文档库 最新最全的文档下载
当前位置:文档库 › ABAQUS中混凝土塑性损伤因子的合理取值研究

ABAQUS中混凝土塑性损伤因子的合理取值研究

ABAQUS中混凝土塑性损伤因子的合理取值研究
ABAQUS中混凝土塑性损伤因子的合理取值研究

使用ABAQUS计算应力强度因子

------------------------------------------------------------------------------------------------------- 如何使用ABAQUS计算应力强度因子 Simwefanhj(fanhjhj@https://www.wendangku.net/doc/6a8980740.html,) 2011.9.9 ------------------------------------------------------------------------------------------------------- 问题描述:以无限大平板含有一贯穿裂纹为例,裂纹长度为10mm(2a),在远场受双向均布拉应力σ=100N/mm2。按解析解,此I型裂纹计算出的应力=396.23(N.mm-3/2) 强度因子π σa K= I 以下为使用ABAQUS6.10的计算该问题的过程。 第一步:进入part模块 ①建立平板part(2D Planar;Deformation;shell),平板的尺寸相对于裂纹足够大,本例的尺寸为100×50(mm)。 ②使用Partation Face:sketch工具,将part分隔成如图1形式。 图1 第二步:进入property模块 ①建立弹性材料; ②截面选择平面问题的solid,homogeneous; ③赋予截面。

第三步:进入Assembly模块 不详述。需注意的是:实体的类型(instance type)选择independent。 第四步:进入mesh模块 除小圈内使用CPS6单元外,其它位置使用CPS8单元离散(图2)。裂纹尖端的奇异在interaction模块中(图4)考虑。 图2 第五步:进入interaction模块 ①指定裂纹special/creak/assign seam,选中示意图3中的黄色线,done! ②生成裂纹crack 1,special/crack/create,name:crack 1,type: contour integral. 当提示选择裂纹前端时,选则示意图的红圈区域,当提示裂纹尖端区域时选择红圈的圆心,用向量q表示裂纹扩展方向(示意图3绿色箭头)。用同样的方法建立crack 2(示意图3中的蓝色区域)。 special/crack/edit,对两个裂纹进行应力奇异的设置,如图4所示。

ABAQUS中的三种混凝土本构模型(20200706140516)

ABAQUS用连续介质的方法建立描述混凝土模型不采用宏观离散裂纹的方法描述裂纹的水平的在每一个积分点上单独计算其中。 低压力混凝土的本构关系包括: Con crete Smeared cracki ng model (ABAQUS/Sta ndard) Concrete Brittle cracki ng model (ABAQUS/Explicit) Con crete Damage plasticity model 高压力混凝土的本构关系: Cap model 1、ABAQUS/Standard 中的弥散裂缝模型Concrete Smeared cracking model (ABAQUS/Standard): 只能用于ABAQUS/Standard 中 裂纹是影响材料行为的最关键因素,它将导致开裂以及开裂后的材料的各向异性 用于描述:单调应变、在材料中表现出拉伸裂纹或者压缩时破碎的行为 在进行参数定义式的Keywords: *CONCRETE *TENSION STIFFENING *SHEAR RETENTION *FAILURE RATIOS 2、ABAQUS/Explicit 中脆性破裂模型Concrete Brittle cracking model (ABAQUS/Explicit): 适用于拉伸裂纹控制材料行为的应用或压缩失效不重要,此模型考虑了由于裂纹引起的材料 各向异性性质,材料压缩的行为假定为线弹性,脆性断裂准则可以使得材料在拉伸应力过大 时失效。 在进行参数定义式的Keywords *BRITTLE CRACKING, *BRITTLE FAILURE, *BRITTLE SHEAR 3、塑性损伤模型Concrete Damage plasticity model : 适用于混凝土的各种荷载分析,单调应变,循环荷载,动力载荷,包含拉伸开裂(cracking)和压缩破碎(crushing),此模型可以模拟硬度退化机制以及反向加载刚度恢复的混凝土力学特性 在进行参数定义式的Keywords: *CONCRETE DAMAGED PLASTICITY *CONCRETE TENSION STIFFENING *CONCRETE COMPRESSION HARDENING *CONCRETE TENSION DAMAGE

