文档库 最新最全的文档下载
当前位置:文档库 › 多元函数积分学(上)

多元函数积分学(上)

多元函数积分学(上)
多元函数积分学(上)

重积分测验题

一、选择题(每小题4分) 1、设??????+=+=+=

D

D

D

dxdy y x I dxdy y x I

dxdy y x I )(,)(,)ln(322

1,其中D 是由直线

1,2

1

,0,0=+=

+==y x y x y x 所围成的区域,则321,,I I I 的大小顺序为_________. A 、123I I I << B 、321I I I << C 、231I I I << D 、213I I I << 2、设??

=1

21

sin y

dx x dy I ,则I 等于___________.

A 、

)1cos 1(2

1

- B 、1cos 1- C 、1sin 1+ D 、积不出来 3、设

,),(),(10

10

?

???-=x

D

dy y x f dx dxdy y x f 则改变其积分次序后应为_________.

A 、

??

-1

10

),(dx y x f dy x

B 、?

?-x

dx y x f dy 101

),( C 、

??

1

1

),(dx y x f dy D 、?

?-y

dx y x f dy 10

1

),(

4、设0,:22221≥≤++Ωz R z y x 及0,0,0,:22222≥≥≥≤++Ωz y x R z y x 则___. A 、??????ΩΩ=2

1

4xdv xdv B 、??????ΩΩ=2

1

4ydv ydv

C 、

??????ΩΩ=2

1

4zdv zdv D 、??????ΩΩ=2

1

4xyzdv

xyzdv

5、

Ω是由曲面1,0,,22===+=z y x y y x z 在第一卦限所围成的区域,),,(z y x f 在Ω

上连续,则

???Ω

dv z y x f ),,(=__________.

A 、

??

?

+-1

11

2

2

2

),,(y x y y

dz z y x f dx dy B 、??

?

+-1

12

20

2

2

2

),,(y x x x

dz z y x f dy dx

C 、

??

?

+-1

12

2

2

2

2

),,(y x y y

dz z y x f dx dy D 、???+1

10

2

2

),,(y x y

dz z y x f dx dy

二、填空题(每小题4分) 1、由二重积分的几何意义得到

=??≤+1

43

22y x d σ

2、二重积分

??

D

xydxdy 的值为__________,其中.10,0:2

≤≤≤≤x x y D

3、设区域D 是122≤+y x 与x y x 222≤+的公共部分,试写出??D

dxdy y x f ),(在极坐标

系下的累次积分__________________________. 4、设,0,4:22≥≤+y y x D 则二重积分=??dxdy y x

D

)sin(23

_______________.

5、交换积分次序

=?

?-221

),(y y

dx y x f dy ___________________

三、计算题(每小题9分)

1、计算二重积分

??+D

dxdy

y x

)(22

,其中D 是由曲线2

x y =与直线x y =所围成的区域。

2、

??--D

dxdy y x )4(22,其中4:2

2≤+y x D 。 3、计算二重积分??-1

10

2

x

y

dy

e dx 。

4、dy y x x dx x

??

+-0

2210

1。

5、计算

dxdydz z ???

Ω

2

,其中0,:2222≥≤++Ωz R z y x 。 6、求曲面z y x =+22,4:22=+y x D 及xoy 平面所围成的立体体积。 四、证明题(本题6分)

设),(y x f 是连续函数,证明:??

?---=a

x a m y

x a m a dx x f e x a dx x f e dy

)(0

)(0

)()()(其中m a ,为

常数,且.0>a

第二部分

一、选择题(每小题3分,共15分)

1.设区域D 是221x y +≤在第一,四象限部分,(,)f x y 在D 上连续,则二重积分

(,)D

f x y dxdy =??( B )

(A )110

1

(,)dx f x y dy -??;(B )1

10

(,)dy f x y dx -?;

(C )1

2(,)dx f x y dy ?;

(D )1

20

2

(,)d f r rdr ππθθ-

??。 2.累次积分cos 20

(cos ,sin )d f r r rdr π

θ

θθθ??

又可写成( C )形式。

(A )1

1

(,)dx f x y dy ??;(B )1

(,)dy f x y dx ?;

(C )1

(,)dx f x y dy ?;

(D )1

(,)dy f x y dx ?。

3.若已知2

(sin )1dx xf y dy π

π=??,则20

(cos )f x dx π

=?( D )

(A )2π;(B )2π;(C )24π;(D )2

4

π。

4.设(,)f x y 是所给积分区域上的连续函数,则下列( B )等式成立。

(A )(,)(,)b

d

d

b

a

c

c

a

dx f x y dy dx f x y dy =????;(B )(,)(,)b

d

d

b

a

c

c

a

dx f x y dy dy f x y dx =????;

(C )()

()

()

()

(,)(,)b x x b a

x x a

dx f x y dy dy f x y dx φφ??=??

?

?(D )()

()

()

()

(,)(,)b x b y a

x a

y dx f x y dy dy f x y dx φφ??=??

??

5.设有空间区域22221:,0x y z R z Ω++≤≥及22222:,0,0,0x y z R x y z Ω++≤≥≥≥,则(C )

(A )1

2

4xdv xdv ΩΩ=??????;(B )1

2

4ydv ydv ΩΩ=??????;

(C )1

2

4zdv zdv ΩΩ=??????;(D )1

2

4xyzdv xyzdv ΩΩ=??????。

二、计算题(每小题6分,共30分)

1.计算D

xdxdy ??,其中D 是以(0,0),(1,2),(2,1)O A B 为顶点的三角形区域,。

解:D

xdxdy ??12231222010122333(3)222x x x x xdx dy xdx dy x dx x x dx -=+=+-=??????。

2.计算(||||)D

x y d σ+??,其中D 为:||||1x y +≤。

解:1

(||||)2||8D

D

D x y d x d xd σσσ+==??????(1:01,01D x y x ≤≤≤≤-)

111

4

88(1)3

x

xdx dy x x dx -==-=

??

?。 3

.计算D

,其中D :222(01)x y a a +≤<≤。

解:用极坐标222

0000a D

d πθππ===????

