文档库 最新最全的文档下载
当前位置:文档库 › 螺杆压缩机的经济器

螺杆压缩机的经济器

螺杆压缩机的经济器
螺杆压缩机的经济器

经济器的应用

一、概述

螺杆压缩机的标准设计包含经济器(ECO)运行的配置。这种模式的制量和效率经过冷循环或两级制冷循环得到提升。特别是在高冷凝温度与低蒸发温度工况下,其节能效果更明显。螺杆机独特的经济器接入口,控制在最佳压缩比之下,直接将气体带回压缩机进行再压缩。

经济器分为两种:一种是过冷循环经济器,另一种是两级制冷剂降压的、特别适用于满液式蒸发器的蒸发桶式经济器。

现主要介绍过冷循环经济器

二、过冷循环经济器的运行

这种运行模式一般用一个热交换器作为液体过冷器。从冷凝器来的一部分冷媒通过中间膨胀阀进入过冷器,并与逆流来的高压液态制冷剂进行热交换(液态制冷剂被过冷)吸热后蒸发,蒸发后的过热蒸气通过压缩机的经济器接口进入中间压缩段压缩。

由于中间补气是在吸气过程后进行的,因此对吸气量没有影响,制冷量增加是由于单位制冷量的增加。然而中间补气后,被压缩的气体量增加了,所以压缩功也略有增加。结果表明,蒸发温度越低,带经济器螺杆比单级螺杆的制冷量增加的越多,而功率则增加的很少,也就是说,蒸发温度越低,单位轴功率的制冷量越大。

风冷热泵机组在低温环境下制热时,压缩机的压比会增加,进而影响压缩机的容积效率,减少制冷剂的循环量。采用经济器循环,在螺杆机的相应部位,通过经济器,补一部分气体给压缩机。由于补气,一方面可提高压缩机的输气能力,另一方面也能增加液体过冷度,使机组在低温环境制热从单级压缩机组变成一个小双级压缩的机组,从而提升机组的制热效率,温度越低,经济器效果越明显。经测试,可提升制热能力15%左右,效率提升8%。

这种运行模式下过冷的冷媒液体压力仍为冷凝压力。至蒸发器的管路除了保温要求外,还要注意管路的震动设计,以避免经济器运行中因压力变化而致使管路震荡。

经济器螺杆压缩机的单级压缩比大,与双级压缩的螺杆系统相比较,占地面积小,操作简单,容易控制。从压缩机的性能分析,经济器螺杆在-30℃低温工况下,几乎与双级压缩螺杆系统的制冷效果相同,因此在-30℃低温工况下,经济器螺杆压缩机循环,完全可以取代双级的螺杆压缩机循环。螺杆压缩机增加经济器后,主要是由于经济器中液体过冷,制冷量增大。液体过冷产生的效果与制冷剂的性质有关,在相同工况下,对那些液体比热容小(即饱和液体线较陡)、气化潜热也比较小的制冷剂,液体过冷的效果最好。

在蒸发温度要求低于-30℃,而且连续运行的条件下,经济器螺杆压缩机由于内容积比过高和排气温度高等原因,从节能的观点考虑,仍应采用双级压缩的螺杆压缩机制冷循环。

三、系统建议

1、过冷器的设计应确保在压缩机停机时,既不会有液态冷媒也不会有润滑油直接进入压缩机;

2、在关闭经济器期间或关机时,须通过上升的管路设计和单向阀,来防止压缩机高压气体与润滑油经由管路倒流回过冷器;

3、经济器的接口直接通向转子,因此必须保持过冷器和管路的高度清洁,否则异物进入压缩机会导致压缩机的直接破坏。

4、由于压缩机的振动有固有频率,管路配置须避开压缩机运转频率(50Hz)之15%左右范围。

四、相关附件

1、过冷器

管壳式、板式换热器均可用作过冷器。过冷器性能数据的选取需按照压缩机选型软件中的相关技术参数来设定。

◆过冷器负荷◆经济器冷媒流量◆经济器冷媒饱和温度◆液态冷媒温度

◆过冷器设计相对温度值的选择◆液态冷媒入口温度◆液态冷媒出口温度2、热力膨胀阀

液态过冷器膨胀阀的选择,取决于:◆过冷负荷

◆蒸发温度相对于经济器的中间温度

◆阀的过热度应调整为10K,防止在接通过冷循环和有负载波动时的不稳运行

◆如果在部分负荷时(50%)也运行过冷循环,要考虑膨胀阀大小的选择3、控制

在启动后达到稳定运行状态前,过冷循环可以用a、时间延迟;b、吸气压力之设计来接通,保证压缩机的稳定运转。

五、过冷式经济器应用图(见汉钟之技术手册P45,P46)

最全面的板式换热器知识(原理、结构、设计、选型、安装、维修)

最全面的板式换热器知识(原理、结构、设计、选型、安装、维修) 板式换热器是由一系列具有一定波纹形状的金属片叠装而成的一种新型高效换热器。各种板片之间形成薄矩形通道,通过板片进行热量交换。板式换热器是液—液、液—汽进行热交换的理想设备。它具有换热效率高、热损失小、结构紧凑轻巧、占地面积小、安装清洗方便、应用广泛、使用寿命长等特点。本课件由暖通南社独立完成整合编辑,欢迎转载,但请注明出处。 板式换热器基本结构及运行原理 板式换热器的型式主要有框架式(可拆卸式)和钎焊式两大类,板片形式主要有人字形波纹

板、水平平直波纹板和瘤形板片三种。 钎焊换热器结构 板式换热器主要结构 ⒈板式换热器板片和板式换热器密封垫片 ⒉固定压紧板 ⒊活动压紧板 ⒋夹紧螺栓 ⒌上导杆 ⒍下导杆 ⒎后立柱 由一组板片叠放成具有通道型式的板片包。两端分别配置带有接管的端底板。 整机由真空钎焊而成。相邻的通道分别流动两种介质。相邻通道之间的板片压制成波纹。型式,以强化两种介质的热交换。在制冷用钎焊式板式换热器中,水流道总是比制冷剂流道多一个。

图示为单边流,有些换热器做成对角流,即:Q1和Q3容纳一种介质,而Q2和Q4容纳另一种介质。 板式换热器所有备件都是螺杆和螺栓结构,便于现场拆卸和修复。 运行原理 板式换热器是由带一定波纹形状的金属板片叠装而成的新型高效换热器,构造包括垫片、压紧板(活动端板、固定端板)和框架(上、下导杆,前支柱)组成,板片之间由密封垫片进行密封并导流,分隔出冷/热两个流体通道,冷/热换热介质分别在各自通道流过,与相隔的板片进行热量交换,以达到用户所需温度。

