文档库 最新最全的文档下载
当前位置:文档库 › 航空发动机的故障诊断方法研究

航空发动机的故障诊断方法研究

航空发动机的故障诊断方法研究
航空发动机的故障诊断方法研究

摘要

通过回顾航空维修理论及技术的发展历程,分析了以可靠性为中心的维修思想的优越性,阐述了几种航空维修方式各自的特点,指出了新维修思想所带来的革命性成果,即保证安全的前提下降低了维护成本和维修工作量。最后,对新维修思想在我国的应用途径与前景提出了自己的观点。

关键词: 可靠性; 航空维修; 视情; 事后。

1课题背景及其意义

航空维修是随着飞机的诞生而出现的,它是一门综合性的学科。随着科学技术的发展,航空维修经历了从经验维修、以预防为主的传统维修阶段到以可靠性为中心和逻辑决断法的现代维修阶段。目前航空维修已经是一门系统性的学科。

1传统和现代维修思想的对比

1.1传统的维修思想

按照传统的观念,航空维修就是对航空技术装备进行维护和修理的简称,即为保持和恢复航空技术装备实现规定功能而采取的一系列工程技术活动。其基本思想是安全第一,预防为主,也就是按使用时间进行预防性维修工作,通过定时检查、定期修理和翻修来控制飞机的可靠性。这种以定时维修为主的传统维修思想将飞机的安全性与各系统、部件、附件、零件的可靠性紧密相联,认为预防性维修工作做得越多,飞机就越可靠,翻修间隔期的长短是控制飞机可靠性的重要因素。西方通常将这种以定期全面翻修为主的预防维修思想也叫定时维修思想称之为翻修期控制思想。

1.2 现代维修思想的形成

随着航空工业的发展,飞机设计及可靠性、维修性都有了极大提高,特别是余度技术的采用使飞行安全基本有了保障。维修手段上检测设备日益完善,磁粉、着色、荧光、X光等无损探伤手段和电子计算机得到普遍运用。详细的寿命统计资料的积累、疲劳对飞机结构影响程度的掌握,充实了维修经验和理论知识,使可靠性理论和维修性理论得到发展。另外,维修的经济性、维修方针的适用性也越来越多地成为航空维修工作中必须考虑的问题。自此,新的维修思想应运而生,以可靠性为中心的现代维修思想在对传统的航空维修思想继承和发展的基础上对航空维修的历史。经验和理论知识进行概括和总结,除了仍坚持传统维修思想

中:“安全第一、预防为主”的思想和定时维修方式的合理成份外,又在装备设计、维修手段、装备故障的宏观认识问题上进行了更新和发展。

2 以可靠性为中心的航空维修思想

以可靠性为中心的维修分析,实质就是按照以最少的维修资源消耗保持设备固有可靠性和安全性的原则,应用逻辑决断的方法确定装备预防性维修要求的过程。以可靠性为中心的维修思想是建立在综合分析航空器可靠性的基础上,根据不同零部件的不同故障模式和后果,而采用不同维修方式和维修制度的科学维修思想。它的实质,就是采用最经济有效的维修,对航空器的可靠性实施最优控制。其基本观点包括:

要以可靠性为中心搞好维修设计;要以保持和恢复航空技术装备的可靠性、安全性等水平为总目标确立维修方针,将航空技术装备的所有机件均置于维修监控之下,正确区分重要机件和一般机件、简单机件和复杂机件以及有无支配性的故障模式,防止超维修或少维修;要制订以可靠性为中心的预定维修大纲;要通过视情检查发现潜在故障而达到预防故障的目的;要针对装备的技术状况、故障情况以及使用要求进行翻修;航空维修部门还要以可靠性控制为主要目的建立航空维修信息系统,收集和处理装备故障信息和维修信息,为维修的优化和装备的改进,为实现定性和定量相结合的维修管理提供必要的数据。

