文档库 最新最全的文档下载
当前位置:文档库 › 空间向量练习及答案解析

空间向量练习及答案解析

空间向量练习

一、选择题(共15小题,每小题4.0分,共60分)

1.已知平面α的一个法向量是(2,-1,1),α∥β,则下列向量可作为平面β的一个法向量的是() A. (4,2,-2) B. (2,0,4) C. (2,-1,-5) D. (4,-2,2)

2.如图,过边长为1的正方形ABCD的顶点A作线段EA⊥平面AC,若EA=1,

则平面ADE与平面BCE所成的二面角的大小是()

A. 120° B. 45° C. 150° D. 60°

3.已知=(1,2,3),=(2,1,2),=(1,1,2),点Q在直线OP上运动,则当

·取得最小值时,点Q的坐标为()

A. B. C. D.

4.将正方形ABCD沿对角线BD折成直二面角A-BD-C,有如下四个结论:

①AC⊥BD;②△ACD是等边三角形;③AB与平面BCD所成的角为60°;④AB与CD所成的角为60°.其中错误的结论是()

A.① B.② C.③ D.④

5.如图所示,在三棱柱ABC-A1B1C1中,AA1⊥底面ABC,AB=BC=AA1,∠ABC=90°,点

E,F分别是棱AB,BB1的中点,则直线EF和BC1的夹角是()

A. 45° B. 60° C. 90° D. 120°

6.已知在空间四面体O-ABC中,点M在线段OA上,且OM=2MA,点N为BC中点,

设=a,=b,=c,则等于()

A.a+b- c B.-a+b+ c C.a-b+ c D.a+b-c

7.已知在棱长为2的正方体ABCD-A1B1C1D1中,E是DC的中点,建立如图所示的空

间直角坐标系,则AB1与D1E所成角的余弦值为()

A. B. C.- D.-

8.如图所示,在正方体ABCD-A1B1C1D1中,M,N,P分别是棱CC1,BC,A1B1上的点,

若∠B1MN=90°,则∠PMN的大小()

A.等于90° B.小于90° C.大于90° D.不确定

9.如图,S是正三角形ABC所在平面外一点,M,N分别是AB和SC的中点,SA=SB=

SC,且∠ASB=∠BSC=∠CSA=90°,则异面直线SM与BN所成角的余弦值为()

A.- B. C.- D.

10.已知平面α内两向量a=(1,1,1),b=(0,2,-1)且c=ma+nb+(4,-4,1).若c为平

面α的法向量,则m ,n 的值分别为( ) A . -1,2 B . 1,-2 C . 1,2 D . -1,-2

11.如图,在三棱柱ABC -A 1B 1C 1中,侧棱AA 1⊥底面ABC ,底面ABC 是等腰直角三角形,∠ACB =90°,侧棱AA 1=2,D ,E 分别是CC 1与A 1B 的中点,点E 在平面ABD 上的射影是△ABD 的重心G ,则A 1B 与平面ABD 所成角的正弦值为( )

A .√23

B .√73

C .√32

D .√37

12.如图,在直三棱柱ABC -A 1B 1C 1中,∠ACB =90°,2AC =AA 1=BC =2,若二面角B 1-DC -C 1的大小为60°,则AD 的长为( ) A .√2 B .√3 C . 2 D .√22

13.三棱锥A -BCD 中,平面ABD 与平面BCD 的法向量分别为n 1,n 2,若〈n 1,n 2〉=π

3,则二面角A -BD -C 的大小为( ) A .π

3 B .2π

3 C .π

3或2π

3

D .π

3或-π

3

14.已知AB ????? =(1,5,-2),BC ????? = (3,1,z ),若AB ????? ⊥BC ????? ,BP ????? =(x -1,y ,-3),且BP ⊥平面ABC ,则BP ????? 等于( ) A .(407,

15

7,?3) B .(337

,

15

7

,?3) C .(?

407

,?

157

,?3) D .(337

,?

157

,?3)

15.如图,在平行六面体ABCD -A 1B 1C 1D 1中,点M ,P ,Q 分别为棱AB ,CD ,BC 的中点,平行六面体的各棱长均相等.给出下列结论:①A 1M ∥D 1P ;②A 1M ∥B 1Q ;③A 1M ∥平面DCC 1D 1;④A 1M ∥平面D 1PQB 1.这四个结论中正确的个数为( ) A . 1 B . 2 C . 3 D . 4

二、填空题(共6小题,每小题4.0分,共24分)

16.如图所示,已知正四面体A-BCD 中,AE =AB ,CF =CD ,则直线DE 和BF 所成角的余弦值为________.

17.已知a =(3,-2,-3),b =(-1,x -1,1),且a 与b 的夹角为钝角,则x 的取值范围是________.

18.如图,平面PAD ⊥平面ABCD ,ABCD 为正方形,∠PAD =90°,且PA =AD =2,E ,F 分别是线段PA ,CD 的中点,则异面直线EF 与BD 所成角的余弦值为________. 19.如图,在三棱柱ABC -A 1B 1C 1中,所有棱长均为1,且AA 1⊥底面ABC ,则点B 1到平面ABC 1的距离为________.

20.如下图所示,PD 垂直于正方形ABCD 所在平面,AB =2,E 为PB 的中点,cos 〈DP

????? ,

AE ????? 〉=√33,若以DA ,DC ,DP 所在直线分别为x ,y ,z 轴建立空间直角坐标系,则点E 的坐标为________.

21.已知点P 是平行四边形ABCD 所在的平面外一点,如果AB

????? =(2,-1,-4),AD ????? =(4,2,0),AP ????? =(-1,2,-1).对于结论:①AP ⊥AB ;②AP ⊥AD ;③AP ????? 是平面ABCD 的法向量;④AP ????? ∥BD ?????? .其中正确的是____________.

三、解答题(共6小题,每小题11.0分,共66分) 22.如图所示,已知四棱锥P -ABCD 的底面为直角梯形,AB ∥DC ,∠DAB =90°,PA ⊥底面ABCD ,且PA =AD =DC =1

2AB =1,M 是PB 的中点.

(1)证明:面PAD ⊥面PCD ;(2)求AC 与PB 所成角的余弦值; (3)求面AMC 与面BMC 所成二面角的余弦值.

23.如下图所示,在三棱锥P -ABC 中,PA ⊥底面ABC ,PA =AB ,∠ABC =60°,∠BCA =90°,点D ,E 分别在棱PB ,PC 上,且DE ∥BC . (1)求证:BC ⊥平面PAC ;

(2)当D 为PB 的中点时,求AD 与平面PAC 所成的角的正弦值; (3)是否存在点E ,使得二面角A -DE -P 为直二面角?并说明理由.

24.如图,在棱长为2的正方体ABCD -A 1B 1C 1D 1中,点E ,F 是棱BC ,CD 的中点,求:(1)直线DF 与B 1F 所成角的余弦值;(2)二面角C 1-EF -A 的余弦值.

25.如图,在四棱锥S-ABCD中,底面ABCD是直角梯形,AB垂直于AD和BC,侧棱SB⊥平面ABCD,且SB=AB=AD=1,BC=2.

(1)求SA与CD所成的角;(2)求平面SCD与平面SAB所成的锐二面角的余弦值.

26.如下图,四棱柱ABCD-A1B1C1D1中,侧棱A1A⊥底面ABCD,AB∥DC,AB⊥AD,AD=CD=1,AA 1=AB=2,E为棱AA1的中点.

(1)证明B1C1⊥CE;(2)求二面角B1-CE-C1的正弦值.