液气分离器设备技术要求

第四章货物需求一览表及商务技术要求 一、货物需求一览表 标包1: 注:1. 本次招标为定商定价,采购数量以实际需求为准。 2. 技术要求详见技术规格书。 3. 整机产品质量保证期为安装验收合格后使用12个月或出厂18个月。质保期内, 因供方原因造成的质量问题,由供方负责“三包”。 二、商务要求 (一)质量保证措施和履约保证措施条款: (1)中标厂商的供货物资必须满足产品质量标准(标书中明确的标准要求),组织单位对中标物资进行不定期抽检,由有资质第三方检测单位进行检测,如发现一次不合格或质量管理部门抽检出现不合格产品的,取消该中标厂商在渤钻中标的同类产品的中标资格,启动排名第二为中标单位,执行自身投标价格。 (2)中标通知书下发以后,在中标有效期内,如供应商违反供货承诺,无故延期供货、拖延供货或无正当理由不供货,同一项目在收到渤海钻探工程公司各分公司投诉共计2次及以上,取消该供应商在公司范围内的交易资格,启动排名第二为中标单位,执行自身投标价格。 (3)供应商放弃中标或未能完全履行合同等相关违约事项,按照CT.7.1《物资供应商管理办法》中4.11.3、4.11.4、4.11.5、4.11.6、4.11.7和4.11.8中条例进行处罚,具体

内容如下: 4.11.3供应商出现下列情形之一的,临时暂停供应商交易资格,供应商管理部门进一步核实情况,确定处罚和恢复条件: a)公司及所属单位提出重大问题或质疑,需进一步调查核实; b)在质量、验收、事故处理方面存在问题有待核实; c)生产经营资质或体系保证文件逾期; d)在石油石化行业出现影响商业信誉的严重事故、法律纠纷等。 4.11.4供应商出现下列情形之一的,视情节严重程度中止其相应准入产品的交易资格3至12个月,并限期整改: a)某项产品质量经检验,不符合合同规定的质量要求; b)某项产品生产经营资质逾期超过规定时间更新; c)现场考察中发现产品生产存在某些质量隐患,需进行整改。 4.11.5供应商出现下列情形之一的,视情节严重程度中止供应商交易资格3至12个月,并限期整改: a)中标后无正当理由不与采购单位签订合同或延迟交货影响生产; b)非不可抗力原因,擅自变更、解除或终止合同或拒绝供货; c)供应商现场考察发现可能影响生产的问题; d)售后服务环节出现问题,影响企业运营。 e)在办理准入、年审工作中不按期履行相应义务,或信息变更不及时登记。 f)不符合公司QHSE管理体系要求,存在安全隐患的。 4.11.6供应商出现下列情形之一的,视情节严重程度中止供应商交易资格一至三年,并限期整改: a)恶意串通,影响采购,使采购部门提出有利于特定供应商中标的要求; b)供应商与采购部门、招标机构或其他供应商串通陪标的,或以不正当的手段排挤其

气液分离器选型

7.8气液分离器 7.8.1概述 气液分离器的作用是将气液两相通过重力的作用进行气液的分离。 7.8.2设计步骤 (1) 立式丝网分离器的尺寸设计 1) 气体流速(G u )的确定 气体流速对分离效率是一个重要因素。如果流速太大,气体在丝网的上部将把液滴破碎,并带出丝网,形成“液泛”状态,如果气速太低,由于达不到湍流状态,使许多液滴穿过丝网而没有与网接触,降低了丝网的效率。气速对分离效率的影响见下图: 图7-69 分离效率与气速的关系图 2) 计算方法 G u 5 .0)( G G L G K ρρρ-= 式中G u 为与丝网自由横截面积相关的气体流速,s m / L ρ、G ρ为分别为液体和气体的密度,3/m kg

G K 为常数,通常107.0=G K 3) 尺寸设计 丝网的直径为5 .0)( 0188.0G G G u V D = 式中 G u 为丝网自由截面积上的气体流速,s m / G D 为丝网直径,m 其余符号意义同前。 由于安装的原因(如支承环约为mm 1070/50?),容器直径须比丝网直径至少大l00mm,由图2.5.1-2可以快速求出丝网直径)(G D 4) 高度 容器高度分为气体空间高度和液体高度(指设备的圆柱体部分)。低液位(LL )和高液位(HL )之间的距离由下式计算: 2 1.47D t V H L L = 式中 D —容器直径,m ; L V —液体流量,h m /3; t —停留时间,min ; L H —低液位和高液位之间的距离,m ; 液体的停留时间(以分计)是用邻近控制点之间的停留时间来表示的,停留时间应根据工艺操作要求确定。 气体空间高度的尺寸见下图所示。丝网直径与容器直径有很大差别时,尺寸数据要从分离的角度来确定。

人字形波纹板片结构的板式换热器

人字形板片,其结构如图1所示,波纹板片相互倒置后叠放在一起,上下成人字形的波纹,从而形成周期性变化的通道,流体流过此通道时呈不规则的流动形态,即形成交叉流及曲折流等湍流强度较高的流体形态。 如图1所示,3块换热板片形成了上、下两通道,分别流经冷流体和热流体,由于存在温度差,热流体将热量经过中间板片传递给冷流体的同时,受到上、下板片所形成的人字形的扰动,从而形成曲折流,在较低雷诺数(Re≈23~400)就能发生湍流,同时由于实验模型可有多种样式,采集数据量大,因而采用数值模拟形式具有很大的优越性。 ARD艾瑞德板式换热器(江阴)有限公司艾瑞德是全球领先的板式换热器板片生产商和销售商,拥有国内品种最全,型号最多的板式换热器板片!能够提供世界知名品牌(包括:阿法拉伐/AlfaLaval、斯必克/SPX、安培威/APV、基伊埃/GEA、传特/TRANTER、舒瑞普/SWEP、桑德斯/SONDEX、艾普尔.斯密特/API.Schmidt、日阪/HISAKA、风凯/FUNKE、萨莫威孚 /Thermowave、维卡勃Vicarb、东和恩泰/DONGHWA、艾克森ACCESSEN、MULLER、FISCHER、REHEAT等)的全部常用型号的板式换热器板片。