ABAQUS混凝土塑性损伤模型

4.5.2 混凝土和其它准脆性材料的塑性损伤模型 这部分介绍的是ABAQUS提供分析混凝土和其它准脆性材料的混凝土塑性损伤模型。ABAQUS 材料库中也包括分析混凝的其它模型如基于弥散裂纹方法的土本构模型。他们分别是在ABAQUS/Standard “An inelastic constitutive model for concrete,” Section 4.5.1, 中的弥散裂纹模型和在ABAQUS/Explicit, “A cracking model for concrete and other brittle materials,” Section 4.5.3中的脆性开裂模型。 混凝土塑性损伤模型主要是用来为分析混凝土结构在循环和动力荷载作用下的提供一个普遍分析模型。该模型也适用于其它准脆性材料如岩石、砂浆和陶瓷的分析;本节将以混凝土的力学行为来演示本模型的一些特点。在较低的围压下混凝土表现出脆性性质,主要的失效机制是拉力作用下的开裂失效和压力作用下的压碎。当围压足够大能够阻止裂纹开裂时脆性就不太明显了。这种情况下混凝土失效主要表现为微孔洞结构的聚集和坍塌,从而导致混凝土的宏观力学性质表现得像具有强化性质的延性材料那样。 本节介绍的塑性损伤模型并不能有效模拟混凝土在高围压作用下的力学行为。而只能模拟混凝土和其它脆性材料在与中等围压条件(围压通常小于单轴抗压强度的四分之一或五分之一)下不可逆损伤有关的一些特性。这些特性在宏观上表现如下: ?单拉和单压强度不同,单压强度是单拉强度的10倍甚至更多; ?受拉软化,而受压在软化前存在强化; ?在循环荷载(压)下存在刚度恢复; ?率敏感性,尤其是强度随应变率增加而有较大的提高。 概论 混凝土非粘性塑性损伤模型的基本要点介绍如下: 应变率分解 对率无关的模型附加假定应变率是可以如下分解的: 是总应变率,是应变率的弹性部分,是应变率的塑性部分。 应力应变关系 应力应变关系为下列弹性标量损伤关系: 其中是材料的初始(无损)刚度,是有损刚度,是刚度退化变量其值在0(无损)到1(完全失效)之间变化,与失效机制(开裂和压碎)相关的损伤导致了弹性刚度的退化。在标量损伤理论框架内,刚度退化是各向同性的,它可由单个标量d来描述。按照传统连续介质力学观点,有效应力可定义如下:

abaqus计算应力强度因子

重庆大学 课题:Abaqus计算裂纹应力强度因子 学院: 专业: 学号: 姓名:

一、计算裂纹应力强度因子

问题描述:以无限大平板含有一单边裂纹为例,裂纹长度为a=10mm,平板宽度h=30,弹性模量E=210000Pa,泊松比v=0.33,在远场受双向均布拉应力。 使用Abaqus计算该问题: 1、进入part模块 建立平板part,平板的尺寸相对于裂纹足够大,本例尺寸为50x30 (mm);使用Partation Face:sketch工具,将part分隔成如图1形式 图1 2、进入property模块 建立弹性材料;截面选择平面问题的solid,homogeneous;赋予截 面。 3、进入Assembly模块 实体的类型(instance type)选择independent。 4、进入mesh模块 划分单元格如图2所示。

图2 5、进入interaction模块 指定裂纹special/creak/assign seam;生成裂纹crack 1, special/crack/create;special/crack/edit,对两个裂纹进行应力奇异的 设置。 6、进入step模块 在initial步之后建立static,general步;在 output/history output requests/create/中创建输出变量。 7、进入load模块 定义位移和荷载边界,如图3所示。

图3 8、进入job模块,提交计算 Mises应力分布见图4,在.dat文件中(图5)查看应力强度因子。 图4

图5 计算解析解: 由公式F=1.12?0.23(a/h)+10.6(a/h)2?21.71(a/h)3+30.38(a/h)4 计算得解析解为k=1001 应力强度因子误差为0.09% 二、误差分析 改变板的长度,其他条件不变 1.当长度L=100时 误差为0.5% 2.当板长L=30

混凝土塑性损伤模型1

混凝土和其它准脆性材料的塑性损伤模型 这部分介绍的是ABAQUS提供分析混凝土和其它准脆性材料的混凝土塑性损伤模型。ABAQUS 材料库中也包括分析混凝的其它模型如基于弥散裂纹方法的土本构模型。他们分别是在ABAQUS/Standard “An inelastic constitutive model for concrete,” Section 4.5.1, 中的弥散裂纹模型和在ABAQUS/Explicit, “A cracking model for concrete and other brittle materials,” Section 4.5.3中的脆性开裂模型。 混凝土塑性损伤模型主要是用来为分析混凝土结构在循环和动力荷载作用下的提供一个普遍分析模型。该模型也适用于其它准脆性材料如岩石、砂浆和陶瓷的分析;本节将以混凝土的力学行为来演示本模型的一些特点。在较低的围压下混凝土表现出脆性性质,主要的失效机制是拉力作用下的开裂失效和压力作用下的压碎。当围压足够大能够阻止裂纹开裂时脆性就不太明显了。这种情况下混凝土失效主要表现为微孔洞结构的聚集和坍塌,从而导致混凝土的宏观力学性质表现得像具有强化性质的延性材料那样。 本节介绍的塑性损伤模型并不能有效模拟混凝土在高围压作用下的力学行为。而只能模拟混凝土和其它脆性材料在与中等围压条件(围压通常小于单轴抗压强度的四分之一或五分之一)下不可逆损伤有关的一些特性。这些特性在宏观上表现如下: ?单拉和单压强度不同,单压强度是单拉强度的10倍甚至更多; ?受拉软化,而受压在软化前存在强化; ?在循环荷载(压)下存在刚度恢复; ?率敏感性,尤其是强度随应变率增加而有较大的提高。 概论 混凝土非粘性塑性损伤模型的基本要点介绍如下: 应变率分解 对率无关的模型附加假定应变率是可以如下分解的: 是总应变率,是应变率的弹性部分,是应变率的塑性部分。 应力应变关系 应力应变关系为下列弹性标量损伤关系: 其中是材料的初始(无损)刚度,是有损刚度,是刚度退化变量其值在0(无损)到1(完全失效)之间变化,与失效机制(开裂和压碎)相关的损伤导致了弹性刚度的退化。在标量损伤理论框架内,刚度退化是各向同性的,它可由单个标量d来描述。按照传统连续介质力学观点,有效应力可定义如下:

ABAQUS_混凝土损伤塑性模型_损伤因子

混凝土损伤因子的定义 BY lizhenxian27 1 损伤因子的定义 损伤理论最早是1958年Kachanov提出来用于研究金属徐变的。所谓损伤,是指在各种加载条件下,材料内凝聚力的进展性减弱,并导致体积单元破坏的现象,是受载材料由于微缺陷(微裂纹和微孔洞)的产生和发展而引起的逐步劣化。损伤一般被作为一种“劣化因素”而结合到弹性、塑性和粘塑性介质中去。 由于损伤的发展和材料结构的某种不可逆变化,因而不同的学者采用了不同的损伤定义。一般来说,按使用的基准可将损伤分为: (1) 微观基准量 1,空隙的数目、长度、面积、体积; 2空隙的形状、排列、由取向所决定的有效面积。 (2) 宏观基准量 1、弹性常数、屈服应力、拉伸强度、延伸率。 2、密度、电阻、超声波波速、声发射。 对于第一类基准量,不能直接与宏观力学量建立物性关系,所以用它来定义损伤变量的时候,需要对它做出一定的宏观尺度下的统计处理(如平均、求和等)。 对于第二类基准量,一般总是采用那些对损伤过程比较敏感,在实验室里易于测量的量,作为损伤变量的依据。 由于微裂纹和微孔洞的存在,微缺陷所导致的微应力集中以及缺陷的相互作用,有效承

载面积由

A 减小为A ’。如假定这些微裂纹和微孔洞在空间各个方向均匀分布,A ’与法向无关,这时可定义各向同性损伤变量D 为 D= ( A- A ’ )/ A 事实上,微缺陷的取向、分布及演化与受载方向密切相关,因此材料损伤实际上是各向异性的。为描述损伤的各向异性,可采用张量形式来定义。损伤表征了材损伤是一个非负的因子,同时由于这一力学性能的不可逆性,必然有 0dD dt ≥ 2有效应力 定义Cauchy 有效应力张量'σ ''//(1)A A D σσσ==- 一般情况下,存在于物体内的损伤(微裂纹、空洞)是有方向性的。当损伤变量与受力面法向相关时,是为各向异性损伤;当损伤变量与法向无关时,为各向异性损伤。这时的损伤变量是一标量。 3等效性假设 损伤演化方程推导一般使用两种等效性假设,一种是应变等效性假设,另一种是能量等效性假设。采用能量等效性假设可以避免采用应变等效假设而使得各向异性损伤模型中的有效弹性矩阵不对称的问题.以下对两种假设进行简要的介绍。 (1) 应变等效性假设 1971年 Lematire 提出,损伤单元在应力σ作用下的应变响应与无损单元在定义的有效应力'σ作用下的应变响应相同。在外力作用下受损材料的本构关系可采用无损时的形式,只要

ABQUS中的三种混凝土本构模型

. ABQUS中的三种混凝土本构模型 ABAQUS 用连续介质的方法建立描述混凝土模型不采用宏观离散裂纹的方法描述裂纹的水平的在每一个积分点上单独计算其中。 低压力混凝土的本构关系包括: Concrete Smeared cracking model (ABAQUS/Standard) Concrete Brittle cracking model (ABAQUS/Explicit) Concrete Damage plasticity model 高压力混凝土的本构关系: Cap model 1、ABAQUS/Standard中的弥散裂缝模型Concrete Smeared cracking model (ABAQUS/Standard):——只能用于ABAQUS/Standard中 裂纹是影响材料行为的最关键因素,它将导致开裂以及开裂后的材料的各向异性 用于描述:单调应变、在材料中表现出拉伸裂纹或者压缩时破碎的行为 在进行参数定义式的Keywords: *CONCRETE *TENSION STIFFENING *SHEAR RETENTION *FAILURE RATIOS 2、ABAQUS/Explicit中脆性破裂模型Concrete Brittle cracking model (ABAQUS/Explicit) : 适用于拉伸裂纹控制材料行为的应用或压缩失效不重要,此模型考虑了由于裂纹引起的材料各向异性性质,材料压缩的行为假定为线弹性,脆性断裂准则可以使得材料在拉伸应力过大时失效。 在进行参数定义式的Keywords *BRITTLE CRACKING, *BRITTLE FAILURE, *BRITTLE SHEAR 3、塑性损伤模型Concrete Damage plasticity model: 适用于混凝土的各种荷载分析,单调应变,循环荷载,动力载荷,包含拉伸开裂(cracking)和压缩破碎(crushing),此模型可以模拟硬度退化机制以及反向加载刚度恢复的混凝土力学特性 在进行参数定义式的Keywords: *CONCRETE DAMAGED PLASTICITY *CONCRETE TENSION STIFFENING *CONCRETE COMPRESSION HARDENING *CONCRETE TENSION DAMAGE *CONCRETE COMPRESSION DAMAGE 1 / 1'.