综上所述,以可靠性为中心的航空维修思想的优越性在于:保证航空设备安全性的同时充分利用其固有可靠性,不做徒增费用的无效工作。

3 以可靠性为中心的航空维修思想的内容

西方的航空维修科学起步较早,大致产生于40年代并形成于50、60年代。到二十世纪70、80年代,西方的航空维修科学己日臻成熟,明显的标志就是以可靠性为中心的维修和全寿命维修管理等理论的形成。如美国F·S·诺兰和H·S·希普1978年发表了《以可靠性为中心的维修》、1979年H·IJ·列斯尼可夫发表了《以可靠性为中心的维修—数学论证》、苏联H·H·斯米尔诺夫1974年主编了《飞机的使用可靠性和维修制度》以及1980年与A·A·伊茨柯维奇共同发表了《航空技术装备的视情维修》等著作,系统地论述了航空维修理论一系列的重要问题。我国的航空维修理论研究起步较晚,70年代中期以前一直沿用苏联的体制和方式方法,虽在传统的“安全第一、预防为主”维修思想的指导下进行了多次组织制度的改革并取得了一定的效果,但仍然没有突破苏联的早期模式。直到80年代初,我国的航空维修理论研究才被提到了重要的位置。进人90年代后则有了突飞猛进的发展,一批具有中国特色的航空维修理论著作陆续问世。1995年杨为民主编的

《可靠性、维修性、保障性总论)、陆延孝和郑鹏洲的《可靠性设计与分析》、何国伟的《可靠性试验技术》、甘茂治的《维修性设计与验证》、马绍民上编的《综合保障工程》、贺国芳的《可靠性数据的收集与分析》等,特别是1998年“可靠性、维修性、保障性丛书”第二批著作的出版,如何国伟的《软件可靠性》、夏乱主编的《电子元器件失效分析及应用》以及即将出版发行的《机械可靠性设计与分析》,标志着我国系统地、综合地反映航空维修科学的理论体系的形成。其中,运用概率论和数理统计等方法对故障规律进行系统定量分析研究的可靠性理论,对维修科学的形成们看决走性影响,它即是指导维修科学研究的理论基础,也是全部维修理论的中心内容。以可靠性为中心的维修分析,实质就是按照以最少的维修资源消耗保持装备固有可靠性和安全性的原则,应用逻辑决断的方法确定装备预防性维修要求的过程。装备的预防性维修要求的内容,主要包括需要进行预防性维修的产品,预防性维修工作类型及其间隔期,并提出对维修级别的建议。进行RCMA(Reliability cenlered Mainteir LanceAnalysis)(即以可靠性为中心的)维修分析的程序一般包括:①确定重要功能产品;②进行FMEA(FailureModesand Effeets Analysis)即故障模式和影响分析。故障模式是指产品故障的一种表现形式,如断裂、接触不良、泄漏、腐蚀等。故障影响则指每种故障模式对产品使用、功能或状态所导致的后果。③应用逻辑决断图确定预防性维修工作类型;④确定预防性维修工作的间隔期;⑤提出预防性维修工作维修级别的建议;⑥进行维修间隔期探索。具体来说,就是:第一,对装备中的系统和设备作粗略的划分,剔除明显不重要的产品,只将其故障影响安全性、任务性或严重影响经济性的产品选为重要功能产品;第二,对每个重要功能产品进行故障模式和影响分析(FMEA),确定其所有的功能故障、故障模式和故障原因,以便为进一步维修工作和逻辑决断分析提供所需的信息,对在可靠性设计中已经进行了故障模式和影响分析(FMEA)的装备,还可直接引用其分析的结果;第三,应用逻辑决断图,按所确定的每个功能故障的每个故障模式和每个故障原因对功能故障进行决断分析,选择适用而又有效的预防性维修;第四,通过分析和使用维修数据、试验数据及技术手册所提供的信息,确定产品可靠性与使用时间的关系,调整产品预防性维修工作类型及其间隔期。以可靠性为中心的现代维修思想是对航空维修的目的、对象、主体及其活动规律的总的认识,是实施航空维修管理和指导航空维修活动的基本观点的高度概括。一种航空维修思想的形成,不仅同航空技术装备、维修人员、维修手段、维修设施这些主客观条件有关,同维修活动的目标有关,更重要的还同维修经验的积累、对装备故障发生规律和维修活动规律的认识等有着密切的关系。维修思想本身具有全面性、指导性、概括性和相对稳定性的特点,正确的维修思想在一定历史时期中是对航空维修客观活动规律的正确而集