艾瑞德板式换热器(江阴)有限公司是专业生产可拆式板式换热器(PHE)、换热器密封垫(PHEGASKET)、换热器板片(PHEPLATE)并提供板式换热器维护服务(PHEMAINTENANCE)的专业换热器厂家。艾瑞德(ARD艾瑞德板式换热器(江阴)有限公司)在全球设有多个标准化工厂及库存中心,服务和销售网点遍布全球。 ARD艾瑞德板式换热器(江阴)有限公司拥有世界上最先进的设计和生产技术以及最全面的换热器专业知识,一直以来ARD艾瑞德板式换热器(江阴)有限公司致力于为全球50多个国家和地区的石油、化工、工业、食品饮料、电力、冶金、造船业、暖通空调等行业的客户提供高品质的板式换热器,目前已有超过50,000台的板式换热器良好地运行于各行业,ARD 艾瑞德板式换热器(江阴)有限公司已发展成为可拆式板式换热器领域的全球领导者。ARD艾瑞德板式换热器(江阴)有限公司同时也是板式换热器配件(换热器板片和换热器密封垫)领域全球排名第一的供应商和维护商。能够提供世界知名品牌(包括:阿法拉伐 /AlfaLaval、斯必克/SPX、安培威/APV、基伊埃/GEA、传特/TRANTER、舒瑞普/SWEP、桑德斯/SONDEX、艾普尔.斯密特/API.Schmidt、日阪/HISAKA、风凯/FUNKE、萨莫威孚/Thermowave、维卡勃Vicarb、东和恩泰/DONGHWA、艾克森ACCESSEN、MULLER、FISCHER、REHEAT等)的所有型号的板式换热器板片和垫片。全球约有1/5的板式换热器正在使用ARD艾瑞德板式换热器(江阴)有限公司提供的换热器配件或接受ARD艾瑞德板式换热器(江阴)有限公司的维护服务(包括定期清洗、维修及更换配件等维护服务)。 无论您身在何处,无论您有什么特殊要求,ARD艾瑞德板式换热器(江阴)有限公司都能为

板式换热器的基本结构

板式换热器的基本结构 板式换热器主要由框架和板片两大部分组成。 艾瑞德板式换热器(江阴)有限公司作为专业的可拆式板式换热器生产商和制造商,专注于可拆式板式换热器的研发与生产。ARD艾瑞德专业生产可拆式板式换热器(PHE)、换热器密封垫(PHEGASKET)、换热器板片(PHEPLATE)并提供板式换热器维护服务(PHEMAINTENANCE)的专业换热器厂家。 ARD艾瑞德拥有卓越的设计和生产技术以及全面的换热器专业知识,一直以来ARD致力于为全球50多个国家和地区的石油、化工、工业、食品饮料、电力、冶金、造船业、暖通空调等行业的客户提供高品质的板式换热器,良好地运行于各行业,ARD已发展成为可拆式板式换热器领域卓越的厂家。

ARD艾瑞德同时也是板式换热器配件(换热器板片和换热器密封垫)领域专业的供应商和维护商。能够提供世界知名品牌(包括:阿法拉伐/AlfaLaval、斯必克/SPX、安培威/APV、基伊埃/GEA、传特/TRANTER、舒瑞普/SWEP、桑德斯/SONDEX、艾普尔.斯密特/API.Schmidt、风凯/FUNKE、萨莫威孚 /Thermowave、维卡勃Vicarb、东和恩泰/DONGHWA、艾克森ACCESSEN、MULLER、FISCHER、REHEAT等)的所有型号将近2000种的板式换热器板片和垫片,ARD艾瑞德实现了与各品牌板式换热器配件的完全替代。全球几十个国家的板式换热器客户正在使用ARD提供的换热器配件或接受ARD的维护服务(包括定期清洗、维修及更换配件等维护服务)。 无论您身在何处,无论您有什么特殊要求,ARD都能为您提供板式换热器领域的系统解决方案。 板片由各种材料的制成的薄板用各种不同形式的磨具压成形状各异的波纹,并在板片的四个角上开有角孔,用于介质的流道。板片的周边及角孔处用橡胶垫

气液分离器

气液分离器 气液分离器在热泵或制冷系统中的基本作用是分离出并保存回气管里的液体以防止压缩机液击。因此,它可以暂时储存多余的制冷剂液体,并且也防止了多余制冷剂流到压缩机曲轴箱造成油的稀释。因为在分离过程中,冷冻油也会被分离出来并积存在底部,所以在气液分离器出口管和底部会有一个油孔,保证冷冻油可以回到压缩,从而避免压缩机缺油。气液分离器的基本结构见图F.1,主要分为立式,卧式和带回热装置,在一些小系统如冰箱,会用一些铜管做一个简单的气液分离器,如图F.1右下角。气液分离器的工作原理是带液制冷剂进入到气液分器时由于膨胀速度下降使液体分离或打在一块挡板上,从而分离出液体。 F.1 气液分离器的设计和使用必须遵循以下原则: 1.气液分离器必须有足够的容量来储存多余的液态制冷剂。 特别是热泵系统,最好不要少于充注量的50%,如果有条件最好做试验验证一下,因为用节流孔板或毛细管在制热时节流,可能会有70%的液态制冷剂回到气液分离器。还有高排气压力,低吸气压力也会让更多的液态制冷剂进入气液分离器。用热力膨胀阀会少一些,但也可能会有50%流到气液分离器,主要是在除霜开始后,外平衡感温包还是热的,所以制冷剂会大量流过蒸发器而不蒸发从而进入气液分离器。在停机时,气液分离器是系统中最冷的部件,所以制冷剂会迁移到这里,所以要保证气分有足够的容量来储存这些液态制冷剂。 2.适当的回油孔及过滤网保证冷冻油和制冷剂回到压缩机。 回油孔的尺寸要尽量保证没液态制冷剂回流到压缩机,但也要保证冷冻油尽量可以回到压缩机。 如果是运行中气液分离器中存有的液态制冷剂,推荐使用直径0.040 in (1.02mm),,如果是因为停机制冷剂迁移到气液分离器推荐使用0.055 in (1.4mm)(谷轮的应用工程手册是直接给出

换热器的结构讲解

换热器的结构 管壳式换热器就是具有换热管和壳体的一种换热设备,换热管与管板连接,再用壳体固定。 按其结构型式,主要分为:固定管板式换热器、浮头式换热器、U形管式换热器、填料函式 换热器、方形壳体翅片管换热器等。详细结构如下: 固定管板式换热器: 固定管板式换热器结构如上图所示,换热器的两端管板采用焊接方法与壳体连接固定。换 热管可为光管或低翅管。其结构简单,制造成本低,能得到较小的壳体内径,管程可分成多样,壳程也可用纵向隔板分成多程,规格范围广,故在工程中广泛应用。 其缺点是壳侧不便清洗,只能采用化学方法清洗,检修困难,对于较脏或对材料有腐蚀性的介质不能走壳程。壳体与换热管温差应力较大,当温差应力很大时,可以设置单波或多波膨胀节减小温差应力 浮头式换热器 浮头式换热器结构如图所示,其一端管板与壳体固定,而另一端的管板可以在壳体内自由浮动。壳体和管束对热膨胀是自由的,故当两种介质的温差较大时,管束与壳体之间不会产 生温差应力。浮头端设计成可拆结构,使管束可以容易地插入或抽出,这样为检修和清洗提 供了方便。这种形式的换热器特别适用于壳体与换热管温差应力较大,而且要求壳程与管程 都要进行清洗的工况。 浮头式换热器的缺点是结构复杂,价格较贵,而且浮头端小盖在操作时无法知道泄漏情况, 所以装配时一定要注意密封性能 U形管式换热器

