文档库 最新最全的文档下载
当前位置:文档库 › 《线段的垂直平分线》典型例题

《线段的垂直平分线》典型例题

《线段的垂直平分线》典型例题
《线段的垂直平分线》典型例题

典型例题

例1.如图,已知:在ABC ?中,?=∠90C ,?=∠30A ,BD 平分ABC ∠交A C 于D .

求证:D 在AB 的垂直平分线上.

分析:根据线段垂直平分线的逆定理,欲证D 在AB 的垂直平分线上,只需证明DA BD =即可.

证明:∵?=∠90C ,?=∠30A (已知),

∴ ?=∠60ABC (?Rt 的两个锐角互余)

又∵BD 平分ABC ∠(已知)

∴ A ABC DBA ∠=?=∠=∠302

1. ∴AD BD =(等角对等边)

∴D 在AB 的垂直平分线上(和一条线段两个端点距离相等的点,在这条线段的垂直平分线上).

例2.如图,已知:在ABC ?中,AC AB =,?=∠120BAC ,AB 的垂直平分线交AB 于E ,交BC 于F 。

求证:BF CF 2=。

分析:由于?=∠120BAC ,AC AB =,可得?=∠=∠30C B ,又因为EF 垂直平分AB ,连结AF ,可得BF AF =. 要证BF CF 2=,只需证AF CF 2=,即证?=∠90FAC 就可以了.

证明:连结AF ,

∵EF 垂直平分AB (已知)

∴FB FA =(线段垂直平分线上的点和这条线段两端点的距离相等) ∴B FAB ∠=∠(等边对等角)

∵AC AB =(已知),

∴C B ∠=∠(等边对等角)

又∵?=∠120BAC (已知),

∴?=∠=∠30C B (三角形内角和定理)

∴?=∠30BAF

∴?=∠90FAC

∴FA FC 2=(直角三角形中,?30角所对的直角边等于斜边的一半) ∴FB FC 2=

说明:线段的垂直平分线的定理与逆定理都由三角形的全等证得,初学者往往不习惯直接使用绝无仅有垂直平分线的定理与逆定理,容易舍近求远,由三角形全等来证题.

例3.如图,已知:AD 平分BAC ∠,EF 垂直平分AD ,交BC 延长线于F ,连结AF 。

求证:CAF B ∠=∠。

分析:B ∠与CAF ∠不在同一个三角形中,又B ∠,CAF ∠所在的两个三角形不全等,所以欲证CAF B ∠=∠,不能利用等腰三角形或全等三角形的性质. 那么注意到EF 垂直平分AD ,可得FD FA =,因此ADF FAD ∠=∠,又因为CAD FAD CAF ∠-∠=∠,BAD ADF B ∠-∠=∠,而BAD CAD ∠=∠,所以可证明B CAF ∠=∠.

证明:∵EF 垂直平分AD (已知),

∴FD FA =(线段垂直平分线上的点和这条线段的两端点的距离相等). ∴ADF FAD ∠=∠(等边对等角)

∵BAD ADF B ∠-∠=∠(三角形的一个外角等于和它不相邻的两个内角的和),

CAD FAD CAF ∠-∠=∠,

又CAD

∠(角平分线定义),

=

BAD∠

∴CAF

B∠

=

说明:运用线段的垂直平分线的定理或逆定理,能使问题简化,如本例题中,EF垂直平分AD,可以直接有结论FD

FA=,不必再去证明两个三角形全等.

例4.如图,已知直线l和点A,点B,在直线l上求作一点P,使PB

PA=.

分析:假设P点已经作出,则由PB

PA=,那么根据“到线段两端点距离相等的点在这条线段的垂直平分线上”可知,点P在线段AB的垂直平分线上.

而点P又在直线l上,则点P应是AB的垂直平分线与垂线l的交点。

作法:1.连结AB.

2.作线段AB的垂直平分线,交直线l于点P.

则P即为所求的点.

说明:在求作一个点时,要考虑该点具备什么样的特点,如它到一条线段

的两个端点距离相等,它就在连结这两点的线段的垂直平分线上,如果它到一

个角的两边的距离相等,它就在这个角的平分线上.

点、线、面之间的位置关系练习题

点、线、面之间的位置关系及线面平行应用练习 1、 平面L =?βα,点βαα∈∈∈C B A ,,,且L C ∈,又R L AB =?,过 A 、 B 、 C 三点确定的平面记作γ,则γβ?是( ) A .直线AC B .直线B C C .直线CR D .以上都不对 2、空间不共线的四点,可以确定平面的个数是( ) A .0 B .1 C .1或4 D .无法确定 3、在三角形、四边形、梯形和圆中,一定是平面图形的有 个 4、正方体1111D C B A ABCD -中,P 、Q 分别为11,CC AA 的中点,则四边形PBQ D 1是( ) A .正方形 B .菱形 C .矩形 D .空间四边形 5、在空间四边形ABCD 中,点E 、F 、G 、H 分别为AB 、BC 、CD 、DA 的中点,若AC=BD , 且BD AC ⊥,则四边形EFGH 为 6、下列命题正确的是( ) A . 若βα??b a ,,则直线b a ,为异面直线 B . 若βα??b a ,,则直线b a ,为异面直线 C . 若?=?b a ,则直线b a ,为异面直线 D . 不同在任何一个平面内的两条直线叫异面直线 7、在空间中:①若四点不共面,则这四点中任何三点都不共线;②若两条直线没有 公共点,则这两条直线是异面直线,以上两个命题中为真命题的是 8、过直线L 外两点作与直线L 平行的平面,可以作( ) A .1个 B .1个或无数个 C .0个或无数个 D .0个、1个或无数个 9、b a //,且a 与平面α相交,那么直线b 与平面α的位置关系是( ) A .必相交 B .有可能平行 C .相交或平行 D .相交或在平面内 10、直线与平面平行的条件是这条直线与平面内的( ) A .一条直线不相交 B .两条直线不相交 C .任意一条直线不相交 D .无数条直线不相交 11、如果两直线b a //,且//a 平面α,则b 与平面α的位置关系是( ) A .相交 B .α//b C .α?b D .α//b 或α?b 12、已知直线a 与直线b 垂直,a 平行于平面α,则b 与平面α的位置关系是( ) A .α//b B .α?b C .b 与平面α相交 D .以上都有可能 13、若直线a 与直线b 是异面直线,且//a 平面α,则b 与平面α的位置关系是( ) A .α//b B .b 与平面α相交 C .α?b D .不能确定 14、已知//a 平面α,直线α?b ,则直线a 与直线b 的关系是( ) A .相交 B .平行 C .异面 D .平行或异面

