聚丙烯腈 (PAN )基、酚醛基、沥青基相继实现工业化生产;日本、美 国、俄罗斯、英国,特别日本是研究和使用ACF 的大国,年产量近千吨[4,5]。 20世纪80年代,我国上海纺织科学研究院、中国纺织 大学、中山大学和中国科学院山西煤炭化学研究所、复旦大 学、天津工业大学、天津大学、吉林工学院等单位也开展了 ACF 的研究工作。90年代以来,我国在ACF 的研究和生产 方面也取得了很大进步,ACF 的生产能力已达数百吨[4~6]。如1995年鞍山东亚碳纤维有限公司建成年产45吨的沥青基Carboflex ACF 生产线[5]。此外,秦皇岛紫川炭纤维有限公司是国内生产粘胶基ACF 及其制品的规模较大的专业化企业之一。 2 ACF 的制备 作为ACF 先驱体的有机纤维主要有粘胶基、聚丙烯腈 (PAN )基、酚醛基、沥青基、聚乙烯醇(PVA )基、苯乙烯Π烯烃共聚基和木质素纤维等,其中前四种均已实现工业化[1~6]。不同原料生产的ACF 的主要优缺点如表1所示[1,2]。 以PAN 基ACF 及其制品为例,其制备工艺如图1所示[2~4]。 预处理主要有盐浸渍和预氧化两种方式[2,4]。盐浸渍是将原料纤维充分浸渍在盐(磷酸盐、碳酸盐、硫酸盐等)溶液中,然后使其干燥。该法用在粘胶基ACF 生产中,与直

碳纤维的性能与应用论文

碳纤维的性能与应用 系别:食品化工系 专业纺织品检验与贸易 班级:级纺检 学生姓名: 指导教师: 完成日期:

碳纤维的性能与应用 第1页共19 页 河南质量工程职业学院毕业设计(论文)任务书

碳纤维的性能与应用 第2页共19 页目录 摘要 (3) Abstract (4) 绪论 (5) 1 碳纤维的定义及其分类 (6) 1.1 什么是碳纤维 (6) 1.2 分类 (6) 2 碳纤维的制造 (6) 3 碳纤维的性能 (7) 3.1 碳纤维的优良特性 (7) 3.1.1 在纤维轴向方向显示高抗拉强度和高弹性模量 (7) 3.1.2 密度小 (7) 3.1.3 纤维细 (7) 3.1.4 不生锈、耐腐蚀 (7) 3.1.5 即耐低温,又耐高温 (7) 3.1.6 耐温度骤变,热膨胀系数小 (8) 3.1.7 常温下导热性能良好,高温下导热性能低 (8) 3.1.8 突出的导电性能 (8) 3.1.9 优良的吸附性能 (8) 3.1.10 具有耐辐射,能反射中子等特性 (9) 3.2 碳纤维的缺点 (9) 3.2.1 比较脆,怕受压和剪切 (9) 3.2.2 抗氧化性差 (9) 3.2.3 破坏前无预报 (9) 4 碳纤维的应用 (10) 4.1 碳丝 (10) 4.2 碳纤维毡和碳素短纤维 (10) 4.3 碳纤维织物 (10) 4.4 活性炭碳纤维 (10) 5 碳纤维的发展前景 (10) 6结论 (11) 参考文献 (12) 致谢 (13)

碳纤维的性能与应用 摘要 碳纤维是一种新型材料,本文主要阐述了碳纤维的分类、生产制造等,碳纤维的高强度、高模量、耐高温等主要特性,及在各行业中的应用,并对其近年来的市场前景的展望,使人们对其有一定的了解。(可以说的详细些,让别人看了摘要就知道你本篇论文写了那些东西) 关键词:新型碳纤维应用 第3页共19 页