上图为双壳程U形管式换热器。U形管式换热器是将换热管弯成U形,管子两端固定在同 一块管板上。由于换热管可以自由伸缩,所以壳体与换热管无温差应力。因U形管式换热 器仅有一块管板,所以结构较简单,管束可从壳体内抽出,壳侧便于清洗,但管内清洗稍困难,所以管内介质必须清洁且不易结垢。U形管式换热器一般用于高温高压情况下,尤其是 壳体与换热管金属壁温差较大时。 壳程可设置纵向隔板,将壳程分为两程(如图中所示)。 填料函式换热器 上图为填料函式双管程双壳程换热器,填料函式换热器的换热管束可以自由滑动,壳侧介质靠填料密封。对于一些壳体与管束温差较大,腐蚀严重而需经常更换管束的换热器,可采用填料函式换热器。它具有浮头换热器的优点,又克服了固定管板式换热器的缺点,结构简单, 制造方便,易于检修清洗。 填料函式换热器的缺点:使用直径小;不适于高温、高压条件下;壳程介质不适于易挥发、易燃、易爆、有毒等介质 方形壳体翅片管换热器:

板式换热器结构

板式换热器主要部分是由换热板片、密封胶垫、夹紧板、导杆、夹紧螺栓组成。换热板片是由不锈钢板压制成型,太上面开有4个流道孔,中部压成人字形波纹,四周压有密封樔。密封樔内粘有密封胶垫。换热板片通过两导杆定位对齐,两夹紧板通过加紧螺栓将各板片压紧,从而形成换热器内强换热流道。相邻换热板片的人字形波纹方向安装时相反,接触点彼此相互支撑。人字形波纹和这些支撑点使流体介质在其内部流动时充分形成湍流,这是板式换热器具有很高换热效率的主要原因。另外换热板片厚度较薄,导热热阻较小,板片两侧的流体介质流动分布较为均衡,也使得传热较为充分。 艾瑞德板式换热器(江阴)有限公司作为专业的可拆式板式换热器生产商和制造商,专注于可拆式板式换热器的研发与生产。ARD艾瑞德专业生产可拆式板式换热器(PHE)、换热器密封垫(PHEGASKET)、换热器板片(PHEPLATE)并提供板式换热器维护服务(PHEMAINTENANCE)的专业换热器厂家。 ARD艾瑞德拥有卓越的设计和生产技术以及全面的换热器专业知识,一直以来ARD致力于为全球50多个国家和地区的石油、化工、工业、食品饮料、电力、

冶金、造船业、暖通空调等行业的客户提供高品质的板式换热器,良好地运行于各行业,ARD已发展成为可拆式板式换热器领域卓越的厂家。 ARD艾瑞德同时也是板式换热器配件(换热器板片和换热器密封垫)领域专业的供应商和维护商。能够提供世界知名品牌(包括:阿法拉伐/AlfaLaval、斯必克/SPX、安培威/APV、基伊埃/GEA、传特/TRANTER、舒瑞普/SWEP、桑德斯/SONDEX、艾普尔.斯密特/API.Schmidt、风凯/FUNKE、萨莫威孚/Thermowave、维卡勃Vicarb、东和恩泰/DONGHWA、艾克森ACCESSEN、MULLER、FISCHER、REHEAT等)的所有型号将近2000种的板式换热器板片和垫片,ARD艾瑞德实现了与各品牌板式换热器配件的完全替代。全球几十个国家的板式换热器客户正在使用ARD提供的换热器配件或接受ARD的维护服务(包括定期清洗、维修 及更换配件等维护服务)。 无论您身在何处,无论您有什么特殊要求,ARD都能为您提供板式换热器领域的系统解决方案。

气液分离器的原理

气液分离器采用的分离结构很多,其分离方法也有: 1、重力沉降; 2、折流分离; 3、离心力分离; 4、丝网分离; 5、超滤分离; 6、填料分离等。 但综合起来分离原理只有两种: 一、利用组分质量(重量)不同对混合物进行分离(如分离方法 1、2、3、6)。气体与液体的密度不同,相同体积下气体的质量比液体的质量小。 二、利用分散系粒子大小不同对混合物进行分离(如分离方法4、5)。液体的分子聚集状态与气体的分子聚集状态不同,气体分子距离较远,而液体分子距离要近得多,所以气体粒子比液体粒子小些。 一、重力沉降 1、重力沉降的原理简述 由于气体与液体的密度不同,液体在与气体一起流动时,液体会受到重力的作用,产生一个向下的速度,而气体仍然朝着原来的方向流动,也就是说液体与气体在重力场中有分离的倾向,向下的液体附着在壁面上汇集在一起通过排放管排出。 2、重力沉降的优缺点 优点: 1)设计简单。 2)设备制作简单。

3)阻力小。 缺点: 1)分离效率最低。 2)设备体积庞大。 3)占用空间多。 3、改进 重力沉降的改进方法: 1)设置内件,加入其它的分离方法。 2)扩大体积,也就是降低流速,以延长气液混合物在分离器内停留的时间。 1)设计简单。 2)设备制作简单。 3)阻力小。 缺点: 1)分离效率最低。 2)设备体积庞大。 3)占用空间多。 3、改进 重力沉降的改进方法: 1)设置内件,加入其它的分离方法。 2)扩大体积,也就是降低流速,以延长气液混合物在分离器内停留的时间。