高中数学线面角与线线角例题、习题-学生

线面角与线线角专练(小练习一)【知识网络】 1、异面直线所成的角:(1)范围:(0,]2π θ∈; (2)求法; 2、直线和平面所成的角:(1)定义:(2)范围:[0,90]o o ;(3)求法; 【典型例题】 例1:(1)在正方体1111ABCD A B C D -中,下列几种说法正确的是 ( ) A 、11AC AD ⊥ B 、11D C AB ⊥ C 、1AC 与DC 成45o 角 D 、11AC 与1B C 成60o 角 (2)在正方体AC 1中,过它的任意两条棱作平面,则能作得与A 1B 成300角的平面的个数为 ( ) A 、2个 B 、4个 C 、6个 D 、8个 (3)正六棱柱ABCDEF -A 1B 1C 1D 1E 1F 1底面边长是1,2则这个棱柱的侧 面对角线E 1D 与BC 1所成的角是 ( ) A .90o B .60o C .45o D .30o (4)在空间四边形ABCD 中,AB ⊥CD ,BC ⊥DA ,那么对角线AC 与BD 的位置关系是 。 (5)点AB 到平面α距离距离分别为12,20,若斜线AB 与α成030的角,则AB 的长等于__ ___. 例2:.如图:已知直三棱柱ABC —A 1B 1C 1,AB =AC ,F 为棱BB 1上一点,BF ∶FB 1=2∶1,BF =BC =2a 。 (I )若D 为BC 的中点,E 为AD 上不同于 A 、D 的任意一点,证明EF ⊥FC 1; (II )试问:若AB =2a ,在线段AD 上的E 点能否使EF 与平面BB 1C 1C 成60°角,为什么?证明你的结论。 例3: 如图, 四棱锥P-ABCD 的底面是AB=2, BC =2的矩形, 侧面PAB 是等边三角形, 且侧面 PAB ⊥底面ABCD. (Ⅰ)证明:BC ⊥侧面PAB; (Ⅱ)证明: 侧面PAD ⊥侧面PAB; (Ⅲ)求侧棱PC 与底面ABCD 所成角的大小; A B C D P

《简单的轴对称图形》典型例题1(1)(答案)

《简单的轴对称图形》典型例题 例1 想一想等边三角形的三个内角各是多少度,它有几条对称轴。 例2 如图,已知ABC ?是等腰三角形,AC AB 、都是腰,DE 是AB 的垂直平分线,12=+CE BE 厘米,8=BC 厘米,求ABC ?的周长. 例3 AC AB ABC =,:中在已知? _____ ,100)3(____,30)2(___ __,,70)1(00为则它的另外两内角分别若一角为为则它的另外两内角分别若一个角为则若=∠=∠=∠C B A ο 例 4 如图,已知:在ABC ?中,AC AB =,?=∠110ACD ,求ABC ?各内角的度数.

例5 如下图,△ABC中,AB=AC,D是BC的中点,点E在AD上,用轴对称的性质证明:BE=CE. 例6如图,在△ABC中,AB=AC,D是BC边上的中点,∠B=30°,求∠1和∠ADC的度数.

参考答案 例1 分析:由等腰三角形的性质易知等边三角形三个内角相等都是60°,它有三条对称轴。 解:三个内角都是60°,它有三条对称轴。 说明:等边三角形是等腰三角形的特例,所以等腰三角形的性质对其都是适用的,在数学的学习时这样的情况是会经常出现的。 例2 分析:本题依据线段垂直平分线的性质可以得到. 解:DE Θ是AB 的垂直平分线 ∴BE AE = ∴12=+CE AE 厘米AC = ABC ?Θ是等腰三角形 ∴12==AC AB 厘米 ∴ABC ?的周长是3281212=++=++BC AC AB 厘米 例3 分析:注意到题中所给的条件AB =AC ,得到三角形为等腰三角形。利用等腰三角形的性质对问题(1)可得οο55,55=∠=∠C B ;对问题(2)考虑到所给这个角可能是顶角也可能是底角;对问题(3)由三角形内角和为ο180可得此等腰三角形的顶角只能为ο100这一种情况。 略解:(1)οο55,55=∠=∠C B (2)另外两内角分别为:οοοο120,30;75,75(3)οο40,40 说明:通过题目中的(2)、(3)渗透分类思想,训练思维的严密性。

点线面位置关系(知识点加典型例题)

2.1空间中点、直线、平面之间的位置关系 2.1空间点、直线、平面之间的位置关系 1、教学重点和难点 重点:空间直线、平面的位置关系。 难点:三种语言(文字语言、图形语言、符号语言)的转换 2、三个公理: (1)公理1:如果一条直线上的两点在一个平面内,那么这条直线在此平面内 符号表示为 A ∈L B ∈L => L α ,A ∈α ,B ∈α 公理1作用:判断直线是否在平面内 (2)公理2:过不在一条直线上的三点,有且只有一个平面。 符号表示为:A 、B 、C 三点不共线 => 有且只有一个平面α, 使A ∈α、B ∈α、C ∈α。 公理2作用:确定一个平面的依据。 推论:① 一条直线和其外一点可确定一个平面 ②两条相交直线可确定一个平面 ③两条平行直线可确定一个平面 (3)公理3:如果两个不重合的平面有一个公共点,那么它们有且只有一条过该 点的公共直线。 符号表示为:P ∈α∩β =>α∩β=L ,且P ∈L 公理3作用:判定两个平面是否相交的依据 (4)公理 4:平行于同一条直线的两条直线平行 等角定理:如果一个角的两边和另一个角的两边分别平行且方向相同,那么L A · α C · B · A · α P · α L β