利用活性碳纤维治理有机废气

利用活性碳纤维治理有机废气 1 背景 有机废气就是气态污染物的一部分,来自各个行业所排放的化工废气、含氟废气、气态碳氢化合物、恶臭气体等。机废气的治理方法有三种:第一种是催化燃烧法,它利用某种催化剂来分解或使有机废气燃烧后变成无害气体,不能回收;第二种是吸收法,以特定的某种化学液体来吸收有机废气,然后再进行分离,运行成本较高,回收效果不好,局限性比较大;第三种就是吸附法,它以活性炭物理吸附为主,应用范围最广,具有运行成本低及可回收物料的特点。 吸附法的关键是吸附剂和吸附工艺设备配置。该方法是将有机气体吸附到吸附剂上,然后再将其从吸附剂上脱离下来成为液体,收集并处理后即可重新回用于生产或出售。 2 材料 长期以来,人们一直以活性碳颗粒作为吸附剂来吸附这些化学有机物废气,但是由于活性碳颗粒的表面积较小,所以为了增大活性碳接触面积,就须大量填充,使得吸附装置体积庞大,而且时间一长,碳颗粒会变成粉末,影响吸附量,更有甚者,它需要经常更换,在更换时黑尘四起,严重污染工作场所。黑尘还会进入操作者呼吸道,危害人类健康。 活性碳纤维(以下简称ACF)的诞生在整个环保产业是一场革命。ACF是以粘胶基纤维为原料,经高温碳化、活化后制成的纤维状新型吸附材料,与社会上公认的比较好的吸附材料—颗粒状活性炭相比,ACF具有以下显著的的特点: (一)、比表面积大,有效吸附量高。由于同样重量的纤维的表面积是颗粒的近百倍,所以需要填充的活性碳纤维的重量非常小,然而吸附效率却非常高,根据所处理废气的有机气体含量和其它物理特性的不同,吸附效率在85%至98%之间,多级吸附工艺可以达到99.99%,远远高于活性碳颗粒吸附法的最高吸附率88%,而且体积及总重量也都很小。 (二)、吸附﹑脱附行程短,速度快;脱附﹑再生耗能低。ACF对有机气体吸附量比颗粒状活性炭(GAC)大几倍至几十倍,对无机气体也有很好的吸附能力,并能保持较高的吸附脱附速度和较长的使用寿命。如用水蒸气加热6-10分钟,即可完全脱附,耐热性能好,在惰性气体中耐高温1000℃以上,在空气中着火点达500℃以上。 (三)、形状可变,使用方便。由于活性碳纤维可以做成毡式,所以更换起来非常方便,不