27.如下图,在正四棱柱ABCD-A1B1C1D1中,AB=2,AA1=4,E为BC的中点,F为CC1的中点.(1)求EF与平面ABCD所成的角的余弦值;(2)求二面角F-DE-C的余弦值.

空间向量练习答案解析

1.【答案】D

【解析】∵α∥β,∴β的法向量与α的法向量平行,又∵(4,-2,2)=2(2,-1,1),故选D.

2.【答案】B

【解析】以A为坐标原点,分别以AB,AD,AE所在直线为x轴,y轴,z轴,建立如图所示的空间直角坐标系Axyz,

则E(0,0,1),B(1,0,0),C(1,1,0),

=(1,0,-1),=(1,1,-1).

设平面BCE的法向量为n=(x,y,z),

则即

可取n=(1,0,1).又平面EAD的法向量为=(1,0,0),所以cos〈n,〉==,

故平面ADE与平面BCE所成的二面角为45°.

3.【答案】C【解析】设Q(x,y,z),因Q在上,故有∥,

设=λ(λ∈R),可得x=λ,y=λ,z=2λ,

则Q(λ,λ,2λ),=(1-λ,2-λ,3-2λ),

=(2-λ,1-λ,2-2λ),所以·=6λ2-16λ+10=62-,

故当λ=时,·取最小值,此时Q.

4.【答案】C

【解析】如图所示,取BD的中点O,以点O为坐标原点,OD,OA,OC所在直线分别为x轴,y轴,z轴,建立空间直角坐标系Oxyz,设正方形ABCD边长为,则D(1,0,0),

B(-1,0,0),C(0,0,1),A(0,1,0),所以=(0,-1,1),=(2,0,0),·=0,

故AC⊥BD.①正确.

又||=,||=,||=,所以△ACD为等边三角形.②正确.

对于③,为面BCD的一个法向量,

cos〈,〉====-.

所以AB与OA所在直线所成的角为45°,

所以AB与平面BCD所成角为45°.故③错误.

又cos〈,〉===-.

因为异面直线所成的角为锐角或直角,所以AB与CD所成角为60°.故④正确.

5.【答案】B

【解析】不妨设AB=BC=AA1=1,

则=-=(-),=+,∴||=|-|=,||=,·=(-)·(+)=,∴cos〈,〉===,

∴〈,〉=60°,即异面直线EF与BC1的夹角是60°.

6.【答案】B

【解析】=-=(+)-=b+c-a.

7.【答案】A

【解析】∵A(2,2,0),B1(2,0,2),E(0,1,0),D1(0,2,2),

∴=(0,-2,2),=(0,1,2),∴||=2,||=,·=0-2+4=2,

∴cos〈,〉===,又异面直线所成角的范围是,

∴AB1与ED1所成角的余弦值为.

8.【答案】A

【解析】A1B1⊥平面BCC1B1,故A1B1⊥MN,

·=(+)·=·+·=0,∴MP⊥MN,即∠PMN=90°.

9.【答案】B

【解析】不妨设SA=SB=SC=1,以S为坐标原点,,,所在直线分别为x轴,y轴,z 轴,建立空间直角坐标系Sxyz,则相关各点坐标为A(1,0,0),B(0,1,0),C(0,0,1),S(0,0,0),

M,N.

因为=,=,

所以||=,||=,·=-,

cos〈,〉==-,

因为异面直线所成的角为锐角或直角,

所以异面直线SM 与BN 所成角的余弦值为.

10.【答案】A

【解析】 c =ma +nb +(4,-4,1)=(m ,m ,m )+(0,2n ,-n )+(4,-4,1)=(m +4,m +2n -4,m -n +1),

由c 为平面α的法向量,得即解得

11.【答案】A

【解析】∵侧棱与底面垂直,∠ACB =90°,所以分别以CA ,CB ,CC 1所在

直线为x 轴、y 轴、z 轴,建立如图空间直角坐标系, 设CA =CB =a ,则A (a,0,0),B (0,a,0),A 1(a,0,2),D (0,0,1), ∴E (a 2,a

2,1),G (a 3,a 3,1

3),GE ????? =(a 6,a 6,2

3),BD ?????? =(0,-a,1), ∵点E 在平面ABD 上的射影是△ABD 的重心G ,

∴GE ????? ⊥平面ABD ,∴GE ????? ·BD ?????? =0,解得a =2,∴GE ????? =(13,13,23

),BA 1??????? =(2,-2,2),

∵GE ????? ⊥平面ABD ,∴GE ????? 为平面ABD 的一个法向量, 又

cos 〈GE ????? ,BA 1??????? 〉=GE ????? ·BA 1

???????? |GE ????? ||BA 1???????? |=4

3√63×2

=√23,∴A 1B 与平面ABD 所成角的正弦值为√2

3

,故选A.

12.【答案】A

【解析】如下图,以C 为坐标原点,CA ,CB ,CC 1所在的直线分别为x 轴,y 轴,z 轴建立空间直角坐标系,则C (0,0,0),A (1,0,0),B 1(0,2,2),C 1(0,0,2)

设AD =a ,则D 点坐标为(1,0,a ),CD ????? =(1,0,a ),CB 1??????? =(0,2,2),设平面B 1CD 的一个法向量为m =(x ,y ,z ),

则{

m ·CB 1??????? =0,m ·CD

????? =0?{2y +2z =0,x +az =0,令z =-1, 得m =(a,1,-1),又平面C 1DC 的一个法向量为n =(0,1,0), 则由cos 60°=m·n

|m ||n |,得√a 2+1=1

2,即a =√2,故AD =√2. 13.【答案】C

【解析】如图所示,当二面角A -BD -C 为锐角时,它就等于〈n 1,n 2〉=π

3;当二面

角A -BD -C 为钝角时,它应等于π-〈n 1,n 2〉=π-π

3=2π

3. 1

4.【答案】D

【解析】因为AB ????? ⊥BC ????? ,所以AB ????? ·BC ????? =0,即1×3+5×1+(-2)z =0,所以z =4, 因为BP ⊥平面ABC ,所以BP

????? ⊥AB ????? ,且BP ????? ⊥BC ????? ,即1×(x -1)+5y +(-2)×(-3)=0,

且3(x -1)+y +(-3)×4=0.解得x =407,y =-157,于是BP ????? =(337,?157

,?3).

15.【答案】C

【解析】因为A 1M ???????? =A 1A ??????? +AM ?????? =A 1A ??????? +1

2AB ????? ,D 1P ??????? =D 1D ???????? +DP ????? =A 1A ??????? +1

2AB ????? , 所以A 1M ???????? ∥D 1P ??????? ,从而A 1M ∥D 1P ,可得①③④正确. 又B 1Q 与D 1P 不平行,故②不正确.故选C. 16.【答案】 【解析】

所以cos 〈,〉====.

17.【答案】 B

【解析】 若两向量的夹角为钝角,则a ·b <0,且a 与b 不共线,故3×(-1)+(-2)×(x -1)+(-3)×1<0,且x ≠,解得x >-2,且x ≠,故选B. 18.【答案】

【解析】 以A 为坐标原点,AB ,AD ,AP 所在直线分别为x 轴,y 轴,z 轴,建立如图所示空间直角坐标系Axyz ,则E (0,0,1),F (1,2,0),B (2,0,0),D (0,2,0). =(1,2,-1),=(-2,2,0),故cos 〈,〉==.