(仅供参考)Abaqus混凝土损伤塑性模型的参数标定

Abaqus 混凝土损伤塑性模型的参数标定 1. 塑性参数(Plasticity ) 1) 剪胀角(Dilation Angle ) = 30° 2) 流动势偏移量(Eccentricity ) 3) 双轴受压与单轴受压极限强度比 = 1.16 4) 不变量应力比 = 0.667 5) 粘滞系数(Visosity Parameter ) = 0.0005 2. 受压本构关系 应力-Yield Stress :第一行应输入本构模型刚进入非弹性段非弹性应变为0时所对应的应力。 非弹性应变-Inelastic Strain (受拉时为开裂应变-Cracking Strain ):根据应力按混凝土本构模型得出对应的应变值,并通过 , 和 ,得出非弹性应变。 3. 受压损伤因子(Damage Parameter )计算 根据《Abaqus Analysis User's Manual (6.10)》 - 20.6.3 “Concrete damaged plasticity ”中公式: 假设非弹性应变 in c ε中塑性应变 pl c ε所占的比例为c β,通过转换可得损伤因子c d 的计算公式: () () 0 011in c c in c c c c E E d βεσβε-=+- 根据《ABAQUS 混凝土损伤塑性模型参数验证》规定,混凝土受压时c β的取值范围为0.35 ~ 0.7。

4. 受拉损伤因子(Damage Parameter )计算 受拉损伤因子的计算与受压损伤因子的计算方法基本相同,只需将对应受压变量更换为受拉即可: () () 0011in t t in t t t t E E d βεσβε-=+- 而根据参考文献混凝土受拉时t β的取值范围为0.5 ~ 0.95。 5. 损伤恢复因子 受拉损伤恢复因子(Tension Recovery ):缺省值0t w =。 受压损伤恢复因子(Compression Recovery ):缺省值1c w =。

ABAQUS计算裂纹尖端应力强度因子有效性的算例研究

ABAQUS计算裂纹尖端应力强度因子有效性的算例研究 发表时间:2018-09-11T11:34:12.223Z 来源:《新材料.新装饰》2018年3月下作者:汪波[导读] 在实际工程领域中,相当部分的脆性材料总是不可避免的存在着裂纹或是缺陷。在实际环境中材料的受力往往是相当复杂的。基于ABAQUS平台的裂纹仿真软件,它具有简单易用的特点。(成都理工大学工程技术学院,四川乐山 614000) 摘要:在实际工程领域中,相当部分的脆性材料总是不可避免的存在着裂纹或是缺陷。在实际环境中材料的受力往往是相当复杂的。基于ABAQUS平台的裂纹仿真软件,它具有简单易用的特点。通过算例分析验证表明,该软件的计算结果具有较高的精度,完全可以用于实际工程问题的计算,通过分析验证表明该软件的设计是成功的。此外,今后可以在它的基础上进行更多功能扩展,从而使它拥有分析更为复杂问题的能力。 关键词:裂纹;应力强度因子;断裂力学;ABAQUS 引言 材料在成型和加工过程中在其内部造成了很多缺陷,而其破坏正好均源于构件内部的微小裂纹,所以研究带裂纹的物体力学性能具有十分重要的意义。 图1存在于岩石和混凝土地面中的裂缝 1920年, Griffith[1-2]提出了在材料中存在裂纹的设想,而从Irwin[]3-4]在1957年提出了应力强度因子以及其后形成的断裂韧度的概念后,断裂力学理论出现了重大的突破,奠定了线弹性断裂力学的基础。 1基本原理 近年来以数值分析为基础的手段来解决断裂力学相关问题的技术得到了广泛的发展应用,并且不断的调整完善。该技术在一定程度上较好的克服了实验条件下的不足。对于线弹性断裂力学而言,裂尖区域的位移场、应力、应变场由应力强度因子决定,故而通过有限元计算的结果来得到具体的应力强度因子的值是线弹性断裂力学中用有限元法的基本要求。 1.1 ABAQUS求解裂纹尖端的应力强度因子 传统的有限元在计算裂纹尖端的应力强度因子的时候,无可避免地遇到裂尖复杂应力场和位移场的计算,J积分则可以完全避免这种复杂的处理过程。 为了计算二维情况下的J积分,ABAQUS定义了围绕裂纹尖端由单元组成的环形的积分域,如下图所示。 图2 ABAQUS中围线的定义 ABAQUS在计算围线积分时,采用的是先计算出围线上面所取的若干个离散点处J积分值,然后乘以每个点对应的加权值后,所有点相加来近似地求解出围线积分,即J积分的值和,进而得到复合裂纹的应力强度因子和。 2两条共线裂纹应力强度因子的算例分析 2.1共线双裂纹在压缩荷载作用下应力强度因子的解析解 有许多学者对含有裂纹的无限大板,裂纹尖端的应力强度因子进行了研究。Zhu Z M[5] 等从理论和实验两个方面都做了详细的研究与探讨。基于前人的研究结果,Zhu Z M 给出了共线裂纹的应力函数及其应力强度因子的基本公式,并就共线双裂纹问题进行了研究,给出了裂纹应力强度因子精确的解析解。 图3压缩载荷作用下的含有共线双裂纹的无限大板 2.2 ABAQUS计算共线裂纹应力强度因子

ABAQUS中的三种混凝土本构模型

ABQUS中的三種混凝土本構模型 ABAQUS?用連續介質的方法建立描述混凝土模型不采用宏觀離散裂紋的方法描述裂紋的水平的在每一個積分點上單獨計算其中。 低壓力混凝土的本構關系包括: Concrete Smeared cracking model (ABAQUS/Standard) Concrete Brittle cracking model (ABAQUS/Explicit) Concrete Damage plasticity model 高壓力混凝土的本構關系: Cap model 1、ABAQUS/Standard中的彌散裂縫模型Concrete Smeared cracking model (ABAQUS/Standard): ——只能用于ABAQUS/Standard中 裂紋是影響材料行為的最關鍵因素,它將導致開裂以及開裂后的材料的各向異性 GAGGAGAGGAFFFFAFAF