22200

(arcsin 1)a a a ππ??=-=+???

???。

4

.将三次积分1

111(,,)dx f x y z dz -??

化为柱面坐标系下的三次积分。

解:210

01(cos ,sin ,)r

d rdr f r r z dz π

θθθ???

三、计算222()x my nz dxdydz Ω

++???,其中2222:,,x y z a m n Ω++≤为常数。 解:以原点为中心的区域,由对称性有

所以222()x my nz dxdydz Ω

++???222x dxdydz m y dxdydz n z dxdydz Ω

Ω

Ω

=++?????????

四、(8分)计算由圆柱22x y ax +=所围成的柱体被球面2222x y z a ++=所截的立体的表面积。

解:由对称性知,整个表面积是上半部分的表面积的2倍。22[]A A A A ==+上上侧上顶

而上顶的方程为z

z z x y ??==??其中D 为圆柱在

xOy 上投影22x y ax +≤,所以

cos 2

2

22220

2

2

[[1|sin |]2sin (2)a a d a d a a

d a π

π

π

θ

ππθθθπθθπ--==-=-=-???

又上后侧A 上后侧

的方程为y =

0y y x z

??==??,由对称性,有

322

2a

a

a

dx a ===?

?

所以2222[2(2)]2A a a a ππ=+-=。

五、(8分)证明:由,,()x a x b y f x ===以及x 轴围成的平面图形绕x 轴旋转一周所形成的立体对x 轴的转动惯量(密度为1μ=)为4()2b

x a

I f x dx π

=?,其中()f x 为连续的正值函

数。

()f x ,设cos ,sin y r z r θθ==,则曲面的柱坐标方程为()r f x =。

4412()()42b

b

a a f x dx f x dx ππ

==??。 六、(8分)在底半径为R ,高为H 的圆锥体上,拼加一个同半径共底的半球,要使得整个立体的重心落在球心上,求R 和H 的关系(设立体的密度为μ)。

解:建立坐标系原点在球心,它们共同的底为xOy 面。

由对称性,立体重心落在z 轴上,其中1

zdv

z z dv M

dv

μΩ

Ω

Ω

=

=

?????????。

半球迷方程为z

z H ,则在柱坐标系下

2

2220

(3)012

R

H

r H

R

R zdv d rdr R H π

πθ-Ω

==

-=????

??

,从而H =。

七、(8分)曲面2224x y az a ++=将球体2224x y z az ++≤分成两部分,求这两部分的

体积比。

解:位于抛物面内侧部分的球体记作1V ,其体积为

2

233

001137

[2]2[2]6

d a r rdr ar r dr a a a πθππ==-+=?,则位于抛物面外侧的球体的体积3321427

(2)36

V a V a ππ=?-=,所以

12:37:27V V =。

八、(8分)湖泊体积及平均水深的估算。椭球正弦曲面是许多湖泊的湖床形状的很好

的近似。假定湖面的边界为椭圆22

221x y a b

+=,若湖的最大水深为max h ,则椭球正弦曲面由下

列函数给出:

其中22

221x y a b

+≤,现要求湖水的总体积V 及平均水深。

解:设D :22

221x y a b

+≤是湖面的椭圆区域,湖水的总体积为

由于被积函数与区域D 的特征相同,适合于推广的极坐标来计算,作代换

平均湖水深度为max max 2

|(,)|4[1]

42[1]D

f x y dxdy

abh h h S

ab ππππ

-=

=

=-??。

多元函数微分学知识点梳理

第九章 多元函数微分学 内容复习 一、基本概念 1、知道:多元函数的一些基本概念(n 维空间,n 元函数,二重极限,连续等);理解:偏导数;全微分. 2、重要定理 (1)二元函数中,可导、连续、可微三者的关系 偏导数连续?可微???函数偏导数存在 ?连续 (2)(二元函数)极值的必要、充分条件 二、基本计算 (一) 偏导数的计算 1、 偏导数值的计算(计算),(00y x f x ') (1)先代后求法 ),(00y x f x '=0),(0x x y x f dx d = (2)先求后代法(),(00y x f x '=00),(y y x x x y x f ==') (3)定义法(),(00y x f x '=x y x f y x x f x ?-?+→?),(),(lim 00000)(分段函数在分段点处的偏导数) 2、偏导函数的计算(计算(,)x f x y ') (1) 简单的多元初等函数——将其他自变量固定,转化为一元函数求导 (2) 复杂的多元初等函数——多元复合函数求导的链式法则(画树形图,写求导公式) (3) 隐函数求导 求方程0),,(=z y x F 确定的隐函数),(y x f z =的一阶导数,z z x y ???? ,,,(),,y x z z F F z z x y z x F y F x y x y z ''???=-=-?''????? 公式法:(地位平等)直接法:方程两边同时对或求导(地位不平等) 注:若求隐函数的二阶导数,在一阶导数的基础上,用直接法求。 3、高阶导数的计算 注意记号表示,以及求导顺序 (二) 全微分的计算 1、 叠加原理

用MATLAB算多元函数积分

用MATLAB 计算多元函数的积分 三重积分的计算最终是化成累次积分来完成的,因此只要能正确的得出各累次积分的积分限,便可在MA TLAB 中通过多次使用int 命令来求得计算结果。但三重积分的积分域Ω是一个三维空间区域,当其形状较复杂时,要确定各累次积分的积分限会遇到一定困难,此时,可以借助MATLAB 的三维绘图命令,先在屏幕上绘出Ω的三维立体图,然后执行命令 rotate3d on ↙ 便可拖动鼠标使Ω的图形在屏幕上作任意的三维旋转,并且可用下述命令将Ω的图形向三个坐标平面进行投影: view(0,0),向XOZ 平面投影; view(90,0),向YOZ 平面投影; view(0,90),向XOY 平面投影. 综合运用上述方法,一般应能正确得出各累次积分的积分限。 例11.6.1计算zdv Ω ???,其中Ω是由圆锥曲面222z x y =+与平面z=1围成的闭区域 解 首先用MA TLAB 来绘制Ω的三维图形,画圆锥曲面的命令可以是: syms x y z ↙ z=sqrt(x^2+y^2); ↙ ezsurf(z,[-1.5,1.5]) ↙ 画第二个曲面之前,为保持先画的图形不会被清除,需要执行命令 hold on ↙ 然后用下述命令就可以将平面z=1与圆锥面的图形画在一个图形窗口内: [x1,y1]=meshgrid(-1.5:1/4:1.5); ↙ z1=ones(size(x1)); ↙ surf(x1,y1,z1) ↙ 于是得到Ω的三维图形如图:

由该图很容易将原三重积分化成累次积分: 111zdv dy -Ω=???? 于是可用下述命令求解此三重积分: clear all ↙ syms x y z ↙ f=z; ↙ f1=int(f,z.,sqrt(x^2+ y^2),1); ↙ f2=int(f1,x,-sqrt(1- y^2), sqrt(1- y^2)); ↙ int(f2,y,-1,1) ↙ ans= 1/4*pi 计算结果为4 π 对于第一类曲线积分和第一类曲面积分,其计算都归结为求解特定形式的定积分和二重积分,因此可完全类似的使用int 命令进行计算,并可用diff 命令求解中间所需的各偏导数。 例11.6.2用MATLAB 求解教材例11.3.1 解 求解过程如下 syms a b t ↙ x=a*cos(t); ↙ y=a*sin(t); ↙ z=b*t; ↙ f=x^2 +y^2+z^2; ↙ xt=diff(x,t); ↙ yt=diff(y,t); ↙ zt=diff(z,t); ↙ int(f*sqrt(xt^2 +yt^2+zt^2),t,0,2*pi) ↙ ans= 2/3*( a^2 +b^2)^1/2*a^2*pi+8/3*( a^2 +b^2)^1/2*b^2*pi^3 对此结果可用factor 命令进行合并化简: factor (ans ) ans= 2/3*( a^2 +b^2)^1/2*pi*(3* a^2 +4*b^2*pi^2) 例11.6.3用MATLAB 求解教材例11.4.1 解 求解过程如下 syms x y z1 z2↙ f= x^2 +y^2; ↙ z1=sqrt(x^2 +y^2); ↙ z2=1; ↙ z1x=diff(z1,x); ↙ z1y=diff(z1,y); ↙ z2x=diff(z2,x); ↙ z2y=diff(z2,y); ↙

多元函数微分学练习题

多元函数微分学练习题 Company number:【0089WT-8898YT-W8CCB-BUUT-202108】

第五章(多元函数微分学) 练习题 一、填空题 1. (,)(0,0)sin()lim x y xy y →= . 2. 22 (,)(0,0)1lim ()sin x y x y x y →+=+ . 3. 1 (,)(0,0)lim [1sin()]xy x y xy →+= . 4. 设21sin(), 0,(,)0, 0x y xy xy f x y xy ?≠?=??=? 则(0,1)x f = . 5. 设+1(0,1)y z x x x =>≠,则d z = . 6. 设22ln(1)z x y =++,则(1,2)d z = . 7. 设u =d u = . 8. 若(,)f a a x ?=? ,则x a →= . 9. 设函数u =0(1,1,1)M -处的方向导数的最大值为 . 10. 设函数23u x y z =++,则它在点0(1,1,1)M 处沿方向(2,2,1)l =-的方向导数为 . 11. 设2z xy =,3l i j =+,则21x y z l ==?=? . 12. 曲线cos ,sin ,tan 2 t x t y t z ===在点(0,1,1)处的切线方程是 . 13. 函数z xy =在闭域{(,)0,0,1}D x y x y x y =≥≥+≤上的最大值是 . 14. 曲面23z z e xy -+=在点(1,2,0)处的切平面方程为 . 15. 曲面2:0x z y e -∑-=上点(1,1,2)处的法线方程是 . 16. 曲面22z x y =+与平面240x y z +-=平行的切平面方程是 .

多元函数微分学及应用(隐函数反函数)

习题课:多元函数求偏导,多元函数微分的应用 多元复合函数、隐函数的求导法 (1) 多元复合函数 设二元函数),(v u f z =在点),(00v u 处偏导数连续,二元函数),(),,(y x v v y x u u ==在点 ),(00y x 处偏导数连续, 并且),(),,(000000y x v v y x u u ==, 则复合函数 )),(),,((y x v y x u f z = 在点),(00y x 处可微,且 ()()()() x y x v v v u f x y x u u v u f x z y x ?????+?????= 00000000) ,(,,,,00??()()()() y y x v v v u f y y x u u v u f y z y x ?????+?????= 00000000) ,(,,,,00?? 多元函数微分形式的不变性:设),(),,(),,(y x v v y x u u v u f z ===,均为连续可微, 则将z 看成y x ,的函数,有 dy y z dx x z dz ??+??= 计算 y v v f y u u f y z x v v f x u u f x z ????+????=??????+????=??,,代人, dv v f du u f dy y v dx x v v f dy y u dx x u u f dy y v v f y u u f dx x v v f x u u f dy y z dx x z dz ??+??= ???? ????+????+???? ????+????=???? ??????+????+??? ??????+????=??+??= 我们将dv v f du u f dy y z dx x z dz ??+??=??+??= 叫做微分形式不变性。 例1 设??? ??=x y xy f x z , 3 ,求y z x z ????,。

多元函数微分学复习题及答案

多元函数微分学复习题 及答案 标准化管理部编码-[99968T-6889628-J68568-1689N]

