文档库 最新最全的文档下载
当前位置:文档库 › 桥梁设计外文翻译

桥梁设计外文翻译

外文文献翻译

7.2 Equilibrium Equations

7.2.1 Equilibrium Equation and Virtual Work Equation

For any volume V of a material body having A as surface area, as shown in Figure 7.2, it has the following conditions of equilibrium:

FIGURE 7.2 Derivation of equations of equilibrium.

At surface points

At internal points

Where n i represents the components of unit normal vector n of the surface;Ti is the stress vector at the point associated with n;ζ

ji,j

with respect to xj;and Fi is the represents the first derivative of ζ

ij

body force intensity.Any set of stresses ζij,body forces Fi,and external surface forces Ti that satisfies Eqs.(7.1a-c) is a statically admissible set.

Equations(7.1b and c)may be written in(x,y,z) notation as

and

Whereζ

x ,ζ

y

,andζ

z

are the normal stress in(x,y,z) direction respectively;

τxy,τyz,and so on,are the corresponding shear stresses in(x,y,z) notation;andFx,Fy,andFzard the body forces in(x,y,z,)direction,respe- ctively.

The principle of virtual work has proved a very powerful technique of solving problems and providing proofs for general theorems in solid mechanics. The equation of virtual work uses two independent sets of

equilibrium and compatible(see Figure 7.3,where A

u and A

T

represent

displacement and stress boundary),as follows:

compatible set

equilibrium set

or

which states that the external virtual work(δW

ext

) equals the internal

virtual work(δW

int

).

Here the integration is over the whole area A,orvoluneV,of the body.

The stress field δ

ij ,body forces Fi,and external surface forces T

i

are a

statically admissible set that satisfies Eqs.(7.1a–c).Similarly, the

strain field ε

ij ﹡and the displacement u

i

﹡are a compatible kinematics

set that satisfies displacement boundary conditions and Eq.(7.16)(see Section 7.3.1).This means the principle of virtual work applies only to small strain or small deformation.

The important point to keep in mind is that, neither the admissible

equilibrium set δ

ij ,F

i

,and T

i

(Figure 7.3a)nor the compatible setε

ij

﹡and u

i

﹡( Figure 7.3b)need be the actual state,nor need the equilibrium and compatible sets be related to each other in any way.In the other words, these two sets are completely independent of each other.

7.2.2 Equilibrium Equation for Elements

For an infinitesimal material element,equilibrium equations have

been summarized in Section 7.2.1,which will transfer into specific expressions in different methods.As in ordinary FEM or the displacement method, it will result in the following element equilibrium equations:

FIGURE 7.4 Plane truss member–end forces and displacements.(Source: Meyers, V.J.,Matrix Analysis of Structures,New York: Harper & Row,1983. With permission.) Where {F}e and {d}e are the element nodal force vector and displacement vector,respectively,while{k}e is element stiffness matrix;theoverbar here means in local coordinate system.

In the force method of structural analysis, which also adopts the idea of discretization,it is proved possible to identify a basic set of independent forces associated with each member, in that not only are these forces independent of one another, but also all other forces in that member are directly dependent on this set.Thus,this set of forces constitutes the minimum set that is capable of completely defining the stressed state of the member.The relationship between basic and local forces may be

obtained by enforcing overall equilibrium on one member, which gives

Where [L]= the element force transformation matrix and {P}e =the element primary forces vector.It is important to emphasize that the physical basis of Eq.(7.5)is member overall equilibrium.

Take a conventional plane truss member for exemplification(see Figure 7.4),one has

FIGURE 7.5 Coordinate transformation.

and

where EA/l=axial stiffness of the truss member and P=axial force of the truss member.

7.2.3 Coordinate Transformation

The values of the components of vector V,designated by v1,v2,and v3 or simply,are associated with the chosen set coordinate axes.Often it is

necessary to reorient the reference axes and evaluate new values for the components of V in the new coordinate system.Assuming that V has components vi and vi′in two sets of right-handed Cartesian coordinate systems xi (old)and xi′(new)having the same origin (see Figure 7.5), and ei,ei′are the unit vectors of xi and xi′,respectively. Then

Where ,that is,the cosines of the angles between xi′

and xj axes for i and j ranging from 1 to 3;and [α]=(l

ij )

3×3

is called

coordinate transformation matrix from the old system to the new system.

It should be noted that the elements of l

ij

or matrix [α] are not

symmetrical,l

ij ≠l

ji

.For example,l

12

is the cosine of angle from x1′to x2

and l

21

is that from x2′to x1(see Figure 7.5).The angle is assumed to be measured from the primed system to the unprimed system.

For a plane truss member(see Figure 7.4),the transformation matrix from local coordinatesystem to global coordinate system may be expressed as

where α is the inclined angle of the truss member which is assumed to be measured from the global to the local coordinate system.

7.2.4 Equilibrium Equation for Structures

For discretized structure,the equilibrium of the whole structure is essentially the equilibrium of each joint. After assemblage,

For ordinary FEM or displacement method

For force method

where {F}=nodal loading vector;[K]=total stiffness matrix;{D}=nodal displacement vector;[A]=total forces transformation matrix;{P}=total primary internal forces vector.

It should be noted that the coordinate transformation for each element

from local coordinates to the global coordinate system must be done before assembly.