19.【答案】√217

【解析】建立如图所示的空间直角坐标系,

则A (√32,1

2,0),B (0,1,0),B 1(0,1,1),C 1(0,0,1),则C 1A ??????? =(√32,1

2,?1),C 1B 1????????? =

(0,1,0),C 1B ??????? =(0,1,-1),设平面ABC 1的一个法向量为n =(x ,y,1),

则有{C 1A ??????? ·n =√32x +12y ?1=0,C 1B ??????? ·n =y ?1=0.解得n =(√33,1,1),

则所求距离为|C 1B 1?????????? ·n |n ||=√13

+1+1=√21

7.

20.【答案】(1,1,1)

【解析】设PD =a (a >0),则A (2,0,0),B (2,2,0),P (0,0,a ),E (1,1,a

2).∴DP ????? =(0,0,a ),AE

????? =(?1,1,a

2),

∵cos 〈DP ????? ,AE ????? 〉=√33

,∴a 2

2

=a √2+a 2

4

·√33

,∴a =2.∴E 的坐标为(1,1,1).

21.【答案】①②③

【解析】由于AP ????? ·AB ????? =-1×2+(-1)×2+(-4)×(-1)=0, AP ????? ·AD ????? =4×

(-1)+2×2+0×(-1)=0,所以①②③正确. 22.【答案】因为PA ⊥AD ,PA ⊥AB ,AD ⊥AB ,以A 为坐标原点,AD 长为单位长度,如图建立空间直角坐标系,

则各点坐标为A (0,0,0),B (0,2,0),C (1,1,0),D (1,0,0),P (0,0,1),M (0,1,1

2), (1)∵AP ????? =(0,0,1),DC ????? =(0,1,0),故AP ????? ·DC ????? =0,∴AP ????? ⊥DC ????? ,∴AP ⊥DC , 又由题设知:AD ⊥DC ,且AP 与AD 是平面PAD 内的两条相交直线, 由此得DC ⊥面PAD ,又DC 在面PCD 上,故面PAD ⊥面PCD ; (2)∵AC

????? =(1,1,0),PB ????? =(0,2,-1), ∴|AC ????? |=√2,|PB ????? |=√5,AC ????? ·PB

????? =2,∴cos 〈AC ????? ,PB ????? 〉=√105

, 由此得AC 与PB 所成角的余弦值为√10

5

(3)在MC 上取一点N (x ,y ,z ),则存在λ∈R ,使NC ????? =λMC ?????? ,NC ????? =(1-x,1-y ,-z ),MC ?????? =(1,0,?1

2),

∴x =1-λ,y =1,z =1

2

λ.

要使AN ⊥MC ,只需AN ?????? ·MC ?????? =0,即x -1

2z =0,解得λ=4

5

, 可知当λ=4

5时,N 点坐标为(15,1,2

5),能使AN ?????? ·MC

?????? =0, 此时,AN ?????? =(15,1,25),BN ?????? =(15,?1,25

), 由AN ?????? ·MC ?????? =0,BN ?????? ·MC ?????? =0,得AN ⊥MC ,BN ⊥MC , ∴∠ANB 为所求二面角的平面角,

∵|AN

?????? |=√305

,|BN ?????? |=√305

,AN ?????? ·BN ?????? =-4

5,∴cos 〈AN ?????? ,BN ?????? 〉=-2

3

, 故所求的二面角的余弦值为-2

3.

23.【答案】以A 为原点,AB ????? ,AP ????? 分别为y 轴、z 轴的正方向,过A 点且垂直于平面PAB 的直线为x 轴,建立空间直角坐标系Axyz ,

设PA =a ,由已知可得:A (0,0,0),B (0,a ,0),C (√3

4a,3

4a,0),P (0,0,a ).

(1)AP

????? =(0,0,a ),BC ????? =(√34a,?a 4,0),∴BC ????? ·AP ????? =0,∴BC ????? ⊥AP ????? ,∴BC ⊥AP , 又∵∠BCA =90°,∴BC ⊥AC ,∴BC ⊥平面PAC .

(2)∵D 为PB 的中点,DE ∥BC ,∴E 为PC 的中点,∴D (0,a 2,a

2

),E (√38

a,38

a,a 2

),

∴由(1)知,BC ⊥平面PAC ,∴DE ⊥平面PAC ,垂足为点E , ∴∠DAE 是AD 与平面PAC 所成的角,

∵AD ????? =(0,a 2,a 2),AE ????? =(√38a,38a,a 2),∴cos ∠DAE =AD ?????? ·AE ?????

|AD ?????? ||AE ????? |=√144

, ∴AD 与平面PAC 所成的角的正弦值为√24

.

(3)∵DE ∥BC ,又由(1)知BC ⊥平面PAC ,∴DE ⊥平面PAC , 又∵AE ?平面PAC ,PE ?平面PAC ,

∴DE ⊥AE ,DE ⊥PE ,∴∠AEP 为二面角A -DE -P 的平面角. ∵PA ⊥底面ABC ,∴PA ⊥AC ,∴∠PAC =90°,

∴在棱PC 上存在一点E ,使得AE ⊥PC ,这时∠AEP =90°, 故存在点E ,使得二面角A -DE -P 是直二面角.

24.【答案】如图,以A 为坐标原点,建立空间直角坐标系Axyz ,则D (0,2,0),E (2,1,0),F (1,2,0),B 1(2,0,2),C 1(2,2,2),

(1)因为DE ????? =(2,-1,0),B 1F ??????? =(-1,2,-2),

所以cos 〈DE ????? ,B 1F ??????? 〉=DE ?????? ·B 1

F ???????? |DE ?????? ||B 1

F ???????? |=3√5

=-4√5

15

, 所以直线DE 与B 1F 所成角的余弦值为

4√5

15

; (2)因为C 1E ??????? =(0,-1,-2),EF ????? =(-1,1,0), 设平面C 1EF 的一个法向量为n =(x ,y,1), 则由{

n ·C 1E ??????? =0,n ·EF ????? =0,

可得{

?y ?2=0,?x +y =0, 解得x =y =-2,所以n =(-2,-2,1),又AA 1??????? =(0,0,2)是平面AEF 的一个法向量,

所以cos 〈AA 1??????? ,n 〉=n·AA

1

???????? |n ||AA 1

???????? |=22×3=1

3

, 观察图形,可知二面角C 1-EF -A 为钝角,所以二面角C 1-EF -A 的余弦值为-1

3. 25.【答案】(1)建立如图所示的空间直角坐标系,

则B (0,0,0),S (0,0,1),A (1,0,0),C (0,2,0),D (1,1,0),SA ????? =(1,0,-1), CD

????? =(1,-1,0), 因为cos 〈SA ????? ,CD ????? 〉=SA ????? ·CD ?????

|SA

????? ||CD ????? |=12,所以SA 与CD 所成的角为60°; (2)设平面SCD 的法向量为n 1=(x ,y ,z ), 又SC

???? =(0,2,-1),{n 1·SC

???? =0,n 1·CD

????? =0,所以{

2y ?z =0,x ?y =0, 令x =1,则n 1=(1,1,2),因为BC ⊥平面SAB ,

所以平面SAB 的一个法向量为n 2=(0,1,0),cos 〈n 1,n 2〉=√6

6

所以平面SCD 与平面SAB 所成的锐二面角的余弦值为√6

6

.

26.【答案】如下图,以点A 为原点建立空间直角坐标系,依题意得A (0,0,0),B (0,0,2),C (1,0,1),B 1(0,2,2),C 1(1,2,1),E (0,1,0).