优点:4、由于气液混合物总是处在重力场中,所以重力沉降也广泛存在。由于重力沉降固有的缺陷,使科研人员不得不开发更高效的气液分离器,于是折流分离与离心分离就出现了。 二、折流分离 1、折流分离的原理简述 由于气体与液体的密度不同,液体与气体混合一起流动时,如果遇到阻挡,气体会折流而走,而液体由于惯性,继续有一个向前的速度,向前的液体附着在阻挡壁面上由于重力的作用向下汇集到一起,通过排放管排出。 2、折流分离的优缺点 优点: 1)分离效率比重力沉降高。 2)体积比重力沉降减小很多,所以折流分离结构可以用在(高)压力容器内。 3)工作稳定。 缺点: 1)分离负荷范围窄,超过气液混合物规定流速后,分离效率急剧下降。 2)阻力比重力沉降大。 3、改进 从折流分离的原理来说,气液混合物流速越快,其惯性越大,也就是说气液分离的倾向越大,应该是分离效率越高,而实际情况却恰恰相反,为什么呢? 究其原因: 1)在气液比一定的情况下,气液混合物流速越大,说明单位时间内分离负荷越重,混合物在分离器内停留的时间越短。 2)气体在折流的同时也推动着已经着壁的液体向着气体流动的方向流动,如果液体流到收集壁的边缘时还没有脱离气体的这种推动力,那么已经着壁的液体将被气体重新带走。在气液比一定的情况下,气液混合物流速越大,气体这种继续推动液体的力将越大,液体将会在更短的时间内

制冷用气液分离器设计

制冷用气液分离器设计 1、气液分离器的作用 ●把从蒸发器返回到压缩机的冷媒分离成气体和液体,使气体回到压缩机,从而避免液态制冷剂进入压缩机破坏润滑或损坏涡旋盘。(单冷机在低温工况下验证,热泵以融霜时验证(相当于人低温工况)) ●使气液分离器中的润滑油回到压缩机。 2、有效容积计算 ●理论计算法 气液分离器出口管入口到底部的容积,见图3,气液分离器简图。 V =【(最大制冷剂注入量÷ρ】×0.8以上 注:最大制冷剂注入量(单位:kg): 压缩机和气液分离器置于室外分体机:室外机制冷剂注入量+最长配管时的追加制冷剂注入量。 压缩机和气液分离器置于室内分体机:整机注入量+最长配管时的追加制冷剂注入量。最大制冷剂注入量要考虑到系统允许的油重比,在不符合压缩机规格书的情况下,必须与压机厂家做沟通并书面确认。 ρ:密度(单位:kg/L):制冷剂在0℃饱和液态情况下的比重,R22:1.28;R410A 为1.18;R134a:1.3;R407C:1.27。 0.8为安全系数。由于高压腔压缩机抗液击能力差,所以当选用高压腔压缩机时需要与压机厂家进行充分的沟通。 ●估算法 按照系统总体制冷剂充注量的50%确定气液分离器的容积,以保证冬季运行工况切换时系统运行的安全性。(指有效容积,压缩机厂家建议有效容积占比不大于总容积的70%) 3、直径设计

在设计气液分离器时,要求气液分离器的直径D应能满足制冷剂从蒸发器返回至分离器时,通过扩容减速使最大的稳定流速ω不超过0.75m/s,即ω≤ 0.75m/s,以保证气液充分分离。气液分离器直径D可通过如下公式来计算: 式中D —气液分离器直径,m; Vi—吸气比容,m3/kg; Gm—制热运行时最高蒸发温度下的质量流量,kg/s; ω—最大稳定流速,m/s; 4、气液分离器均压孔的设计 均压孔的作用是当压缩机停止时,如果没有均压孔,气液分离器中的液态冷媒向压缩机移动,当压缩机再次起动时将进行液压缩,导致压缩机损坏。 当压缩机运转时,大量的气体冷媒通过吸气管回到压缩机,只有少量的液体冷媒和油通过回油孔,均压孔不起作用。当压缩机停止瞬间,由于吸入管内外压力差的原因,气液分离器内部的液态冷媒将会通过回油孔回到压缩机,在压缩机下次启动时,造成压缩机液击。因此,必须设置均压孔,当压缩机停止时,根据连通器原理吸气管内外压力一致,冷媒液面保持水平,不发生冷媒液体返回压缩机。 气液分离器出口管的均压孔径是按以下计算的。 均压管孔径面积(mm2) = 出口管外径横截面积(mm2) × (0.03~0.033) 注:最终的均压孔径的计算,还是根据实验来决定的。 气液分离器的液态制冷剂在积存量固定的状态下停压缩机时,液态制冷剂是不会流入压缩机内的。在气液分离器回到压缩机之间安装视液镜进行确认。 案例: 设计条件:出口管外径:φ22.3 均压管孔径面积(mm2) = {1/4×3.14×(22.32)2}×0.03= 11.71 均压孔径φ(mm) =( 11.71÷(1/4×3.14))0.5= 3.9 初步采用φ4.0的均压孔,后用试验进行确认。

气-液分离器设计[1]

标准 T/ES220020-2005 中国石化集团宁波工程有限公司 气—液分离器设计 2005-04-15 发布 2005-05-01 实施

中国石化宁波工程有限公 司 目次 1 总则 1.1 目的 1.2 范围 1.3 编制本标准的依据 2 立式和卧式重力分离器设计 2.1应用范围 2.2 立式重力分离器的尺寸设计 2.3 卧式重力分离器的尺寸设计 2.4 立式分离器(重力式)计算举例 2.5附图 3 立式和卧式丝网分离器设计 3.1 应用范围 3.2 立式丝网分离器的尺寸设计 3.3 卧式丝网分离器的尺寸设计 3.4 计算举例 3.5 附图 4 符号说明

1 总则 1.1 目的 本标准适用于工艺设计人员对两种类型的气—液分离器设计,即立式、卧式重力 分离器设计和立式、卧式丝网分离器设计。并在填写石油化工装置的气—液分离器数据表时使用。 1.2 范围 本标准适用于国内所有化工和石油化工装置中的气-液分离器的工程设计。 1.3 编制本标准的依据: 化学工程学会《工艺系统工程设计技术规定》HG/T20570.8-1995第8篇气—液分离器设计。 2 立式和卧式重力分离器设计 2.1 应用范围 2.1.1 重力分离器适用于分离液滴直径大于200μm 的气液分离。 2.1.2 为提高分离效率,应尽量避免直接在重力分离器前设置阀件、加料及引起物料的转向。 2.1.3 液体量较多,在高液面和低液面间的停留时间在6~9min ,应采用卧式重力分离器。 2.1.4 液体量较少,液面高度不是由停留时间来确定,而是通过各个调节点间的最小距离100mm 来加以限制的,应采用立式重力分离器。 2.2 立式重力分离器的尺寸设计 2.2.1 分离器内的气速 2.2.1.1 近似估算法 5 .0ρρρ=G G L s t K V (2.2.1—1) 式中 V t ——浮动(沉降)流速,m/s ; ρL 、ρG ——液体密度和气体密度,kg/m 3; K S ——系数 d * =200μm 时,K S =0.0512; d *=350μm 时,K S =0.0675。

油气分离器设计计算

摘要 为了满足油气井产品计量、矿场加工、储存和管道输送的需要,气、液混合物要进行气液分离。本文是某低温集气站中分离器的设计与计算,选用立式分离器与旋风式两种。立式分离器是重力式分离器的一种,其作用原理是利用生产介质和被分离物质的密度差来实现基本分离。旋风式分离器的分离原理是由于气、液质量不同,两相在分离器筒内所产生的离心力不同,液滴被抛向筒壁聚集成较大液滴,在重力作用下沿筒壁向下流动,从而完成气液两相分离。分离器的尺寸设计根据气液混合物的压力﹑温度以及混合物本身的性质计算确定。最后确定分离器的直径、高度、进出口直径。 关键词:立式两相分离器旋风式分离器直径高度进出口直径 广安1#低温集气站的基本资料: 出站压力:6MPa 天然气露点:5C <-?