In the force method, Eq.(7.11)will be adopted to solve for internal forces of a statically determinate structure.The number of basic unknown forces is equal to the number of equilibrium equations available to solve for them and the equations are linearly independent.For statically unstable structures, analysis must consider their dynamic behavior. When the number of basic unknown forces exceeds the number of equilibrium equations,the structure is said to be statically indeterminate.In this case,some of the basic unknown forces are not required to maintain structural equilibrium.These are“extra”or“redundant”forces.To obtain a solution for the full set of basic unknown forces,it is necessary to augment the set of independent equilibrium equations with elastic behavior of the structure,namely,the force–displacement relations of the structure.Having solved for the full set of basic forces,we can determine the displacements by back substitution.

7.2.5 Influence Lines and Surfaces

In the design and analysis of bridge structures,it is necessary to study the effects intrigued by loads placed in various positions.This can be done conveniently by means of diagrams showing the effect of moving a unit load across the structures.Such diagrams are commonly called influence lines(for framed structures) or influence surfaces (for plates). Observe that whereas a moment or shear diagram shows the variation in moment or shear along the structure due to some particular position of load,an influence line or surface for moment or shear shows the variation of moment or shear at a particular section due to a unit load placed anywhere along the structure.

Exact influence lines for statically determinate structures can be obtained analytically by statics alone.From Eq.(7.11),the total primary internal forces vector {P} can be expressed as

by which given a unit load at one node,the excited internal forces of all members will be obtained,and thus Eq.(7.12) gives the analytical expression of influence lines of all member internal forces for discretized structures subjected to moving nodal loads.

For statically indeterminate structures,influence values can be determined directly from a consideration of the geometry of the deflected load line resulting from imposing a unit deformation corresponding to the function under study,based on the principle of virtual work.This may better be demonstrated by a two-span continuous beam shown in Figure 7.6, where the influence line of internal bending moment at section M B is required.

FIGURE 7.6 Influence line of a two-span continuous beam.

FIGURE 7.7 Deformation of a line element for Lagrangian and Eluerian variables.

Cutting section B to M

expose and give it a unit relative rotation

B

δ=1(see Figure 7.6)and employing the principle of virtual work gives

Therefore,

which means the influence value of M B equals to the deflection v(x)of the beam subjected to a unit rotation at joint B(represented by dashed line in Figure7.6b).Solving for v(x)can be carried out easily referring to material mechanics.

7.2 平衡方程

7.2.1平衡方程和虚功方程

对于任何有一定体积的材料都有一个表面积,如图7.2所示,它具有以下平衡条件:

在表面的点:

图7.2 平衡方程的推导

在内部的点

其中,n

i 表示n表面的单位法向量;Ti表示与n相关的向量点应力;ζ

ji,j

表示

ζij关于xj的一阶导数;而Fi表示体积力。任何一系列满足方程(7.1a)-(7.1c)的应力ζ

ij

、体积力Fi、表面力Ti都是一个静态的容许集。

方程(7.1b和7.1c)可以写成如下所示(x,y,z)的形式,

其中,ζ

x ,ζ

y

,和ζ

z

分别是(x,y,z)方向的正应力,τxy和τy等表示(x,y,z)

中的剪应力;Fx,Fy和Fz分别表示(x,y,z)方向的体积力

虚功原理被证明是一个解决问题的非常有效的方法,它在固体力学领域为一般性定理提供了证明。虚功方程采用两套独立的平衡集和兼容集(见图7.3,其

中A

u 和A

T

分别表示位移边界和应力边界),如下所示:

图7.3 虚功方程的两独立集

相容集

平衡集

或是

它表明外力虚功(δW

ext )等于内力虚功(δW

int

)。

这个集成包括了物体的整个面积或体积。应力场δ

ij

,体积力Fi和外部表面

力Ti是一个满足方程(7.1a-7.1c)的静态容许集。相似的,应变场ε

ij

﹡和位移

u

i

﹡是一个满足位移边界条件和方程(7.16)(见7.3.1节)的兼容的运动学集。这意味着虚功原理仅适用于小应变或变形小的情况。

需要注意的重要一点是,无论容许均衡集δ

ij ,F

i

,和T

i

(图7.3a),还是兼

容集ε

ij ﹡和u

i

﹡都不需要明确的状态,也不需要平衡集和兼容集以任何方式彼此

相关。换句话说,这两个集合是完全相互独立的。

7.2.2单元的平衡方程

对于一个无穷小单元,平衡方程已经在7.2.1节中总结,这可以转化成不同方法中的具体表达式。正如在普通有限元法、位移法中,它可以导出以下单元平

衡方程:

图7.4 平面桁架端承力和位移(来源:Meyers,V.J.,《结构矩阵分析》,1983年纽约Harper &Row出版授权社出版)

其中,{F}e和 {d}e分别表示单元节点力向量和位移向量,而{k}e表示单元刚度矩阵;这里的上划线表示局部坐标系。

在力法的结构分析中采用了离散化的方法,这被证明可以用来确定一套与各构件相关联的基本独立的力,在其中不仅这些力彼此之间相互独立,而且构件中的所有其他的力直接依赖于本集。因此,这些力构成的最小集能够完全定义构件的受力状态。基本力与局部力的关系可以通过乘以整体平衡的一个构件来获得,如下所示:

其中,[L]表示单元力的变换矩阵,{P}e表示单元基本的向量力。需要强调的是,物理基本方程(7.5)是所有平衡的组成部分。

以一个传统的平面桁架构件为例(见图7.4),有

图7.5 坐标变换

其中,EA/l表示桁架构件的轴向刚度,P表示桁架构件的轴向力。

7.2.3 坐标变换

向量V的分量的数值,是与所选择的坐标系有关,常常被定义为v1,v2,v3或者是些更简单地定义。通常在新的坐标系中必须调整参考轴并且为V的分量评估新值。假设向量V在两个右手笛卡尔坐标系xi(旧)和xi′(新)中有两个具有相同起点的分量vi和 vi′(见图7.5),而ei,ei′分别是坐标系xi和 xi′的单位向量。于是有