中的反映。有了正确的维修思想作指导,统一了思想认识,明确了工作重心才能制订正确的维修方针和技术政策,建立起科学的维修管理制度,推动整个航空维修工作的发展。以可靠性为中心的维修思想现己成为我国航空装备维修管理工作总的指导思想,它不仅用于指导制订飞机的预防维修大纲和各种技术法规,而且贯彻于航空技术装备的全寿命过程和空军航空维修系统的各项工作之中。特别需要指出的是:以可靠性理论、方法为主要内容,培养、训练航空工程技术人员,也是贯彻以可靠性为中心维修思想的重要方面。80年代以来,随着航空维修理论研究的深入开展,空军各级领导和各个工程院校抓紧培养维修理论骨干,大力普及维修理论和可靠性知识,这对贯彻以可靠性为中心的维修思想研究,推进我国航空维修系统的各项改革,达到科学维修的目的起到了重要作用。

4 航空维修方式

在维修理论的变革中,美国民航界得出的结论是:应根据飞机及地面设备上每个项目的功能、故障、故障原因和故障后果来确定需做的维修工作,确定这些工作是属于什么方式的。目前航空业主要应用的维修方式包括:定时维修、视情维修和事后监控三种。

4.1 定时维修

定时维修是指不管-个具体项目的状况如何而将其按规定的时间来作分解检查修理、翻修或报废,以预防故障的发生。按照新的维修思想,定时维修的适用范围是有一定限制的,其应用须具备以下三个基本条件:

(1)可靠性理论的计算可以证明,定期翻修对于偶然故障是无效的,故定时维修只适用于确有耗损故障的项目。

(2)即使对确有耗损故障的项目,还要求该项目在到达耗损期时无故障生存率足够大时才行。因对可靠性差的项目来说,由于早期故障和偶然故障率高,大部分在耗损期前就出故障而更换了,只有一小部分生存到耗损期。对这样的项目定寿命只能防止小部分进入耗损期,故对项目总体的可靠性控制作用是不大的。

(3)在别的维修不适用时才用。

定时维修的适用范围虽不很大, 但它仍常是不可少的,在防止发生少数危害安全的故障上仍起重大作用。

4.2 视情维修

现代维修理论认为,有些耗损故障在临近发生功能故障前的故障状况“潜在故障”是可以鉴定的。视情方式就是通过故障发展状况的不断监控,在出现潜在

故障时更换项目。以避免发生功能故障;因而它也是一种预防性的方式,是一种事前不断监控项目状况的方式。它能较充分地利用每个适用项目的潜力,故是一种比较理想的预防维修方式。根据视情维修的定义可看出,适用于视情维修的项目应具备以下一些条件:

(1)确有发展缓慢的耗损故障。由于视情检查是逐次进行的,故发展迅速的耗损故障就不适用了,当然偶然故障就更不适用了。

(2)除眼睛和飞机地面设备上的仪表外,往往还要有适当的监控手段,如无损探伤手段、机载综合数据系统等。

(3)要有确实能反映项目状况的一二个参数及参数标准。

(4)要有良好的视情设计,即检查可达性好,适用于监控。

视情检查的检查周期开始是按设计估算、研制试验和类似项目的使用经验确定的,并为了安全起见,开始是保守的,以后用抽样检查的方法逐步延长。一般来说,第一个周期要长到能看出故障的始发迹象,以后的周期要短到不致于漏检潜在故障。项目改型或用旧后,周期也需要重新修订。