(1)易得B 1C 1????????? =(1,0,-1),CE ????? =(-1,1,-1),于是B 1C 1????????? ·CE ????? =0,所以B 1C 1⊥CE ;

(2)B 1C ??????? =(1,-2,-1),设平面B 1CE 的法向量m =(x ,y ,z ),则{

m ·B 1C ??????? =0,m ·CE ????? =0,

即{

x ?2y ?z =0,?x +y ?z =0, 消去x ,得y +2z =0,不妨令z =1,可得一个法向量为m =(-3,-2,1),

由(1),B 1C 1⊥CE ,又CC 1⊥B 1C 1,可得B 1C 1⊥平面CEC 1,故B 1C 1????????? =(1,0,-1)为平面CEC 1的一个法

向量,于是cos 〈m ,B 1C 1????????? 〉=m·B 1C 1?????????? |m ||B 1C 1

|=√14×√2=-2√77,从而sin 〈m ,B 1C 1????????? 〉=√217

,所以二面角B 1-CE -C 1的正弦值为√217

.

27.【答案】建立如下图所示的空间直角坐标系D-xyz , 则D (0,0,0),A (2,0,0),C (0,2,0),B (2,2,0),E (1,2,0),F (0,2,2), (1)EF ????? =(-1,0,2),易得平面ABCD 的一个法向量为n =(0,0,1), 设EF ????? 与n 的夹角为θ,则cos θ=EF

????? ·n |EF ????? ||n|=2

5√5,∴EF 与平面ABCD 所成的角的余弦值为

2√5

5

; (2)EF ????? =(-1,0,2),DF ????? =(0,2,2),设平面DEF 的一个法向量为m ,则m ·DF ????? =0,m ·EF

????? =0, 可得m =(2,-1,1),∴cos 〈m ,n 〉=m·n

|m ||n |=√66

,∴二面角F -DE -C 的余弦值为√6

6

.

空间解析几何与向量代数论文

空间解析几何与向量代数 呼伦贝尔学院 计算机科学与技术学院 服务外包一班 2013级 2014.5.4 小组成员: 宋宝文 柏杨白鸽 李强白坤龙

空间解析几何与向量代数 摘要:深入了解空间解析几何与向量代数的概念,一一讲述他们的区别和用途。向量的集中加减乘法和运算规律,还有空间直线与平面的关系。 关键词:向量;向量代数;空间几何 第一部分:向量代数 第一节:向量 一.向量的概念: 向量:既有大小,又有方向的量成为向量(又称矢量)。 表示法:有向线段a 或a 。 向量的模:向量的打小,记作|a |。 向径(矢径):起点为原点的向量。 自由向量:与起点无关的向量。 单位向量:模为1的向量。 零向量:模为0的向量,记作.0或0 若向量a 与b 大小相等,方向相同,则称a 与b 相等,记作a =b ; 若向量a 与b 方向相同或相反,则称a 与b 平行,记作a //b 规定:零向量与任何向量平行;与a 的模相同,但方向相反的向量称为a 的负向量, 记作-a ;因平行向量可平移到同一直线上,故两向量平行又称两向量共线。若K 3 个向量经平移可移到同一平面上,则称此K 个向量共面。 二.向量的线性运算 1.向量的加法 平行四边形法则: b a +b a 三角形法则: a + b b

a 运算规律:交换律a + b =b +a a 与b 结合律:(a +b )+c =a +(b +c ) 三角形法则可推广到多个向量相加。 2.向量的减法 b -a =b +(a ) a b -a b b -a a 特别当b =a 时,有a -a =a (a )=0 ; 三角不等式:|b +a |; |a -b |; 3.向量与数的乘法是一个数,与a 的乘积是一个新向量,记作a 。 规定: a 与a 同向时,|a |=|a |; 总之:|a | | |a | 三.向量的模、方向角 1.向量的模与两点间的距离公式 设r (x,y,z ),作om r ,则有r op oq or R Z Q O Y P X 由勾股定理得: |r | |OM| B A 对两点A ()与B ()因AB OB OA () 得两点间的距离公式: |AB| |AB | 第二节:数量积 向量积

空间解析几何和向量代数总结

第八章空间解析几何和 向量代数总结 向量的概念 向量的线性运算 空间直角坐标系(右手系)向量的坐标 坐标形式的向量的线性运算(8—1,19) 方向角与方向余弦(8—1,15) 向量的数量积、向量积、混合积 (8—2,1、3、6、10; 总习题八,1(3)、(4))

应用:判断向量正交、 平行(共线)、 计算平行四边形面 积、 一向量在另一向量的投影。 曲面 曲面的概念 (),,0F x y z =, ()(){}:,,,,0x y z F x y z ∑=建立曲面方程 (P23,例1、P24,例2,8—3,2、3)

旋转曲面(8—3,7、10) 坐标面上的曲线饶一坐标轴旋转一周的旋转曲面方程 (),00f x y z ?=?=?绕x 轴旋转一周得到的旋转曲面 为(,0f x =; (),00f x y z ?=?=?绕y 轴旋转一周得到的旋转曲面 为()0 f y =;

(),00f y z x ?=?=?绕y 轴旋转一周得到的旋转曲面 为(,0f y =; (),00f y z x ?=?=?绕z 轴旋转一周得到的旋转曲面 为()0f z =; (),00f x z y ?=?=?绕x 轴旋转一周得到的旋转曲面为

(,0f x =; (),00f x z y ?=?=?绕z 轴旋转一周得到的旋转曲面 为() 0f z =。 空间曲线及其方程 空间曲线的一般方程 ()(),,0,,0F x y z G x y z =???=?? 参数方程(P33,例3)

()()()x t y t z t αβγ=??=??=? 空间曲线在坐标面的投影(P36,例4、例5、8—4,4) 平面及其方程 建立平面方程:点法式、一般式、截距式、三点式(8—5,1、2、3、6) 平面与平面的夹角(锐角)(8—5,5) 点的平面的距离(8—5,9)

空间解析几何与向量代数习题

第七章 空间解析几何与向量代数习题 (一)选择题 1. 已知A (1,0,2), B (1,2,1)是空间两点,向量 AB 的模是:( ) A )5 B ) 3 C ) 6 D )9 2. 设a ={1,-1,3}, b ={2,-1,2},求c =3a -2b 是:( ) A ){-1,1,5}. B ) {-1,-1,5}. C ) {1,-1,5}. D ){-1,-1,6}. 3. 设a ={1,-1,3}, b ={2,-1,2},求用标准基i , j , k 表示向量c ; A )-i -2j +5k B )-i -j +3k C )-i -j +5k D )-2i -j +5k 4. 求两平面032=--+z y x 和052=+++z y x 的夹角是:( ) A )2 π B )4 π C )3 π D )π 5. 一质点在力F =3i +4j +5k 的作用下,从点A (1,2,0)移动到点B (3, 2,-1),求力F 所作的功是:( ) A )5焦耳 B )10焦耳 C )3焦耳 D )9焦耳 6. 已知空间三点M (1,1,1)、A (2,2,1)和B (2,1,2),求∠AMB 是:( ) A )2 π B )4 π C )3 π D )π 7. 求点)10,1,2(-M 到直线L :12 21 3+=-=z y x 的距离是:( ) A )138 B 118 C )158 D )1 8. 设,23,a i k b i j k =-=++ 求a b ? 是:( ) A )-i -2j +5k B )-i -j +3k C )-i -j +5k D )3i -3j +3k 9. 设⊿ABC 的顶点为(3,0,2),(5,3,1),(0,1,3)A B C -,求三角形的面积是:( ) A ) 3 62 B ) 3 64 C )3 2 D )3 10. 求平行于z 轴,且过点)1,0,1(1M 和)1,1,2(2-M 的平面方程.是:( ) A )2x+3y=5=0 B )x-y+1=0