其中,即在轴xi′和xj之间角的余弦中的i和j的变化范

围是从1到3;[α]=(l

ij )

3×3

被称为从旧坐标系向新坐标系的坐标变换矩阵。

应该注意的是,l

ij 中的元素或是矩阵[α]是非对称的,即l

ij

≠l

ji

。例如,

l

12是从x1′到x2的角的余弦,而l

21

是从x2′到x1的角的余弦(见图7.5)。

假定角度是从原坐标系到坐标系中测量的。

对于一个平面桁架构件(见图7.4),从局部坐标系到整体坐标系的变换矩阵可以表示为:

其中α是假定从整体坐标系到局部坐标系中测量的桁架构件的倾斜角。

7.2.4结构的平衡方程

对于离散结构,整体结构的平衡实质上是每个结点的平衡。装配后,

对于普通有限元法或位移法:

对于力法:

其中,{F}表示节点荷载向量;[K]表示总刚度矩阵;{D}表示位移向量;[A]表示总的力变换矩阵;{P}表示总的内力基本向量。

应该注意的是,每个元素从局部坐标系到整体坐标系的坐标变换必须在装配前完成。

在力法中,方程(7.11)可以用来解决静定结构的内力问题。基本未知力的数量等于用来解决问题的有效的平衡方程的数量,并且这些方程是线性无关的。对于静不定结构,必须分析考虑他们的动态行为。当基本未知力的数量大于平衡方程的数量时,这种结构就被称为超静定。在这种情况下,一些基本未知力不需要来保持结构平衡。这是些“额外”或“多余”的力。为了获得解决全部基本未知力的方法,有必要增加一套与结构的弹性行为有关的独立平衡方程,即结构的力与位移关系方程。解决了全部的基本未知力后,我们可以通过回代来确定位移。

7.2.5影响线和影响面

在桥梁结构设计与分析中,研究荷载放置在不同位置时的影响是很有必要的。这样能够通过图表方便地显示单位移动荷载对结构的影响。这种图表通常被称为影响线(对于框架结构)或是影响面(对于板结构)。应注意到无论是力矩图显示的变化的力矩,还是剪力图显示的沿结构发生的剪切,都取决于某些特定位置的荷载,对于力矩或剪切的影响线、影响面显示的它们在某一特定部分的变化都取决于单位荷载沿结构所放置的位置。

精确的静定结构影响线可以仅靠静力学分析获得。通过公式(7.11),总的内力基本向量{P}可以表示为:

通过在一个节点给定一个单位荷载,所有结构单元的内力都能够获得,因此公式(7.12)给出了离散结构在移动节点荷载作用下的所有单元内力的影响线的解析表达式。

对于非静定结构,基于虚功原理,通过对施加单元相应变形所产生的几何偏载线的研究,影响值可以直接被确定。这可以通过图7.6中的一个双跨连续梁得到更好的证明,其中在节点位置的内力弯矩M

时必要的。

B

图7.6双跨连续梁的影响线

图7.7拉格朗日和欧拉变量的线单元变形

切开节点B添加弯矩M

,并给它一个单位相对转动δ=1(见图7.6),

B

利用虚功原理得出:

因此可得,

这意味着M

的影响值等于梁在节点B受到的一个单位转动所产生的挠度值v(x)

B

(由图7.6b中的虚线表示)。因此对于涉及材料力学挠度v(x)的求解可以更简便的进行。

英文文献(节选自"Bridge Engineering Handbook" edited by Wai-Fah Chen)

桥梁工程毕业设计外文翻译箱梁

桥梁工程毕业设计外文翻译箱梁

西南交通大学本科毕业设计(论文) 外文资料翻译 年级: 学号: 姓名: 专业: 指导老师:

6 月

外文资料原文: 13 Box girders 13.1 General The box girder is the most ?exible bridge deck form. It can cover a range of spans from25 m up to the largest non-suspended concrete decks built, of the order of 300 m. Single box girders may also carry decks up to 30 m wide. For the longer span beams, beyond about 50 m, they are practically the only feasible deck section. For the shorter spans they are in competition with most of the other deck types discussed in this book. The advantages of the box form are principally its high structural ef?ciency (5.4), which minimises the prestress force required to resist a given bending moment, and its great torsional strength with the capacity this gives to re-centre eccentric live loads, minimising the prestress required to carry them.