2、空间两条不重合的直线有三种位置关系:相交、平行、异面 3、异面直线所成角θ的范围是 00<θ≤900 2.1.2 空间中直线与直线之间的位置关系 1 空间的两条直线有如下三种关系: 相交直线:同一平面内,有且只有一个公共点; 平行直线:同一平面内,没有公共点; 异面直线: 不同在任何一个平面内,没有公共点。 2 公理4:平行于同一条直线的两条直线互相平行。 符号表示为:设a 、b 、c 是三条直线 a ∥ b c ∥b 强调:公理4实质上是说平行具有传递性,在平面、空间这个性质都适用。 公理4作用:判断空间两条直线平行的依据。 3 等角定理:空间中如果两个角的两边分别对应平行,那么这两个角相等或互补 4 注意点: ① a'与b'所成的角的大小只由a 、b 的相互位置来确定,与O 的选择无关,为简便,点O 一般取在两直线中的一条上; ② 两条异面直线所成的角θ∈(0,); ③ 当两条异面直线所成的角是直角时,我们就说这两条异面直线互相垂直,记作a ⊥b ; ④ 两条直线互相垂直,有共面垂直与异面垂直两种情形; ⑤ 计算中,通常把两条异面直线所成的角转化为两条相交直线所成的角。 共面直线 =>a ∥c 2

线面角的计算方法

教师姓名 余永奇 学生姓名 洪 懿 上课时间 2014.11.15 辅导学科 数学 学生年级 高二 教材版本 人教版 课题名称 线面角,二面角的计算方法(文科) 本次学生 课时计划 第(10)课时 共(60)课时 教学目标 线面角的计算方法 教学重点 线面角的计算方法 教学难点 线面角的计算方法 教师活动 学生活动 上次作业完成情况(%) 一.检查作业完成情况,并讲解作业中存在的问题 二.回顾上次课辅导内容 三.知识回顾,整体认识 1、本章知识回顾 (1)空间点、线、面间的位置关系; (2)直线、平面平行的判定及性质; (3)直线、平面垂直的判定及性质。 2、本章知识结构框图 (二)整合知识,发展思维 1、刻画平面的三个公理是立体几何公理体系的基石,是研究空间图形问题,进行逻辑推理的基础。 公理1——判定直线是否在平面内的依据; 公理2——提供确定平面最基本的依据; 公理3——判定两个平面交线位置的依据; 公理4——判定空间直线之间平行的依据。 2、空间问题解决的重要思想方法:化空间问题为平面问题; 3、空间平行、垂直之间的转化与联系: 平面(公理1、公理2、公理3、公理4) 空间直线、平面的位置关系 直线与直线的位置关系 直线与平面的位置关系 平面与平面的位置关系 直线与直线平行 直线与平面平行 平面与平面平行

4、观察和推理是认识世界的两种重要手段,两者相辅相成,缺一不可。 典型例题: 线面夹角的计算 例1(2014浙江高考文科20题)如图,在四棱锥A-BCDE中,平面ABC⊥平面BCDE,∠CDE=∠BED =90°,AB=CD=2, DE=BE=1,AC=2. (Ⅰ)证明:AC⊥平面BCDE; (Ⅱ)求直线AE与平面ABC所成的角的正切值. 例2(2013浙江,文20)如图,在四棱锥P-ABCD中,PA⊥平面ABCD,AB=BC=2,AD=CD=7,PA =3,∠ABC=120°,G为线段PC上的点. (1)证明:BD⊥平面APC; (43 3 ) (2)若G为PC的中点,求DG与平面APC所成的角的正切值; (3)若G满足PC⊥平面BGD,求PG GC 的值.(3/2) 直线与直线垂直直线与平面垂直平面与平面垂直

简单的轴对称图形练习习题

欢迎阅读 页脚内容 A B C N O 图3 轴对称复习练习题1.已知等腰三角形的一个角为42 0,则它的底角度数_______. 2.下列10个汉字:林 上 下 目 王?田 天 王 显 吕,其中不是轴对称图形的是______有一条对称轴的是________;有两条对称轴的是_______;有四条对称轴的是________. 3.如图,镜子中号码的实际号码是___________. 4.等腰三角形的两边长分别是3和7,则其周长为______. 5.已知等腰ABC △的周长为10,若设腰长为x ,则x 的取值范围是 . 6.在△A BC 中,AB =AC ,AB 的垂直平分线与AC 所在的直线相交所得到锐角为50°,则∠B 等于 7 8的长915和6________________________. D.2..三条角平分线的交点 345.如图3,已知△ABC 中,AC+BC=24,AO 、BO 分别是角平分线,且MN ∥BA ,分别交AC 于N 、BC 于M ,则△CMN 的周长为( )A .12 B .24 C .36 D .不确定 6.如图4所示,Rt △ABC 中∠C=90°,AB 的中垂线 DE 交BC 于D ,交AB 于点E .当∠B=30°时,图中不一定相等的线段有( )A .AC=AE=BE B .AD=BD C .CD=DE D .AC=BD 7.如图,在△ABC 中,AB =AC ,点D 在AC 上,且BD =BC =AD ,则∠A 等于( )A .30o B .40o C .45o D .36o 8.如图,等腰△ABC 的周长为21,底边BC = 5,AB 的垂直平分线DE 交AB 于点D ,交 AC 于点E ,则△BEC 的周长为( )A .13 B .14 C .15 D .16 9.如图,AB =AC,BD =°,则∠ABD 的度数是( ) A D E

线段的垂直平分线典型例题

典型例题 例1.如图,已知:在ABC ?中,?=∠90C ,?=∠30A ,BD 平分ABC ∠交AC 于D . 求证:D 在AB 的垂直平分线上. 分析:根据线段垂直平分线的逆定理,欲证D 在AB 的垂直平分线上,只需证明DA BD =即可. 证明:∵?=∠90C ,?=∠30A (已知), ∴ ?=∠60ABC (?Rt 的两个锐角互余) 又∵BD 平分ABC ∠(已知) ∴ A ABC DBA ∠=?=∠=∠302 1. ∴AD BD =(等角对等边) ∴D 在AB 的垂直平分线上(和一条线段两个端点距离相等的点,在这条线段的垂直平分线上). 例2.如图,已知:在ABC ?中,AC AB =,?=∠120BAC ,AB 的垂直平分线交AB 于E ,交BC 于F 。 求证:BF CF 2=。 分析:由于?=∠120BAC ,AC AB =,可得?=∠=∠30C B ,又因为EF 垂直平分AB ,连结AF ,可得BF AF =. 要证BF CF 2=,只需证AF CF 2=,即证?=∠90FAC 就可以了. 证明:连结AF , ∵EF 垂直平分AB (已知) ∴FB FA =(线段垂直平分线上的点和这条线段两端点的距离相等) ∴B FAB ∠=∠(等边对等角)