(完整版)空间解析几何与向量代数习题与答案

第七章 空间解析几何与向量代数 A 一、 1、平行于向量)6,7,6(-=a 的单位向量为______________. 2、设已知两点)2,0,3()1,2,4(21M M 和,计算向量21M M 的模,方向余弦和方向角. 3、设k j i p k j i n k j i m 45,742,853-+=--=++=,求向量p n m a -+=34在x 轴 上的投影,及在y 轴上的分向量. 二、 1、设k j i b k j i a -+=--=2,23,求(1)b a b a b a b a 23)2)(2(??-??及; 及(3)a 、b 的夹角的余弦. 2、知)3,1,3(),1,3,3(),2,1,1(321M M M -,求与3221,M M M M 同时垂直的单位向量. 3、设)4,1,2(),2,5,3(=-=b a ,问μλ与满足_________时,轴z b a ⊥+μλ. 三、 1、以点(1,3,-2)为球心,且通过坐标原点的球面方程为__________________. 2、方程02422 2 2 =++-++z y x z y x 表示______________曲面. 3、1)将xOy 坐标面上的x y 22 =绕x 轴旋转一周,生成的曲面方程为__ _____________,曲面名称为___________________. 2)将xOy 坐标面上的x y x 22 2 =+绕x 轴旋转一周,生成的曲面方程 _____________,曲面名称为___________________. 3)将xOy 坐标面上的36942 2 =-y x 绕x 轴及y 轴旋转一周,生成的曲面方 程为_____________,曲面名称为_____________________. 4)在平面解析几何中2x y =表示____________图形。在空间解析几何中 2x y =表示______________图形. 5)画出下列方程所表示的曲面 (1))(42 2 2 y x z += (2))(42 2 y x z += 四、

空间解析几何与向量代数

空间解析几何与向量代 数 -CAL-FENGHAI.-(YICAI)-Company One1

第八章 空间解析几何与向量代数 一、 选择题 1.设}.4,,1{},2,3,{y b x a -== 若b a //,则 B (A )、x= y=6 (B)、x= y=6 (C)、x=1 y=-7 (D)、x=-1 y=-3 2.平面x -2z = 0的位置是 D 。 (A)、平行XOZ坐标面。 (B)、平行OY轴 (C)、垂直于OY轴 (D)、通过OY轴 3.下列平面中通过坐标原点的平面是 C 。 (A)、x=1 (B)、x+2z+3y+4=0 (C)、3(x-1)-y+(y+3)=0 (D)、x+y+z=1 4.已知二平面π1:mx+y-3z+1=0与π2:7x-2y-z=0当m = B π1⊥π2。 (A)、1/7 (B)、-1/7 (C)、7 (D)、-7 5.二平面π1:x + y - 11=0, π2: 3x +8=0的夹角θ= C 。 (A)、2 π (B)、π/3 (C)、π/4 (D)、π/6 6.下列直线中平行与XOY 坐标面的是 D 。 (A )233211+=+=-z y x (C )1 0101z y x =-=+ (B ){04404=--=--y x z x (D )?? ???==+=4321z t y t x 7.直线L 1:{7272=-+=++-z y x z y x 与L 2:{836302=-+=--z y x z y x 的关系是 B 。 (A )、L 1⊥L 2 (B )、L 1点P(1,2,1)到平面x+2y+2z-10=0的距离是 1 。 2.当l = -4 ,及m= 3 时,二平面2x+my+3z-5=0与l x-6y-6z+2=0互相平行。 3.过点P(4,-1,3)且平行于直线 51232-==-z y x 的直线方程 为 5 32/1134-=+=-z y x 。 三、计算题 1· 求过点(3 0 1)且与平面3x 7y 5z 120平行的平面方程 解 所求平面的法线向量为n (3 7 5) 所求平面的方程为 3(x 3)7(y 0)5(z 1)0 即3x 7y 5z 40 2. 求过点(2 3 0)且以n (1 2 3)为法线向量的平面的方程 解 根据平面的点法式方程 得所求平面的方程为

高等数学空间解析几何及向量代数

第七章 空间解析几何与向量代数 第一节 空间直角坐标系 教学目的:将学生的思维由平面引导到空间,使学生明确学习空 间解析几何的意义和目的。 教学重点:1.空间直角坐标系的概念 2.空间两点间的距离公式 教学难点:空间思想的建立 教学内容: 一、空间直角坐标系 1.将数轴(一维)、平面直角坐标系(二维)进一步推广建立空间直角坐标系(三维)如图7-1,其符合右手规则。即以右手握住z 轴,当右手的四个手指从正向x 轴以2 角度转向正向y 轴时,大拇指的指向就是z 轴的正向。 2. 间直角坐标系共有八个卦限,各轴名称分别为:x 轴、y 轴、z 轴,坐标面分别为xoy 面、yoz 面、zox 面。坐标面以及卦限的划分如图7-2所示。图7-1右手规则演示 图7-2空间直角坐标系图 图7-3空间两点 21M M 的距离图3. 空间点),,(z y x M 的坐标表示方法。通过坐标把空间的点与一个有序数组一一对应起来。

注意:特殊点的表示 a)在原点、坐标轴、坐标面上的点; b)关于坐标轴、坐标面、原点对称点的表示法。4.空间两点间的距离。 若),,(1111z y x M 、),,(2222z y x M 为空间任意两点, 则21M M 的距离(见图7-3),利用直角三角形勾股定理为: 22 221222122 12NM pN p M NM N M M M d ++=+== 而 121x x P M -= 12y y PN -= 122z z NM -= 所以 21221221221)()()(z z y y x x M M d -+-+-== 特殊地:若两点分别为),,(z y x M ,)0,0,0(o 222z y x oM d ++== 例1:求证以)1,3,4(1M 、)2,1,7(2M 、)3,2,5(3M 三点为顶点的三角形是一个等腰三角形。 证明: 14)21()13()74(22222 1=-+-+-=M M 6)23()12()75(22223 2=-+-+-=M M 6)13()32()45(222213=-+-+-=M M 由于 1332M M M M =,原结论成立。 例2:设P 在x 轴上,它到)3,2,0(1P 的距离为到点)1,1,0(2-P 的距离的两倍,求点P 的坐标。