毕业设计外文翻译资料

外文出处: 《Exploiting Software How to Break Code》By Greg Hoglund, Gary McGraw Publisher : Addison Wesley Pub Date : February 17, 2004 ISBN : 0-201-78695-8 译文标题: JDBC接口技术 译文: JDBC是一种可用于执行SQL语句的JavaAPI(ApplicationProgrammingInterface应用程序设计接口)。它由一些Java语言编写的类和界面组成。JDBC为数据库应用开发人员、数据库前台工具开发人员提供了一种标准的应用程序设计接口,使开发人员可以用纯Java语言编写完整的数据库应用程序。 一、ODBC到JDBC的发展历程 说到JDBC,很容易让人联想到另一个十分熟悉的字眼“ODBC”。它们之间有没有联系呢?如果有,那么它们之间又是怎样的关系呢? ODBC是OpenDatabaseConnectivity的英文简写。它是一种用来在相关或不相关的数据库管理系统(DBMS)中存取数据的,用C语言实现的,标准应用程序数据接口。通过ODBCAPI,应用程序可以存取保存在多种不同数据库管理系统(DBMS)中的数据,而不论每个DBMS使用了何种数据存储格式和编程接口。 1.ODBC的结构模型 ODBC的结构包括四个主要部分:应用程序接口、驱动器管理器、数据库驱动器和数据源。应用程序接口:屏蔽不同的ODBC数据库驱动器之间函数调用的差别,为用户提供统一的SQL编程接口。 驱动器管理器:为应用程序装载数据库驱动器。 数据库驱动器:实现ODBC的函数调用,提供对特定数据源的SQL请求。如果需要,数据库驱动器将修改应用程序的请求,使得请求符合相关的DBMS所支持的文法。 数据源:由用户想要存取的数据以及与它相关的操作系统、DBMS和用于访问DBMS的网络平台组成。 虽然ODBC驱动器管理器的主要目的是加载数据库驱动器,以便ODBC函数调用,但是数据库驱动器本身也执行ODBC函数调用,并与数据库相互配合。因此当应用系统发出调用与数据源进行连接时,数据库驱动器能管理通信协议。当建立起与数据源的连接时,数据库驱动器便能处理应用系统向DBMS发出的请求,对分析或发自数据源的设计进行必要的翻译,并将结果返回给应用系统。 2.JDBC的诞生 自从Java语言于1995年5月正式公布以来,Java风靡全球。出现大量的用java语言编写的程序,其中也包括数据库应用程序。由于没有一个Java语言的API,编程人员不得不在Java程序中加入C语言的ODBC函数调用。这就使很多Java的优秀特性无法充分发挥,比如平台无关性、面向对象特性等。随着越来越多的编程人员对Java语言的日益喜爱,越来越多的公司在Java程序开发上投入的精力日益增加,对java语言接口的访问数据库的API 的要求越来越强烈。也由于ODBC的有其不足之处,比如它并不容易使用,没有面向对象的特性等等,SUN公司决定开发一Java语言为接口的数据库应用程序开发接口。在JDK1.x 版本中,JDBC只是一个可选部件,到了JDK1.1公布时,SQL类包(也就是JDBCAPI)

驱动桥外文翻译

驱动桥设计 随着汽车对安全、节能、环保的不断重视,汽车后桥作为整车的一个关键部件,其产品的质量对整车的安全使用及整车性能的影响是非常大的,因而对汽车后桥进行有效的优化设计计算是非常必要的。 驱动桥处于动力传动系的末端,其基本功能是增大由传动轴或变速器传来的转矩,并将动力合理地分配给左、右驱动轮,另外还承受作用于路面和车架或车身之间的垂直力力和横向力。驱动桥一般由主减速器、差速器、车轮传动装置和驱动桥壳等组成。 驱动桥作为汽车四大总成之一,它的性能的好坏直接影响整车性能,而对于载重汽车显得尤为重要。驱动桥设计应当满足如下基本要求: 1、符合现代汽车设计的一般理论。 2、外形尺寸要小,保证有必要的离地间隙。 3、合适的主减速比,以保证汽车的动力性和燃料经济性。 4、在各种转速和载荷下具有高的传动效率。 5、在保证足够的强度、刚度条件下,力求质量小,结构简单,加工工艺性 好,制造容易,拆装,调整方便。 6、与悬架导向机构运动协调,对于转向驱动桥,还应与转向机构运动协调。智能电子技术在汽车上得以推广使得汽车在安全行驶和其它功能更上一层楼。通过各种传感器实现自动驾驶。除些之外智能汽车装备有多种传感器能充分感知交通设施及环境的信息并能随时判断车辆及驾驶员是否处于危险之中,具备自主寻路、导航、避撞、不停车收费等功能。有效提高运输过程中的安全,减少驾驶员的操纵疲劳度,提高乘客的舒适度。当然蓄电池是电动汽车的关键,电动汽车用的蓄电池主要有:铅酸蓄电池、镍镉蓄电池、钠硫蓄电池、钠硫蓄电池、锂电池、锌—空气电池、飞轮电池、燃料电池和太阳能电池等。在诸多种电池中,燃料电池是迄今为止最有希望解决汽车能源短缺问题的动力源。燃料电池具有高效无污染的特性,不同于其他蓄电池,其不需要充电,只要外部不断地供给燃料,就能连续稳定地发电。燃料电池汽车(FCEV)具有可与内燃机汽车媲美的动力性能,在排放、燃油经济性方面明显优于内燃机车辆。

桥梁专业外文翻译--欧洲桥梁研究

桥梁专业外文翻译--欧洲桥梁研究

附录 Bridge research in Europe A brief outline is given of the development of the European Union, together with the research platform in Europe. The special case of post-tensioned bridges in the UK is discussed. In order to illustrate the type of European research being undertaken, an example is given from the University of Edinburgh portfolio: relating to the identification of voids in post-tensioned concrete bridges using digital impulse radar. Introduction The challenge in any research arena is to harness the findings of different research groups to identify a coherent mass of data, which enables research and practice to be better focused. A particular challenge exists with respect to Europe where language barriers are inevitably very significant. The European Community was formed in the 1960s based upon a political will within continental Europe to avoid the European civil wars, which developed into World War 2 from 1939 to 1945. The strong political motivation formed the original community of which Britain was not a member. Many of the continental countries saw Britain’s interest as being purely economic. The 1970s saw Britain joining what was then the European Economic Community (EEC) and the 1990s has seen the widening of the community to a European Union, EU, with certain political goals together with the objective of a common European currency. Notwithstanding these financial and political developments, civil engineering and bridge engineering in particular have found great difficulty in forming any kind of common thread. Indeed the educational systems for University training are quite different between Britain and the European continental countries. The formation of the EU funding schemes —e.g. Socrates, Brite Euram and other programs have helped significantly. The Socrates scheme is based upon the exchange of students between Universities in different member states. The Brite Euram scheme has involved technical research grants given to