气体组成(%):C 1=85.33 C 2=2.2 C 3=1.7 C 4=1.56 C 5 =1.23 C 6=0.9 H 2S=6.3 CO 2=0.78 凝析油含量:320/g m 0.78l S = 1. 压缩因子的计算 ① 天然气的相对分子质量 ∑=iMi M ? 式中 M ——天然气的相对分子质量; i ?——组分i 的体积分数; Mi ——组分i 的相对分子质量。 则计算得, M=20.1104 ② 天然气的相对密度 天然气的相对密度用S 表示,则有: S= 空 天 M M 式中 M 天、M 空分别为天然气的相对分子质量。 已知:M 空=28.97 所以,天然气相对密度S= 空 天 M M =20.1104/28.97=0.694 ③ 天然气的拟临界参数和拟对比参数 对于凝析气藏气: 当 0.7S < 时,拟临界参数: 4.7780.248106.1152.21pc pc P S T S =-=+ 计算得,

板式换热器的技术原理和结构特点

板式换热器的技术原理和结构特点 板式换热器是由一系列具有一定波纹形状的金属片叠装而成的一种新型高效换 热器。可拆卸板式换热器是其中的一个类型。下面让我们来学习一下可拆卸板式换热器的结构原理。 可拆卸板式换热器是由许多冲压有波纹薄板按一定间隔,四周通过垫片密封,并用框架和压紧螺旋重叠压紧而成,板片和垫片的四个角孔形成了流体的分配管和汇集管,同时又合理地将冷热流体分开,使其分别在每块板片两侧的流道中流动,通过板片进行热交换。 艾瑞德板式换热器(江阴)有限公司作为专业的可拆式板式换热器生产商和制造商,专注于可拆式板式换热器的研发与生产。ARD艾瑞德专业生产可拆式板式换热器(PHE)、换热器密封垫(PHEGASKET)、换热器板片(PHEPLATE)并提供板式换热器维护服务(PHEMAINTENANCE)的专业换热器厂家。 ARD艾瑞德拥有卓越的设计和生产技术以及全面的换热器专业知识,一直以来ARD致力于为全球50多个国家和地区的石油、化工、工业、食品饮料、电力、

冶金、造船业、暖通空调等行业的客户提供高品质的板式换热器,良好地运行于各行业,ARD已发展成为可拆式板式换热器领域卓越的厂家。 ARD艾瑞德同时也是板式换热器配件(换热器板片和换热器密封垫)领域专业的供应商和维护商。能够提供世界知名品牌(包括:阿法拉伐/AlfaLaval、斯必克/SPX、安培威/APV、基伊埃/GEA、传特/TRANTER、舒瑞普/SWEP、桑德斯/SONDEX、艾普尔.斯密特/API.Schmidt、风凯/FUNKE、萨莫威孚 /Thermowave、维卡勃Vicarb、东和恩泰/DONGHWA、艾克森ACCESSEN、MULLER、FISCHER、REHEAT等)的所有型号将近2000种的板式换热器板片和垫片,ARD艾瑞德实现了与各品牌板式换热器配件的完全替代。全球几十个国家的板式换热器客户正在使用ARD提供的换热器配件或接受ARD的维护服务(包括定期清洗、维修及更换配件等维护服务)。 无论您身在何处,无论您有什么特殊要求,ARD都能为您提供板式换热器领域的系统解决方案。 板式换热器特点 高效节能:其换热系数在3000~4500kcal/m2·°C·h,比管壳式换热器的热效率高3~5倍。

LPG气液分离器原理

气液分离器的工作原理 饱和气体在降温或者加压过程中,一部分可凝气体组分会形成小液滴·随气体一起流动。 气液分离器作用就是处理含有少量凝液的气体,实现凝液回收或者气相净化。 其结构一般就是一个压力容器,内部有相关进气构件、液滴捕集构件。 一般气体由上部出口,液相由下部收集。 汽液分离罐是利用丝网除沫,或折流挡板之类的内部构件,将气体中夹带的液体进一步凝结,排放,以去除液体的效果。 基本原理是利用气液比重不同,在一个突然扩大的容器中,流速降低后,在主流体转向的过程中,气相中细微的液滴下沉而与气体分离,或利用旋风分离器,气相中细微的液滴被进口高速气流甩到器壁上,碰撞后失去动能而与转向气体分离。 QQ截图未命名.gif (93.74 KB) 分离器的结构与原理相辅相成,分离器不止是分离气液也分离气固,如旋风除尘器原理是利用离心力分离气体中的固体. 气液分离器,根据分离器的类型不同,有旋涡分离,折留板分离,丝网除沫器, 旋涡分离主要是根据气体和液体的密度,做离心运动时,液体遇到器壁冷凝分离。 基本都是利用沉降原理的,瞬间扩大管道半径,造成压降,温度等的变化,达到分离的目的. 使用气液分离器一般跟后系统有关,因为气体降温减压后会出现部分冷凝而后系统设备处理需要纯气相或液相,所以