∵AC AB =(已知), ∴C B ∠=∠(等边对等角) 又∵?=∠120BAC (已知), ∴?=∠=∠30C B (三角形内角和定理) ∴?=∠30BAF ∴?=∠90FAC ∴FA FC 2=(直角三角形中,?30角所对的直角边等于斜边的一半) ∴FB FC 2= 说明:线段的垂直平分线的定理与逆定理都由三角形的全等证得,初学者往往不习惯直接使用绝无仅有垂直平分线的定理与逆定理,容易舍近求远,由三角形全等来证题. 例3.如图,已知:AD 平分BAC ∠,EF 垂直平分AD ,交BC 延长线于F ,连结AF 。 求证:CAF B ∠=∠。 分析:B ∠与CAF ∠不在同一个三角形中,又B ∠,CAF ∠所在的两个三角形不全等,所以欲证CAF B ∠=∠,不能利用等腰三角形或全等三角形的性质. 那么注意到EF 垂直平分AD ,可得FD FA =,因此ADF FAD ∠=∠,又因为CAD FAD CAF ∠-∠=∠,BAD ADF B ∠-∠=∠,而BAD CAD ∠=∠,所以可证明B CAF ∠=∠. 证明:∵EF 垂直平分AD (已知), ∴FD FA =(线段垂直平分线上的点和这条线段的两端点的距离相等). ∴ADF FAD ∠=∠(等边对等角) ∵BAD ADF B ∠-∠=∠(三角形的一个外角等于和它不相邻的两个内角的和), CAD FAD CAF ∠-∠=∠,

点线面位置关系例题与练习(含答案)

点、线、面的位置关系 ● 知识梳理 (一).平面 公理1:如果一条直线上有两点在一个平面内,那么直线在平面内。 公理2:不共线... 的三点确定一个平面. 推论1:直线与直线外的一点确定一个平面. 推论2:两条相交直线确定一个平面. 推论3:两条平行直线确定一个平面. 公理3:如果两个平面有一个公共点,那么它们还有公共点,这些公共点的集合是一条直线 (二)空间图形的位置关系 1.空间直线的位置关系:相交,平行,异面 1.1平行线的传递公理:平行于同一条直线的两条直线互相平行。 1.2等角定理:如果一个角的两边与另一个角的两边分别平行,那么这两个角相等或互补。 1.3异面直线定义:不同在任何一个平面内的两条直线——异面直线; 1.4异面直线所成的角:(1)范围:(]0,90θ∈??;(2)作异面直线所成的角:平移法. 2.直线与平面的位置关系: 包含,相交,平行 3.平面与平面的位置关系:平行,相交 (三)平行关系(包括线面平行,面面平行) 1.线面平行:①定义:直线与平面无公共点. ②判定定理:////a b a a b αα α???????? ③性质定理:////a a a b b αβαβ??????=?

2.线面斜交: ①直线与平面所成的角(简称线面角):若直线与平面斜交,则平面的斜线与该斜线在平面内射影的夹角。范围:[]0,90θ∈?? 3.面面平行:①定义://αβαβ=??; ②判定定理:如果一个平面内的两条相交直线都平行于另一个平面,那么两个平面互相平行; 符号表述:,,,//,////a b a b O a b ααααβ?=? 判定2:垂直于同一条直线的两个平面互相平行.符号表述:,//a a αβαβ⊥⊥?. ③面面平行的性质:(1)////a a αββα????? ; (2)////a a b b αβαγβγ? ? =???=? (四)垂直关系(包括线面垂直,面面垂直) 1.线面垂直①定义:若一条直线垂直于平面内的任意一条直线,则这条直线垂直于平面。 符号表述:若任意,a α?都有l a ⊥,且l α?,则l α⊥. ②判定:,a b a b O l l l a l b ααα?? ?=? ???⊥??⊥? ⊥?? ③性质:(1) ,l a l a αα⊥??⊥; (2),//a b a b αα⊥⊥?; 3.2面面斜交①二面角:(1)定义:【如图】,OB l OA l AOB l αβ⊥⊥?∠-是二面角-的平面角 范围:[0,180]AOB ∠∈?? ②作二面角的平面角的方法:(1)定义法;(2)三垂线法(常用);(3)垂面法. 3.3面面垂直(1)定义:若二面角l αβ--的平面角为90?,则αβ⊥; (2)判定定理: a a ααββ?? ?⊥?⊥?

线线角-线面角-二面角的一些题目.

B 1 D 1 A D C 1 B C A 1 线线角与线面角习题 新泰一中 闫辉 一、复习目标 1.理解异面直线所成角的概念,并掌握求异面直线所成角的常用方法. 2.理解直线与平面所成角的概念,并掌握求线面角常用方法. 3.掌握求角的计算题步骤是“一作、二证、三计算”,思想方法是将空间图形转化为平面图形即“降维”的思想方法. 二、课前预习 1.在空间四边形ABCD 中,AD=BC=2, E 、F 分别为AB 、CD 的中点且EF=3,AD 、BC 所成的角为 . 2.如图,在长方体ABCD-A 1B 1C 1D 1中 ,B 1C 和C 1D 与底面所成的角分别为60ο和45ο ,则异面直线B 1C 和C 1D 所成角的余弦值为 ( ) (A). 4 6 (B). 36 (C).62 (D).6 3 3.平面α与直线a 所成的角为 3 π ,则直线a 与平面α内所有直线所成的角的取值范围是 . 4.如图,ABCD 是正方形,PD ⊥平面ABCD,PD=AD,则PA 与BD 所成的角的度数为 (A).30ο (B).45ο (C).60ο (D).90ο 5.有一个三角尺ABC,∠A=30ο, ∠C=90ο ,BC 是贴于桌面上, 当三角尺与桌面成45ο 角时,AB 边与桌面所成角的正弦值 是 . 三、典型例题 例1.(96·全国) 如图,正方形ABCD 所在平面与正方形 ABEF 所在平面成60ο 角,求异面直线AD 与BF 所成角的余弦值. 备课说明:1.求异面直线所成的角常作出所成角的平面图形.作法有: ①平移法:在异面直线的一条上选择“特殊点”,作另一条直线平行线 或利用中位线.②补形法:把空间图形补成熟悉的几何体,其目的在于容 易发现两条异面直线的关系.2.解立几计算题要先作出所求的角,并要 有严格的推理论证过程,还要有合理的步骤. 例2.如图在正方体AC 1中, (1) 求BC 1与平面ACC 1A 1所成的角; (2) 求A 1B 1与平面A 1C 1B 所成的角. 备课说明:求直线与平面所成角的关键是找直线在此平面上的射影,为此必须在这条直线上找一点作平面的垂线. 作垂线的方法常采用:①利用平面垂直的性质找平面的垂线.②点的射影在面内的特殊位置. A C B A D C 1D 1 A 1 B 1C B D B P C D A C B F E