第八章 多元函数微分法及其应用复习题及解答 一、选择题 1.极限lim x y x y x y →→+00 242 = ( B ) (A)等于0; (B)不存在; (C)等于 12; (D)存在且不等于0或12 (提示:令22y k x =) 2、设函数f x y x y y x xy xy (,)sin sin =+≠=?????110 00,则极限lim (,)x y f x y →→0 = ( C ) (A)不存在; (B)等于1; (C)等于0; (D)等于2 (提示:有界函数与无穷小的乘积仍为无穷小) 3、设函数f x y xy x y x y x y (,)=++≠+=???? ?22 2222000,则(,)f x y ( A ) (A) 处处连续; (B) 处处有极限,但不连续; (C) 仅在(0,0)点连续; (D) 除(0,0)点外处处连续 (提示:①在220x y +≠,(,)f x y 处处连续;②在0,0x y →→ ,令y kx = , 2000(0,0)x x y f →→→=== ,故在220x y +=,函数亦连续。所以, (,)f x y 在整个定义域内处处连续。) 4、函数z f x y =(,)在点(,)x y 00处具有偏导数是它在该点存在全微分的 ( A ) (A)必要而非充分条件; (B)充分而非必要条件; (C)充分必要条件; (D)既非充分又非必要条件 5、设u y x =arctan ,则??u x = ( B ) (A) x x y 22+; (B) -+y x y 22; (C) y x y 22+ ; (D) -+x x y 22

多元函数微分学习题课

多元函数微分学习题课 1.已知)(),(22y x y x y x y x f ++-=-+?,且x x f =)0,(,求出),(y x f 的表达式。 2.(1)讨论极限y x xy y x +→→00lim 时,下列算法是否正确?解法1:0111lim 00=+=→→x y y x 原式;解法2:令kx y =,01lim 0=+=→k k x x 原式;解法3:令θcos r x =,θsin r y =,0sin cos cos sin lim 0=+=→θθθθr r 原式。 (2)证明极限 y x xy y x +→→0 0lim 不存在。 3.证明 ?????=≠+=00 )1ln(),(x y x x xy y x f 在其定义域上处处连续。 4. 试确定 α 的范围,使 0|)||(|lim 22)0,0(),(=++→y x y x y x α 。 5. 设 ?? ???=+≠+++=000)sin(||),(22222222y x y x y x y x xy y x f ,讨论 (1)),(y x f 在)0,0(处是否连续? (2)),(y x f 在)0,0(处是否可微? 6. 设F ( x , y )具有连续偏导数, 已知方程0),(=z y z x F ,求dz 。 7. 设),,(z y x f u =有二阶连续偏导数, 且t x z sin 2=,)ln(y x t +=,求x u ??,y x u ???2。 8. 设)(u f z =,方程?+ =x y t d t p u u )()(?确定u 是y x ,的函数,其中)(),(u u f ?可微,)(),(u t p ?'连续,且 1)(≠'u ?,求 y z x p x z y p ??+??)()(。 9. 设22v u x +=,uv y 2=,v u z ln 2=,求y z x z ????,。 10.设),,(z y x f u =有连续的一阶偏导数 , 又函数)(x y y =及)(x z z =分别由下两式确定: 2=-xy e xy ,dt t t e z x x ?-=0sin ,求dx du 。 11. 若可微函数 ),(y x f z = 满足方程 y z x z y x '=',证明:),(y x f 在极坐标系里只是ρ的函数。

2多元函数积分学.docx

2.多元函数积分学 K考试内容》(数学一) 二重积分、三重积分的概念及性质二重积分与三重积分的计算和应用两类曲线积分的概念、性质及计算两类曲线积分的关系格林公式平面曲线积分与路径无关的条件己知全微分求原函数两类曲面积分的概念、性质及计算两类曲面积分的关系高斯公式斯托克斯公式散度、旋度的概念及计算曲线积分和曲面积分的应用 K考试要求》(数学一) 1 ?理解二重积分、三重积分的概念,了解重积分的性质,了解二重积分的中值定理。 2.掌握二重积分的计算方法(直角坐标、极坐标),会计算三重积分(直角坐标、柱面坐标、球面坐标)。 3?理解两类曲线积分的概念,了解两类曲线积分的性质及两类曲线积分的关系。 4.掌握计算两类曲线积分的方法。 5.掌握格林公式并会运用平面曲线积分与路径元关的条件,会求全微分的原函数。 6.了解两类曲面积分的概念、性质及两类曲面积分的关系,掌握计算两类曲面积分的方法。会用高斯公式、斯托克斯公式计算曲面、曲线积分。 7.了解散度与旋度的概念,并会计算。 8.会用重积分、曲线积分及曲面积分求一些几何量与物理量(平面图形的面积、体积、曲面面积、弧长、质量、重心、转动惯量、引力、功及流量等)。 K考试要求』(数学二) 1.了解二重积分的概念及性质,掌握二重积分的计算方法(直角坐标、极坐标)。 K考试要求》(数学三) 1.了解二重积分的概念及性质,掌握二重积分的计算方法(直角坐标、极坐标)。 2.了解无界区域上较简单的广义二重积分及其计算。 K考试要求》(数学四) 同数学三

2.多元函数积分学 K知识点概述H 2. 1二重积分 基本概念:定义、基本性质 计算方法:直角坐标法(x型简单区域;y型简单区域)极坐标法(r型简单区 域;&型简单区域)一般变换法 几何应用:面积、曲顶柱体体积物理应用:质量、质心、转动惯量 2. 2三重积分 基本概念:定义、基本性质 计算方法:直角坐标法:x型简单区域;y型简单区域;z型简单区域 投影法(先定积分后二重积分) 截面法(先二重积分后定积分)柱坐标法;球坐标法;一般变换法 儿何应用:体积物理应用:质量、质心、转动惯量、引力 2. 3曲线积分 第一类曲线积分 基本概念:定义、基本性质 计算方法:参数化法 儿何应用:弧长 物理应用:质量、质心、转动惯量、引力 第二类曲线积分 基本概念:定义、基本性质计算方法:参数化法 曲线积分基本定理(曲线积分与路径无关的条件(平面情形,空间情形); 全微分的原函数;场论基本概念与计算格林公式(平面曲线积分);斯托克 斯公式(空间曲线积分)物理应用:功,环流量,通量第一类曲线积分与第二类曲线积分的联系

