文档库 最新最全的文档下载
当前位置:文档库 › RTKGPS测量的工作原理

RTKGPS测量的工作原理

RTKGPS测量的工作原理
RTKGPS测量的工作原理

GPS RTK测量技术的设置步骤和作业方法由于本工程水深较深,施工现场涌浪大,地形条件差,为了确保工程进度和质量,我部采用最先进,精度最高的GPS测量定位系统:实时动态相位差分技术(RTK测量技术)以及配套的全自动数据处理软件。本工程采用的是国产广州中海达HD-8900N型GPS接收机和数据处理软件。

一、工作原理

基准站上安置的接收机,对所有可见GPS卫星进行连续观测,并将其观测数据,通过无线电传输设备(也称数据链),实时地发送给用户观测站(流动站);在用户观测站上,GPS接收机在接收GPS卫星信号的同时,通过无线电接收设备,接收基准站传输的观测数据,然后根据相对定位原理,实时地解算并显示用户站的三维坐标及其精度,其定位精度可达1cm~2cm。

二、GPS定位技术相对于传统测量技术的特点

1、观测站之间无需通视。传统的测量方法必须保持观测站之间有良好的通

视条件,而GPS测量不要求观测站之间通视。

2、定位精度高。我们采用实时动态相位差分技术(RTK技术),其定位精度可达1cm~2cm,测深仪精度为:5cm+0.4%。

3、操作简便、全程监控。只需GPS与电脑联接,开机即可,无须架仪器和后视,能实时监控定位的全过程。

4、全天候作业。GPS测量不受天气状况的影响,可以全天候作业(夜间、雨天都可以工作)。

5、水深测量的平面定位和水深测量完全同步,无须水位测定。传统的水深测量平面定位和水深测量是相对分离的;一、平面位置和测深不同步;二、受涌浪影响大,水尺观测和测深时涌浪情况不一至。GPS无验潮测深法,可以解决上述问题,即无须观潮和水位改正,测量时不受涌浪影响。

6、成图高度自动化。配套的数据处理成图软件具有自动成图和计算功能。能自动计算各层间面积和方量,计算各断面总抛量和未抛量。

三、RTK测量技术的作业方法

〈一〉基准站设置

基站可设在已知点或非已知点上,连接完毕后用PSION采集器进行参数设置,进入碎部测量取得单点定位坐标,再进入菜单的基准站设置功能上进行坐标输入、设制RTK工作模式、发射间隔、设成基站工作方式即可,设置成功时主机和电台上的Tx/Rx灯应该闪烁。

〈二〉求转换参数

GPS系统采用世界大地坐标系统WGS-84,工程建筑一般采用地方坐标系统或工程坐标系统,为能将GPS所测坐标直接在PISON采集器或电脑上显示

为地方坐标或工程坐标必须进行坐标转换。求取坐标转换参数的办法是:启动基准站,用流动站到测区另外的两个或两个以上的已知点上进行碎部测量取得单点定位坐标(参考坐标),然后进入PSION采集器的求转换参数功能,按提示输入各点参考坐标和已知坐标进行自动求取。

〈三〉施工测量

1、GPS实时定位测量控制

GPS接收机的安装和设置:采用双GPS定位法,即在定位工作船上安装两台流动GPS接收机,两GPS接收机连线最好是与船舷平行或重直,在海上测量定位软件中输入定位工作船的船型尺寸,GPS接收机在工作船中的位置,设置主、副工作点,这样在计算机屏幕上就能实时动态显示工作船的位置和方向。安装方法如下图:

主工作点副工作点

船中轴线

主工作点副工作点

船中轴线

具体实施过程:根据施工方案和抛填计划,事先在计算机上用中海达海上定位测量软件调入工程(防波堤)地形图,作出抛填计划线和抛填位置,到实地作业时主要把GPS和计算机连接,打开GPS和海上定位测量软件中,屏幕上就会实时显示出船位、船向和主工作点坐标,作业人员参照图上的目的和船向,以及偏航窗口显示的偏航量来调度定位工作船,直到定位施工船调度到预定位置和方向,抛石船便可靠上定位船进行抛石,在靠船和抛石过程进行全过程监控,如果发现偏位过大或超出规范,及时调整以确保定位精度。

2、水下测量采用无验潮测深法

基本原理:利用实时相位差分(RTK)实时测得GPS天线的三维坐标

(x,y,h)结合由测深仪同步测得的h

的天线高h换算到同一水平面上的水下泥

面标高H。换算公式:

H=h-ΔH1-ΔH2

式中:ΔH2为联接GPS天线与测深仪换

能器的联杆长度。由于系统在测量过程中是处

于运动状态,GPS接收仪与测深仪的数据采集泥面

也是随着运动同步进行,显然在上述的测量过程中,与水面变化无关无需对水

面高程进行测定,即无需验潮。

水下测量的具体实施:作业前,打开海洋测量软件,根据施工要求预先绘

画出测量区域和断面线,安装并调试好GPS和测深仪;到实地作业时主要开

启GPS和海洋测量软件,屏幕上的导航窗口就能实时显示出测量船位置、航

迹向和坐标,当接通相应的数字化测深仪时,水深显示窗口就显示出瞬时水深

值。引导测量工作船沿待测断面线航行,计算机自动采集数据并储存。外业测量完毕后内业用中海达海洋成图软件对外业采集的数据进行编辑处理和修正,生成地形图(或水深图)、断面图、立体俯视图等,自动计算断面面积和体积。数据处理和编辑是高度自动化。

水深测量图

断面图

三维立体图

3、其它测量

GPS还可用于控制测量、地形测量和施工放样等。施工时对点、线、面和坡度等的放样均很方便快捷,精度达厘米级。由于每个点的测量都是独立完成的,不会产生累积误差,各点的放样精度趋于一致,测量时点与点之间不要求必须通视,也不受天气状况影响可全天候工作(夜间、雨天都可工作)。