线段的垂直平分线的性质

§13.1.2线段的垂直平分线的性质 教学目标 1.了解两个图形成轴对称性的性质,了解轴对称图形的性质. 2.探究线段垂直平分线的性质. 3.经历探索轴对称图形性质的过程,进一步体验轴对称的特点,发展空间观察.重点难点; 重点: 1.轴对称的性质. 2.线段垂直平分线的性质. 难点:体验轴对称的特征. 教学过程 一、创设情境,引入新课 上节课我们共同探讨了轴对称图形,知道现实生活中由于有轴对称图形,而使得世界非常美丽.那么大家想一想,什么样的图形是轴对称图形呢? 今天继续来研究轴对称的性质. 二、导入新课:观看投影并思考. 如图,△ABC和△A′B′C′关于直线MN对称,点A′、B′、 C′分别是点A、 B、C的对称点,线段AA′、BB′、 CC′与直线MN有什么关系? 图中A、A′是对称点,AA′与MN垂直,BB′和CC′也与MN垂 直. AA′、BB′和CC′与MN除了垂直以外还有什么关系吗? △ABC与△A′B′C′关于直线MN对称,点A′、B′、C′分别 是点A、B、C的对称点,设AA′交对称轴MN于点P,将△ABC和△A′ B′C′沿MN对折后,点A与A′重合,于是有AP=A′P,∠MPA=∠MPA′=90°.所以AA′、BB′和CC′与MN除了垂直以外,MN还经过线段AA′、BB′和CC′的中点.对称轴所在直线经过对称点所连线段的中点,并且垂直于这条线段.我们把经过线段中点并且垂直于这条线段的直线,叫做这条线段的垂直平分线. 自己动手画一个轴对称图形,并找出两对称点,看一下对称轴和两对称点连线的关系. 我们可以看出轴对称图形与两个图形关于直线对称一样, 对称轴所在直线经过对称点所连线段的中点,并且垂直于这条线段. 归纳图形轴对称的性质: 如果两个图形关于某条直线对称, 那么对称轴是任何一对对称点所连线段的垂直平分线.类似地,轴对称图形的对称轴是任何一对对称点所连线段的垂直平分线. 下面我们来探究线段垂直平分线的性质. [探究1] 如下图.木条L与AB钉在一起,L垂直平分AB,P1,P2, P3,…是L上的点, 分别量一量点P1,P2,P3,…到A与B 的距离,你有什么发现? 1.用平面图将上述问题进行转化,先作出线段AB,过AB中 点作AB的垂直平分线L,在L上取P1、P2、P3…,连结AP1、 AP2、BP1、BP2、CP1、CP2… 2.作好图后,用直尺量出AP1、AP2、BP1、BP2、CP1、CP2… 讨论发现什么样的规律. 探究结果: 线段垂直平分线上的点与这条线段两个端点的距离相等.即AP1=BP1,AP2=BP2,…

点线面位置关系(知识点加典型例题)

2.1空间中点、直线、平面之间的位置关系 2.1空间点、直线、平面之间的位置关系 1、教学重点和难点 重点:空间直线、平面的位置关系。 难点:三种语言(文字语言、图形语言、符号语言)的转换 2、三个公理: (1)公理1:如果一条直线上的两点在一个平面内,那么这条直线在此平面内 符号表示为 A ∈L B ∈L => L α ,A∈α ,B ∈α 公理1作用:判断直线是否在平面内 (2)公理2:过不在一条直线上的三点,有且只有一个平面。 符号表示为:A 、B 、C 三点不共线 => 有且只有一个平面α, 使A ∈α、B ∈α、C ∈α。 公理2作用:确定一个平面的依据。 推论:① 一条直线和其外一点可确定一个平面 ②两条相交直线可确定一个平面 ③两条平行直线可确定一个平面 (3)公理3:如果两个不重合的平面有一个公共点,那么它们有且只有一条过该点 的公共直线。 符号表示为:P∈α∩β =>α∩β=L,且P ∈L 公理3作用:判定两个平面是否相交的依据 (4)公理 4:平行于同一条直线的两条直线平行 等角定理:如果一个角的两边和另一个角的两边分别平行且方向相同,那么这两个角相等. 2、空间两条不重合的直线有三种位置关系:相交、平行、异面 L A · α C · B · A · α P · α L β

3、异面直线所成角θ的范围是 00 <θ≤900 2.1.2 空间中直线与直线之间的位置关系 1 空间的两条直线有如下三种关系: 相交直线:同一平面内,有且只有一个公共点; 平行直线:同一平面内,没有公共点; 异面直线: 不同在任何一个平面内,没有公共点。 2 公理4:平行于同一条直线的两条直线互相平行。 符号表示为:设a 、b 、c 是三条直线 a ∥ b c∥b 强调:公理4实质上是说平行具有传递性,在平面、空间这个性质都适用。 公理4作用:判断空间两条直线平行的依据。 3 等角定理:空间中如果两个角的两边分别对应平行,那么这两个角相等或互补 4 注意点: ① a'与b'所成的角的大小只由a 、b的相互位置来确定,与O的选择无关,为简便,点O 一般取在两直线中的一条上; ② 两条异面直线所成的角θ∈(0,); ③ 当两条异面直线所成的角是直角时,我们就说这两条异面直线互相垂直,记作a⊥b ; ④ 两条直线互相垂直,有共面垂直与异面垂直两种情形; ⑤ 计算中,通常把两条异面直线所成的角转化为两条相交直线所成的角。 2.1.3 — 2.1.4 空间中直线与平面、平面与平面之间的位置关系 1、直线与平面有三种位置关系: (1)直线在平面内 —— 有无数个公共点 共面直线 =>a ∥c 2