碳纤维及其复合材料的发展及应用_上官倩芡

第37卷第3期上海师范大学学报(自然科学版)Vol.37,N o.3 2008年6月J ou rnal of ShanghaiNor m alUn i versity(Natural S ci en ces)2008,J un 碳纤维及其复合材料的发展及应用 上官倩芡,蔡泖华 (上海师范大学机械与电子工程学院,上海201418) 摘要:叙述了碳纤维的结构形态、分类以及在力学、物理、化学方面的性能,介绍了碳纤维增强复合材料的特性,着重阐述了碳纤维增强树脂基复合材料中基体的分类、选择和应用,指出了碳纤维及其复合材料进一步发展的趋势. 关键词:碳纤维;复合材料 中图分类号:O636文献标识码:A文章编号:1000-5137(2008)03-0275-05 碳纤维作为一种高性能纤维,具有高比强度、高比模量、耐高温、抗化学腐蚀、耐辐射、耐疲劳、抗蠕变、导电、传热和热膨胀系数小等一系列优异性能.此外,还具有纤维的柔曲性和可编性[1~3].碳纤维既可用作结构材料承载负荷,又可作为功能材料发挥作用.因此碳纤维及其复合材料近几年发展十分迅速.本文作者就碳纤维的特性、分类及其在复合材料领域的应用等内容进行介绍. 1碳纤维特性、结构及分类 碳纤维是纤维状的碳材料,由有机纤维原丝在1000e以上的高温下碳化形成,且含碳量在90%以上的高性能纤维材料.碳纤维主要具备以下特性:1密度小、质量轻,碳纤维的密度为1.5~2g/c m3,相当于钢密度的1/4、铝合金密度的1/2;o强度、弹性模量高,其强度比钢大4~5倍,弹性回复为100%;?热膨胀系数小,导热率随温度升高而下降,耐骤冷、急热,即使从几千摄氏度的高温突然降到常温也不会炸裂;?摩擦系数小,并具有润滑性;?导电性好,25e时高模量碳纤维的比电阻为775L8/c m,高强度碳纤维则为1500L8/c m;?耐高温和低温性好,在3000e非氧化气氛下不熔化、不软化,在液氮温度下依旧很柔软,也不脆化;?耐酸性好,对酸呈惰性,能耐浓盐酸、磷酸、硫酸等侵蚀[4~7].除此之外,碳纤维还具有耐油、抗辐射、抗放射、吸收有毒气体和使中子减速等特性. 碳纤维的结构取决于原丝结构和碳化工艺,但无论用哪种材料,碳纤维中碳原子平面总是沿纤维轴平行取向.用X-射线、电子衍射和电子显微镜研究发现,真实的碳纤维结构并不是理想的石墨点阵结构,而是属于乱层石墨结构[8],如图1所示.构成此结构的基元是六角形碳原子的层晶格,由层晶格组成层平面.在层平面内的碳原子以强的共价键相连,其键长为0.1421n m;在层平面之间则由弱的范德华力相连,层间距在0.3360~0.3440n m之间;层与层之间碳原子没有规则的固定位置,因而层片边缘参差不齐.处于石墨层片边缘的碳原子和层面内部结构完整的基础碳原子不同.层面内部的基础碳原子所受的引力是对称的,键能高,反应活性低;处于表面边缘处的碳原子受力不对称,具有不成对电子,活性 收稿日期:2008-01-04 基金项目:上海市教委科研基金项目(06D Z034). 作者简介:上官倩芡(1974-),女,上海师范大学机械与电子工程学院副教授.

纳米碳纤维及其应用

功能材料论文:纳米碳纤维及其应用 学校:上海电力学院 班级:应用化学110103 姓名:赵立 学号:ys1110122026

纳米碳纤维及其应用 摘要:作为一种新型碳基纳米材料,纳米碳纤维由于具有优异物理化学性能和可控微结构受到越来越多研究者的重视。本文主要介绍了纳米碳纤维的现状与发展,包括纳米碳纤维的制备、性能与应用。并讨论了纳米碳纤维的市场和发展前景。 关键词:纳米碳纤维;性能;应用;发展前景 一、前言 作为高性能纤维的一种,碳纤维既有碳材料的固有本征。又兼备纺织纤维的柔软可加工性,是新一代军民两用新材料,已广泛用于航空航天、交通、体育与休闲用品、医疗、机械、纺织等各领域。纳米碳纤维是当代纤维研究领域的前沿课题。也是一项多学科交叉、多技术集成的系统工程。 纳米碳纤维(Carbon Nanofibers 简称CNF)是化学气象生长碳纤维的一种形式,是由通过裂解气相碳氢化合物制备的非连续石墨纤维。纳米碳纤维的研究开始于1991年,日本科学家饭岛利用高分辨电子显微镜在石墨棒放电所形成的阴极沉积物中发现纳米碳纤维,自从发现了纳米碳纤维,它就引起了理论研究者以及工业应用者的兴趣。纳米碳纤维/聚合物基复合材料在世界范围内的研究工作刚刚起步,我国亦在进行跟踪研究。 从物理尺寸、性能和生产成本来看纳米碳纤维的构成是以碳黑、富勒烯、单壁和多壁纳米碳管为一端,以连续碳纤维为另一端链节中的一环。纳米碳纤维的直径在50~200nm之间,但目前不少研究工作者把直径在100nm以下的中空纤维称之为纳米碳管,亦即纳米碳纤维的直径介于纳米碳管和气相生长碳纤维之间[1]。与纳米碳管相比纳米碳纤维的制备更易于实现工业化生产。CNFs除了具有CVD法碳纤维低密度、高比模量、高比强度、高导电、热稳定性等特性外,还具有缺陷数量非常少、长径比大、比表面积大、结构致密等优点。由于纳米碳纤维具有许多优异的物理和化学性质,因此可应用于电子器件、聚合物添加剂、储能材料、催化剂载体、电磁屏蔽材料、防静电材料、电磁波吸收材料等诸多领域。 二、制备 制备纳米碳纤维的三种主要方法以及特性是: (1) 基体法在石墨或陶瓷基体上分散纳米级催化剂颗粒的“种粒”,并在高温下通人碳氢气体化合物,热解后在催化剂颗粒上析出纳米碳纤维[2]。利用基体法可制备出纯度较高的纳米碳纤维,但由于超细催化剂颗粒的制备较为困难,且受从板温度和热解气体浓度不均及催化剂粒子在基板上分布不均等因素的影响,纤维生长疏密不匀,也很难得到直径较细的制品。此外,纳米碳纤维仅在有催化剂的基体上生长,产量不高,难以连续生长,不易实现工业生产。 (2) 喷淋法在苯等液体有机化合物中掺人催化剂,并将含催化剂的混合溶液在外力作用下喷淋到高温反应室中,制备出纳米碳纤维[3]。喷淋法可实现催化剂连续喷入,为工业化连续生产提供了可能,但催化剂与烃类气体的比例难以优化,喷淋过程中催化剂颗粒分布不