机械毕业设计英文外文翻译399驱动桥

附录A 英文文献 Drive Axle All vehicles have some type of drive axle/differential assembly incorporated into the driveline. Whether it is front, rear or four wheel drive, differentials are necessary for the smooth application of engine power to the road. Powerflow The drive axle must transmit power through a 90°angle. The flow of power in conventional front engine/rear wheel drive vehicles moves from the engine to the drive axle in approximately a straight line. However, at the drive axle, the power must be turned at right angles (from the line of the driveshaft) and directed to the drive wheels. This is accomplished by a pinion drive gear, which turns a circular ring gear. The ring gear is attached to a differential housing, containing a set of smaller gears that are splined to the inner end of each axle shaft. As the housing is rotated, the internal differential gears turn the axle shafts, which are also attached to the drive wheels. Rear-wheel drive Rear-wheel-drive vehicles are mostly trucks, very large sedans and many sports car and coupe models. The typical rear wheel drive vehicle uses a front mounted engine and transmission assemblies with a driveshaft coupling the transmission to the rear drive axle. Drive in through the layout of the bridge, the bridge drive shaft arranged vertically in the same vertical plane, and not the drive axle shaft, respectively, in their own sub-actuator with a direct connection, but the actuator is located at the front or the back of the adjacent shaft

毕业设计外文翻译附原文

外文翻译 专业机械设计制造及其自动化学生姓名刘链柱 班级机制111 学号1110101102 指导教师葛友华

外文资料名称: Design and performance evaluation of vacuum cleaners using cyclone technology 外文资料出处:Korean J. Chem. Eng., 23(6), (用外文写) 925-930 (2006) 附件: 1.外文资料翻译译文 2.外文原文

应用旋风技术真空吸尘器的设计和性能介绍 吉尔泰金,洪城铱昌,宰瑾李, 刘链柱译 摘要:旋风型分离器技术用于真空吸尘器 - 轴向进流旋风和切向进气道流旋风有效地收集粉尘和降低压力降已被实验研究。优化设计等因素作为集尘效率,压降,并切成尺寸被粒度对应于分级收集的50%的效率进行了研究。颗粒切成大小降低入口面积,体直径,减小涡取景器直径的旋风。切向入口的双流量气旋具有良好的性能考虑的350毫米汞柱的低压降和为1.5μm的质量中位直径在1米3的流量的截止尺寸。一使用切向入口的双流量旋风吸尘器示出了势是一种有效的方法,用于收集在家庭中产生的粉尘。 摘要及关键词:吸尘器; 粉尘; 旋风分离器 引言 我们这个时代的很大一部分都花在了房子,工作场所,或其他建筑,因此,室内空间应该是既舒适情绪和卫生。但室内空气中含有超过室外空气因气密性的二次污染物,毒物,食品气味。这是通过使用产生在建筑中的新材料和设备。真空吸尘器为代表的家电去除有害物质从地板到地毯所用的商用真空吸尘器房子由纸过滤,预过滤器和排气过滤器通过洁净的空气排放到大气中。虽然真空吸尘器是方便在使用中,吸入压力下降说唱空转成比例地清洗的时间,以及纸过滤器也应定期更换,由于压力下降,气味和细菌通过纸过滤器内的残留粉尘。 图1示出了大气气溶胶的粒度分布通常是双峰形,在粗颗粒(>2.0微米)模式为主要的外部来源,如风吹尘,海盐喷雾,火山,从工厂直接排放和车辆废气排放,以及那些在细颗粒模式包括燃烧或光化学反应。表1显示模式,典型的大气航空的直径和质量浓度溶胶被许多研究者测量。精细模式在0.18?0.36 在5.7到25微米尺寸范围微米尺寸范围。质量浓度为2?205微克,可直接在大气气溶胶和 3.85至36.3μg/m3柴油气溶胶。

汽车设计课设驱动桥设计

汽车设计课程设计说明书 题目:BJ130驱动桥部分设计验算与校核 姓名: 学号: 专业名称:车辆工程 指导教师: 目录 一、课程设计任务书 (1) 二、总体结构设计 (2) 三、主减速器部分设计 (2) 1、主减速器齿轮计算载荷的确定 (2) 2、锥齿轮主要参数选择 (4) 3、主减速器强度计算 (5) 四、差速器部分设计 (6) 1、差速器主参数选择 (6) 2、差速器齿轮强度计算 (7) 五、半轴部分设计 (8) 1、半轴计算转矩Tφ及杆部直径 (8) 2、受最大牵引力时强度计算 (9) 3、制动时强度计算 (9) 4、半轴花键计算 (9) 六、驱动桥壳设计 (10) 1、桥壳的静弯曲应力计算 (10) 2、在不平路面冲击载荷作用下的桥壳强度计算 (11) 3、汽车以最大牵引力行驶时的桥壳强度计算 (11) 4、汽车紧急制动时的桥壳强度计算 (12)

5、汽车受最大侧向力时的桥壳强度计算 (12) 七、参考书目 (14) 八、课程设计感想 (15)