高中数学必修2立体几何专题线面角典型例题求法总结

线面角的求法 1.直接法 :平面的斜线与斜线在平面内的射影所成的角即为直线与平面所成的角。通常是解由斜线段,垂线段,斜线在平面内的射影所组成的直角三角形,垂线段是其中最重要的元素,它可以起到联系各线段的作用。 例1 ( 如图1 )四面体ABCS 中,SA,SB,SC 两两垂直,∠SBA=45°, ∠SBC=60°, M 为 AB 的中点,求(1)BC 与平面SAB 所成的角。(2)SC 与平面ABC 所成的角。 B M H S C A 解:(1) ∵SC ⊥SB,SC ⊥SA, 图1 ∴SC ⊥平面SAB 故 SB 是斜线BC 在平面SAB 上的射影, ∴∠SBC 是直线BC 与平面SAB 所成的角为60°。 (2) 连结SM,CM ,则SM ⊥AB, 又∵SC ⊥AB,∴AB ⊥平面SCM, ∴面ABC ⊥面SCM 过S 作SH ⊥CM 于H, 则SH ⊥平面ABC ∴CH 即为 SC 在面ABC 内的射影。 ∠SCH 为SC 与平面ABC 所成的角。 sin ∠SCH=SH /SC ∴SC 与平面ABC 所成的角的正弦值为√7/7 (“垂线”是相对的,SC 是面 SAB 的垂线,又是面 ABC 的斜线. 作面的垂线常根据面面垂直的性质定理,其思路是:先找出与已知平面垂直的平面,然后一面内找出或作出交线的垂线,则得面的垂线。) 2. 利用公式sin θ=h /ι 其中θ是斜线与平面所成的角, h 是 垂线段的长,ι是斜线段的长,其中求出垂线段的长(即斜线上的点到面的距离)既是关键又是难点,为此可用三棱锥的体积自等来求垂线段的长。 例2 ( 如图2) 长方体ABCD-A 1B 1C 1D 1 , AB=3 ,BC=2, A 1A= 4 ,求AB 与面 AB 1C 1D 所成的角。 A 1 C 1 D 1 H 4 C B 1 23 B A D 解:设点 B 到AB 1C 1D 的距离为h ,∵V B ﹣AB 1C 1 =V A ﹣BB 1C 1 ∴1/3 S △AB 1C 1 ·h= 1/3 S △BB 1C 1 ·AB,易得h=12/5 ,

三年级轴对称图形练习题

三年级数学下册轴对称图形练习题 一、填空。 1、如果一个图形沿着一条直线对折,两侧的图形能够完全重合,这个图形就是(),折痕所在的直线叫做()。 2、圆的对称轴有()条,半圆形的对称轴有()条。 3、在对称图形中,对称轴两侧相对的点到对称轴的()相等。 4、()三角形有三条对称轴,()三角形有一条对称轴。 5、正方形有()条对称轴,长方形有()条对称轴,等腰梯形有()条对称轴。 6、如果把一个图形沿着一条直线折过来,直线两侧部分能够完全重合,那么这个图 形就叫做___________,这条直线叫做________. 7、对称轴_______连结两个对称点之间的线段. 8、宋体的汉字“王”、“中”、“田”等都是轴对称图形,?请再写出三个这样的汉字:_________. 9、长方形有_____条对称轴,正方形有_____条对称轴,圆有_____条对称轴. 10、如图是一种常见的图案,这个图案有_____条对称轴,请在图上画出对称轴. 11、右图是从镜中看到的一串数字,这串数字应为 . 12、下列图形中是轴对称图形的在括号里画“√”。二、选择题。 1、下列英文字母中,是轴对称图形的是() A、S B、H C、P D、Q 2、下列各种图形中,不是轴对称图形的是() 3、下图是一些国家的国旗,其中是轴对称图形的有() A、4个 B、3个 C、2个 D、1个 4、下列图形中:角、线段、直角三角形、等边三角形、长方形,其中一定是轴对称 图形的有() A、2个 B、3个 C、4个 D、5个 5、下列图形中,对称轴最多的是()。 A、等边三角形 B 、正方形 C 、圆 D、长方形 6、下面不是轴对称图形的是()。 A、长方形 B、平行四边形 C、圆 D、半圆 7、要使大小两个圆有无数条对称轴,应采用第()种画法。8题)

线段的垂直平分线练习及答案

线段的垂直平分线练习及答案 一、选择题(共8小题) 1.如图,直线CD是线段AB的垂直平分线,P为直线CD上的一点,已知线段A.6B.5C.4D.3 第1题图第2题图第5题图 2.如图,AC=AD,BC=BD,则有() A.A B垂直平分CD B.C D垂直平分AB C.A B与C D互相垂直平分D.C D平分∠ACB 3.下列说法中错误的是() A.过“到线段两端点距离相等的点”的直线是线段的垂直平分线 B.线段垂直平分线的点到线段两端点的距离相等 C.线段有且只有一条垂直平分线 D.线段的垂直平分线是一条直线 4.到△ABC的三个顶点距离相等的点是△ABC的() A.三边垂直平分线的交点B.三条角平分线的交点 C.三条高的交点D.三边中线的交点 5.如图,∠ABC=50°,AD垂直平分线段BC于点D,∠ABC的平分线交AD于E,连接EC;则∠AEC等于() A.100°B.105°C.115°D.120° 6.如图,△ABC中,AD是BC的中垂线,若BC=8,AD=6,则图中阴影部分的面积是() A.48 B.24 C.12 D.6 7.如图,△ABC中,AB=AC,AB的垂直平分线DE交BC的延长线于E,交AC 于F,交AB于D,连接BF.若BC=6cm,BD=5cm,则△BCF的周长为()A.16cm B.15cm C.20cm D.无法计算 8.如图△ABC中,∠B=40°,AC的垂直平分线交AC于点D,交BC于点E,且∠EAB:∠CAE=3:1,则∠C=( ) A.28°B.25°C.22.5°D.20° 第6题图第7题图第8题图 二、填空题(共10小题) 9.到线段AB两个端点距离相等的点的轨迹是_________ . D