用于描述?:單調應變?、在材料中表現出拉伸裂紋或者壓縮時破碎的行為 在進行參數定義式的Keywords: *CONCRETE *TENSION STIFFENING *SHEAR RETENTION *FAILURE RATIOS 2、ABAQUS/Explicit中脆性破裂模型Concrete Brittle cracking model (ABAQUS/Explicit) : 适用于拉伸裂纹控制材料行为的应用或压缩失效不重要,此模型考虑了由于裂纹引起的材料各向异性性质,材料压缩的行为假定为线弹性,脆性断裂准则可以使得材料在拉伸应力过大时失效。 在进行参数定义式的Keywords *BRITTLE CRACKING, *BRITTLE FAILURE, *BRITTLE SHEAR GAGGAGAGGAFFFFAFAF

混凝土塑性损伤模型表格解读by自习菌

ABAQUS塑性损伤模型计算表格解读by自习菌(wx公众号) 受压本构: fc,r:砼单轴抗压强度标准值,可根据需要取多种值,此处取fck轴心抗压强度标准值 fck:C30,20.1MPa;C35,23.4;C40,26.8;C45,29.6;C50,32.4;C55,35.5;C60,38.5 εcr:与单轴抗压强度fc,r相应的峰值压应变,规范附录公式 αc:单轴受压应力-应变曲线下降段的形状参数,规范附录公式 εcu:应力-应变曲线下降段0.5 fc,r对应的压应变 εcu/εcr:规范附录公式 可适当修正抗压强度代表值fcr,峰值压应变εcr,以及曲线形状参数αc,砼规C.2.4附录。 Ec:弹性模量,只是辅助计算的一个临时取值。C30,3e4MPa;C40,3.25e4;C50,3.45e4 ρc:规范公式 n:规范公式 x:穷举数列,按规范公式与ε、εcr相关 dc:单轴受压损伤演化参数,以x=1为界限,规范为分段公式 ε:由x计算出,规范公式 σ:规范公式 σ修正:在应力-应变曲线上选定弹性阶段与弹塑性阶段的分界点,按Susoo88取0.4 fc,r, 或取1/3~1/2 fc,r,可见这也是一个可调整的值。通过这个选定的点的应力应变,计算弹性阶段的斜率,即E0弹性模量,这个弹性模量就是所采用本构的弹性模量,用E0和ε再重新反算弹性阶段的σ,即得“σ修正”。 对于C30砼,fc,r 取fck=20.1MPa,0.4*20.1=8.04MPa,在表格中插入一行,定义一个ε值,使σ无限逼近8.04(此时尚需重新定义表格这一行x列公式,使之由ε列导出)。根据这个应力应变值,求出E0,再由E0修正弹性阶段的应力值(即插入行之上的部分)。 【Susoo88:受压曲线与受拉曲线弹性临界点不一样,会产生两个弹性模量,需要在输入时选较大值,不然在后面导算等效塑性应变时会出错…】 σtrue,εtrue:之前得到的应力应变是“名义”应力应变,需要在此转换成真实应力应变。 表格中的红色部分为abaqus中的输入数据。

ABAQUS钢筋混凝土损饬塑性模型有限元分析

ABAQUS钢筋混凝土损饬塑性模型有限元分析 发表时间:2009-10-12 刘劲松刘红军来源:万方数据 钢筋混凝土材料,是一种非匀质的力学性能复杂的建筑材料。随着计算机和有限元方法的发展,有限元法已经成为研究混凝土结构的一个重要的手段。由于数值计算具有快速、代价低和易于实现等诸多优点,这种分析方法已经广泛用于实际工程中。然而,要在有限元软件中尽可能准确地模拟混凝土这种材料,是不容易的,国内外学者提出了基于各种理论的混凝土本构模型。但是迄今为止,还没有一种理论被公认为可以完全描述混凝土的本构关系。 ABAQUS是大型通用的有限元分析软件,其在非线性分析方面的巨大优势,获得了广大用户的认可,在结构分析领域的应用趋于广泛。本文把规范建议的混凝土本构关系,应用到损伤塑性模型,对一悬臂梁进行了精细的有限元建模计算和探讨。 1 混凝土损伤塑性模型 ABAQUS在钢筋混凝土分析上有很强的能力。它提供了三种混凝土本构模型:混凝土损伤塑性模型,混凝土弥散裂缝模型和ABAQUS/Explicit中的混凝土开裂模型。其中混凝土损伤塑性模型可以用于单向加载、循环加载以及动态加载等场合,它使用非关联多硬化塑性和各向同性损伤弹性相结合的方式描述了混凝土破碎过程中发生的不可恢复的损伤。这一特性使得损伤塑性模型具有更好的收敛性。 2 模型材料的定义 2.1 混凝土的单轴拉压应力-应变曲线 本模型中选用的混凝土本构关系是《混凝土结构设计规范》所建议的曲线,其应力应变关系可由函数表达式定义。 2.2 钢筋的本构关系 钢筋采用本构关系为强化的二折线模型,无刚度退化。折线第一上升段的斜率,为钢筋本身的弹性模量,第二上升段为钢筋强化段,此时的斜率大致可取为第一段的1/100。 2.3 损伤的定义 损伤是指在单调加载或重复加载下,材料性质所产生的一种劣化现象,损伤在宏观方面的表现就是(微)裂纹的产生。材料的损伤状态,可以用损伤因子来描述。根据前面确定的混凝土非弹性阶段的应力一应变关系。可求得损伤因子的数值。 2.4混凝土塑性数值的计算 混凝土在单向拉伸,压缩试验中得到的数据,通常是以名义应变和名义应力表示的,为了准确地描述大变形过程中截面积的改变,需要使用真实应变和真实应力,可通过它们之间的换算公式计算。真实应变是由塑性应变和弹性应变两部分构成的。在ABAQUS中定义塑性材料参数时,需要使用塑性应变。 3 钢筋混凝土悬臂梁实例分析 3.1 模型设计 该悬臂梁的具体情况如图1所示,梁截面尺寸为200mm×300mm,梁长1500mm;纵筋为HRB335钢筋,箍筋为HPB235钢筋,混凝土强度等级为C30。混凝土和钢筋的各力学参数均取自《混凝土结构设计规范》的标准值。