主反应后装一个气液分离器静止分离出气相和液相给后系统创造条件。。。 工厂里常见的气液分离器是利用闪蒸的原理,闪蒸就是介质进入一个大的容器,瞬间减压气化并实现气液分离,出口气相中含饱和水,而游离的水和比重大的液滴会由于重力作用分离出来,另外分离器一般带捕雾网,通过捕雾网可将气相中部分大的液滴脱除。 气液分离器无非就是让互相混杂的气相液相各自聚合成股,液滴碰撞聚结,气体除去液滴后上升,从而达到分离的目的。 原理是利用气液比重不同,在一个突然扩大的容器中,流速降低后,在主流体转向的过程中,气相中细微的液滴下沉而与气体分离,或利用旋风分离器,气相中细微的液滴被进口高速气流甩到器壁上,碰撞后失去动能而与转向气体分离。算过一个气液分离器就是一个简单的压力容器,里面有相应的除沫器一清除雾滴。 气液分离器其基本原理是利用惯性碰撞作用,将气相中夹带的液滴或固体颗粒捕集下来,进而净化气相或获得液相及固相。其为物理过程,常见的形式有丝网除雾器、旋流板除雾器、折板除雾器等。 单纯的气液分离并不涉及温度和压力的关系,而是对高速气流(相对概念)夹带的液体进行拦截、吸收等从而实习分离,旋流挡板等在导流的同时,为液体的附着提供凭借,就好像空气中的灰尘要有物体凭借才能停留下来一样。而不同分离器在设计时,还优化了分离性能,如改变温度、压力、流速等 气液分离是利用在制定条件下,气液的密度不同而造成的分离。 我觉得较好的方法是利用不同的成分其在不同的温度或压力下熔沸点的差异,使其发生相变,再通过不同相的物理性质的差异进行分离 饱和气体在降温或者加压过程中,一部分可凝气体组分会形成小液滴·随气体一起流动。 气液分离器作用就是处理含有少量凝液的气体,实现凝液回收或者气相净化。 其结构一般就是一个压力容器,内部有相关进气构件、液滴捕集构件。 一般气体由上部出口,液相由下部收集。 化工厂中的分离器大都是丝网滤分离气液,这种方法属于机械式分离,原理就是气体分子小可以通过丝网空隙,而液态分子大,被阻分离开, 还有一种属于螺旋式分离,气体夹带的液体由分离器底部螺旋式上升,液体被碰撞“长大”最终依靠重力下降,有时依靠降液管引至分离器底部 气液分离器,出气端一般在上,因为比重低,内部空气被抽离,或在出气端连气泵 而液体经旋转,再次冷凝下降从下部排出 利用气体与液体的密度不同。。从而将气体与液体进行隔离开来 1、气液分离器有多种形式。 2、主要原理是:根据气液比重不同,在较大空间随流速变化,在主流体转向的过程中,气相中细微的液滴

空调气液分离器的设计与使用

空调气液分离器的设计与使用 一、工作原理 二、气液分离器的作用 三、气液分离器的安装位置 四、气液分离器的容积设计 五、气液分离器回油孔的设计 六、气液分离器均压孔的设计 七、气液分离器评价试验步骤和判定标准 八、气液分离器的图纸 九、气液分离器设计和使用的雷区 十、气液分离器的选型对照表 十一、气液分离器错误的安装引起的故障(案例)

一、工作原理 饱和气体在降温或者加压过程中,一部分可凝气体组分会形成小液滴·随气体一起流动。 气液分离器就是处理含有少量凝液的气体,实现凝液回收或者气相净化。 其结构一般就是一个压力容器,内部有相关进气构件、液滴捕集构件。 一般气体由上部出口,液相由下部收集。 气液分离罐是利用丝网除沫,或折流挡板之类的内部构件,将气体中夹带的液体进一步凝结,排放,以去除液体的效果。 基本原理是利用气液比重不同,在一个突然扩大的容器中,流速降低后,在主流体转向的过程中,气相中细微的液滴下沉而与气体分离,或利用旋风分离器,气相中细微的液滴被进口高速气流甩到器壁上,碰撞后失去动能而与转向气体分离。 下图是空调使用的气液分离器

二、气液分离器的作用 1. 把从蒸发器返回到压缩机的冷媒分离成气体和液体,仅使气体回到压缩机,从而避免液态制冷剂进入压缩机破坏润滑或者损坏涡旋盘。(以防止压缩机液击。) 2. 使气液分离器中的润滑油回到压缩机,它可以暂时储存多余的制冷剂液体,并且也防止了多余制冷剂流到压缩机曲轴箱造成油的稀释。因为在分离过程中,冷冻油也会被分离出来并积存在底部,所以在气液分离器出口管和底部会有一个油孔,保证冷冻油可以回到压缩,从而避免压缩机缺油。 注:①如果能保证蒸发器出口的冷媒总是气体的状态,也可以取消气液分离器。 ②原则上讲,所有的热泵产品都应该增加气液分离器,单冷机型视情况决定,一般建议使用。 3. 一般情况下12000W制冷量(5匹及以上的空调)需要气液分离器,而涡旋压缩机本身不带储液罐,则另外要增加气液分离器,旋转式压缩机本身就带有储液罐。 旋转式压缩机涡旋压缩机

换热器的结构和分类

换热器的结构和分类 换热器的分类 按用途分类: 加热器、冷却器、冷凝器、蒸发器和再沸器 按冷热流体热量交换方式分类: 混合式、蓄热式和间壁式 主要内容: 1. 根据工艺要求,选择适当的换热器类型; 2. 通过计算选择合适的换热器规格。 间壁式换热器的类型 一、夹套换热器 结构:夹套式换热器主要用于反应过程的加热或冷却,是在容器外壁安装夹套制成。 优点:结构简单。 缺点:传热面受容器壁面限制,传热系数小。为提高传热系数且使釜内液体受热均匀,可在釜内安装搅拌器。也可在釜内安装蛇管。

二、沉浸式蛇管换热器 结构:这种换热器多以金属管子绕成,或制成各种与容器相适应的情况,并沉浸在容器内的液体中。 优点:结构简单,便于防腐,能承受高压。 缺点:由于容器体积比管子的体积大得多,因此管外流体的表面传热系数较小。

三、喷淋式换热器 结构:冷却水从最上面的管子的喷淋装置中淋下来,沿管表面流下来,被冷却的流体从最上面的管子流入,从最下面的管子流出,与外面的冷却水进行换热。在下流过程中,冷却水可收集再进行重新分配。 优点:结构简单、造价便宜,能耐高压,便于检修、清洗,传热效果好

缺点:冷却水喷淋不易均匀而影响传热效果,只能安装在室外。 用途:用于冷却或冷凝管内液体。 四、套管式换热器 结构:由不同直径组成的同心套管,可根据换热要求,将几段套管用U形管连接,目的增加传热面积;冷热流体可以逆流或并流。 优点:结构简单,加工方便,能耐高压,传热系数较大,能保持完全逆流使平均对数温差最大,可增减管段数量应用方便。 缺点:结构不紧凑,金属消耗量大,接头多而易漏,占地较大。 用途:广泛用于超高压生产过程,可用于流量不大,所需传热面积不多的场合。 五、列管式换热器 列管式换热器又称为管壳式换热器,是最典型的间壁式换热器,历史悠久,占据主导作用。 优点:单位体积设备所能提供的传热面积大,传热效果好,结构坚固,可选用的结构材料范围宽广,操作弹性大,大型装置中普遍采