2.1《空间点、直线、平面之间的位置关系》练习题

2.1空间点、直线、平面之间的位置关系练习题 一、 选择题: 1.下面推理过程,错误的是( ) (A ) αα??∈A l A l ,// (B ) ααα??∈∈∈l B A l A ,, (C ) AB B B A A =??∈∈∈∈βαβαβα,,, (D ) βαβα=?∈∈不共线并且C B A C B A C B A ,,,,,,,, 2.一条直线和这条直线之外不共线的三点所能确定的平面的个数是( ) (A ) 1个或3个 (B ) 1个或4个 (C ) 3个或4个 (D ) 1个、3个或4个 3.以下命题正确的有( ) (1)若a ∥b ,b ∥c ,则直线a ,b ,c 共面; (2)若a ∥α,则a 平行于平面α内的所有直线; (3)若平面α内的无数条直线都与β平行,则α∥β; (4)分别和两条异面直线都相交的两条直线必定异面。 (A ) 1个 (B ) 2个 (C ) 3个 (D )4个 4.正方体的一条体对角线与正方体的棱可以组成异面直线的对数是( ) (A ) 2 (B ) 3 (C ) 6 (D ) 12 5.以下命题中为真命题的个数是( ) (1)若直线l 平行于平面α内的无数条直线,则直线l ∥α; (2)若直线a 在平面α外,则a ∥α; (3)若直线a ∥b ,α?b ,则a ∥α; (4)若直线a ∥b ,α?b ,则a 平行于平面α内的无数条直线。 (A ) 1个 (B ) 2个 (C ) 3个 (D )4个 6.若三个平面两两相交,则它们的交线条数是( ) (A ) 1条 (B ) 2条 (C ) 3条 (D )1条或3条 7. 下列命题正确的是( ) A.经过三点确定一个平面 B.经过一条直线和一个点确定一个平面 C.四边形确定一个平面 D.两两相交且不共点的三条直线确定一个平面 8. 下列命题中正确的个数是( ) ①若直线l 上有无数个点不在平面α内,则l α∥. ②若直线l 与平面α平行,则l 与平面α内的任意一条直线都平行. ③如果两条平行直线中的一条与一个平面平行,那么另一条也与这个平面平行.

(完整版):平面直角坐标系经典例题解析

【平面直角坐标系重点考点例析】 考点一:平面直角坐标系中点的特征 例1 在平面直角坐标系中,点P(m,m-2)在第一象限内,则m的取值范围是.思路分析:根据第一象限的点的坐标,横坐标为正,纵坐标为正,可得出m的范围. 解:由第一象限点的坐标的特点可得: 20 m m > ? ? -> ? , 解得:m>2. 故答案为:m>2. 点评:此题考查了点的坐标的知识,属于基础题,解答本题的关键是掌握第一象限的点的坐标,横坐标为正,纵坐标为正. 例1 如果m是任意实数,则点P(m-4,m+1)一定不在() A.第一象限B.第二象限C.第三象限D.第四象限 思路分析:求出点P的纵坐标一定大于横坐标,然后根据各象限的点的坐标特征解答.解:∵(m+1)-(m-4)=m+1-m+4=5, ∴点P的纵坐标一定大于横坐标, ∵第四象限的点的横坐标是正数,纵坐标是负数, ∴第四象限的点的横坐标一定大于纵坐标, ∴点P一定不在第四象限. 故选D. 点评:本题考查了点的坐标,记住各象限内点的坐标的符号是解决的关键,四个象限的符号特点分别是:第一象限(+,+);第二象限(-,+);第三象限(-,-);第四象限(+,-).例2 如图,矩形BCDE的各边分别平行于x轴或y轴,物体甲和物体乙分别由点A(2,0)同时出发,沿矩形BCDE的边作环绕运动,物体甲按逆时针方向以1个单位/秒匀速运动,物体乙按顺时针方向以2个单位/秒匀速运动,则两个物体运动后的第2012次相遇地点的坐标是() A.(2,0)B.(﹣1,1)C.(﹣2,1)D.(﹣1,﹣1) 分析:利用行程问题中的相遇问题,由于矩形的边长为4和2,物体乙是物体甲的速度的2倍,求得每一次相遇的地点,找出规律即可解答. 解答:解:矩形的边长为4和2,因为物体乙是物体甲的速度的2倍,时间相同,物体甲与物体乙的路程比为1:2,由题意知: ①第一次相遇物体甲与物体乙行的路程和为12×1,物体甲行的路程为12×=4,物体乙行的路程为12×=8,在BC边相遇;

七年级数学下册《轴对称图形典型例题》

轴对称图形典型例题 例1 如下图,已知,PB⊥AB,PC⊥AC,且PB=PC,D是AP上一点.求证:∠BDP=∠CDP. 证明:∵PB⊥AB,PC⊥AC,且PB=PC, ∴∠P AB=∠P AC(到角两边距离相等的点在这个角平分线上),∵∠APB+∠P AB=90°,∠APC+∠P AC=90°, ∴∠APB=∠APC, 在△PDB和△PDC中, ∴△PDB≌△PDC(SAS), ∴∠BDP=∠CDP. (图形具有明显的轴对称性,可以通过利用轴对称的性质而不用三角形的全等) 注 利用角平分线定理的逆定理,可以通过距离相等直接得到角相等,而不用再证明两个三角形全等.

已知如下图(1),在四边形ABCD中,BC>BA,AD=CD,BD平分∠ABC.求证:∠A+∠C=180°. (1) 证法一:过D作DE⊥AB交BA的延长线于E,DF⊥BC于F, ∵BD平分∠ABC,∴DE=DF, 在Rt△EAD和Rt△FCD中, (角平分线是常见的对称轴,因此可以用轴对称的性质或全等三角形的性质来证明.) ∴Rt△EAD≌Rt△FCD(HL), ∴∠C=∠EAD, ∵∠EAD+∠BAD=180°, ∴∠A+∠C=180°. 证法二:如下图(2),在BC上截取BE=AB,连结DE,证明△ABD ≌△EBD可得.