四、施工测量控制流程

附GPS技术应用表

工业机器人原理及应用实例

工业机器人原理及应用实例 一、工业机器人概念 工业机器人是一种可以搬运物料、零件、工具或完成多种操作功能的专用 机械装置;由计算机控制,是无人参与 的自主自动化控制系统;他是可编程、 具有柔性的自动化系统,可以允许进行 人机联系。可以通俗的理解为“机器人 是技术系统的一种类别,它能以其动作 复现人的动作和职能;它与传统的自动 机的区别在于有更大的万能性和多目 的用途,可以反复调整以执行不同的功 能。” 二、组成结构 工业机器人由主体、驱动系统和控制系统三个基本部分组成。主体即机座 和执行机构,包括臂部、腕部和手部, 有的机器人还有行走机构。大多数工业 机器人有3~6个运动自由度,其中腕 部通常有1~3个运动自由度;驱动系 统包括动力装置和传动机构,用以使执 行机构产生相应的动作;控制系统是按 照输入的程序对驱动系统和执行机构 发出指令信号,并进行控制。 三、分类 工业机器人按臂部的运动形式分为四种。直角坐标型的臂部可沿三个直 角坐标移动;圆柱坐标型的臂部可作升 降、回转和伸缩动作;球坐标型的臂部 能回转、俯仰和伸缩;关节型的臂部有 多个转动关节。 工业机器人按执行机构运动的控制机能,又可分点位型和连续轨迹型。 点位型只控制执行 机构由一点到另一点的准确定位,适用于机床上下料、点焊和一般搬运、 装卸等作业;连续轨迹型可控制执行机 构按给定轨迹运动,适用于连续焊接和 涂装等作业。 工业机器人按程序输入方式区分有编程输入型和示教输入型两类。编程 输入型是将计算机上已编好的作业程 序文件,通过RS232串口或者以太网等 通信方式传送到机器人控制柜。 示教输入型的示教方法有两种:一种是由操作者用手动控制器(示教操纵 盒),将指令信号传给驱动系统,使执 行机构按要求的动作顺序和运动轨迹 操演一遍;另一种是由操作者直接领动 执行机构,按要求的动作顺序和运动轨 迹操演一遍。在示教过程的同时,工作 程序的信息即自动存入程序存储器中 在机器人自动工作时,控制系统从程序 存储器中检出相应信息,将指令信号传 给驱动机构,使执行机构再现示教的各 种动作。示教输入程序的工业机器人称 为示教再现型工业机器人。 具有触觉、力觉或简单的视觉的工业机器人,能在较为复杂的环境下工作; 如具有识别功能或更进一步增加自适 应、自学习功能,即成为智能型工业机 器人。它能按照人给的“宏指令”自选 或自编程序去适应环境,并自动完成更 为复杂的工作。 四、主要特点 工业机器人最显著的特点有以下几个: (1)可编程。生产自动化的进一步发 展是柔性启动化。工业机器人可随其工 作环境变化的需要而再编程,因此它在 小批量多品种具有均衡高效率的柔性 制造过程中能发挥很好的功用,是柔性 制造系统中的一个重要组成部分。 (2)拟人化。工业机器人在机械结构 上有类似人的行走、腰转、大臂、小臂、 手腕、手爪等部分,在控制上有电脑。 此外,智能化工业机器人还有许多类似 人类的“生物传感器”,如皮肤型接触 传感器、力传感器、负载传感器、视觉 传感器、声觉传感器、语言功能等。传 感器提高了工业机器人对周围环境的 自适应能力。 (3)通用性。除了专门设计的专用的 工业机器人外,一般工业机器人在执行 不同的作业任务时具有较好的通用性。

射频导纳料位计于阻旋式料位计之间的区别

射频导纳料位计于阻旋式料位计之间的区别 辽阳鼎盛为你解析新型料位计【射频导纳料位计】于【阻旋式料位计】的区别。 一、射频导纳料位计 1、射频导纳料位计工作原理 射频导纳料位计产品的结构分为主电极和补偿电极两部分。在主电极与补偿电极间分别施加一组RF射频信号,因而具有很好的抗粘料、挂料特性,是取代电容料位开关的新型物/液位测量产品。 由于保护电极的存在,检测电路将检测电极和保护电极的信号进行比较,从而实现克服物料粘附对物位测量的影响。 2、射频导纳料位计主要应用场合 射频导纳料位计通常又被称为射频导纳开关或者射频导纳物位计,射频导纳物位计应用广泛,几种典型场合如下:化学药品塑料薄膜;饲料/谷物橡胶药品;液体废水沙子;食品泥浆水泥;粉状体涂料/衣料煤;颗粒状固体油纸浆。 3、射频导纳料位计主要技术参数 a、电源电压:220CAC±15%50Hz;24VDC±5%; b、消耗功率:4W; c、输出信号:继电器输出双刀双掷(DP/DT);5A(阻性)、220V AC; d、环境温度:-40~70℃; e、灵敏度设置:0.5~500pF(可调); f、延时时间:0~30秒可调(开或关); g、失电保护模式:低位或高位故障报警,现场可调。 h、安装形式:⑴法兰安装:按用户提供的法兰标准; 4、射频导纳料位计的特点 a、通用性强:适用于各种场合,可检测颗粒、飞灰、导电、非导电液体、粘稠物料; b、抗粘附电路:先进的抗粘附电路设计,可以消除物料的粘附而产生虚假错误信号;

c、失电保护模式:低位或高位故障报警。现场可调。 d、安装调整容易 e、不怕粘料、挂料 f、稳定性好,不受温度影响 g、延时输出可调 h、可选耐温最高可达:550℃ i、高低位失效保护功能 5、射频导纳料位计性能指标 技术参数测量精度重复性导电介质<2mm非导电介质<50mm 温度范围介质温度—200℃∽+800℃(选择相应的传感器探头) 环境温度—40℃∽+60℃储存温度—40℃∽+60℃ 响应时间0.3s或0∽20s连续可调 灵敏度优于0.3PF 温度影响每10℃±0.05PF 信号输出DPDT继电器输出,两组常开、常闭触点 触点容量:AC200V5ADC24V5A 供电电源220V AC或24VDC 功耗4W 防护等级IP66 过程连接外螺纹G3/4″、G1″ 法兰式GB-9123-2000DN50PN0.6MPa 传感器电极加长杆式最长3m,最短0.4m,材质不锈钢304+PTFE塑料、陶瓷,或约定的其它要求。

红外线测距仪测量原理

红外线测距仪测量原理 测距仪是一种航迹推算仪器,用于测量目标距离,进行航迹推算。测距仪的形式很多,通常是一个长形圆筒,由物镜、目镜、测距转钮组成,用来测定目标距离。测距仪是根据光学、声学和电磁波学原理设计的,用于距离测量的仪器。 红外测距仪的分类有激光红外,红外和超声波三种,目前测距仪主要是指的激光红外测距仪,红外测距仪和超声波测距仪由于测量距离有限,测量精度很低目前已经被淘汰。激光红外测距仪是利用激光对目标的距离进行准确测定的仪器。激光红外测距仪在工作时向目标射出一束很细的激光,由光电元件接收目标反射的激光束,计时器测定激光束从发射到接收的时间,计算出从观测者到目标的距离。 测距仪有测量距离和测量精度,同时又是电子设备,所以品牌的选择非常重要,国际知名品牌的测距仪,在性能上会远优于杂牌的激光红外测距仪。 一.测距仪分类 测距仪从测距基本原理,可以分为以下三类: 1. 激光测距仪 激光测距仪是利用激光对目标的距离进行准确测定的仪器。激光测距仪在工作时向目标射出一束很细的激光,由光电元件接收目标反射的激光束,计时器测定激光束从发射到接收的时间,计算出从观测者到目标的距离。 激光测距仪是目前使用最为广泛的测距仪,激光测距仪又可以分类为手持式激光测距仪(测量距离0-300米),望远镜激光测距仪(测量距离500-20000米)。 目前市面上主流的都是激光测距仪,手持式激光测距仪全球前两大品牌是徕卡和博世,右图就是一款主流的手持式激光测距仪。 望远镜激光测距仪,为远距离激光测距仪,目前在户外使用相当广泛,望远镜激光测距仪全球前四大品牌是图雅得、博士能、奥尔法和尼康。四个品牌在产品上各有特点,2013年,美国激光技术杂志公布的数据,2013年全球单品销售冠军是图雅得SP1500,这款测距仪测量精准,反应速度快捷。 2. 超声波测距仪