碳纤维材料性能及应用

碳纤维材料的性能及应用 碳纤维是一种纤维状碳材料。它是一种强度比钢的大、密度比铝的小、比不锈钢还耐腐蚀、比耐热钢还耐高温、又能像铜那样导电,具有许多宝贵的电学、热学和力学性能的新型材料。 碳纤维的微观结构类似人造石墨,是乱层石墨结构。另外,碳纤维是指含碳量高于90%的无机高分子纤维。其中含碳量高于99%的称石墨纤维。 性能特点: 碳纤维的比重小,抗拉强度高,轴向强度和模量高,无蠕变,耐疲劳性好,比热及导电性介于非金属和金属之间,热膨胀系数小,耐腐蚀性好,纤维的密度低,X射线透过性好。但其耐冲击性较差,容易损伤,在强酸作用下发生氧化,与金属复合时会发生金属碳化、渗碳及电化学腐蚀现象。因此,碳纤维在使用前须进行表面处理。总之,碳纤维是一种力学性能优异的新材料。 应用领域: 用碳纤维与塑料制成的复合材料所做的飞机不但轻巧,而且消耗动力少,推力大,噪音小;用碳纤维制电子计算机的磁盘,能提高计算机的储存量和运算速度;用碳纤维增强塑料来制造卫星和火箭等宇宙飞行器,机械强度高,质量小,可节约大量的燃料。1999年发生在南联盟科索沃的战争中,北约使用石墨炸弹破坏了南联盟大部分电力供应,其原理就是产生了覆盖大范围地区的碳纤维云,这些导电性纤维使供电系统短路。 目前,人们还不能直接用碳或石墨来抽成碳纤维,只能采用一些含碳的有机纤维(如尼龙丝、腈纶丝、人造丝等)做原料,将有机纤维跟塑料树脂结合在一起,放在稀有气体的气氛中,在一定压强下强热炭化而成碳纤维是纤维状的碳材料,其化学组成中含碳量在90%以上。由于碳的单质在高温下不能熔化(在3800K以上升华),而在各种溶剂中都不溶解,所以迄今无法用碳的单质来制碳纤维。碳纤维可通过高分子有机纤维的固相碳化或低分子烃类的气相热解来制取。目前世界上产生的销售的碳纤维绝大部分都是用聚丙烯腈纤维的固相碳化制得的。其产生的步骤为A预氧化:在空气中加热,维持在200-300度数十至数百分钟。预氧化的目的为使聚丙烯腈的线型分子链转化为耐热的梯型结构,以使其在高温碳化时不熔不燃而保持纤维状态。B碳化:在惰性气氛中加热至1200-1600度,维持数分至数十分钟,就可生成产品碳纤维;所用的惰性气体可以是高纯的氮气、氩气或氦气,但一般多用高纯氮气。C石墨化:再在惰性气氛(一般为高纯氩气)加热至2000-3000度,维持数秒至数十秒钟;这样生成的碳纤维也称石墨纤维。碳纤维有极好的纤度(纤度的表示法之一是9000米长的纤维的克数),一般仅约为19克;拉力高达300KG/MM2;还有耐高温、耐腐蚀、导电、传热、彭胀系数小等一系列优异性能。目前几乎没有其他材料像碳纤维那样具有那么多的优异性能。目前,碳纤维主要是制成碳纤维增强塑料来应用。这种增强塑料比钢、玻璃钢更优越,用途非常广泛,如制造火箭、宇宙飞船等重要材料;制造喷气式发动机;制造耐腐蚀化工设备等。羽毛球:现在大部分羽毛球拍杆由碳纤维制成。【碳纤维】carbon fibre 含碳量高于90%的无机高分子纤维。其中含