证法三:如下图(3),延长BA到E,使BE=BC,连结ED,以下同证法二. (3) 注 本题考察一个角平分线上的任意一点到角的两边距离相等的定理来证明线段相等,关键是掌握遇到角的平分线的辅助线的不同的添加方法. 例3 已知,如下图,AD为△ABC的中线,且DE平分∠BDA交AB于E,DF 平分∠ADC交AC于F. 求证:BE+CF>EF. 证法一:在DA截取DN=DB,连结NE、NF,则DN=DC,在△BDE 和△NDE中,

1.3线段的垂直平分线(一)教学设计

第一章证明(二) 3.线段的垂直平分线(一) 河南省郑州八中刘正峰 一、学生知识状况分析 学生对于掌握定理以及定理的证明并不存在多大得困难,这是因为在七年级学习《生活中的轴对称》中学生已经有了一定的基础。 二、教学任务分析 本节课的教学目标是: 1.知识目标: ①经历探索、猜测过程,能够运用公理和所学过的定理证明线段垂直平分线的性质定里和判定定理. ②能够利用尺规作已知线段的垂直平分线. 2.能力目标: ①经历探索、猜测、证明的过程,进一步发展学生的推理证明意识和能力. ②体验解决问题策略的多样性,发展实践能力和创新精神. ③学会与人合作,并能与他人交流思维的过程和结果. 3.情感与价值观要求 ①能积极参与数学学习活动,对数学有好奇心和求知欲. ②在数学活动中获得成功的体验,锻炼克服困难的意志,建立自信心. 4.教学重点、难点 重点是写出线段垂直平分线的性质定理的逆命题。难点是两者的应用上的区别及各自的作用。 三、教学过程分析 本节课设计了七个教学环节:第一环节:创设情境,引入新课;第二环节:探究新课;第三环节:想一想;第四环节:做一做;第五环节:随堂练习;第六环节:课时小结第七

环节:课后作业。 第一环节:创设情境,引入新课 教师用多媒体演示: 如图,A、B表示两个仓库,要在A、B一侧的 河岸边建造一个码头,使它到两个仓库的距离相等, 码头应建在什么位置? 其中“到两个仓库的距离相等”,要强调这几个字 在题中有很重要的作用. 在七年级时研究过线段的性质,线段是一个轴对 称图形,其中线段的垂直平分线就是它的对称轴.我 们用折纸的方法,根据折叠过程中线段重合说明了线段垂直平分线的一个性质:线段垂直平分线上的点到线段两个端点的距离相等.所以在这个问题中,要求在“A、B一侧的河岸边建造一个码头,使它到两个仓库的距离相等”利用此性质就能完成. 进一步提问:“你能用公理或学过的定理证明这一结论吗?” 教师演示线段垂直平分线的性质: 定理线段垂直平分线上的点到线段两个端点的距离相等. 同时,教师板演本节的题目: 1.3 线段的垂直平分线(一) 第二环节:探究新知 第一环节提出问题后,有学生提出了一个问题:“要证‘线段垂直平分线上的点到线段两个端点的距离相等’,可线段垂直平分线上的点有无数多个,需一个一个依次证明吗?何况不可能呢.” 教师鼓励学生思考,想办法来解决此问题。 通过讨论和思考,有学生提出:“如果一个图形上每一点都具有某种性质,那么只需在图形上任取一点作代表,就可以了.” 教师肯定该生的观点,进一步提出:“我们只需在线段垂直平分线上任取一点代表即可,因为线段垂直平分线上的点都具有相同的性质.” 已知:如图,直线MN⊥AB,垂足是C,且AC=BC,P是MN上的点. 求证:PA=PB.

空间点、线、面位置关系(经典例题+训练)

空间点、线、面的位置关系 【基础回顾】 1.平面的基本性质 公理1:如果一条直线上的________在一个平面内,那么这条直线上所有的点都在这个平面内. 公理2:如果两个平面有一个公共点,那么它们还有其他公共点,这些公共点的集合是经过____________的一条直线. 公理3:经过____________________的三点,有且只有一个平面. 推论1:经过____________________,有且只有一个平面. 推论2:经过________________,有且只有一个平面. 推论3:经过________________,有且只有一个平面. 2.直线与直线的位置关系 * (1)位置关系的分类 ?? ? 共面直线????? 异面直线:不同在任何一个平面内 (2)异面直线判定定理 过平面内一点与平面外一点的直线,和这个平面内______________的直线是异面直线. (3)异面直线所成的角 ①定义:设a ,b 是两条异面直线,经过空间任意一点O ,作直线a ′∥a ,b ′∥b ,把a ′与b ′所成的____________叫做异面直线a ,b 所成的角. ②范围:____________. 3.公理4 平行于____________的两条直线互相平行. 4.定理 } 如果一个角的两边和另一个角的两边分别平行并且方向相同,那么这两个角________.

自我检测 1.若直线a与b是异面直线,直线b与c是异面直线,则直线a与c的位置关系是____________. 2.如果两条异面直线称为“一对”,那么在正方体的十二条棱中共有异面直线________对. 3.三个不重合的平面可以把空间分成n部分,则n的可能取值为________. 4.直三棱柱ABC—A1B1C1中,若∠BAC=90°,AB=AC=AA1,则异面直线BA1与AC1所成角的大小为________. 5.下列命题: ①空间不同三点确定一个平面; ] ②有三个公共点的两个平面必重合; ③空间两两相交的三条直线确定一个平面; ④三角形是平面图形; ⑤平行四边形、梯形、四边形都是平面图形; ⑥垂直于同一直线的两直线平行; ⑦一条直线和两平行线中的一条相交,也必和另一条相交; ⑧两组对边相等的四边形是平行四边形. 其中正确的命题是________(填序号). : 【例题讲解】 1、平面的基本性质 例1如图所示,空间四边形ABCD中,E、F、G分别在AB、BC、CD上,且满足AE∶EB =CF∶FB=2∶1,CG∶GD=3∶1,AH∶HD=3∶1,过E、F、G的平面交AD于H,连结EH.

相关文档
相关文档 最新文档