空间解析几何与向量代数

第八章 空间解析几何与向量代数 一、选择题 1.设}.4,,1{},2,3,{y b x a -==??若b a ??//,则 B (A )、x=0.5 y=6 (B)、x=-0.5 y=6 (C)、x=1 y=-7 (D)、x=-1 y=-3 2.平面x -2z = 0的位置是 D 。 (A)、平行XOZ坐标面。 (B)、平行OY轴 (C)、垂直于OY轴 (D)、通过OY轴 3.下列平面中通过坐标原点的平面是 C 。 (A)、x=1 (B)、x+2z+3y+4=0 (C)、3(x-1)-y+(y+3)=0 (D)、x+y+z=1 4.已知二平面π1:mx+y-3z+1=0与π2:7x-2y-z=0当m = B π1⊥π2。 (A)、1/7 (B)、-1/7 (C)、7 (D)、-7 5.二平面π1:x + y - 11=0, π2: 3x +8=0的夹角θ= C 。 (A)、2 π (B)、π/3 (C)、π/4 (D)、π/6 6.下列直线中平行与XOY 坐标面的是 D 。 (A )233211+=+=-z y x (C )1 0101z y x =-=+ (B ){ 4404=--=--y x z x (D )?????==+=4321z t y t x 7.直线L 1:{7272=-+=++-z y x z y x 与L 2:{836302=-+=--z y x z y x 的关系是 B 。 (A )、L 1⊥L 2 (B )、L 1//L 2 (C )、L 1与L 2相交但不垂直。(D )、L 1与L 2为异面直线。 二、填空题 1. 点P(1,2,1)到平面x+2y+2z-10=0的距离是 1 。 2.当l = -4 ,及m= 3 时,二平面2x+my+3z-5=0与l x-6y-6z+2=0互相平行。 3.过点P(4,-1,3)且平行于直线 51232-==-z y x 的直线方程 为 5 32/1134-=+=-z y x 。 三、计算题 1· 求过点(3, 0, -1)且与平面3x -7y +5z -12=0平行的平面方程. 解 所求平面的法线向量为n =(3, -7, 5), 所求平面的方程为 3(x -3)-7(y -0)+5(z +1)=0, 即3x -7y +5z -4=0. 2. 求过点(2, -3, 0)且以n =(1, -2, 3)为法线向量的平面的方程. 解 根据平面的点法式方程, 得所求平面的方程为 (x -2)-2(y +3)+3z =0, 即 x -2y +3z -8=0.

空间解析几何与向量代数

第八章 空间解析几何与向量代数 一、 选择题 1.设}.4,,1{},2,3,{y b x a -==??若b a ??//,则B (A )、x=0.5y=6(B)、x=-0.5y=6 (C)、x=1y=-7(D)、x=-1y=-3 2.平面x-2z=0的位置是 D 。 (A)、平行XOZ坐标面。 (B)、平行OY轴 (C)、垂直于OY轴 (D)、通过OY轴 3.下列平面中通过坐标原点的平面是 C 。 (A)、x=1(B)、x+2z+3y+4=0(C)、3(x-1)-y+(y+3)=0(D)、x+y+z=1 4.已知二平面π1:mx+y-3z+1=0与π2:7x-2y-z=0当m = B π1⊥π2。 (A)、1/7 (B)、-1/7 (C)、7 (D)、-7 5.二平面π1:x+y-11=0,π2:3x+8=0的夹角θ= C 。 (A)、2 π (B)、π/3 (C)、π/4 (D)、π/6 6.下列直线中平行与XOY 坐标面的是D 。 (A )233211+=+=-z y x (C )1 0101z y x =-=+ (B ){ 4404=--=--y x z x (D )?????==+=4321z t y t x 7.直线L 1:{7272=-+=++-z y x z y x 与L 2:{836302=-+=--z y x z y x 的关系是B 。 (A )、L 1⊥L 2(B )、L 1//L 2(C )、L 1与L 2相交但不垂直。(D )、L 1与L 2为异面直线。 二、填空题

1.点P(1,2,1)到平面x+2y+2z-10=0的距离是 1 。 2.当l =-4,及m=3时,二平面2x+my+3z-5=0与l x-6y-6z+2=0互相平行。 3.过点P(4,-1,3)且平行于直线 51232-==-z y x 的直线方程 为 5 32/1134-=+=-z y x 。 三、计算题 1·求过点(301)且与平面3x 7y 5z 120平行的平面方程 解所求平面的法线向量为n (375)所求平面的方程为 3(x 3)7(y 0)5(z 1)0即3x 7y 5z 40 2.求过点(230)且以n (123)为法线向量的平面的方程 解根据平面的点法式方程得所求平面的方程为 (x 2)2(y 3)3z 0 即x 2y 3z 80 3·求过三点M 1(214)、M 2(132)和M 3(023)的平面的方程 解我们可以用→→3121M M M M ?作为平面的法线向量n 因为→)6 ,4 ,3(21--=M M →)1 ,3 ,2(31--=M M 所以 根据平面的点法式方程得所求平面的方程为 14(x 2)9(y 1)(z 4)0 即14x 9yz 150 4·求过点(413)且平行于直线51123-==-z y x 的直线方程 解所求直线的方向向量为s (215)所求的直线方程为 5·求过两点M 1(321)和M 2(102)的直线方程 解所求直线的方向向量为s (102)(321)(421)所求的直线方程为

向量代数与空间解析几何教案

第八章 向量代数与空间解析几何 第一节 向量及其线性运算 教学目的:将学生的思维由平面引导到空间,使学生明确学习空间解析几何的意义和目的。使学生对(自由)向量有初步了解,为后继内容的学习打下基础。 教学重点:1.空间直角坐标系的概念 2.空间两点间的距离公式 3.向量的概念 4.向量的运算 教学难点:1.空间思想的建立 2.向量平行与垂直的关系 教学内容: 一、向量的概念 1.向量:既有大小,又有方向的量。在数学上用有向线段来表示向量,其长度表示向量的大小,其方向表示向量的方向。在数学上只研究与起点无关的自由向量(以后简称向量)。 2. 量的表示方法有: a 、i 、F 、OM 等等。 3. 向量相等b a =:如果两个向量大小相等,方向相同,则说(即经过平移后能完全重合的向量)。 4. 量的模:向量的大小,记为a 。 模为1的向量叫单位向量、模为零的向量叫零向量。零向量的方向是任意的。 5. 量平行b a //:两个非零向量如果它们的方向相同或相反。零向量与如何向量都平行。 6. 负向量:大小相等但方向相反的向量,记为a - 二、向量的线性运算 1.加减法c b a =+: 加法运算规律:平行四边形法则(有时也称三角形法则),其满足的运算规律有交换率和结合率见图7-4

2.c b a =- 即c b a =-+)( 3.向量与数的乘法a λ:设λ是一个数,向量a 与λ的乘积a λ规定为 0)1(>λ时,a λ与a 同向,||||a a λλ= 0)2(=λ时,0a =λ 0)3(<λ时,a λ与a 反向,||||||a a λλ= 其满足的运算规律有:结合率、分配率。设0 a 表示与非零向量a 同方向的单位向量,那么 a a a 0= 定理1:设向量a ≠0,那么,向量b 平行于a 的充分必要条件是:存在唯一的实数λ, 使b =a λ 例1:在平行四边形ABCD 中,设a =,b =,试用a 和b 表示向量、、和MD ,这里M 是平行四边形对角线的交点。(见图7-5) 图7-4 解:→→==+AM AC 2b a ,于是)(2 1 b a +- =→ MA 由于→ → -=MA MC , 于是)(21 b a += → MC 又由于→→==+-MD BD 2b a ,于是)(2 1 a b -=→MD 由于→→-=MD MB , 于是)(2 1 a b --=→MB 三、空间直角坐标系 1.将数轴(一维)、平面直角坐标系(二维)进一步推广建立空间直角坐标系(三维)如图7-1,其符合右手规则。即以右手握住z 轴,当右手的四个手指从正向x 轴以2 π 角度转向正向y 轴时,大拇指的指向就是z 轴的正向。 2. 间直角坐标系共有八个卦限,各轴名称分别为:x 轴、y 轴、z 轴,坐标面分别 为xoy 面、yoz 面、 zox 面。坐标面以及卦限的划分如图7-2所示。图7-1右手规则演示 图7-2空间直角坐标系图 图7-3空间两点21M M 的距离图3.空间点),,(z y x M 的坐标表示方法。 通过坐标把空间的点与一个有序数组一一对应起来。 注意:特殊点的表示