一、课程设计任务书 1、题目 《BJ130驱动桥部分设计验算与校核》 2、设计内容及要求 (1)主减速器部分包括:主减速器齿轮的受载情况;锥齿轮主要参数选择;主减速器强度计算;齿轮的弯曲强度、接触强度计算。 (2)差速器:齿轮的主要参数;差速器齿轮强度的校核;行星齿轮齿数和半轴齿轮齿数的确定。 (3)半轴部分强度计算:当受最大牵引力时的强度;制动时强度计算。 (4)驱动桥强度计算:①桥壳的静弯曲应力 ②不平路载下的桥壳强度 ③最大牵引力时的桥壳强度 ④紧急制动时的桥壳强度 ⑤最大侧向力时的桥壳强度 3、主要技术参数 轴距L=2800mm 轴荷分配:满载时前后轴载1340/2735(kg) 发动机最大功率:80ps n:3800-4000n/min 发动机最大转矩17.5kg﹒m n:2200-2500n/min 传动比:i1=7.00; i0=5.833 轮毂总成和制动器总成的总重:g k=274kg

驱动桥5000字外文翻译文献

As the bearing cage rotates, read the value 7. indicated on the scale. Preload normally is specified as torque re-8. quired to rotate the pinion bearing cage, so take a reading only when the cage is rotating. Starting torque will give a false reading. To calculate the preload torque, measure the 9. diameter of the bearing cage where the cord was wound. Divide this dimension in half to get the radius. 10. U se the following procedure to calculate the bearing preload torque:Standard. Pull (lb) 3 radius (inches) 5 preload (lb-in.)or Preload (lb-in.) 3 0.113 (a conversion constant) 5 preload (N .m) Install the yoke, flat washer, and nut. Tighten 6. the nut snugly. Tap the end of the input shaft lightly to seat the bearings. Measure the input shaft endplay again with 7. the dial indicator. If endplay is still incorrect, repeat steps 3 through 7. With the endplay correct, seal the shim pack 8. to prevent lube leakage. Then torque the i nput shaft nut and cover capscrews to the correct value. 24.5 A XLE ADJUSTMENTS AND CHECKS This section introduces the differential carrier adjust-ments, checks, and tests that the truck technician must be capable of performing; some have been r eferred to previously in the text. For the most part, the procedures described here are general in nature. The truck technician should refer to OEM service l iterature for specific procedures.PINION BEARING PRELOAD Most differential carriers are provided with a press-fit outer bearing on the drive pinion gear. Some older rear drive axles use an outer bearing, which slips over the drive pinion. The procedures for adjusting both types follow. Press-Fit Method Adjustment To adjust the pinion bearing preload using the press-fit method, use the following procedure: Assemble the pinion bearing cage, bearings, 1. spacer, and spacer washer (without drive pin-ion or oil seal). Center the bearing spacer and spacer washer between the two bearing cones (Figure 24–49). When a new gear set or pinion bearings are 2. used, select a nominal size spacer based on OEM specifications. If original parts are used, use a spacer removed during disassembly of the drive. Place the drive pinion and cage assembly in a 3. press, with the gear teeth toward the bottom.Apply and hold the press load to the pinion 4. bearing. As pressure is applied, rotate the bearing cage several times so that the bear-ings make normal contact. While pressure is held against the assembly, wind 5. a cord around the bearing cage several times.Attach a spring scale to the end of the cord 6. (Figure 24–50). Pull the cord with the scale on a horizontal line. FIGURE 24–49 Assembly of the pinion bearing cage. (Courtesy of Dana Corporation) FIGURE 24–50 Cage in press to check bearing p reload. Sleeve must apply

本科毕业设计桥梁外文翻译

附录一:中文翻译 土木工程师 桥梁工程156 2003年3月发表于BEI 31~37页 2002年1月31日收到 C.詹姆斯 2002年12月9日通过高级土木工程师佩尔 Frischmann ,埃克塞特 关键词:桥梁;河堤;土工布;膜与土工格栅 英国锁城大桥 锁城大桥是横跨住宅发展区的铁路桥梁。由于工程施工受到周围建筑与地形的限制,该工程采取加固桥台、桥墩与桥面的刚构结构,以及预制栏杆等方法提高了大桥的使用安全程度,并降低了大桥建造与维护的费用。因此,城堡大桥科学的设计方案使工程成本降到最低。 一、引言 本文描述的是在受限制地区用最小的费用修建一座铁路桥梁使之成为开放的住宅发展区。锁城地区是位于住宅发展十分紧张的韦斯顿超 图1 锁城大桥位置远景

马雷的东部。监督桥梁建设的客户是城堡建设有限公司,它由二大房建者组成。该区的规划局是北盛捷区议会(NSDC)。该发展地区被分为布里斯托尔和埃克塞特。规划条件规定,直到建成这条横跨的铁路大桥为止,该地区南部区域不可能适应居住。可见锁城大桥的建成对该地区发展的重要性。 发展地区位于萨默塞特的边缘,这个地区地形十分的恶劣,该范围位于韦斯顿以北和A321飞机双程双线分隔线的南面。现在只有一条乡下公路,是南部区域的唯一通道。该地区是交通预期不适合住宅增加的区域。 由于盛捷地区水平高程的限制,新的铁路线在桥台两边必须设有高程差。并且该地区地形限制,允许正常横跨的区域较小,这导致在结构的布局上的一定数量的妥协。为了整个城堡地区的发展,全 图2 锁城大桥地图上位置 桥限速20公里/时,并考虑区域范围内的速度制约。这样在得到客户和NSDC的同意后,桥梁采取了最小半径的方法,这使得桥梁采用了比正常梯度更加陡峭地方法实现高程的跨越。 客户的工程师、工程顾问、一般设计原则和初步认同原则下(AIP)与NSDC发出投标文件。 该合同在2000年7月1授予安迪。投标价值1.31亿美元,合同期定为34周,到2001年4月完成。