多元函数微分学及其应用

第8章 多元函数微分学及其应用 参考解答 1、设22 , y f x y x y x ??+=- ??? ,求(),f x y ,(),f x y xy -。 解:()()()()2 21, 1y y x y x f x y x y x y x y x y y x x y x - -??+=+-=+=+ ?+? ? + ,故得 ()2 1,1y f x y x y -=+,()()21,1xy f x y xy x y xy --=-+ 2、求下列各极限: 2242222 2220000 cos sin 1(1) lim lim lim sin 204x r r y x y r r x y r θθθ→→→→===+ 注意:在利用极坐标变换cos , sin x r y r θθ==来求极限时,θ也是变量。本题中,0r →时,2r 为无穷小量,而2 sin 2θ为有界变量,故所求极限为零。 ()00sin sin (2) lim lim 1x t y a xy t xy t →→→== 3、证明极限2 2400 lim x y xy x y →→+不存在。 证明:当2 y kx =时,()2242,1xy k f x y x y k ==++,故2 22420 lim 1y kx x xy k x y k =→=++与k 有关。可见,(),x y 沿不同的路径趋于()0,0时,函数极限不同,故极限不存在。(两路径判别法) 4、讨论下列函数在()0,0点处的连续性: (1)()()()222222 22 ln , 0 ,0, 0 x y x y x y f x y x y ?+++≠?=?+=?? 解: ()() ()()() ()()()2 222,0,0,0,0 lim ,lim ln lim ln 00,0x y x y t f x y x y x y t t f →→→= ++=== 故原函数在()0,0点处连续。

多元函数微积分练习题

练习题 一 多元函数微分学部分练习题 1 求函数y x y x z -+ += 11的定义域. 2已知xy y x xy y x f 5),(2 2 -+=-,求),(y x f . 3计算下列极限 (1) 22) 0,1(),() ln(lim y x e x y y x ++→ (2) 442 2),(),(lim y x y x y x ++∞∞→ (3) 2 43lim ) 0,0(),(-+→xy xy y x (4) x y x xy 1) 1,0(),()1(lim +→ (5)2222)1,2(),(2lim y x y x xy y x ++→ (6)2222)0,0(),() (2sin lim y x y x y x ++→ 4 证明极限 y x y x y x +-→)0,0(),(lim 不存在. 5 指出函数2 2),(y x y x y x f -+= 的间断点. 6计算下列函数的偏导数 (1))ln(2y x z = (2)x xy z )1(-= (3)),(2 y x f x z = (4))(xy x z ?= (5)y xy y x z 234 4+-+= (6))ln(22y x z += (7))3cos(22y x e z y x += (8)y xy z )1(+= (9)2 221 z y x u ++= (10)? = 220 sin y x dt t z 7 计算下列函数的二阶偏导数 (1)2 43y xy x z -+= (2))ln(xy y z = (3)y e z xy sin = (4)),(2 y x f x z = (5)2 (,)z f xy x =

第八讲 多元函数积分学知识点

第八讲 多元函数积分学知识点 一、二重积分的概念、性质 1、 ∑??=→?=n i i i i d D f dxdy y x f 1 0),(lim ),(δηξ ,几何意义:代表由),(y x f ,D 围成的曲顶柱体体积。 2、性质: (1)=??D dxdy y x kf ),(??D dxdy y x f k ),( (2)[]??+D dxdy y x g y x f ),(),(= ??D dxdy y x f ),(+??D dxdy y x g ),( (3)、D d x d y D =?? (4)21D D D +=,??D dxdy y x f ),(=??1),(D dxdy y x f +??2 ),(D dxdy y x f (5)若),(),(y x g y x f ≤,则≤??D dxdy y x f ),(??D dxdy y x g ),( (6)若,),(M y x f m ≤≤则MD dxdy y x f mD D ≤≤??),( (7)设),(y x f 在区域D 上连续,则至少存在一点D ∈),(ηξ,使=??D dxdy y x f ),(D f ),(ηξ 二、计算 (1) D:)()(,21x y x b x a ??≤≤≤≤ ????=) ()(21),(),(x x b a D dy y x f dx dxdy y x f ?? (2) D :)()(,21y x y d y c ??≤≤≤≤, ????=) ()(21),(),(x x d c D dy y x f dy dxdy y x f ?? 技巧:“谁”的范围最容易确定就先确定“谁”的范围,然后通过划水平线和 垂直线的方法确定另一个变量的范围 (3)极坐标下:θθθrdrd dxdy r y r x ===,sin ,cos ????=) (0)sin ,cos ( ),(θβαθθθr D rdr r r f d dxdy y x f 三、曲线积分 1、第一型曲线积分的计算 (1)若积分路径为L :b x a x y ≤≤=),(φ,则

多元函数微分学习题

第五部分 多元函数微分学(1) [选择题] 容易题1—36,中等题37—87,难题88—99。 1.设有直线? ??=+--=+++031020 123:z y x z y x L 及平面0224:=-+-z y x π,则直线L ( ) (A) 平行于π。 (B) 在上π。(C) 垂直于π。 (D) 与π斜交。 答:C 2.二元函数??? ??=≠+=)0,0(),(, 0)0,0(),(,),(22y x y x y x xy y x f 在点)0,0(处 ( ) (A) 连续,偏导数存在 (B) 连续,偏导数不存在 (C) 不连续,偏导数存在 (D) 不连续,偏导数不存在 答:C 3.设函数),(),,(y x v v y x u u ==由方程组? ??+=+=2 2v u y v u x 确定,则当v u ≠时,=??x u ( ) (A) v u x - (B) v u v -- (C) v u u -- (D) v u y - 答:B 4.设),(y x f 是一二元函数,),(00y x 是其定义域内的一点,则下列命题中一定正确的是( ) (A) 若),(y x f 在点),(00y x 连续,则),(y x f 在点),(00y x 可导。 (B) 若),(y x f 在点),(00y x 的两个偏导数都存在,则),(y x f 在点),(00y x 连续。 (C) 若),(y x f 在点),(00y x 的两个偏导数都存在,则),(y x f 在点),(00y x 可微。 (D) 若),(y x f 在点),(00y x 可微,则),(y x f 在点),(00y x 连续。 答:D 5.函数2223),,(z y x z y x f +++=在点)2,1,1(-处的梯度是( ) (A) )32,31, 31(- (B) )32,31,31(2- (C) )92,91,91(- (D) )9 2 ,91,91(2- 答:A