4.3 事后监控

事后维修适用于其故障不直接危害安全的项目。它适用于故障系偶然性的复杂项目、故障规律不清楚的项目、和故障虽属耗损性的但用事后维修更经济的项目。当然,每个特种设备上适用事后方式项目的数量多少,需要按照特种设备设计特性的具体情况而定。采用事后维修并不是放松了维修要求或安全性的控制,这不仅在于它的应用是以用于不危害安全的故障为前提的,还在于它必须要有一个有效的数据收集分析系统来作事后监控。这个系统不仅用于监控事后维修项目的可靠性,也用于事后监控定时或视情项目总体的可靠性状况和性能状况,以确定原定的方式、周期或检修内容是否有效, 是否需要修改设计。总体来说,事后方式是监控整个特种设备的可靠性安全性和维修大纲的有效性,所以实际在管理和工程中它比预防维修方式提出了更高的要求。

4.4 三种维修方式的联系和区别

项目对比点定时维修视情维修事后维修

1 作维修的

判据

按时间标准更换或送

按状况标准更换或

送修

不控制送修,而按数据的

分析结果采取相应的措施

2 维修性质预防性的预防性的非预防性的

3 监控对象一个具体项目一个具体项目某项目的总体状况,某特种设备所有重要项目总体

状况和维修大纲的有效性

4 监控方式定期更换或分解事前不断地监控项

目的状况变化

事后不断地监控项目总体

地状况(即可靠性或质量)

5 所需的基

本条件

研制数据和使用经

验,据以确定寿命

视情设计、监控手

段、检查参数、参

数标准和视情资料

数据收集分析系统

6 适用范围对安全有危害而发展

迅速或无条件视情的

耗损故障

对安全有危害而发

展缓慢且有条件视

情的耗损故障

对安全无危害的下列三类

故障:(1)偶然故障(2)规

律不清楚的故障(3)故障

损失小于预防维修费用的

故障

7

特征性别:

(1)定时-

视情

分解检查不分解的定量检查--------

(2)视情-

事后

-------

能观察出状况的恶

化过程,鉴定出潜

在故障

只能观察出有无发生功能

故障(即是否良好)

三种维修方式本身是没有先进落后之分的,各有一定的适用范围,但是应用

得恰当与否,却是有优劣之分的。在维修理论的变革中,美国民航界得出结论:应根据飞机及地面设备上每个项目的功能、故障、故障原因和故障后果来确定需做的维修工作,确定这些工作是属于什么方式的。

5 对以可靠性为中心的航空维修思想在我国应用实践的几点思考

用可靠性方法控制的维修,已经是世界航空界普遍采用的航空维修方式。虽然目前我国的航空维修单位已经意识到可靠性管理的维修思想的重要性,但在具体实施和采集数据分析的过程中我们还在起步状态。我们与国外先进航空维修企业的可靠性管理思想还有很大差距,先进维修思想观念的发展和完善也为我国航空装备维修工作提出了要求和有益的启示:

(1)必须在以可靠性为中心的航空维修思想的指导下,不断修订、贯彻现行的维修技术大纲,采用新技术,改进维修手段、维修工艺和维修方法,必须改变单一的定时维修方式,转而采用定时维修与视情维修相结合的方式,必须以原位检测取代离位检测作为主要的故障检测方法。

(2)应加速维修数据收集分析系统的建设、加强维修手段的研究和推广。充

分利用计算机、局域网和互联网等科技手段,建立服务于以可靠性为中心的维修的可靠性数据管理系统,以便对各种维修问题进行决策,不断提高维修工作的科学性、安全性和经济性。