扫地机器人工作原理

扫地机器人工作原理 导语:扫地机器人,这东西想必大家都有听说过,或许现在很 多朋友家里都有准备吧。毕竟作为新时代的高科技产物,扫地机器人的确是一种非常好的家用电器了。尤其是对于长期处于繁忙工作中的人们而言,有了这么一个扫地机器人就不用每天都扫地了。不过大家真的了解扫地机器人吗,清楚它的工作原理和使用事项吗?下面我们 就一起来看看扫地机器人。 扫地机器人,其实也叫做是自动扫地机或者是智能吸尘器等等,是我们现代日常生活中比较常见的一种智能家用电器产品。其具有一定的人工智能,所以能够自动杂家里完成一定的地板清理工作。现代人工作都是非常繁忙的,所以经常可能没有时间来清扫地面,而这个扫地机器人能够随时随地的自动扫地,对于我们忙碌的生活而言,的确是非常好的家务小帮手了。 扫地机器人是一种无线机器,通常造型是圆盘型。其机身往往 是一种自动化技术的可移动装置,内部则是一种有集尘盒的真空吸尘装置,当机器人在启动的时候装置就能够配合机器人的机身设定好既定的路径,进而在室内的地面上反复的行走,清扫路线上出现的各种垃圾。并且扫地机器人往往还有着自动转弯的功能,当机器人触碰到墙壁或者是障碍物的时候,它就能自动转弯,走不同的路线进行清扫工作。 1、无论怎样,扫地机器人都是一种电器产品,自然是受不得潮湿的威胁的。因此在使用扫地机器人的过程中要避免在潮湿的环境里,

当然如果是干湿两用的扫地机器人不用,但是机器人也是不能放进水里或者是吸水的,否则会串电的。 2、扫地机器人虽然能够清扫垃圾,但是火柴和烟头正阳的易燃物品最好不要用机器人来清扫的,因此机器人内部是一个真空的吸尘装置,易燃物品容易烧起来,威胁机器安全。 3、扫地机器人是电器,一旦使用过度了,机器就会发热进而烧毁内部装置。因此在使用扫地机器人的时候一旦要控制好时间,不要使用过度,当机身发热了就需要停止了。 4、扫地机器人毕竟是电器,在易燃易爆的环境中很容易出现各种安全事故的,要小心采用。 5、扫地机器人还是有使用年限的,如果不适用电器了,就需要让电器脱离电源,也就是把机器人的电源线拔掉,将机器好好地存放起来,延长机器的使用寿命。 总结:扫地机器人是现代社会人们非常有用的家用电器,对于工作比较繁重的家庭而言,这个扫地机器人的确是非常好用的,大家喜欢的可以去试着尝试使用一下,效果还不错。

相位式光电测距仪的工作原理

§4.2 相位式光电测距仪的工作原理 相位式光电测距仪的种类较多,但其基本的工作原理是相同的。本节将讨论相位式光电测距仪的工作原理,并着重介绍它的几个主要部件的工作原理。 4.2.1 相位式光电测距仪的工作原理 相位式光电测距仪的工作原理可按图4-4所示的方框图来说明。 图4-4 由光源所发出的光波(红外光或激光),进入调制器后,被来自主控振荡器(简称主振)的高频测距信号1f 所调制,成为调幅波。这种调幅波经外光路进入接收器,会 聚在光电器件上,光信号立即转化为电信号。这个电信号就是调幅波往返于测线后经过解调的高颇测距信号,它的相位已延迟了Φ。 ?Φ+?=ΦN π2 这个高频测距信号与来自本机振荡器(简称本振)的高频信号1f '经测距信号混频器进行光电混频,经过选频放大后得到一个低频(11f f f '-=?)测距信号,用D e 表示。D e 仍保留了高频测距信号原有的相位延迟?Φ+?=ΦN π2。为了进行比相,主振高频测距信号1f 的一部分称为参考信号与本振高频信号1f '同时送入参考信号混频器,经过选频放大后,得到可作为比相基准的低频(11f f f '-=?)参考信号,0e 表示,由于0e 没有经过往返测线的路程,所以0e 不存在象D e 中产生的那一相位延迟Φ。因此,D e 和0e 同时送人相位器采用数字测相技术进行相位比较,在显示器上将显示出测距信号往返于测线的相位延迟结果。 当采用一个测尺频率1f 时,显示器上就只有不足一周的相位差?Φ所相应的测距尾数,超过一周的整周数

N 所相应的测距整尺数就无法知道,为此,相位式测距仪的主振和本振二个部件中还包含一组粗测尺的振荡频率,即主振频率 32,f f 和本振频率 32,f f ''。如前所述,若用粗测尺频率进行同样的测量,把精测尺与一组粗测尺的结果组合起来,就能得到整个待测距离的数值了。 4.2.2 相位式光电测距仪各主要部件的工作原理 1.光源 相位式测距仪的光源,主要有砷化镓(GaAs )二极管和氦-氖(He-Ne )气体激光器。前者一般用于短程测距仪中,后者用于中远程测距仪中。下面对这二种光源作一介绍。 (1)砷化镓(GaAs )二极管 砷化镓(GaAs )二极管是一种晶体二极管,与普通二极管一样,内部也有一个PN 结,如图4-5所示。它的正向电阻很小,反向电阻较大。当正向注入强电流时,在PN 结里就会有波长为0.72~0.94μm 之间红外光出射,而且出射的光强会随着注入电流的大小而变化,因此可以简单地通过改变馈电电流对光强的输出进行调制,即所谓“电流直接调制”。这对测距仪用作光源十分有意义,因为能直接调制光强,无需再配备结构复杂、功耗较大的调制器。此外,砷化镓二极管光源与其他光源比较,还有体积小重量轻,结构牢固和不怕震动等优点,有利于使测距仪小型化,轻便化。 图4-5 图4-6 GaAs 二极管有两种工作状态,一种是发射激光,称为GaAs 激光器;另一种是发射红外荧光,称为发光二极管。两者的区别,主要是注入电流强度的不同。由于GaAs 发光管,发射连续的红外光频带较宽(100~500o A ),波长不够稳定,功率较小(约3mW )和发散角大(达50o ),故采用这种光源的测距仪的测程都不远,一般在3km 以内。红外光的波长,因GaAs 掺杂的差异和馈电电流等不同而异。如国产HGC-1红外测距仪的 =λ0.93μm ; 瑞士DI3和DI3S 的λ分别为0.875μm 和0.885μm ;瑞典AGA-116的λ= 0.91μm 。 (2)氦-氖(He-Ne )气体激光器