毕业设计外文翻译

毕业设计(论文) 外文翻译 题目西安市水源工程中的 水电站设计 专业水利水电工程 班级 学生 指导教师 2016年

研究钢弧形闸门的动态稳定性 牛志国 河海大学水利水电工程学院,中国南京,邮编210098 nzg_197901@https://www.wendangku.net/doc/6718903768.html,,niuzhiguo@https://www.wendangku.net/doc/6718903768.html, 李同春 河海大学水利水电工程学院,中国南京,邮编210098 ltchhu@https://www.wendangku.net/doc/6718903768.html, 摘要 由于钢弧形闸门的结构特征和弹力,调查对参数共振的弧形闸门的臂一直是研究领域的热点话题弧形弧形闸门的动力稳定性。在这个论文中,简化空间框架作为分析模型,根据弹性体薄壁结构的扰动方程和梁单元模型和薄壁结构的梁单元模型,动态不稳定区域的弧形闸门可以通过有限元的方法,应用有限元的方法计算动态不稳定性的主要区域的弧形弧形闸门工作。此外,结合物理和数值模型,对识别新方法的参数共振钢弧形闸门提出了调查,本文不仅是重要的改进弧形闸门的参数振动的计算方法,但也为进一步研究弧形弧形闸门结构的动态稳定性打下了坚实的基础。 简介 低举升力,没有门槽,好流型,和操作方便等优点,使钢弧形闸门已经广泛应用于水工建筑物。弧形闸门的结构特点是液压完全作用于弧形闸门,通过门叶和主大梁,所以弧形闸门臂是主要的组件确保弧形闸门安全操作。如果周期性轴向载荷作用于手臂,手臂的不稳定是在一定条件下可能发生。调查指出:在弧形闸门的20次事故中,除了极特殊的破坏情况下,弧形闸门的破坏的原因是弧形闸门臂的不稳定;此外,明显的动态作用下发生破坏。例如:张山闸,位于中国的江苏省,包括36个弧形闸门。当一个弧形闸门打开放水时,门被破坏了,而其他弧形闸门则关闭,受到静态静水压力仍然是一样的,很明显,一个动态的加载是造成的弧形闸门破坏一个主要因素。因此弧形闸门臂的动态不稳定是造成弧形闸门(特别是低水头的弧形闸门)破坏的主要原是毫无疑问。

驱动桥设计_毕业设计论文

驱动桥设计 摘要 现代工程车辆技术追求高效节能、高舒适性和高安全性等目标。前一项目标与环境保护密切相关,是当代全球性热门话题,后两项目标是车辆朝着高性能化方向发展必须研究和解决的重要课题。转向系统的高性能化是指其能够根据车辆的运行状况和驾驶员的要求实行多目标控制,以获得良好的转向轻便性、较好的路感和较快的响应性。 汽车转向系统是影响汽车操纵稳定性、行驶安全性和驾驶舒适性的关键部分。在追求高效节能\高舒适性和高安全性的今天,电控液压助力转向系统作为一种新的汽车动力转向系统,以其节能、环保、更佳的操纵特性和转向路感,成为动力转向技术研究的焦点。 本文通过查阅相关的文献,介绍了EHPS系统的结构组成和工作原理,在参考现有车型的结构数据的基础上,设计计算转向系的主要参数,确定转向器的结构参数和动力转向部分结构参数,在分析其助力特性的基础上,设计合理的助力特性曲线,并通过MATLAB作出助力特性图,同时提出一种基于车速和转向盘转动角速度的控制策略,根据EHPS系统的特点,通过AMESim和Simulink建立整个系统的模型。通过联合仿真可以得出EHPS系统比HPS系统能提供更好的助力特性和转向路感。 关键词:EHPS;助力特性;结构设计;AMESim与Simulink建模 ABSTRACT

High effective energy saving,high comfort performance and high security are thegoals of contemporary.The first goal closely concerns with environment protecting,is also the popular topic around the world.The last two goals are the important subjects must be researched and solved in making automobile high performance.To make the steering system high performance is that the system can carry out mufti-goals control according to the vehicle states and drive requirements to acquire the steering handiness,better road feeling,better anti-interfering performance and faster response. The motor turing system is the essential part which affects the automobile operation stability,the travel security and the driving comfortablet.Nowadays we pursue highly effective energy conservation,the high comforrtableness and high secure.The electrically hydraulic power steering (EHPS) taking as one kind of new automobile power steering system,it takes the power steering engineering research the focal point by its energy conservation,the environmental protection,the better handling characteristic and changes the road feeling. According to consult relevant literature, this paper introduces the structure and the principle of EHPS, bases the further study of EHPS on the structural parameter date of a certain type of the light lorry, calculates the main parameters of steering system and power steering and devises the hydraulic circuit of EHPS. On the basis of the analysis of EHPS, this paper designs a reasonable EHPS power curve, including plotting the curve with the technique of MATLAB. Taking into account the steady steering and emergency steering, it advances the control strategy plan based on speed, steering wheel angle velocity, the steering wheel torque. Based on the structural characteristics of EHPS, this paper proposed AMESIM and SIMULINK joint simulation of the entire EHPS system. Accord to the result we can know that EHPS can offer more secure handle, more saving energy and way feeling. Key words:EHPS;Characteristics of power; Structure design; AMESim and Simulink Modeling