碳纤维及其复合材料的发展和应用(精)

·开发与创新· Development and Applications of Carbon Fiber and Its Composites GAO Bo ,XU Zi-Li (Wuhan Textile University ,Wuhan Hubei 430073,China Abstract:This paper introduces performance and features of carbon fiber,briefly overviews the history,including both foreign and domestic.And analyses the properties and applications of carbon fiber composite material,emphasizes the related performance that carbon fiber adds to the metal matrix composites and points out its research prospects.Key words:carbon fiber ;composite ;metal matrix 0引言 碳纤维是含碳量高于90%的无机高分子纤维,是由有机母体纤维(聚丙烯睛、粘胶丝或沥青等采用高温分解法在1000~3000℃高温的惰性气体下碳化制成的。它是一种力学性能优异的新材料,比重不到钢的1/4,能像铜那样导电,比不锈钢还耐腐蚀,而其复合材料抗拉强度一般都在3500Mpa 以上,是钢的7~9倍,抗拉弹性模量为23000~43000Mpa ,也高于钢。碳纤维按其原料可分为三类:聚丙烯腈基(PAN 碳纤维、石油沥青基碳纤维和人造丝碳纤维三类。其中聚丙烯腈基碳纤维用途最广,需求也最大[1]。 1碳纤维的发展史 1.1国外碳纤维的发展历史 20世纪50年代美国开始研究粘胶基碳纤维,1959 年生产出了粘胶基纤维Thormel-25,这是最早的碳纤维产品。同一年,日本发明了用聚丙烯腈基(PAN 原丝