射频导纳物位计的标定方法

淮安嘉可自动化仪表有限公司 射频导纳物位计的标定方法 射频导纳物位计使用前需要标定,为满足实际界位测量要求,根据现场条件,射频导纳物位计可以采用两种标定方法:湿标法,根据实际界位变化调整仪表的输出值进行标定的方法;干标法,利用标准电容器送电容值代替实际界位变化来调整仪表的输出值进行标定的方法。 1、湿标法 按照规定的颜色标识通过专用连接线将变送器部分的电子单元与探头可靠连接,中心线接探头的中心端,屏蔽线接探头的屏蔽层,地线接外壳,电子单元接线如图1所示。 在电子单元正面将4-20mA两线制电源信号通过电缆连接好,万用表放200mA档,表笔插入对应的测量孔中。初始状态量程细调,逆时针旋到底;量程粗调置“1”。改变电脱盐罐油水实际界位,当全部为油时(界位为零),调整零点粗调、细调,使输出电流为4mA;若输出电流总是大于4mA,则在图1中所示增加1只100pF调整电容,再进行零点调整。当水位升高,探头全部被水覆盖时,调整仪表的量程粗调、细调,使输出电流为20mA,则调整结束。 由于电脱盐罐正常生产过程中界位不允许大幅度波动,这时可选一个工艺允许达到的最低界位值,通过式(1)计算输出电流I输出。式中:L实际——当前实际油水界位;L量程——探头量程。

淮安嘉可自动化仪表有限公司 通过零点粗调、细调使之与计算值相同;调整油水界位使水位升高,一般达到满量程30%即可满足调整需要,此时通过式(1)计算出的电流值,通过量程粗调、细调达到该值,即调整结束。调整时的注意事项如下: (1)调整时,必须先调整零点,再调整量程。 (2)调整结束时,还须通过工艺放样口确认仪表标定情况,确保仪表投用可靠。 (3)乳化层的存在也会干扰界位测量,乳化层介于油水之间,与水的密度差更小,所以乳化层的厚度要引起重视,避免界位假指示。 2、干标法 在某些情况下,采用充满和放空电脱盐内介质的方法不能满足调整需要。这时,可采用1台标准仪器:用调节范围在0~99999pF的可调电容箱代替探头模拟实际界位变化对仪表电子单元进行再标定。 记录原始标定数据,断开探头连接线,将电容箱及万用表接到电子单元上,调节电容箱使万用表显示最小值(4mA),记录此时电容箱上电容值;再调节电容箱使万用表显示最大值(20mA),同样记录此时电容箱上电容值;最后,断开电容箱及万用表,重新连接探头。当仪表需要重新标定时,可按照上述记录的电容数据标定电子单元。

测距仪的原理及分类

文章简介测距仪是一种航迹推算仪器,用于测量目标距离,进行航迹推算。测距仪的形式很多,通常是一个长形圆筒,由物镜、目镜、测距转钮组成,用来 测定目标距离。测距仪是根据光学、声学和电磁波学原理设计的,用于距离测 量的仪器文章详细内容 那什么是测距仪呢?原理是什么?市面上有哪些测距仪,下文将详细进行介绍。一.测距仪分类 测距仪从测距基本原理,可以分为以下三类: 1. 激光测距仪 激光测距仪是利用激光对目标的距离进行准确测定的仪器。激光测距仪在 工作时向目标射出一束很细的激光,由光电元件接收目标反射的激光束,计时 器测定激光束从发射到接收的时间,计算出从观测者到目标的距离。 激光测距仪是目前使用最为广泛的测距仪,激光测距仪又可以分类为手持 式激光测距仪(测量距离0-300米),望远镜激光测距仪(测量距离500-20000米)。目前市面上主流的都是激光测距仪,手持式激光测距仪全球 前两大品牌是徕卡和博世,右图就是一款主流的手持式激光测距仪。望远 镜激光测距仪,为远距离激光测距仪,目前在户外使用相当广泛,望远镜激光 测距仪全球前四大品牌是图雅得、博士能、奥尔法和尼康。四个品牌在产品上 各有特点,2011年,美国激光技术杂志公布的数据,2011年全球单品销售冠军是图雅得YP900,这款测距仪测量精准,反应速度快捷。 2. 超声波测距仪 超声波测距仪是根据超声波遇到障碍物反射回来的特性进行测量的。超声 波发射器向某一方向发射超声波,在发射同时开始计时,超声波在空气中传播,途中碰到障碍物就立即返回来,超声波接收器收到反射波就立即中断停止计时。通过不断检测产生波发射后遇到障碍物所反射的回波,从而测出发射超声波和 接收到回波的时间差T,然后求出距离。超声波测距仪,由于超声波受 周围环境影响较大,所以一般测量距离比较短,测量精度比较低。目前使用范 围不是很广阔,但价格比较低,一般几百元左右。 3. 红外测距仪用调制的红外光进行精密测距的仪器,测程一般为1-5公里。利用的是红 外线传播时的不扩散原理:因为红外线在穿越其它物质时折射率很小,所以长 距离的测距仪都会考虑红外线,而红外线的传播是需要时间的,当红外线从测 距仪发出碰到反射物被反射回来被测距仪接受到再根据红外线从发出到被接受 到的时间及红外线的传播速度就可以算出距离

工业机器人的基本工作原理,工业机器人结构系统

工业机器人的基本工作原理,工业机器人结构系统 机器人是最典型的机电一体化数字化装备,技术附加值高,应用范围广,作为先进制造业的支撑技术和信息化社会的新兴产业,将对未来生产和社会发展起越来越重要的作用。从20世纪下半叶起,世界机器人产业一直保持着稳步增长的良好势头。根据发达国家产业发展与升级的历程和工业机器人产业化发展趋势,到2015年中国机器人市场的容量约达十几万台套。 1工业机器人的基本工作原理 工业机器人是一种生产装备,其基本功能是提供作业所须的运动和动力.其基本工作原理是通过操作机上各运动构件的运动.自动地实现手部作业的动作功能及技术要求。因此在基本功能及基本工作原理上,工业机器人与机床有相同之处:二者的末端执行器都有位置变化要求,而且都是通过坐标运动来实现末端执行器的位置变化要求。当然机器人也有其独特的要求,是按关节形式运动为主,同时机器人的灵活性要求很高,其刚度、精度要求相对较低。 2工业机器人结构系统 2.1工业机器人构造 从功能角度分析可将机器人分解成四个部分:操作机、末端执行器、传感系统、控制器。操作机:是由机座、手臂和手腕、传动机构、驱动系统等组成.其功能是使手腕具有某种工作空间,并调整手腕使末端执行器实现作业任务要求的动作。末端执行器:也叫工业机器人的手部,它是安装在工业机器人手腕上直接抓握工件或执行作业的部件。感器系统:是指要机器人与人一样有效的完成工作。必须对外界状况进行判断的感觉功能。与机器人控制最紧密相关的是触觉。视觉适合于检测对象是否存在,检测其大概的位置、姿势等状态。相比之下,触觉协助视觉.能够检测出对象更细微的状态。控制器:机器人控制系统是机器人的大脑,是决定机器人功能和性能的主要因素。主要是控制工业机器人在工作空间中的运动位置、姿态和轨迹、操作顺序及动作的时间等。具有编程简单、软件菜单操作、友好的人机交互界面、在线操作提示和使用方便等特点。在机器人中采