多元函数微分学复习(精简版)

高等数学下册复习提纲 第八章 多元函数微分学 本章知识点(按历年考试出现次数从高到低排列): 复合函数求导(☆☆☆☆☆) 条件极值---拉格朗日乘数法(☆☆☆☆) 无条件极值(☆☆☆☆) 曲面切平面、曲线切线(☆☆☆☆) 隐函数(组)求导(☆☆☆) 一阶偏导数、全微分计算(☆☆☆) 方向导数、梯度计算(☆☆) 重极限、累次极限计算(☆☆) 函数定义域求法(☆) 1. 多元复合函数高阶导数 例 设),,cos ,(sin y x e y x f z +=其中f 具有二阶连续偏导数,求x y z x z ?????2及. 解 y x e f x f x z +?'+?'=??31cos , y x y x y x y x e e f y f f e x e f y f y x z x y z ++++?''+-?''+'+?''+-?''=???=???])sin ([cos ])sin ([333231312 22析 1)明确函数的结构(树形图) 这里y x e w y v x u +===,cos ,sin ,那么复合之后z 是关于y x ,的二元函数.根据结构 图,可以知道:对x 的导数,有几条线通到“树梢”上的x ,结果中就应该有几项,而每一 项都是一条线上的函数对变量的导数或偏导数的乘积.简单的说就是,“按线相乘,分线相加”. 2)31,f f ''是),cos ,(sin ),,cos ,(sin 31y x y x e y x f e y x f ++''的简写形式,它们与z 的结构 相同,仍然是y x e y x +,cos ,sin 的函数.所以1f '对y 求导数为 z u v w x x y y

多元函数积分学

多元函数积分学总结 多元函数积分学是一元函数积分学的拓展与延伸,包括二重积分、三重积分、曲线积分、曲面积分。 几何意义:曲顶柱体的体积 性质:线性性质、可加性、单调性、估值性质、中值定理 计算方式:x 型、y 型、极坐标(2 2 y x +) 常见计算类型: ① 选择积分顺序:能积分、少分块 ② 交换积分顺序:确定积分区域→交换积分顺序→开始积分 ③ 利用对称性简化计算:要兼备被积函数和积分区域两个方面,不可误用。 ④ 极坐标系下的二重积分的定限:极点在积分区域内(特殊:与x 轴相切、与y 轴相切)、极点不在积分区域内 ⑤ 其他:利用几何意义、含绝对值时先去绝对值、分段函数、概率积分 了解“积不出来函数”:dx x ?)cos(2、dx e x ? -2 、dx x ? ln 1、dx x x ?sin 概率积分例题展示 证明 2 2 π = ? ∞ +-dx e x 证:令=)(x f 2 x e - ① 易证)()(x f x f -=?)(x f 为偶函数? 2 12 = ? +∞ -dx e x dx e x 2 ? +∞ ∞ -- (奇偶对称性、轮换对称性、周期性→简化计算) ② 已知dx e x ? -2 为“积不出来函数”,所以改变我们所求目标函数dx e x 2 ?+∞ ∞ --的形式 令= w dx e x 2 ? +∞ - 4 1 2 =w ? dx e x 2 ? +∞ ∞ -- 4 1= dxdx e x x ? ?+∞ ∞ -+-+∞ ∞ -) (22 (了解“积不出来函数”,增强目标意识,适当转化目标函数形式)

③ 令其中一个x 变成y ,构造2 2 y x + 2 w 4 1 = dxdy e y x ? ?+∞ ∞ -+-+∞∞ -) (22 ④ 将θcos r x =,θsin r y =带入上一步的2 w 易得),0(+∞∈r ,)2,0(π∈θ 2 w =θdrd e r r ? ?-+∞ ?π 20 2 41 = ?? +∞ -?π20 2 θd dr e r r 20 2 12 1 2dr e r ?=? +∞ -π 2021212 lim dr e b r b ?=?-+∞ →π )1(2121 2lim --=-+∞ →b b e π π4 1==?w 2π 即220π=?∞+-dx e x 成立 (极坐标系?直角坐标系,选择合适的积分次序将二重积分?二次积分,了解广义定积分) (此类积分为概率积分 b dt e b dx e t bx π 2110 2 2 ? ? ∞ +-∞ +-= = )

《数学分析》多元函数微分学

第四章多元函数微分学一、本章知识脉络框图

二、本章重点及难点 本章需要重点掌握以下几个方面容: ● 偏导数、全微分及其几何意义,可微与偏导存在、连续之间的关系,复合函数的偏导数 与全微分,一阶微分形式不变性,方向导数与梯度,高阶偏导数,混合偏导数与顺序无关性,二元函数中值定理与Taylor 公式. ● 隐函数存在定理、隐函数组存在定理、隐函数(组)求导方法、反函数组与坐标变换. ● 几何应用(平面曲线的切线与法线、空间曲线的切线与法平面、曲面的切平面与法线. ● 极值问题(必要条件与充分条件),条件极值与Lagrange 乘数法. 三、本章的基本知识要点 (一)平面点集与多元函数 1.任意一点A 与任意点集E 的关系. 1) 点. 若存在点A 的某邻域()U A ,使得()U A E ?,则称点A 是点集E 的点。 2) 外点. 若存在点A 的某邻域()U A ,使得()U A E ?=?,则称点A 是点集E 的外点。 3) 界点(边界点). 若在点A 的任何邻域既含有属于E 得的点,又含有不属于E 的点,则称点A 是点集E 的界点。 4) 聚点. 若在点A 的任何空心邻域()o U A 部都含有E 中的点,则称点A 是点集E 的 聚点。 5) 孤立点. 若点A E ∈,但不是E 的聚点,则称点A 是点集E 的孤立点。 2. 几种特殊的平面点集. 1) 开集. 若平面点集E 所属的每一点都是E 的点,则称E 为开集。 2)闭集. 若平面点集E 的所有聚点都属于E ,则称E 为闭集。 3) 开域. 若非空开集E 具有连通性,即E 中任意两点之间都可用一条完全含于E 得有限折线相连接,则称E 为开域。 4)闭域. 开域连同其边界所成的点集称为闭域。 5)区域. 开域、闭域或者开域连同某一部分界点所成的点集,统称为区域。 3.2 R 上的完备性定理. 1) 点列收敛定义:设{}2 n P R ?为平面点列,2 0P R ∈为一固定点。若对任给的正数ε,存在正整数N ,使得当n N >时,有()0,n P U P ε∈,则称点列{}n P 收敛于点0P ,记作 0lim n n P P →∞ = 或 ()0,n P P n →→∞.