板式换热器内部结构

1.板式换热器简介板式换热器是由一系列具有一定波纹形状的金属片叠装而成的一种新型高效换热器。各种板片之间形成薄矩形通道,通过半片进行热量交换。它与常规的管壳式换热器相比,在相同的流动阻力和泵功率消耗情况下,其传热系数要高出很多,在适用的范围内有取代管壳式换热器的趋势。板式换热器的型式主要有框架式(可拆卸式)和钎焊式两大类,板片形式主要有人字形波纹板、水平平直波纹板和瘤形板片三种。1.1板式换热器的基本结构板式换热器主要由框架和板片两大部分组成。板片由各种材料的制成的薄板用各种不同形式的磨具压成形状各异的波纹,并在板片的四个角上开有角孔,用于介质的流道。板片的周边及角孔处用橡胶垫片加以密封。框架由固定压紧板、活动压紧板、上下导杆和夹紧螺栓等构成。板式换热器是将板片以叠加的形式装在固定压紧板、活动压紧板中间,然后用夹紧螺栓夹紧而成。1.2板式换热器的特点(板式换热器与管壳式换热器的比较)a.传热系数高由于不同的波纹板相互倒置,构成复杂的流道,使流体在波纹板间流道内呈旋转三维流动,能在较低的雷诺数(一般Re=50~200)下产生紊流,所以传热系数高,一般认为是管壳式的3~5倍。 b.对数平均温差大,末端温差小在管壳式换热器中,两种流体分别在管程和壳程内流动,总体上是错流流动,对数平均温差修正系数小,而板式换热器多是并流或逆流流动方式,其修正系数也通常在0.95左右,此外,冷、热流体在板式换热器内的流动平行于换热面、无旁流,因此使得板式换热器的末端温差小,对水换热可低于1℃,而管壳式换热器一般为5℃. c.占地面积小板式换热器结构紧凑,单位体积内的换热面积为管壳式的2~5倍,也不像管壳式那样要预留抽出管束的检修场所,因此实现同样的换热量,板式换热器占地面积约为管壳式换热器的1/5~1/10。d.容易改变换热面积或流程组合,只

气液分离器设计

气—液分离器设计 2005-04-15 发布2005-05-01 实施

目次 1 总则 1.1 目的 1.2 范围 1.3 编制本标准的依据 2 立式和卧式重力分离器设计 2.1应用范围 2.2 立式重力分离器的尺寸设计 2.3 卧式重力分离器的尺寸设计 2.4 立式分离器(重力式)计算举例 2.5附图 3 立式和卧式丝网分离器设计 3.1 应用范围 3.2 立式丝网分离器的尺寸设计3.3 卧式丝网分离器的尺寸设计 3.4 计算举例 3.5 附图 4 符号说明

1 总则 1.1 目的 本标准适用于工艺设计人员对两种类型的气—液分离器设计,即立式、卧式重力 分离器设计和立式、卧式丝网分离器设计。并在填写石油化工装置的气—液分离器数据表时使用。 1.2 范围 本标准适用于国内所有化工和石油化工装置中的气-液分离器的工程设计。 1.3 编制本标准的依据: 化学工程学会《工艺系统工程设计技术规定》HG/T20570.8-1995第8篇气—液分离器设计。 2 立式和卧式重力分离器设计 2.1 应用范围 2.1.1 重力分离器适用于分离液滴直径大于200μm 的气液分离。 2.1.2 为提高分离效率,应尽量避免直接在重力分离器前设置阀件、加料及引起物料的转向。 2.1.3 液体量较多,在高液面和低液面间的停留时间在6~9min ,应采用卧式重力分离器。 2.1.4 液体量较少,液面高度不是由停留时间来确定,而是通过各个调节点间的最小距离100mm 来加以限制的,应采用立式重力分离器。 2.2 立式重力分离器的尺寸设计 2.2.1 分离器内的气速 2.2.1.1 近似估算法 5 .0? ??? ??-=G G L s t K V ρ ρρ (2.2.1—1) 式中 V t ——浮动(沉降)流速,m/s ; ρL 、ρG ——液体密度和气体密度,kg/m 3; K S ——系数 d * =200μm 时,K S =0.0512; d *=350μm 时,K S =0.0675。 近似估算法是根据分离器内的物料流动过程,假设Re =130,由图2.5.1—1查得相应的

板式换热器的设计

; 广西科技大学 化工原理课程设计 设计题目: 固定管板式换热器的设计. 姓名: 专业:食品科学与工程 》 班级:食品112班 学号: 2071 起止日期: 2013-12-23 — 2013-12-31 《 指导教师(签名):程谦伟 小组成员:陈小娟李岳群陆惠芝钟承志 韦年茂韦金妹饶川艳周萃妤 》 设计成绩:日期 2013 12 25

目录 设计题目 (3) 说明书编写要求 (3) 设计任务书 (4) 一、设计方案 (5) | 1.换热器的选择 (6) 2.结构设计工艺流程 (7) 3.流动空间及流速的确定 (8) 二、确定物性数据 (9) 三、计算总传热系数 (9) 1.热流量 (9) 2.平均传热温差 (9) 3.冷却水用量 (9) : 4.总传热系数K (10) 四、计算换热面积 (11) 五、工艺结构尺寸 (11) 1.管径和管内流速 (11) 2.管程数和传热管数 (11) 3.平均传热温差校正及壳程数 (12) 4.传热管排列和分程方法 (12) 5.壳体内径 (12) ~ 6.接管 (13) 六、换热器核算 (13) 1.热量核算 (14) 2.换热器内流体的流动阻力 (15) 3.换热器主要结构尺寸和计算结果 (16) 设备结构图(附图) (17) 主要符号说明 (17) 七、设计评述 (18) … 参考文献 (19) 评语 (21)

广西科技大学 化工原理课程设计 … 说明书 设计题目:大豆油换热器的设计 说明书编写要求: 化工原理课程设计由说明书和图纸两部分组成。设计说明书为打印稿,包括所有论述、原始数据、计算、表格等,设计说明书一般不少于3000字,设计(论文)任务书装订于说明书的前页,其设计说明书具体书写格式及内容如下: 1、标题页 2、设计任务书 3、目录 4、设计方案简介 ] 5、工艺流程草图及说明 6、工艺计算及主体设备设计 7、辅助设备的计算及选型 8、设计结果概要或设计一览表 9、对本设计的评述 10、附图(带控制点的工艺流程简图、主体设备设计条件图) 11、参考文献 12、主要符号说明 。

相关文档