射频导纳物位开关原理

射频导纳物位计原理 FB8051系列为通用型连续物位仪表,适用于大多数场合。仪表由一电路单元和杆式或缆式传感元件组成,传感器可选多种材质,可整体或分体式安装。用于连续测量。 ★工作原理 射频导纳物位控制技术是一种从电容式物位控制技术发展起来的,防挂料、更可靠、更准确、适用性更广的物位控制技术,“射频导纳”中“导纳”的含义为电学中阻抗的倒数,它由阻性成分、容性成分、感性成分综合而成,而“射频”即高频,所以射频导纳技术可以理解为用高频测量导纳。高频正弦振荡器输出一个稳定的测量信号源,利用电桥原理,以精确测量安装在待测容器中的传感器上的导纳,在直接作用模式下,仪表的输出随物位的升高而增加。射频导纳技术与传统电容技术的区别在于测量参量的多样性、驱动三端屏蔽技术和增加的两个重要的电路,这些是根据在实践中的宝贵经验改进而成的。上述技术不但解决了连接电缆屏蔽和温漂问题,也解决了垂直安装的传感器根部挂料问题。所增加的两个电路是高精度振荡器驱动器和交流鉴相采样器。对一个强导电性物料的容器,由于物料是导电的,接地点可以被认为在探头绝缘层的表面,对变送器探头来说仅表现为一个纯电容,随着容器排料,探杆上产生挂料,而挂料是具有阻抗的。这样以前的纯电容现在变成了由电容和电阻组成的复阻抗,从而引起两个问题。射频导纳技术由于引入了除电容以外的测量参量,尤其是电阻参量,使得仪表测量信号信噪比上升,大幅度地提高了仪表的分辨力、准确性和可靠性;测量参量的多样性也有力地拓展了仪表的可靠应用领域。 第一个问题是物料本身对探头相当于一个电容,它不消耗变送器的能量,(纯电容不耗能),但挂料对探头等效电路中含有电阻,则挂料的阻抗会消耗能量,从而将振荡器电压拉下来,导致桥路输出改变,产生测量误差。我们在振荡器与电桥之间增加了一个驱动器,使消耗的能量得到补充,因而会稳定加在探头的振荡电压。 第二个问题是对于导电物料,探头绝缘层表面的接地点覆盖了整个物料及挂料区,使有效测量电容扩展到挂料的顶端,这样便产生挂料误差,且导电性越强误差越大。但任何物料都不完全导电的。从电学角度来看,挂料层相当于一个电阻,传感元件被挂料覆盖的部分相当于一条由无数个无穷小的电容和电阻元件组成的传输线。根据数学理论,如果挂料足够长,则挂料的电容和电阻部分的阻抗和容抗数值相等,因此用交流鉴相采样器可以分别测量电容和电阻。测得的总电容相当于C物位+C挂料,再减去与C挂料相等的电阻R,就可以获得物位真实值,从而排除挂料的影响。 即C测量=C物位+C挂料 C物位=C测量-C挂料=C测量-R 这些多参量的测量,是测量的基础,交流鉴相采样器是实现的手段。 由于使用了上述三项技术,使得射频导纳技术在现场应用中展现出非凡的生命力。FB8010系列为通用型点位控制仪表,适用于大多数场合。仪表由一电路单元和杆式或缆式传感元件组成,传感器可选多种材质,可整体或分体式安装。用于限位控制和报警。 概述 1.1仪表简介 TV502系列射频导纳物位开关由传感探杆、电子测控单元和防护外壳组成,是根据射频导纳测量原理制造的点位式物位开关。当物位达到预先设置的位置时,传感探杆产生信号,经电子测控单元处理后的输出信号可提供继电器输出,其标准的双刀双掷继电器接点可控制警铃、电磁阀或其它低功率设备动作,实现对液体、固体物位的报警和控制。 该产品为机电一体化产品,用于存放液体或固体颗粒的罐、槽、筒仓或料斗的料位控制及报警。即使在极端恶劣的现场条件下,也能可靠工作,而不受挂料、压力、材料密度、湿度甚至物料化学特性变化的影响。本产品以其耐恶劣使用环境及高可靠等特点被成功应用

测距仪原理图纸

激光测距仪原理 激光测距仪,是利用激光对目标的距离进行准确测定的仪器。激光测距仪在工作时向目标射出一束很细的激光,由光电元件接收目标反射的激光束,计时器测定激光束从发射到接收的时间,计算出从观测者到目标的距离。激光测距仪重量轻、体积小、操作简单速度快而准确,其误差仅为其它光学测距仪的五分之一到数百分之一。 一.激光测距仪基本原理 激光测距仪一般采用两种方式来测量距离:脉冲法和相位法。脉冲法测距的过程是这样的:测距仪发射出的激光经被测量物体的反射后又被测距仪接收,测距仪同时记录激光往返的时间。光速和往返时间的乘积的一半,就是测距仪和被测量物体之间的距离。脉冲法测量距离的精度是一般是在+/- 1米左右。另外,此类测距仪的测量盲区一般是15米左右。 二.激光测距仪分类 激光测距仪分为两类,一类是手持激光测距仪,这类测距仪测量距离比较短,一般为40-250米,测量精度高。另外一类是激光测距仪望远镜,这类激光测距仪测量距离远,一般为500-2000米,最长测量距离可以达到20公里。 三.激光测距仪主要的产品 长距离的激光测距仪望远镜,全球前四大品牌,是图雅得、博士能、奥尔法和尼康。这四个品牌占据了全球激光测距仪95%以上的市场份额。四大品牌产品都各有其自身的优势。 图雅得作为全球第一品牌,产品以技术领先见长,图雅得是全球最早的能生产测距+测高+测角一体机的品牌,目前博士能和尼康都还没有这种技术。其产品快速测距、操作简单是其最大特点。产品价格适中,具有比较高的性价比。 博士能是全球老牌的激光测距仪望远镜品牌,其产品做工精美,是做工最好的品牌。博士能测距仪产品侧重打猎和高尔夫功能。产品功能强大,但是操作欠繁琐。另外博士能0.5码高精度测距仪方面非常有优势。 奥尔法是全球第三大品牌,其产品价格是四个品牌中最低的,产品具有非常高的性价比,产品操作简单,实用性高。 尼康在测距望远镜领域技术上不是很强,产品都为国内代工,但是凭借尼康品牌的知名度,在全球也有不俗的表现,长期占据第四的位置。在国内,尼康测距仪由于代理体制问题,售价一直偏高,导致性价比不高。 四大品牌主力产品有: 1.图雅得 SP1500H 这是图雅得2012年最新一代产品,也是目前望远镜测距仪功能最为强大的产品。集合了测距+测高+测角+测高差+测水平距离+连续测角+连续测距+连续测水平距离 8大功能,2012年6月在美国西雅图光学设备展商首次发布,被媒体誉为功能最为强大的测距仪。这款测距仪 1500米超长测距,超快测距速度,操作人性化,售价大约4000元,性价比不错,上市后即成为全球多功能测距仪销量冠军。 2.图雅得 YP900 这款测距仪900米测距,上市时间2011年,全球中距离测距仪 连续三年销量冠军,这款测距仪做工精美,具有超强的抗干扰能力,