(完整版)高等数学(同济版)多元函数微分学练习题册

第八章 多元函数微分法及其应用 第 一 节 作 业 一、填空题: . sin lim .4. )](),([,sin )(,cos )(,),(.3arccos ),,(.21)1ln(.102 2 2 2 322= ===-=+=+++-+-=→→x xy x x f x x x x y x y x f y x z z y x f y x x y x z a y x ψ?ψ?则设的定义域为 函数的定义域为函数 二、选择题(单选): 1. 函数 y x sin sin 1 的所有间断点是: (A) x=y=2n π(n=1,2,3,…); (B) x=y=n π(n=1,2,3,…); (C) x=y=m π(m=0,±1,±2,…); (D) x=n π,y=m π(n=0,±1,±2,…,m=0,±1,±2,…)。 答:( ) 2. 函数?? ???=+≠+++=0,20,(2sin ),(22222 22 2y x y x y x y x y x f 在点(0,0)处: (A )无定义; (B )无极限; (C )有极限但不连续; (D )连续。 答:( ) 三、求.4 2lim 0xy xy a y x +-→→ 四、证明极限2222 20 0)(lim y x y x y x y x -+→→不存在。

第 二 节 作 业 一、填空题: . )1,(,arcsin )1(),(.2. )1,0(,0,0 ),sin(1),(.122 =-+== ?????=≠=x f y x y x y x f f xy x xy y x xy y x f x x 则设则设 二、选择题(单选): . 4 2)(;)(2)(;4ln 2)()(;4ln 2 )(:,22 2 2 2 2 2y x y x y x y y x y D e y x y C y y x B y A z z ++++?+?+??=等于则设 答:( ) 三、试解下列各题: .,arctan .2. ,,tan ln .12y x z x y z y z x z y x z ???=????=求设求设 四、验证.2 2222222 2 2 r z r y r x r z y x r =??+??+??++=满足 第 三 节 作 业 一、填空题: . ,.2. 2.0,1.0,1,2.1= == =?-=?=?===dz e z dz z y x y x x y z x y 则设全微分值 时的全增量当函数 二、选择题(单选): 1. 函数z=f(x,y)在点P 0(x 0,y 0)两偏导数存在是函数在该点全微分存在的: (A )充分条件; (B )充要条件; (C )必要条件; (D )无关条件。 答:( )

考研数学:多元函数微分学考点和常考题型分析

考研数学:多元函数微分学考点和常考 题型分析 在研究生入学考试中,高等数学是数一、数二、数三考试的公共内容。数一、数三均占56%(总分150分),考察4个选择题(每题4分,共16分)、4个填空题(每题4分,共16分)、5个解答题(总分50分)。数二不考概率论,高数占78%,考察6个选择题(每题4分,共24分)、4个填空题(每题5分,共20分)、7个解答题(总分72分)。由高数所占比例易知,高数是考研数学的重头戏,因此一直流传着“得高数者得数学。”高等数学包含函数、极限与连续、一元函数微分学、一元函数积分学、多元函数微分学、多元函数积分学、常微分方程和无穷级数等七个模块,老师在梳理分析函数、极限与连续、一元函数微分学、一元函数积分学的基础上,继续梳理多元函数微分学,希望对学员有所帮助。 1、考试内容 (1)多元函数的概念二元函数的几何意义;(2)二元函数的极限与连续的概念,有界闭区域上二元连续函数的性质 ;(3)多元函数偏导数的概念与计算;(4)多元复合函数的求导法与隐函数求导法;(5)二阶偏导数;(6)全微分;(7)多元函数的极值和条件极值,最大值和最小值。 2、考试要求 (1)了解多元函数的概念,了解二元函数的几何意义;(2)了解二元函数的极限与连续的概念,了解有界闭区域上二元连续函数的性质;(3)了解多元函数偏导数与全微分的概念,会求多元复合函数一阶、二阶偏导数,会求全微分,会求多元隐函数的偏导数;(4)了解多元函数极值和条件极值的概念;(5)掌握多元函数极值存在的必要条件,了解二元函数极值存在的充分条件;(6)会求二元函数的极值,会用拉格朗日乘数法求条件极值,会求简单多元函数的最大值和最小值,并会解决简单的应用问题. 3、常考题型 (1)多元函数的极限;(2)多元函数微分学的概念;(3)连续、可导、可微的关系;(4)求函数的偏导数;(5)变换下关于偏导数方程的变形;(6)求函数的无条件极值;(7)求函数的条件极值。

多元函数微分学练习题完整版

多元函数微分学练习题 HUA system office room 【HUA16H-TTMS2A-HUAS8Q8-HUAH1688】

第五章(多元函数微分学) 练习题 一、填空题 1. (,)(0,0)sin()lim x y xy y →= . 2. 22 (,)(0,0)1lim ()sin x y x y x y →+=+ . 3. 1(,)(0,0)lim [1sin()]xy x y xy →+= . 4. 设21sin(), 0,(,)0, 0x y xy xy f x y xy ?≠?=??=? 则(0,1)x f = . 5. 设+1(0,1)y z x x x =>≠,则d z = . 6. 设22ln(1)z x y =++,则(1,2)d z = . 7. 设u =d u = . 8. 若(,)f a a x ?=? ,则x a →= . 9. 设函数u =0(1,1,1)M -处的方向导数的最大值为 . 10. 设函数23u x y z =++,则它在点0(1,1,1)M 处沿方向(2,2,1)l =-的方向导数为 . 11. 设2z xy =,3l i j =+,则21x y z l ==?=? .