驱动桥设计外文翻译

驱动桥设计外文翻译 驱动桥设计 随着汽车对安全、节能、环保的不断重视,汽车后桥作为整车的一个关键部件,其产品的质量对整车的安全使用及整车性能的影响是非常大的,因而对汽车后桥进行有效的优化设计计算是非常必要的。 驱动桥处于动力传动系的末端,其基本功能是增大由传动轴或变速器传来的转矩,并将动力合理地分配给左、右驱动轮,另外还承受作用于路面和车架或车身之间的垂直力力和横向力。驱动桥一般由主减速器、差速器、车轮传动装置和驱动桥壳等组成。 驱动桥作为汽车四大总成之一,它的性能的好坏直接影响整车性能,而对于载重汽车显得尤为重要。驱动桥设计应当满足如下基本要求: 1、符合现代汽车设计的一般理论。 2、外形尺寸要小,保证有必要的离地间隙。 3、合适的主减速比,以保证汽车的动力性和燃料经济性。 4、在各种转速和载荷下具有高的传动效率。 5、在保证足够的强度、刚度条件下,力求质量小,结构简单,加工工艺性 好,制造容易,拆装,调整方便。 6、与悬架导向机构运动协调,对于转向驱动桥,还应与转向机构运动协调。智能电子技术在汽车上得以推广使得汽车在安全行驶和其它功能更上一层楼。通过各种传感器实现自动驾驶。除些之外智能汽车装备有多种传感器能充分感知交通设施及环境的信息并能随时判断车辆及驾驶员是否处于危险之中,具备自主寻路、导航、避撞、不停车收费等功能。有效提高运输过程中的安全,减少驾驶员的操纵疲劳度,提高乘客的舒适度。当然蓄电池是电动汽车的关键,电动汽车用的蓄电池主

要有:铅酸蓄电池、镍镉蓄电池、钠硫蓄电池、钠硫蓄电池、锂电池、锌—空气电池、飞轮电池、燃料电池和太阳能电池等。在诸多种电池中,燃料电池是迄今为止最有希望解决汽车能源短缺问题的动力源。燃料电池具有高效无污染的特性,不同于其他蓄电池,其不需要充电,只要外部不断地供给燃料,就能连续稳定地发电。燃料电池汽车(FCEV)具有可与内燃机汽车媲美的动力性能,在排放、燃油经济性方面明显优于内燃机车辆。 这项发明通常涉及到多能源动力总成的车辆,以及,尤其是多能源动力总成,有多个电源包括电动马达来驱动的汽车轮子。混合动力电动动力系统已经被发展成为包括电机(IC)做内燃机引擎,自主经营的或者联合根据行驶条件下,国家费用的牵引电池,与电源,最有效地满足当前所产生的电力需求车辆操作。大部分电子混合动力汽车可以在市场上买到是前轮驱动车辆,只不过前轮带动起来的。混合动力电动动力系统被开发用于四轮驱动车,允许两个电机和引擎传送权力后方的驱动轮。当包装电动马达驱动后桥机组是较好的使用躺轴功率流,马达驱动单元被放在后桥中心线。这样的电的混合动力系统,然而,现在的包装设计很困难,特别是当副轴车辆传动是用来传输动力,纵向驱动轴后轴。需要混合动力电动存在的动力,在其中轴是靠电动机驱动的或的内燃机结合电机。以减少成本,电动机器将提供所有混合功能,包括电气能源的产生、电动汽车、电子发动机启动投放 提高发动机的功率,再生式制动。一个驱动器单位是混合动力电动汽车包括市场, 发动机,电动机器包括转子,副轴,齿轮组包括一个输入可驱动的连接到发动机和输出,用来传送之间权限投入与产出和生产第一速度微分导致一个录入速度超过每小时的速度输出,第一和第二驾车轴差动机构可驱动的连接到输出线时,因为传输功率和输出之间驾车轴,可驱动的行星齿轮装置连接到输出和转子,说之间权限传输转子和输出线,制作了第二速度微分导致转子速度超过速度输出。转矩反应为减速

桥梁专业外文翻译--欧洲桥梁研究

中文1850字 附录 Bridge research in Europe A brief outline is given of the development of the European Union, together with the research platform in Europe. The special case of post-tensioned bridges in the UK is discussed. In order to illustrate the type of European research being undertaken, an example is given from the University of Edinburgh portfolio: relating to the identification of voids in post-tensioned concrete bridges using digital impulse radar. Introduction The challenge in any research arena is to harness the findings of different research groups to identify a coherent mass of data, which enables research and practice to be better focused. A particular challenge exists with respect to Europe where language barriers are inevitably very significant. The European Community was formed in the 1960s based upon a political will within continental Europe to avoid the European civil wars, which developed into World War 2 from 1939 to 1945. The strong political motivation formed the original community of which Britain was not a member. Many of the continental countries saw Britain’s interest as being purely economic. The 1970s saw Britain joining what was then the European Economic Community (EEC) and the 1990s has seen the widening of the community to a European Union, EU, with certain political goals together with the objective of a common European currency. Notwithstanding these financial and political developments, civil engineering and bridge engineering in particular have found great difficulty in forming any kind of common thread. Indeed the educational systems for University training are quite different between Britain and the European continental countries. The formation of the EU funding schemes —e.g. Socrates, Brite Euram and other programs have helped significantly. The Socrates scheme is based upon the exchange of students between Universities in different member states. The Brite Euram scheme has involved technical research grants given to consortia of academics and industrial

相关文档
相关文档 最新文档