雷达物位计工作原理

雷达物位计工作原理 美国AMETEK DE公司生产的非接触式雷达物位计,采用世界先进的FMCW (调频连续波)技术,对比较复杂的场合能进行比较准确地物位测量。 FMCW:调频连续波 FMCW雷达技术采用高频扫描信号,通常频率为8.5到9.9GHz。雷达信号从天线的一端发射,经时间t后被接收器接收。通过付氏变换分析将发射和接收的频率差△f转换为所测介质的物位。 FMCW雷达系统一般利用线性调频信号,发射频率随一定的时间(扫描频率)线性增加。由于微波发射频率是随着信号传播的时间而变化的,所以与反射体距离成比例的低频信号的频率f是从前发射频率和接收频率之间的差异获取的。这样介质的液位可以由储罐的高度和距离计算出来。 频率扫描线性度 FMCW雷达系统的精度取决于频率扫描的线性度和重复性,线性校正是通过对振荡器的参考测量来实现的。 非线性可校正到98%。 FMCW优势 与脉冲雷达技术相比,FMCW雷达技术具有以下优点: ?较高波段,较宽范围的微波信号,从而反射强度高,不受测量环境干扰; ?较高的发射频率,较小的反射角,较小的干扰反射; ?对于同样的应用场合,较小直径的天线就可满足测量要求。 容器底部跟踪 如果容器中的介质(大多数石油化工产品)对微波的反射性较差,则微波穿过介质传播。微波传播至容器底部然后返回,这样介质对波变成“透明”。由于微波在介质中的传播速度比在大气中的传播速度小,容器底部似乎下移动了。对这种应用场合,“容器底部跟踪”方法就能适用,其物位计能自动分析和评价这种移位。

射频导纳液位计工作原理 射频导纳是一种从电容式发展起来的、防挂料、更可靠、更准确、适用性更广得了为控制技术,射频导纳中导纳的含义为电学中阻抗的倒数,它由电阻性成分、电容性成分、感性成分综合而成,而射频即高频无线电波谱,所以射频导纳可以理解为高频无线电波测量导纳。 1、电容式物位测量原理 实验室中,平行板电容器是一个理想型的电容器,其电容量为:C=ε╳S/D,其中ε为两电容极板间介质的介质常数,S为两极板间面积,D为两极板间距离。对于一个料仓,安装一个测量系统,形成一个同轴电容器。仓内存在一个电容 C= ε 0╳S╳H0/D+ε╳S╳ (H-H ),其中ε 为两极间空气的介电常数, ε0=1.0006,近似=1;ε为两电极间介质的介电常数,S为两极板间等效面积,D 为两极板间距离,Ho为空气段探头长度,H为探头长度。对于一个固定的料仓来说,物料的ε是固定的,S、D也是固定的,所以,推导上式可知,测量电容与物料的高度成正比。图2是测量原理框图。 利用检测桥路上的可调电容可以平衡掉初始电容,包括安装电容和线缆电容等,只剩下探头物料电容,该电容信号放大后,输出一个与料位成正比的信号。这种电容式原理存在一个严重弱点:即物位升高淹没探头后又落下去时,探头可能会留有附着物即挂料。这会导致被测电容加大,如果是导电液体情况会更严重,产生很大的误差。另一个缺点是探头到电路单元之间的连接电缆,在这相当于一个较大的电容,而且随温度变化。这个变化的电缆电容与物位电容叠加在一起会引起很大的误差,尤其在物料介电常数较低的场合,信号较小,这些误差将是很严重的。而射频导纳技术就能克服上述缺点。 2、点位射频导纳原理 点位射频导纳技术与电容几乎的重要区别是采用了三端技术,如图3。在电路单元测量信号上引出一根线,经同相放大器放大,其输出与同轴电缆屏蔽层相连,然后又连到滩头的屏蔽层相连(Cote-shield元件)。该放大器是一个同相放大器,其增益为“1”,输出信号与输入信号等电位、同相位、同频率但互相隔离。地线是电缆中另一条独立的导线。由于同轴电缆的中心线与外层屏蔽存在上述关系,所以二者之间没有电位差,也就没有电流流过,即没有电流从中心线漏出来,相当于二者之间没有电容或电容等于零。因此电缆的温度效应,安装电容等也就不会产生影响。对于探头上的挂料问题采用一种新的探头结构,五层同心结构:最里层是中心测杆,中间是Cote-shield屏蔽层,最外面是接地的安装螺纹,用绝缘层将其分别给起来。图4给出了探头上挂料的等效电路。与同轴电缆的情况时一样的,中心测杆与屏蔽层之间没有电势差,即使传感元件上挂料阻抗很小,也不会有电流流过,电子仪器测量的仅仅是从探头中心到主要是到对面罐壁(地)的电流,因为Cote-shield元件能阻碍电流沿探头向上流向容器壁,因而对地电流只有经探头末端通过被测物料到对面容器壁。即 U A =U B I AB =(U A -U B )/R=0由于屏蔽层与容器壁之间存在电势差,两者之间虽有电流通 过,但该电流不被测量,不影响测量结果。这样就将测量段保护起来,中心测杆与地之间形成被测电流。 3、连续射频导纳原理