纳米碳纤维及其应用

综 述 纳米碳纤维及其应用 赵稼祥 (航天材料及工艺研究所,100076) 摘 要 介绍世界纳米碳纤维的现状与发展,包括纳米碳纤维的制备、性能、与应用。讨论纳米碳纤维的市场和发展前景。 关键词 碳纤维,纳米,应用 Carbon Nanofiber and It ’s Applications Zhao Jiaxiang (Aerospace Research Institute of Materials and Processing T echnology ,100076) ABSTRACT In this paper the present status and development of carbon nanofiber in the w orld were briefly introduced ,including manu facturing of carbon nanofiber ,properties and application of carbon nanofiber.The market and perspective of development were als o discussed. KEY WORDS carbon ,carbon nanofiber ,application ,market 1 前 言 2002年10~11月在美国北卡罗来纳州首府洛 利(Raleigh ,NC )参加了2002年世界碳纤维会(G lobal Outlook for Carbon Fiber 2002),会后参观、访问了北 卡罗来纳大学国家纺织实验室(State T extile Laborato 2ry ,N orth Carolina State University )和土木工程系,阿 拉巴马大学材料工程系(Department of Materials Engi 2neering ,University of Alabama ),乔治亚理工大学复合 材料教育研究中心(C om posite Education and Research Center ,G eorge University of T echnology )、材料科学与 工程系和机械工程系等,与有关教授、专家和学者,讨论、交换对碳纤维、复合材料与先进材料技术现状、应用与发展的看法,有很大收获[1]。本文简要介绍纳米碳纤维的定义、制备技术、性能、应用、生产与市场及其发展前景。 纳米碳纤维(Carbon Nanofibers 简称C NF )是化学气象生长碳纤维的一种形式,是由通过裂解气相碳氢化合物制备的非连续石墨纤维。从物理尺寸、性能和生产成本来看它是构成以碳黑、富勒烯、单壁和多壁纳米碳管为一端,以连续碳纤维为另一端链节中的一环。 纳米碳纤维的直径在50~200nm 之间,但目前不少研究工作者把直径在100nm 以下的中空纤维称之为纳米碳管,亦即纳米碳纤维的直径介于纳米碳管和气相生长碳纤维之间。与纳米碳管相比纳米碳纤维的制备更易于实现工业化生产。 表1 纳米碳纤维的性能 性 能热处理前 热处理后 抗拉强度(G Pa ) 2.77.0抗拉模量(G Pa )400600断裂应变(%) 1.50.5密度(g/cm 3) 1.8 2.1电阻率(Ωμ-cm )100055热导率(W/m -K ) 20 1950 2 制 备 制备纳米碳纤维的三种主要方法以及特性是:(1)基体法 在陶瓷或石墨基体上散布纳米催 化剂颗粒,高温下通入烃类气体,热解后析出纳米碳纤维[2]。基体法可制备出高纯纳米碳纤维,但纳米级催化剂颗粒制备困难,一般颗粒直径较大,较难制 第4期48  纤维复合材料N o.42003年12月 FIBER COMPOSITES Dec.,2003

碳纤维导线的特性及应用

碳纤维导线的特性及应用 韩国聚1赵功展2齐文灿1、2 (1.平顶山电力设计院;2.平顶山供电公司;河南平顶山市,467001) 摘要:主要论述了碳纤维导线的特性及在老线路改造工程中的应用。 关键词:碳纤维导线特性拐点 ACCC/TW ACSR Properties and Applications of Aluminum Conductor Composite Core HAN Guo-ju et al (Pingdingshan Electric Power Design Institute, Pingdingshan467001,Henan Province,China) Abstract: This paper discusses the characteristics of Aluminum Conductor Composite Core and the transformation of the old-line engineering Keywords:Aluminum Conductor Composite Core Features Knee ACCC/TW ACSR 0引言 随着我国电力需求的不断增长,许多电力线路面临增容的压力。线路增容最经济的办法之一是利用原有杆塔只更换导线。而利用原有杆塔的前提条件是,更换的导线荷载不能超过原有杆塔的设计条件。为此,新更换的导线一般不能采用普通的钢芯铝绞线ACSR(Aluminum Conductor Steel Reinforced),而是采用新型的增容导线。这种新型导线一般具备这样三个特点:一是弧垂随温度的变化小;二是质量轻、外径小;三是具有输送大电流的能力。而碳纤维复合芯软铝绞线(以下简称碳纤维导线)ACCC/TW(Aluminum Conductor Composite Core/Trapezoidal Wire)是典型的品质优良的增容导线品种之一。 1.碳纤维导线的结构 碳纤维导线ACCC/TW的结构独特,内部是一根由碳纤维为中心层和玻璃纤维包覆制成的复合芯,外层由一系列呈梯形截面的软铝线绞合而成。碳纤维复核芯承担导线总的力学性能,具有强度高、密度小、膨胀系数小、耐腐蚀等特点。外层软铝具有导电率高、电阻小、自阻尼性能强的特点。碳纤维复合芯与软铝线绞制而成的导线,便具有优良的性能:导线重量轻,电阻小,表面光滑不易舞动,拉力质量比大,弧垂随温度的变化小等[1]。因此,可作为电力部门老旧线路改造、电力增容导线使用。其结构如图1-1所示。 外层软铝 碳纤维复核芯 图1-1碳纤维导线结构 2.碳纤维导线的特性 2.1.抗拉强度高 目前各设计院广泛采用的钢芯铝绞线基本上仍为GB1197-83标准中的型式,该标准导线中使用的钢芯绞合后强度为1244N/mm2,而碳纤维导线ACCC/TW的复合芯抗拉强度最小值可