(3)必须搞好维修力量的建设。首先是改进现有的检测仪器和测试手段,全力提高航空维修的可靠性,确保维修质量。其次要培养一批具有丰富的维修实践经验的骨干,能正确理解国外的新维修思想并结合实际用于制订各特种设备的维护规程和大修规范,了解设备的性能、可靠性和维修性设计,能参与制订有关的规范、提出有关的指标、协助设计部门进行维修性等有关设计。再次,培养一批具有综合技术保障知识和较强技术保障能力,熟悉高技术航空装备性能,掌握航空科技和航空维修新技术的新型机务工作指挥管理人才。

总之,通过维修可靠性管理工作的开展,可以对飞机可靠性状况的动态监控分析,实现对飞机维修方案的动态评估管理,有效地促进了预防性维修工作的开展,提高飞机的利用率,减少航材备件的需求和资金占用。最终使我们的航空维修工作达到更高的安全标准、满意的可靠性水平和良好的经济效益。

故障诊断理论方法综述

故障诊断理论方法综述 故障诊断的主要任务有:故障检测、故障类型判断、故障定位及故障恢复等。其中:故障检测是指与系统建立连接后,周期性地向下位机发送检测信号,通过接收的响应数据帧,判断系统是否产生故障;故障类型判断就是系统在检测出故障之后,通过分析原因,判断出系统故障的类型;故障定位是在前两部的基础之上,细化故障种类,诊断出系统具体故障部位和故障原因,为故障恢复做准备;故障恢复是整个故障诊断过程中最后也是最重要的一个环节,需要根据故障原因,采取不同的措施,对系统故障进行恢复一、基于解析模型的方法 基于解析模型的故障诊断方法主要是通过构造观测器估计系统输出,然后将它与输出的测量值作比较从中取得故障信息。它还可进一步分为基于状态估计的方法和基于参数估计的方法,前者从真实系统的输出与状态观测器或者卡尔曼滤波器的输出比较形成残差,然后从残差中提取故障特征进而实行故障诊断;后者由机理分析确定系统的模型参数和物理元器件之间的关系方程,由实时辨识求得系统的实际模型参数,然后求解实际的物理元器件参数,与标称值比较而确定系统是否发生故障及故障的程度。基于解析模型的故障诊断方法都要求建立系统精确的数学模型,但随着现代设备的不断大型化、复杂化和非线性化,往往很难或者无法建立系统精确的数学模型,从而大大限制了基于解析模型的故障诊断方法的推广和应用。 二、基于信号处理的方法 当可以得到被控测对象的输入输出信号,但很难建立被控对象的解析数学模型时,可采用基于信号处理的方法。基于信号处理的方法是一种传统的故障诊断技术,通常利用信号模型,如相关函数、频谱、自回归滑动平均、小波变换等,直接分析可测信号,提取诸如方差、幅值、频率等特征值,识别和评价机械设备所处的状态。基于信号处理的方法又分为基于可测值或其变化趋势值检查的方法和基于可测信号处理的故障诊断方法等。基于可测值或其变化趋势值检查的方法根据系统的直接可测的输入输出信号及其变化趋势来进行故障诊断,当系统的输入输出信号或者变化超出允许的范围时,即认为系统发生了故障,根据异常的信号来判定故障的性质和发生的部位。基于可测信号处理的故障诊断方法利用系统的输出信号状态与一定故障源之间的相关性来判定和定位故障,具体有频谱分析方法等。 三、基于知识的方法 在解决实际的故障诊断问题时,经验丰富的专家进行故障诊断并不都是采用严格的数学算法从一串串计算结果中来查找问题。对于一个结构复杂的系统,当其运行过程发生故障时,人们容易获得的往往是一些涉及故障征兆的描述性知识以及各故障源与故障征兆之间关联性的知识。尽管这些知识大多是定性的而非定量的,但对准确分析故障能起到重要的作用。经验丰富的专家就是使用长期积累起来的这类经验知识,快速直接实现对系统故障的诊断。利用知识,通过符号推理的方法进行故障诊断,这是故障诊断技术的又一个分支——基于知识的故障诊断。基于知识的故障诊断是目前研究和应用的热点,国内外学者提出了很多方法。由于领域专家在基于知识的故障诊断中扮演重要角色,因此基于知识的故障诊断系统又称为故障诊断专家系统。如图1.1