12. 曲线cos ,sin ,tan 2 t x t y t z ===在点(0,1,1)处的切线方程是 . 13. 函数z xy =在闭域{(,)0,0,1}D x y x y x y =≥≥+≤上的最大值是 . 14. 曲面23z z e xy -+=在点(1,2,0)处的切平面方程为 . 15. 曲面2:0x z y e -∑-=上点(1,1,2)处的法线方程是 . 16. 曲面22z x y =+与平面240x y z +-=平行的切平面方程是 . 17. 曲线2226,2 x y z x y z ?++=?++=?在点(1,2,1)-处切线的方向向量s = . 18. 设2),,(yz e z y x f x =,其中),(y x z z =是由方程z y x e z y x --+=+确定的隐函数,则=)1,1,0(x f . 二、选择题 1. 设0x 是n R ?E 的孤立点,则0x 是E 的 ( ) (A)聚点; (B)内点; (C)外点; (D)边界点. 2. 设0x 是n R ?E 的内点,则0x 是E 的 ( ) (A)孤立点; (B)边界点; (C)聚点; (D)外点. 3. 设22 2, (,)(0,0)(,)0, (,)(0,0)x y x y f x y x y x y ?+≠?=+??=? ,则(0,0)y f =( ) (A) 0 (B) 1 (C) 2 (D) 1-

多元函数积分学(上)

重积分测验题 一、选择题(每小题4分) 1、设??????+=+=+= D D D dxdy y x I dxdy y x I dxdy y x I )(,)(,)ln(322 1,其中D 是由直线 1,2 1 ,0,0=+= +==y x y x y x 所围成的区域,则321,,I I I 的大小顺序为_________. A 、123I I I << B 、321I I I << C 、231I I I << D 、213I I I << 2、设?? =1 21 sin y dx x dy I ,则I 等于___________. A 、 )1cos 1(2 1 - B 、1cos 1- C 、1sin 1+ D 、积不出来 3、设 ,),(),(10 10 ? ???-=x D dy y x f dx dxdy y x f 则改变其积分次序后应为_________. A 、 ?? -1 10 ),(dx y x f dy x B 、? ?-x dx y x f dy 101 ),( C 、 ?? 1 1 ),(dx y x f dy D 、? ?-y dx y x f dy 10 1 ),( 4、设0,:22221≥≤++Ωz R z y x 及0,0,0,:22222≥≥≥≤++Ωz y x R z y x 则___. A 、??????ΩΩ=2 1 4xdv xdv B 、??????ΩΩ=2 1 4ydv ydv C 、 ??????ΩΩ=2 1 4zdv zdv D 、??????ΩΩ=2 1 4xyzdv xyzdv 5、 Ω是由曲面1,0,,22===+=z y x y y x z 在第一卦限所围成的区域,),,(z y x f 在Ω 上连续,则 ???Ω dv z y x f ),,(=__________. A 、 ?? ? +-1 11 2 2 2 ),,(y x y y dz z y x f dx dy B 、?? ? +-1 12 20 2 2 2 ),,(y x x x dz z y x f dy dx C 、 ?? ? +-1 12 2 2 2 2 ),,(y x y y dz z y x f dx dy D 、???+1 10 2 2 ),,(y x y dz z y x f dx dy 二、填空题(每小题4分) 1、由二重积分的几何意义得到 =??≤+1 43 22y x d σ 2、二重积分 ?? D xydxdy 的值为__________,其中.10,0:2 ≤≤≤≤x x y D

多元函数微积分学

第六章 多元函数微积分学 §6.1空间解析几何 习题 6-1 1.在空间直角坐标系中,指出下列各点所在的卦限: (2,2,3);(6,2,4);(1,5,3);(3,2,4);A B C D ------ (4,3,2); (2,3,1); (3,3,5); (1,2,3).E F G H ------ 2.写出坐标面上和坐标轴上的点的坐标的特征,并指出下列各点的位置: (2,0,3);(0,2,4);(0,0,3);(0,2,0);A B C D --- 3.求点(,,)M a b c 关于(1)各坐标面;(2)各坐标轴;(3)坐标原点的对称点的坐标. 4.求以点(1,3,2)O -为球心,且通过坐标原点的球面方程. 5.求与原点和0(2,3,4)M 的距离之比为1:2的点的全体所构成的曲面的方程,它表示怎样的曲面? 6. 指出下列方程组所表示的曲面 222(1)4x y z ++=; 7.指出下列方程组所表示的曲线: 22225(1)3 x y z x ?++=?=?; 22(2)20x y z +-=; 22(3)0x y -=; 22(4)0x y +=; 2 2(5)1916x y +=; 2 2 (6)125 y x -=; (7)0y -=;

2 (8)430y y -+=; 2(9)4x y =; 222(10)0z x y --=. §6.2 多元函数的基本概念 习题 6-2 1.设22,y f x y x y x ? ?+=- ?? ?,求(,)f x y . 2.已知函数(,,)w u v f u v w u w +=+,试求(,,)f x y x y xy -+. 3.求下列各函数的定义域: 2 (1)ln(21)z y x =-+ ; (2)z = 22(3)z = ; (4)z = ; (5)ln()z y x =- ; (6)u =4.求下列各极限 : 10 (1)y x y →→ (,)(0,0)(2) lim x y →; 22() (3)lim ()x y x y x y e -+→+∞→+∞ +; 222200 (4)lim x y x y x y →→+ ; 00(5)x y →→;22222200 1cos() (6)lim ()x y x y x y x y e →→-++. 5.证明下列极限不存在: 2222(,)(0,0)2(1)lim 32x y x y x y →-+; 1 00 (2)lim(1)x y x y xy +→→+ ; (,)(0,0)(3)lim x y →6.研究下列函数的连续性: 222(1)(,)2y x f x y y x +=-; 22(2)(,)ln()f x y xy x y =+.

相关文档
相关文档 最新文档