abaqus6.11一个从初学到精通粘弹性的分析的经验积累

问题积累(待续) 1.abaqus如何调整图例的大小,就是云图左上角那个图框,字太小了看不清!! 直接设置图例的字体大小就可以:工具栏viewport>viewport annotation options>legend(选项卡)>text(选项)>set font(按钮)>size,修改size选项中的数字,就可以修改图例大小了。 2.cohesive element ABAQUS 在6.11使用cohesive element,定义cohesive材料属性的时候主要步骤: 1.定义一个材料的名字,比如cohesive,不要去定义任何属性(弹性,弹塑性等等)。 2.打开工具栏model--edit keywords,在inp中手动添加材料的各种属性。 PS: 定义section的时候选cohesive,element control选sweep,element type选cohesive,这些是使用cohesive element的基本步骤。 zero thickness的cohesive section设定abaqus所谓的 zero-thickness,其实就是定义cohesive section的initial thickness=1.0。你可以在定义section的时候定义(specify),也可以用系统默认的thickness(也是1.0),这样有关cohesive element 的计算当中,就有displacement(位移)=strain(应变)*thickness ( 1.0 )=strain的数值。我们知道从1914年Ingless和1921年Griffith提出断裂力学开始,一直到60年代都停留在线弹性断裂力

(完整版)ABAQUS中的三种混凝土本构模型

ABQUS中的三种混凝土本构模型 ABAQUS 用连续介质的方法建立描述混凝土模型不采用宏观离散裂纹的方法描述裂纹的水平的在每一个积分点上单独计算其中。 低压力混凝土的本构关系包括: Concrete Smeared cracking model (ABAQUS/Standard) Concrete Brittle cracking model (ABAQUS/Explicit) Concrete Damage plasticity model 高压力混凝土的本构关系: Cap model 1、ABAQUS/Standard中的弥散裂缝模型Concrete Smeared cracking model (ABAQUS/Standard):——只能用于ABAQUS/Standard中 裂纹是影响材料行为的最关键因素,它将导致开裂以及开裂后的材料的各向异性 用于描述:单调应变、在材料中表现出拉伸裂纹或者压缩时破碎的行为 在进行参数定义式的Keywords: *CONCRETE *TENSION STIFFENING *SHEAR RETENTION *FAILURE RATIOS 2、ABAQUS/Explicit中脆性破裂模型Concrete Brittle cracking model (ABAQUS/Explicit) : 适用于拉伸裂纹控制材料行为的应用或压缩失效不重要,此模型考虑了由于裂纹引起的材料各向异性性质,材料压缩的行为假定为线弹性,脆性断裂准则可以使得材料在拉伸应力过大时失效。 在进行参数定义式的Keywords *BRITTLE CRACKING, *BRITTLE FAILURE, *BRITTLE SHEAR 3、塑性损伤模型Concrete Damage plasticity model: 适用于混凝土的各种荷载分析,单调应变,循环荷载,动力载荷,包含拉伸开裂(cracking)和压缩破碎(crushing),此模型可以模拟硬度退化机制以及反向加载刚度恢复的混凝土力学特性 在进行参数定义式的Keywords: *CONCRETE DAMAGED PLASTICITY *CONCRETE TENSION STIFFENING *CONCRETE COMPRESSION HARDENING *CONCRETE TENSION DAMAGE *CONCRETE COMPRESSION DAMAGE