超声波测距仪的工作原理2

超声波测距 (程序原理图安装图) 概述 超声波测距学习板,可应用于汽车倒车、建筑施工工地以及一些工业现场的位置监控,也可用于如液位、井深、管道长度的测量等场合。要求测量范围在0.27~4.00m,测量精度1cm,测量时与被测物体无直接接触,能够清晰稳定地显示测量结果。 超声波测距原理 超声波发生器内部结构有两个压电晶片和一个共振板。当它的两极外加脉冲信号,其频率等于压电晶片的固有振荡频时,压电晶片将会发生共振,并带动共振板振动,便产生超声波。反之,如果两电极间未外加电压,当共振板接收到超声波本时,将压迫压电晶片作振动,将机械能转换为电信号,就成为超声波接收器。在超声探测电路中,发射端得到输出脉冲为一系列方波,其宽度为发射超声的时间间隔,被测物距离越大,脉冲宽度越大,输出脉冲个数与被测距离成正比。超声测距大致有以下方法:①取输出脉冲的平均值电压,该电压(其幅值基本固定)与距离成正比,测量电压即可测得距离;②测量输出脉冲的宽度,即发射超声波与接收超声波的时间间隔t,故被测距离为S=1/2vt。本测量电路采用第二种方案。由于超声波的声速与温度有关,如果温度变化不大,则可认为声速基本不变。如果测距精度要求很高,则应通过温度补偿的方法加以校正。超声波测距适用于高精度的中长距离测量。因为超声波在标准空气中的传播速度为331.45米/秒,由单片机负责计时,单片机使用12.0M晶振,所以此系统的测量精度理论上可以达到毫米级。 CJ-3A超声波学习板采用AT89C51或AT89S51单片机,晶振:12M,单片机用P1.0口输出超声波换能器所需的40K方波信号,利用外中断0口监测超声波接收电路输出的返回信号,显示电路采用简单的4位共阳LED数码管,断码用 74LS244,位码用8550驱动. 超声波测距的算法设计: 超声波在空气中传播速度为每秒钟340米(15℃时)。X2是声波返回的时刻,X1是声波发声的时刻,X2-X1得出的是一个时间差的绝对值,假定X2-X1=0.03S,则有340m×0.03S=10.2m。由于在这10.2m 的时间里,超声波发出到遇到返射物返回的距离,

史上最完整的机器人工作原理解析

史上最完整的机器人工作原理解析 很多人一听到机器人这三个字脑中就会浮现外形酷炫、功能强大、高端等这些词,认为机器人就和科幻电影里的终结者一样高端炫酷。其实不然,在本文中,我们将探讨机器人学的基本概念,并了解机器人是如何完成它们的任务的。 一、机器人的组成部分从最基本的层面来看,人体包括五个主要组成部分: 当然,人类还有一些无形的特征,如智能和道德,但在纯粹的物理层面上,此列表已经相当完备了。 机器人的组成部分与人类极为类似。一个典型的机器人有一套可移动的身体结构、一部类似于马达的装置、一套传感系统、一个电源和一个用来控制所有这些要素的计算机大脑。从本质上讲,机器人是由人类制造的动物,它们是模仿人类和动物行为的机器。 仿生袋鼠机器人 机器人的定义范围很广,大到工厂服务的工业机器人,小到居家打扫机器人。按照目前最宽泛的定义,如果某样东西被许多人认为是机器人,那么它就是机器人。许多机器人专家(制造机器人的人)使用的是一种更为精确的定义。他们规定,机器人应具有可重新编程的大脑(一台计算机),用来移动身体。 根据这一定义,机器人与其他可移动的机器(如汽车)的不同之处在于它们的计算机要素。许多新型汽车都有一台车载计算机,但只是用它来做微小的调整。驾驶员通过各种机械装置直接控制车辆的大多数部件。而机器人在物理特性方面与普通的计算机不同,它们各自连接着一个身体,而普通的计算机则不然。 大多数机器人确实拥有一些共同的特性 首先,几乎所有机器人都有一个可以移动的身体。有些拥有的只是机动化的轮子,而有些则拥有大量可移动的部件,这些部件一般是由金属或塑料制成的。与人体骨骼类似,这些独立的部件是用关节连接起来的。

射频导纳液位计的原理与特点

射频导纳液位计的原理与特点 WT-LWY物位控制器为通用型物位计用于连续物位的测量,产品应用于工矿现场,适用于大多数应用场合,仪表由一个电路单元一套防爆外壳和杆式或缆式传感元件组成,传感器有多种型号可选,仪表可选整体或分体安装。 1.射频导纳物位计的测量原理 射频导纳是一种从电容式发展起来的、防挂料、更可靠、更准确、适用性更广的新型物位控制技术,是电容式物位技术的升级。所谓射频导纳,导纳的含义为电学中阻抗的倒数,它由电阻性成分、电容性成分、感性成分综合而成,而射频即高频无线电波谱,所以射频导纳可以理解为用高频无线电波测量导纳。仪表工作时,仪表的传感器与灌壁及被测介质形成导纳值,物位变化时,导纳值相应变化,电路单元将测量导纳值转换成物位信号输出,实现物位测量。 对于连续测量,射频导纳技术与传统电容技术的区别除了上述讲过的以外,还增加了两个很重要的电路,这是根据导电挂料实践中的一个很重要的发现改进而成的。上述技术在这时同样解决了连接电缆问题,也解决了垂直安装的传感器根部挂料问题。锁增加的两个电路是振荡器缓冲器和交流变换斩波器驱动器。 对一个强导电性被测介质的容器,由于被测介质是导电的,接地点可以被认为在探头绝缘层的表面,对变送器来说仅表现为一个纯电容。随着容器排料,探杆上产生挂料,而挂料是具有阻抗的。这样以前的纯电容现在变成了由电容和电阻组成的复阻抗,从而引起两个问题。 第一个问题是液位本身对探头相当于一个电容,它不消耗变送器的能量,(纯电容不耗能)。但挂料对探头等效电路中含有电阻,则挂料的阻抗会消耗能量,从而将振荡器电压拉下来,导致桥路输出改变,产生测量误差。我们在振荡器与电桥之间增加了一个缓冲放大器,使消耗的能量得到补充,因而不会降低加在探头的振荡电压。 第二个问题是对于导电被测介质,探头绝缘层表面的接地点覆盖了整个被测介质及挂料区,使有效测量电容扩展到挂料的顶端。这样便产生挂料误差,且导电性越强误差越大。但任何被测介质都不是完全导电的。从电学角度来看,挂料层相当于一个电阻,传感元件被挂料覆盖的部分相当于一条由无数个无穷小的电容和电阻元件组成的传输线。根据数学理论,如果挂料足够长,则挂料的电容和电阻部分的阻抗相等。因此根据对挂料阻抗所产生的误差研究,又增加一个交流驱动器电路。该电路与交流变换器或同步检测器一起就可以分别测量电容和电阻,从而排除挂料的影响。 这些,多参量的测量,是必须得基础,交流鉴相采样器是实现的手段。由于使用了上述三项技术,使得射频导纳技术在现场应用中展现出非凡的生命力。 2.射频导纳物位计的特点 通用性强:可测量液位及料位,可满足不同温度、压力、介质的测量要求,并可应用于腐蚀、冲击等恶劣场合