最新汽车发动机故障诊断与排除教案

发动机故障诊断与排除教案

常见车型故障码调取与清除 教案内容 一、日本丰田车系 1.调取故障码 普通方式调取故障码:打开点火开关,不起动发动机,用专用跨接线短接故障诊断座上的“TE1”与“E1”端子,仪表盘上的故障指示灯“CHECK ENGINE”即闪烁输出故障码。 2.清除故障码 故障排除后,将ECU中存储的故障码清除,方法有两种:一是关闭点火开关,从熔丝盒中拔下EFI熔丝(20A)10s以上;二是将蓄电池负极电缆拆开10s以上,但此种方法同时使时钟、音响等有用的存储信息丢失。 二、日本日产车系 随车型不同,故障码的调取与清除分三种不同方式: 1.如果在主电脑侧有一红一绿两个指示灯,另有一个“TEST”(检测)选择开关,调取故障码时,先打开点火开关,然后将“TEST”开关转至“ON”位置,两个指示灯即开始闪烁。根据红绿灯的闪烁次数读取故障码,红灯闪烁次数为故障码的十位数,绿灯闪烁的次数为故障码的个位。清除故障码时,将“TEST”开关转至“OFF”位置,再关闭点火开关即可清除故障码。主电脑位于仪表盘后或叶子板后。 2.如果在主电脑侧只有一个红色显示灯,另有一个可变电阻调节旋钮孔,调取故障码时,先打开点火开关,然后将可变电阻旋钮顺时针拧到底,等2 s后再将可变电阻旋钮逆时针拧到底,红色显示灯即开始闪烁输出故障码。每次操作只能输出一个故障码,有多个故障码时需重复上述操作。清除故障码时,将可变电阻旋钮顺时针拧到底,等15s 后再逆时针旋到底,再等 2 s后关闭点火开关即可清除故障码。 3.如果仪表盘上有故障指示灯“CHECK ENGINE”,则可通过短接诊断座上的相应端子调取故障码,日产车系故障诊断座位于发动机盖板支撑杆上方的熔丝盒内,有12端子和14端子两种,调取故障码时,先打开点火开关,然后取出12端子或14端子诊断座,并用跨接线短接诊断座上“6#”和“7#”端子(14端子诊断座)或“4#”和“5#”端子(12端子诊断座),等2s后拆开短接导线,仪表盘上的“CHECK ENGINE”灯即闪烁输出故障码(波形见下图)。每次操作只能输出一个故障码,有多个故障码时需重复上述操作。清除故障码时,将诊断座右上侧的两个端子短接15s以上,再关闭点火开关即可清除故障码。 日产车系故障码输出波形