abaqus裂纹模拟心得

abaqus裂纹模拟心得 baqus裂纹模拟心得(Contour Integral不是XFEM) 最近由于项目需要,做了一些裂纹相关的模拟,在此把一些心得体会贴到论坛上与大家分享,如有不当之处,欢迎大家指正! 本帖主要侧重于介绍裂纹定义过程中各个选项的意义,具体的操作过程论坛里已经有高手做了很好的教程,至于断裂力学理论推荐大家看一下沈成康写的《断裂力学》一书。裂纹的定义和输出需要用到interaction模块和step模块: 一、Interaction模块 1.1 预制裂纹(步骤:菜单/special/crack/assign seam) 注意:并不是作裂纹分析都要定义seam,如果你的裂纹不是一条缝,而是一个缺口,则不需要assign seam,直接走下一步(定义裂纹)就行。 1.2 创建裂纹(步骤:菜单/special/crack/create,type:contour integral) —crack front:crack front是用来定义第一围线积分的区域,2D下我们可以选择包围裂尖点的面,3D则选择包围裂尖线的面;另外还有一种定义crack front的方法,就是直接选择裂尖点(2D)或裂尖线3D),用这个方法定义crack front不需要再定义下一步的crack tip/line,比较简便,两种方法算出的结果没有明显的差别,其实只是影响积分路线的问题,但是J积分值是路径无关的,看个人喜好吧 —crack tip/line:这个比较好理解就是裂尖点(2D)或线(3D),如果我们在上一步中用方法二定义crack front,这一步就直接跳过了 —crack extension direction(定义裂纹扩展方向):这里定义的其实是一个虚拟的裂纹扩展方向,定义了这个参考方向后,我们才能通过输出的角度判断裂纹扩展方向,可以通过两种方法: o q vector:输入一个方向,用来作为计算裂纹的扩展方向的参考方向; o normal to crack plane:crack plane表示裂纹的对称面(当裂纹在一个平面内时,可能需要分开定义多个裂纹),这种方法下我们只需定义裂纹面的法线方向,通过(t表示裂纹尖端的切线), 会在每个节点得出一个q方向(如下图); o 注意:q的方向对输出的应力强度因子,J积分等都会有影响,一般情况下,q最好在裂纹平面内,且垂直于裂尖线的切线,否则算出的应力强度因子,J积分值等等在不同围线积分中会差别较大。 二、step模块 定义好了裂纹相关参数后,我们需要返回step模块定义输出变量: 步骤:菜单/output/history output requests/create,domain:crack,可以输出的值包括:J-integral,Ct-integral,stress intensity factor,T-stress —J-integral :用于应变率无关材料的准静态分析过程,包括线弹性,非线性弹性,弹塑性材料(单调加载工况)的静态分析。J-integral的优点是和积分路径无关,从而可以避开尖端塑性区的

ABAQUS计算J积分细节

ABAQUS计算J积分细节 Abaqus计算J积分,主要是指派裂纹及定义裂纹的方向,同时在step中的历程 模型:10×50 裂纹:定义一个尖端;另一方面指明裂纹的扩展方向(1.0,0.0),说白了就是X

积分数值,图中输入10,则输出10个J积分值 计算包含裂纹尖端的包络区域的面积即为J积分 避开裂纹尖端塑形区域的不可计算的特性。同时J积分的计算数值与积分路径无 从以上图例可以看出J积分数值区域稳定。

疑问:为何计算多个积分点,是否最后的稳定数值就是需要计算的J积分数值?J积分应该是数值,而不是多个不同的数值。我个人觉得最后的稳定数值应该是需要计算的积分数值。 从dat文件到inp文件,找到积分区域。 pickseted12以及pickseted13都是节点4,坐标如图所示,在cad模型中的位置如箭头指向,即裂纹尖端。 详细的需要看一下abaqus帮助文档,关于J积分的计算细节。积分点的个数的意义我还没有搞清楚。 对于应力强度因子K,表征裂纹尖端受力的一个参量,在裂纹尖端的应力场的一定范围内,不同的节点计算数值大体是相同的。

计算应力强度因子:可以利用abaqus直接输出,也可以利用公式计算应力强度因子,以下为利用有限元法计算应力强度因子: 计算应力强度因子:

从上图可以看出,计算应力强度应力的点与计算J积分的点是一致的。Abaqus计算的应力强度因子为裂尖处的应力强度因子。下面我们利用有限元法计算y=0处的应力强度因子,最后外推到裂尖处的应力强度因子。选取不同的半 Abaqus计算J积分注意事项: (1)一、Interaction模块 1.1 预制裂纹(步骤:菜单/special/crack/assign seam) 注意:并不是作裂纹分析都要定义seam,如果你的裂纹不是一条缝,而是一个缺口,则不需要assign seam,直接走下一步(定义裂纹)就行。 1.2 创建裂纹(步骤:菜单/special/crack/create,type:contour integral) —crack front:crack front是用来定义第一围线积分的区域,2D下我们可以选择包围裂尖点的面,3D则选择包围裂尖线的面;另外还有一种定义crack front的方法,就是直接选择裂尖点(2D)或裂尖线3D),用这个方法定义crack front不需要再定义下一步的crack tip/line,比较简便,两种方法算出的结果没有明显的差别,其实只是影响积分路线的问题,但是J积分值是路径无关的,看个人喜好吧 —crack tip/line:这个比较好理解就是裂尖点(2D)或线(3D),如果我们在上一步中用方法二定义crack front,这一步就直接跳过了 —crack extension direction(定义裂纹扩展方向):这里定义的其实是一个虚拟的裂纹扩展方向,定义了这个参考方向后,我们才能通过输出的角度判断裂纹扩展方向,可以通过两种方法: (1)q vector:输入一个方向,用来作为计算裂纹的扩展方向的参考方向; (2)normal to crack plane:crack plane表示裂纹的对称面(当裂纹在一个平面内时,可能需要分开定义多个裂纹),这种方法下我们只需定义裂纹面的法线方向,通过(t表示裂纹尖端的切线), 会在每个节点得出一个q方向; (3)注意:q的方向对输出的应力强度因子,J积分等都会有影响,一般情况下,q最好在裂纹平面内,且垂直于裂尖线的切线,否则算出的应力强度因子,J积分值等等在不同围线积分中会差别较大。 二、step模块 定义好了裂纹相关参数后,我们需要返回step模块定义输出变量: 步骤:菜单/output/history output requests/create,domain:crack,可以输出的值包括:J-integral,Ct-integral,stress intensity factor,T-stress —J-integral :用于应变率无关材料的准静态分析过程,包括线弹性,非线性弹性,弹塑性材料(单调加载工况)的静态分析。J-integral的优点是和积分路径无关,从而可以避开尖端塑性区的影响。 —Ct-integral:用于蠕变分析(一般较少用到) —应力强度因子: (1)只能用于分析线弹性材料,表示裂纹尖端的应力场强度; (2)有三个应力强度因子K1,K2,K3,分别对应于张开型,滑开型和撕开型裂纹的应力强度因子 (3)在输出应力强度因子时也会输出一个J-integral值,因为算法不同,这个值