空间解析几何与向量代数教案

《高等数学A》课程教案 第七章空间解析几何 一、教学目的与要求 1、了解空间直角坐标系,理解向量的概念及其表示。 2、掌握向量的运算(线性运算、数量积、向量积、混合积),掌握两个向量垂直和平行的条件。 3、了解单位向量、方向数与方向余弦、向量的坐标表达式,熟练掌握用坐标表达式进行向量运算的方法。 4、理解曲面方程的概念,了解常用二次曲面的方程及其图形,会求以坐标轴为旋转轴的旋转曲面及母线平行于坐标轴的柱面方程。 5、了解空间曲线的参数方程和一般方程,了解空间曲线在坐标平面上的投影,并会求其方程 6、掌握平面方程和直线方程及其求法。 7、会求平面与平面、平面与直线、直线与直线之间的夹角,并会利用平面、直线的相互关系(平行、垂直、相交等)解决有关问题。 8、会求点到直线以及点到平面的距离。 二、教学内容及学时分配: 第一节向量及其线性运算2学时 第二节数量积向量积和混合积2学时 第三节曲面及其方程2学时 第四节空间曲线及其方程2学时 第五节平面及其方程2学时 第六节空间直线及其方程2学时 三、教学内容的重点及难点: 重点: 向量概念与运算,旋转曲面方程,柱面方程,平面方程直线方程

难点:向量的数量积与向量积,旋转曲面方程,平面束方程,有关直线与平面的综合题 四、教学内容的深化和拓宽: 1、空间直角坐标系的作用,向量的概念及其表示。 2、向量的运算(线性运算、数量积、向量积、混合积),两个向量垂直、平行的条件。 3、单位向量、方向数与方向余弦、向量的坐标表达式,以及用坐标表达式进行向量运算的方法。 4、平面方程和直线方程及其求法,会利用平面、直线的相互关系(平行、垂直、相交等)解决有关问题。 5、曲面方程的概念,常用二次曲面的方程及其图形, 五、教学方法与手段 启发探索式教学方法,结合多媒体课件教学。

空间解析几何与向量微分

第七章:空间解析几何与向量微分 本章内容简介 在平面解析几何中,通过坐标把平面上的点与一对有序实数对应起来,把平面上的图形和方程对应起来,从而可以用代数方法来研究几何问题,空间解析几何也是按照类似的方法建立起来的。 7.1空间直角坐标系 一、空间点的直角坐标 为了沟通空间图形与数的研究,我们需要建立空间的点与有序数组之间的联系,为此我们通过引进空间直角坐标系来实现。 过定点O,作三条互相垂直的数轴,它们都以O为原点且一般具有相同的长度单位.这三条轴分别叫做x轴(横轴)、y轴(纵轴)、z轴(竖轴);统称坐标轴.通常把x轴和y轴配置在水平面上,而z轴则是铅垂线;它们的正方向要符合右手规则,即以右手握住z轴,当右手的四指从正向x轴以π/2角度转向正向y轴时,大拇指的指向就是z轴的正向,这样的三条坐标轴就组成了一个空间直角坐标系,点O叫做坐标原点。(如下图所示) 三条坐标轴中的任意两条可以确定一个平面,这样定出的三个平面统称坐标面。 取定了空间直角坐标系后,就可以建立起空间的点与有序数组之间的对应关系。 例:设点M为空间一已知点.我们过点M作三个平面分别垂直于x轴、y轴、z轴,它们与x轴、y轴、z轴的交点依次为P、Q、R,这三点在x轴、y轴、z轴的坐标依次为x、y、z.于是空间的一点M就唯一的确定了一个有序数组x,y,z.这组数x,y,z就叫做点M的坐标,并依次称x,y和z为点M的横坐标,纵坐标和竖坐标。(如下图所示)

坐标为x,y,z的点M通常记为M(x,y,z). 这样,通过空间直角坐标系,我们就建立了空间的点M和有序数组x,y,z之间的一一对应关系。 注意:坐标面上和坐标轴上的点,其坐标各有一定的特征. 例:如果点M在yOz平面上,则x=0;同样,zOx面上的点,y=0;如果点M在x轴上,则y=z=0;如果M是原点, 则x=y=z=0,等。 二、空间两点间的距离 设M1(x1,y1,z1)、M2(x2,y2,z2)为空间两点,为了用两点的坐标来表达它们间的距离d我们有公式: 例题:证明以A(4,3,1),B(7,1,2),C(5,2,3)为顶点的三角形△ABC是一等腰三角形. 解答:由两点间距离公式得: 由于,所以△ABC是一等腰三角形 7.2 方向余弦与方向数 解析几何中除了两点间的距离外,还有一个最基本的问题就是如何确定有向线段的或有向直线的方向。 方向角与方向余弦 设有空间两点,若以P1为始点,另一点P2为终点的线段称为有 向线段.记作.通过原点作一与其平行且同向的有向线段.将与Ox,Oy,Oz三个 坐标轴正向夹角分别记作α,β,γ.这三个角α,β,γ称为有向线段的方向角.其中

空间解析几何与向量代数复习题

第八章 空间解析几何与向量代数答案 一、选择题 1. 已知A (1,0,2), B (1,2,1)是空间两点,向量的模是(A ) A 5 B 3 C 6 D 9 2. 设a =(1,-1,3), b =(2,-1,2),求c =3a -2b 是( B ) A (-1,1,5). B (-1,-1,5). C (1,-1,5). D (-1,-1,6). 3. 设a =(1,-1,3), b =(2, 1,-2),求用标准基i , j , k 表示向量c=a-b 为(A ) A -i -2j +5k B -i -j +3k C -i -j +5k D -2i -j +5k 4. 求两平面和的夹角是( C ) A 2π B 4π C 3 π D π 5. 已知空间三点M (1,1,1)、A (2,2,1)和B (2,1,2),求∠AMB 是( C ) A 2π B 4π C 3 π D π 6. 求点到直线L :的距离是:( A ) A 138 B 118 C 158 D 1 7. 设,23,a i k b i j k =-=++r r r r r r r 求a b ?r r 是:( D ) A -i -2j +5k B -i -j +3k C -i -j +5k D 3i -3j +3k 8. 设⊿ABC 的顶点为(3,0,2),(5,3,1),(0,1,3)A B C -,求三角形的面积是:( A ) B 364 C 3 2 D 3 9. 求平行于轴,且过点和的平面方程是:( D ) A 2x+3y=5=0 B x-y+1=0 C x+y+1=0 D . 10、若非零向量a,b 满足关系式-=+a b a b ,则必有( C ); A -+a b =a b ; B =a b ; C 0?a b =; D ?a b =0. 11、设,a b 为非零向量,且a b ⊥, 则必有( C ) A a b a b +=+ B a b a b -=- C +=-a b a b D +=-a b a b

高等数学空间解析几何与向量代数

第七章 空间解析几何及向量代数 第一节 空间直角坐标系 教学目的:将学生的思维由平面引导到空间,使学生明 确学习空间解析几何的意义和目的。 教学重点:1.空间直角坐标系的概念 2.空间两点间的距离公式 教学难点:空间思想的建立 教学内容: 一、空间直角坐标系 1.将数轴(一维)、平面直角坐标系(二维)进一步推广建立空间直角坐标系(三维)如图7-1,其符合右手规则。即以右手握住z 轴,当右手的四个手指从正向x 轴以2 角度转向正向y 轴时,大拇指的指向就是z 轴的正向。