激光测距仪原理

激光测距仪激光测距基本原理 激光测距是光波测距中的一种测距方式,如果光以速度c在空气中传播在A、B两点间往返一次所需时间为t,则A、B两点间距离D可用下列表示。 D=ct/2 式中:D——测站点A、B两点间距离;c——光在大气中传播的速度;t——光往返A、B 一次所需的时间。 由上式可知,要测量A、B距离实际上是要测量光传播的时间t,根据测量时间方法的不同,激光测距仪通常可分为脉冲式和相位式两种测量形式。 相位式激光测距仪 相位式激光测距仪是用无线电波段的频率,对激光束进行幅度调制并测定调制光往返测线一次所产生的相位延迟,再根据调制光的波长,换算此相位延迟所代表的距离。即用间接方法测定出光经往返测线所需的时间。 相位式激光测距仪一般应用在精密测距中。由于其精度高,一般为毫米级,为了有效的反射信号,并使测定的目标限制在与仪器精度相称的某一特定点上,对这种测距仪都配置了被称为合作目标的反射镜。 若调制光角频率为ω,在待测量距离D上往返一次产生的相位延迟为φ,则对应时间t 可表示为: t=φ/ω 将此关系代入(3-6)式距离D可表示为 D=1/2 ct=1/2 c·φ/ω=c/(4πf) (Nπ+Δφ) =c/4f (N+ΔN)=U(N+) 式中:φ——信号往返测线一次产生的总的相位延迟。 ω——调制信号的角频率,ω=2πf。 U——单位长度,数值等于1/4调制波长 N——测线所包含调制半波长个数。 Δφ——信号往返测线一次产生相位延迟不足π部分。 ΔN——测线所包含调制波不足半波长的小数部分。 ΔN=φ/ω

在给定调制和标准大气条件下,频率c/(4πf)是一个常数,此时距离的测量变成了测线所包含半波长个数的测量和不足半波长的小数部分的测量即测N或φ,由于近代精密机械加工技术和无线电测相技术的发展,已使φ的测量达到很高的精度。 为了测得不足π的相角φ,可以通过不同的方法来进行测量,通常应用最多的是延迟测相和数字测相,目前短程激光测距仪均采用数字测相原理来求得φ。 由上所述一般情况下相位式激光测距仪使用连续发射带调制信号的激光束,为了获得测距高精度还需配置合作目标,而目前推出的手持式激光测距仪是脉冲式激光测距仪中又一新型测距仪,它不仅体积小、重量轻,还采用数字测相脉冲展宽细分技术,无需合作目标即可达到毫米级精度,测程已经超过100m,且能快速准确地直接显示距离。是短程精度精密工程测量、房屋建筑面积测量中最新型的长度计量标准器具。

工业机器人内部结构及基本组成原理详解

工业机器人内部结构及基本组成原理详解 工业机器人详解 你对工业机器人有着什么样的了解?关于工业机器人,我们过去也反反复复推送了很多的文章,在这一次,我们将尝试解决有关---在工业环境中使用的最常见的机器人和作业时经常会遇到的问题。关于工业机器人定义什么可以被 认为是一个工业机器人?什么不能被称为工业机器人?工业机器人直到最近才能避开这种混乱。不是在工业环境中使 用的每个机电设备都可以被认为是机器人。根据国际标准组织的定义,工业机器人是一种可编程的三自由度或多轴自动控制的可编程多用途机械手。这几乎是在谈论工业机器人时被接受的定义。工业机器人自中年以来发生了什么变化?越来越多的工程师和企业家正在寻找越来越多的机器人技术,帮助在工业环境中优化工作流程的方式。随着时代的发展和机器人技术的进步,机器人手臂必须为诸如仓储中使用的群组AGV等新手铺路。我们经常说典型的工业机器人 由工具,工业机器人手臂,控制柜,控制面板,示教器以及其他外围设备组成。那么这些是什么?这些部分通常都在一起,控制柜类似于机器人的大脑。控制面板和示教器构成用户环境。工具(也称为末端执行器)是为特定任务设计的设备(例如焊接或喷涂)。机器人手臂基本上是移动工具的

东西。但并不是每个工业机器人都像一个手臂。不同机器人有不同类型的结构。控制面板--- 操作员使用控制面板来执行一些常规任务。(例如:改变程序或控制外围设备)。应用“机器人工人” --------- 什么时候应该使用工业机器人而不是人工?相信这个问题大家思考的次数并不少了。理想情况下,这应该是双赢的。想快速看到效果,你需要知道什么是别人最不喜欢的工作。想得最多的是那些重复的,乏味的工作,需要从工作人员那边进行大量单调的行动,这个思考是正确的,因为正是如此,例如从一个输送机到另一个输送机。如果总是相同的任务,您可以使用专门针对您的需求量身定制的自动化解决方案。工厂的工作处理需要越来越灵活,在这些情况下,正确的解决方案是:可以试用用于不同任务的可重新编程的机器人进行任务操作。此外,就是那些对人类工作有害的任务。(例如:用危险化学品进行表面处理,这是在有害环境中工作。在许多情况下,长期使用机器人比聘用工人更聪明和便宜。)当然,还有的是人类难以操作的工作。(例如:举或搬运重物或在不适合人类生活的条件下工作。)同样,在许多这些情况下,可以应用特定的自动化解决方案。然而,如果任务需要灵活性处理,还需要考虑要用到的机器人。以下是最常见的机器人应用程序列表:电弧焊、部件、涂层、去毛刺、压铸、造型、物料搬运、选择、码垛、打包、绘画、点焊、运输,仓储关于工业机器人的

各种料位计的各种原理及优缺点

一、简介 料位计,是用来测量料仓/容罐/仓储等料位的计量仪表,并将料位信号(开关量或连续量)转换为电信号(模拟信号或数字信号)传送到PLC/DCS上,辅助自动化系统控制卸料、加料或停止进料,保持料仓内料位高度。 料位计又称为料位仪表,料位传感器,料位仪,料位变送器、物位计、物位仪表等。 料位计可测量各种状态的物料,如液态、浆液状、灰状、粉状、颗粒状、块状等的物料料位,广泛应用于各个行业。 料位计的分类 随着工业自动化水平的提高,以及在工厂的实践经验中,料位计种类繁多,根据不同的分类方式,有如下种类, 1)根据被测对象分为: 液位计(测量液体) 界面仪(测量液液、固液分界面) 物位计(测量固体物料) 2)根据测量目的分为: 开关量测量(即高低料位报警) 连续量测量(实时料位监测) 3)根据测量方式及原理分为: 接触式:阻旋式、音叉式、电容式、重锤式、射频导纳式、导波雷达式

非接触式:电磁式、超声波式(三维成像)、雷达式、核子式、中子式、射线式、称重式、无源核子、辐射式、激光式 二、各种料位计的各种原理及优缺点 1、阻旋式料位开关 测量原理:高料位时,通过电机驱动传动杆末端的桨叶旋转,当物料覆盖并阻止桨叶旋转时,输出触点(干接点)报警信号,同时切断电机电源;低料位时,桨叶由被覆盖状态到释放,弹簧将电机拉回工作位置,输出相反的触点(干接点)报警信号。 适用工况:适用于各种固体物料测量;温度<=800℃,压力<=10bar,拽引力<=2.8t,灵敏度达20g/l,可要求FDA食品级认证,EHEDG卫生级认证,ATEX、FM/CSA、IEC-Ex、GOST粉尘及气体防爆认证;

相关文档