活性碳纤维的特性

活性碳纤维的特性 1)吸附量大 活性碳纤维对有机气体及恶臭物质(如正丁基硫醇等)的吸附量比粒状活性炭(GAC )大几倍至十几倍。对无机气体也有较好的吸附能力。对水溶液中的无机物、染料、有机物及贵金属的吸附量比GAC 高5—6倍。对微生物及细菌也有很好的吸附能力(如对大肠杆菌的吸附率可达94—99%)。对低浓度吸附质的吸附能力特别优良。如对于吸附质的浓度在几ppm 级时仍可保持很好的吸附量,而GAC 等吸附材料往往在几十ppm浓度时才有良好的吸附能力。 2)吸附速度快 对于从气相中吸附气态污染物的吸附速度非常快,对液体的吸附也可很快达到吸附平衡,其吸附速率比GAC 高数十倍至数百倍。 3)再生容易,脱附速度快 在多次吸附和脱附过程中,仍能保持原有的吸附性能。如用120-150℃蒸汽或热空气再生处理ACF 10-30分钟即可达到完全脱附。 4)耐热性好 在惰性气体中可耐高温1000℃以上,在空气中的着火点高达500℃以上。 5)耐酸、耐碱,具有较好的导电性能和化学稳定性。 6)灰份少。 7)成型性好,易加工成毡、丝、布、纸等形态。 活性碳纤维的介绍 一般传统上所使用的活性炭可分为粉末状活性炭(AC)和颗粒状活性炭(GAC),上世纪六十年美、日、俄等国家相继研发出第三种形态的活性炭称为活性碳纤维(Activated Carbon Fibers,/ACF)。国内在七十年代末八十年初,也研发出活性碳纤维。因为活性炭纤维其表面遍布微孔,以及可经二次加工,成为不

同形态的毡及布状的材料,与传统的颗粒炭相比,具有较快的吸附、脱附的速度和更便利的操作维护等优点 活性碳纤维(以下简称ACF)的诞生在整个环保产业是一场革命。ACF是以粘胶基纤维为原料,经高温碳化、活化后制成的纤维状新型吸附材料,与社会上公认的比较好的吸附材料颗粒状活性炭相比,ACF具有以下显著的的特点: (一)、比表面积大,有效吸附量高。由于同样重量的纤维的表面积是颗粒的近百倍,所以需要填充的活性碳纤维的重量非常小,然而吸附效率却非常高,根据所处理废气的有机气体含量和其它物理特性的不同,吸附效率在85%至98%之间,多级吸附工艺可以达到99.99%,远远高于活性碳颗粒吸附法的最高吸附率88%,而且体积及总重量也都很小。 (二)、吸附﹑脱附行程短,速度快;脱附﹑再生耗能低。ACF对有机气体吸附量比颗粒状活性炭(GAC)大几倍至几十倍,对无机气体也有很好的吸附能力,并能保持较高的吸附脱附速度和较长的使用寿命。如用水蒸气加热6-10分钟,即可完全脱附,耐热性能好,在惰性气体中耐高温1000℃以上,在空气中着火点达500℃以上。 (三)、对低浓度吸附质的吸附能力特别优良,对ppm数量级吸附质仍保持很高的吸附量 (四)、形状可变,使用方便;强度好,不会造成二次污染。 活性碳纤维的应用 有机溶剂的回收 用于从气相分离回收有机溶剂,如对苯类、酮类、酯类、石油类的蒸汽均能从气相吸附回收,特别是有腐蚀性的氯化物、很容易起反映的溶剂、很容易分解的溶剂,使用ACF 做溶剂回收设备吸附脱附速度快、处理量大、回收溶剂质量高,而且回收效率可达97%以上。 空气净化

相关文档