2. 间直角坐标系共有八个卦限,各轴名称分别为:x 轴、y 轴、z 轴,坐标面分别为xoy 面、yoz 面、zox 面。坐标面以及卦限的划分如图7-2所示。图7-1右手规则演示 图7-2空间直角坐标系图 图7-3空间两点21M M 的距离图3.空间点),,(z y x M 的坐标表示方法。通 过坐标把空间的点及一个有序数组一一对应起来。 注意:特殊点的表示 a)在原点、坐标轴、坐标面上的点; b)关于坐标轴、坐标面、原点对称点的表示法。4.空间两点间的距离。 若),,(1111z y x M 、),,(2222z y x M 为空间任意两点, 则21M M 的距离(见图7-3),利用直角三角形 勾股定理为: 222212221 22 12NM pN p M NM N M M M d ++=+== 而 121x x P M -= 12y y PN -=

1 22z z NM -= 所以 21221221221)()()(z z y y x x M M d -+-+-== 特殊地:若两点分别为),,(z y x M ,)0,0,0(o 222z y x oM d ++== 例1:求证以)1,3,4(1M 、)2,1,7(2M 、)3,2,5(3M 三点为顶点的三角形是一个等腰三角形。 证明: 14)21()13()74(2222 21=-+-+-=M M 6)23()12()75(222232=-+-+-=M M 6)13()32()45(222213=-+-+-=M M 由于 1332M M M M =,原结论成立。 例2:设P 在x 轴上,它到)3,2,0(1P 的距离为到点)1,1,0(2-P 的距离的两倍,求点P 的坐标。 解:因为P 在x 轴上,设P 点坐标为)0,0,(x ()11 3222221+=++=x x PP ()211222 22+=+-+=x x PP 212PP PP = 221122+=+∴x x 1±=?x

空间解析几何与向量代数测试题

习题六 一、 填空题 1. 过点(3,-2,2)垂直于平面5x-2y+6z-7=0和3x-y+2z+1=0的平面方程为____________. 2.轴的正向的夹与轴的正向的夹角为与的模为已知向量y x OM ,45.100→ =→ OM 则向量角为,600 _________________. 3. 过()3,1,2-点且平行于向量{}3,2,2-=a 和{}5,3,1--=b 的平面方程为__________. {}{}=-=-=→ →λλλ则互相垂直和若两向量,,2,12,3,b a . 5. ()向量决定的平面垂直的单位与三点)3,1,3(),1,3,3(,2,1,1321M M M - =→ a ________________ {}{}上的投影等于在向量向量1,2,24,1,1-==→ →a b . 的模等于则向量已知→ →→→→→ →-==?? ? ??==n m a n m n m 3260,,2,50 .

垂直的平面方程是且与平面过点?? ?=+-+=-+--0 12530 742)3,0,2(z y x z y x . 9. 设a b c →→→,,两两互相垂直,且a b c →→→ ===121,,,则向量 s a b c →→→→ =+-的模等于_____________. 10. 过点(0,2,4)且与平面x+2z=1,y-3z=2都平行的直线是________________. 1 =? ??=-+-=+-+D x z y x D z y x 则轴有交点与若直线,062220 32. 二、 选择题 1. 表示方程?? ?==++1 36 94222y z y x ;1)(;)(平面上的椭圆椭球面=y B A ():. 0)(; )(答上的投影曲线椭圆柱面在椭圆柱面=y D C 2. :,轴的单位向量是且垂直于则垂直于已知向量oy a k j i a → → → → → ++= ?? ? ??+-±? ? ? ??++±→→→→→→k j i B k j i A 33)(33)(

向量代数与空间解析几何相关概念和例题

空间解析几何与向量代数 向量及其运算 目的:理解向量的概念及其表示;掌握向量的运算,了解两个向量垂直、平行的条件;掌握空间直角坐标系的概念,能利用坐标作向量的线性运算; 重点与难点 重点:向量的概念及向量的运算。难点:运算法则的掌握 过程: 一、向量 既有大小又有方向的量称作向量 通常用一条有向线段来表示向量.有向线段的长度表示向量的大小,有向线段的方向表示向量的方向. 向量的表示方法有两种:→a、 →AB 向量的模:向量的大小叫做向量的模.向量→a、→AB的模分别记为| |→a、| |→AB. 单位向量:模等于1的向量叫做单位向量. 零向量:模等于0的向量叫做零向量,记作→0.规定:→0方向可以看作是任意的. 相等向量:方向相同大小相等的向量称为相等向量 平行向量(亦称共线向量):两个非零向量如果它们的方向相同或相反,就称这两个向量平行.记作a // b.规定:零向量与任何向量都平行. 二、向量运算 向量的加法 向量的加法:设有两个向量a与b,平移向量使b的起点与a的终点重合,此时从a 的起点到b的终点的向量c称为向量a与b的和,记作a+b,即c=a+b . 当向量a与b不平行时,平移向量使a与b的起点重合,以a、b为邻边作一平行四边形,从公共起点到对角的向量等于向量a与b的和a+b. 向量的减法: 设有两个向量a与b,平移向量使b的起点与a的起点重合,此时连接两向量终点且指向被减数的向量就是差向量。 →→→→→ A O OB OB O A AB- = + =, 2、向量与数的乘法 向量与数的乘法的定义: 向量a与实数λ的乘积记作λa,规定λa是一个向量,它的模|λa|=|λ||a|,它的方向当λ>0时与a相同,当λ<0时与a相反. (1)结合律λ(μa)=μ(λa)=(λμ)a; (2)分配律(λ+μ)a=λa+μa; λ(a+b)=λa+λb. 例1在平行四边形ABCD中,设 ?→ ? AB=a, ?→ ? AD=b.

高中数学知识点总结之平面向量与空间解析几何(经典必看)

56. 你对向量的有关概念清楚吗? (1)向量——既有大小又有方向的量。 ()向量的模——有向线段的长度,2||a → ()单位向量,3100|||| a a a a →→ → → == ()零向量,4000→ → =|| ()相等的向量长度相等方向相同5???? =→→ a b 在此规定下向量可以在平面(或空间)平行移动而不改变。 (6)并线向量(平行向量)——方向相同或相反的向量。 规定零向量与任意向量平行。 b a b b a → → → → → → ≠?=∥存在唯一实数,使()0λλ (7)向量的加、减法如图: OA OB OC →+→=→ OA OB BA →-→=→ (8)平面向量基本定理(向量的分解定理) e e a → → → 12,是平面内的两个不共线向量,为该平面任一向量,则存在唯一

实数对、,使得,、叫做表示这一平面内所有向量λλλλ12112212a e e e e →→→→→ =+ 的一组基底。 (9)向量的坐标表示 i j x y → → ,是一对互相垂直的单位向量,则有且只有一对实数,,使得 ()a x i y j x y a a x y → →→→→ =+=,称,为向量的坐标,记作:,,即为向量的坐标() 表示。 ()()设,,,a x y b x y → → ==1122 ()()()则,,,a b x y y y x y x y → →±=±=±±11121122 ()()λλλλa x y x y →==1111,, ()()若,,,A x y B x y 1122 ()则,AB x x y y → =--2121 ()()||AB x x y y A B →= -+-212212,、两点间距离公式 57. 平面向量的数量积 ()··叫做向量与的数量积(或内积)。1a b a b a b → → → → → → =||||cos θ []θθπ为向量与的夹角,,a b → → ∈0

相关文档
相关文档 最新文档