混凝土塑性损伤模型 -ABAQUS

4.5.2 混凝土塑性损伤模型ABAQUS ABAQUS 材料库中也包括分析混凝的其它模型如基于弥散裂纹方法的土本构模型。他们分别是在ABAQUS/Standard “An inelastic constitutive model for concrete,” Section 4.5.1, 中的弥散裂纹模型和在ABAQUS/Explicit, “A cracking model for concrete and other brittle materials,” Section 4.5.3中的脆性开裂模型。 混凝土塑性损伤模型主要是用来为分析混凝土结构在循环和动力荷载作用下的提供一个普遍分析模型。该模型也适用于其它准脆性材料如岩石、砂浆和陶瓷的分析;本节将以混凝土的力学行为来演示本模型的一些特点。在较低的围压下混凝土表现出脆性性质,主要的失效机制是拉力作用下的开裂失效和压力作用下的压碎。当围压足够大能够阻止裂纹开裂时脆性就不太明显了。这种情况下混凝土失效主要表现为微孔洞结构的聚集和坍塌,从而导致混凝土的宏观力学性质表现得像具有强化性质的延性材料那样。 本节介绍的塑性损伤模型并不能有效模拟混凝土在高围压作用下的力学行为。而只能模拟混凝土和其它脆性材料在与中等围压条件(围压通常小于单轴抗压强度的四分之一或五分之一)下不可逆损伤有关的一些特性。这些特性在宏观上表现如下: ?单拉和单压强度不同,单压强度是单拉强度的10倍甚至更多; ?受拉软化,而受压在软化前存在强化; ?在循环荷载(压)下存在刚度恢复; ?率敏感性,尤其是强度随应变率增加而有较大的提高。 概论 混凝土非粘性塑性损伤模型的基本要点介绍如下: 应变率分解 对率无关的模型附加假定应变率是可以如下分解的: 是总应变率,是应变率的弹性部分,是应变率的塑性部分。 应力应变关系 应力应变关系为下列弹性标量损伤关系: 其中是材料的初始(无损)刚度,是有损刚度,是刚度退化变量其值在0(无损)到1(完全失效)之间变化,与失效机制(开裂和压碎)相关的损伤导致了弹性刚度的退化。在标量损伤理论框架内,刚度退化是各向同性的,它可由单个标量d来描述。按照传统连续介质力学观点,有效应力可定义如下: Cauchy应力通过标量退化变量(d)转化为有效应力

Abaqus混凝土材料模型解读与参数设置

Abaqus混凝土材料塑性损伤模型浅析与参数设置 【壹讲壹插件】欢迎转载,作者:星辰-北极星,QQ群:431603427 https://www.wendangku.net/doc/6a8980740.html, Abaqus混凝土材料塑性损伤模型浅析与参数设置 (1) 第一部分:Abaqus自带混凝土材料的塑性损伤模型 (2) 1.1概要 (2) 1.2学习笔记 (2) 1.3 参数定义与说明 (3) 1.3.1材料模型选择:Concrete Damaged Plasticity (3) 1.3.2 混凝土塑性参数定义 (3) 1.3.3 混凝土损伤参数定义: (4) 1.3.4 损伤参数定义与输出损伤之间的关系 (4) 1.3.5 输出参数: (4) 第二部分:根据GB50010-2010定义材料损伤值 (5) 第三部分:星辰-北极星插件介绍:POLARIS-CONCRETE (6) 3.1 概要 (6) 3.2 插件的主要功能 (6) 3.3 插件使用方法: (6) 3.3.1 插件界面: (6) 3.3.2 生成结果 (7) 3.4、算例: (9) 3.4.1三维实体简支梁模型说明 (9) 3.4.2 计算结果: (9)

第一部分:Abaqus自带混凝土材料的塑性损伤模型 1.1概要 首先我要了解Abaqus内自带的参数模型是怎样的,了解其塑性模型,进而了解其损伤模型,其帮助文档Abaqus Theory Manual 4.5.1 An inelastic constitutive model for concrete讲述的是其非弹性本构,4.5.2 Damaged plasticity model for concrete and other quasi-brittle materials则讲述的塑性损伤模型,同时在Abaqus Analysis User's Manual 22.6 Concrete也讲述了相应的内容。 1.2学习笔记 1、混凝土塑性损伤本构模型中的损伤是一标量值,数值范围为(0无损伤~1完全失效[对于混凝土塑性损伤一般不存在]); 2、仅适用于脆性材料在中等围压条件(为围压小于轴抗压强度1/4); 3、拉压强度可设置成不同数值; 4、可实现交变载荷下的刚度恢复;默认条件下,由拉转压刚度恢复,由压转拉刚度不变; 5、强度与应变率相关; 6、使用的是非相关联流动法则,刚度矩阵为非对称,因此在隐式分析步设置时,需在分析定义other-》Matrix storate-》Unsymmetric。

相关文档