机械故障诊断综合大作业—航空发动机的状态监测和故障诊断

机械系统故障诊断 综合大作业 航空发动机的状态监测和故障诊断 1.研究背景与意义 航空发动机不但结构复杂,且工作在高温、大压力的苛刻条件下。从发动机发展现状看,无论设计、材料和工艺水平,抑或使用、维护和管理水平,都不可能完全保证其使用中的可靠性。而发动机故障在飞机飞行故障中往往是致命的,并且占有相当大的比例,因此常常因发动机的故障导致飞行中的灾难性事故。 随着航空科学技术的发展并总结航空发动机设计、研制和使用中的经验教训,航空发动机的可靠性和结构完整性已愈来愈受到关注。自70年代初期即逐步明确航空发动机的发展应全面满足适用性、可靠性和经济性的要求,也就是在保证达到发动机性能要求的同时,必须满足发动机的可靠性和经济性(维修性和耐久性)的要求。 可靠性工作应贯穿在发动机设计-生产-使用-维护全过程的始终。对新研制的发动机,应在设计阶段就同时进行可靠性设计、试验和预估;对在役的发动机,应经常进行可靠性评估、监视和维护。军机和民用飞机的主管部门,设计、生产、使用和维护等各部门,应形成有机的、闭环式的可靠性管理体制,共同促进航空发动机可靠性的完善和提高。 2.国内外进展 自70年代前期,国外一些先进的民用和军用航空公司即着手研究和装备发动机的状态监视和故障诊断系统。电子技术与计算机技术的迅速发展,大大促进了航空发动机的状态监视与故障诊断技术的发展。至今,监视与诊断技术作为一项综合技术,已发展成为一门独立的学科,其应用已日趋广泛和完善。 按民航适航条例规定航空发动机必须有15个以上的监视参数。现今美国普?惠公司由有限监视到扩展监视,逐步完善了其TEAMIII等系统,美国通用电气公司也不断在发展其ADEPT系统。 从各国空军飞机发动机的资料来看,大都采用了发动机状态监视与故障诊断系统。包括发动机监视系统EMS,发动机使用情况监视系统EUMS和低循环疲劳计数器LCFC等,同时为了帮助查找故障,近年来还发展了发动机故障诊断的专家系统,如XMAN和JET—X。美国自动车工程协会(SAE)E-32航空燃气涡轮监视委员会研究并颁布了一系列指南,包括航空燃气涡轮发动机监视系统指南、有限监视系统指南、滑油系统监视指南、振动监视系统指南、使用寿命监视及零件管理指南等。 我国相关民用航空公司和院校开展的发动机状态监测与故障诊断的研究工作已初见成效。并且对于新研制的高性能发动机已将实施状态监视列为重要的技、战术指标,因此正较全面的开展这方面的研究工作。但是总的看来,国内该项工作开展得还不够,亟待有计划、有步骤地借鉴国外的成功经验,发展并推广我们自己的状态监视与故障诊断技术,以适应飞机和发展的需要。

装备故障诊断方法

价值工程 0引言 随着武器装备复杂性不断增加,对武器装备维护和故 障诊断提出了更高的要求。近年来, 一些逐渐兴起的智能故障诊断方法,比传统方法能够更加快速,有效的诊断装备故障。 目前,人工智能技术的发展,特别是基于知识的专家系统技术在故障诊断中的应用,使得设备故障诊断技术进入了一个新的智能公发展阶段。传统的故障诊断专家系统虽然在某些领域取得了成功,但这种系统在实际应用中存在着一定的局限性,而人工神经网络技术为解决传统的专家系统中的知识获取,知识学习等问题提供了一条崭新的途径[1][2][3]。 1神经网络模型原理 人工神经网络简称神经网络(Neural Network ),具备并行性、 自学习、自组织性、容错性和联想记忆功能等信息处理特点而广泛用于故障诊断领域,它通过对故障实例及诊断经验的训练和学习,用分布在神经网络中的连接权值来表达所学习的故障诊断知识,具有对故障联想记忆、模糊匹配和相似归纳等能力。人工神经网络在故障诊断中的应用研究主要有三个方面:一是从预测角度应用神经网络作为动态预测模型进行故障预测;二是从模式识别角度应用神经网络作为分类器进行故障诊断;三是从知识处理角 度建立基于神经网络的专家系统[4][5] 。 1.1神经网络基本模型基于神经细胞的这种理论知识,在1943年McCulloch 和Pitts 提出的第一个人工神经元模型以来,人们相继提出了多种人工神经元模型,其中被人们广泛接受并普遍应用的是图1所示的模型[6]。 图1中的x 0,x 1,…,x n-1为实连续变量,是神经元的输入,θ称为阈值(也称为门限),w 0,w 1,…,w n-1是本神经元与上级神经元的连接权值。 神经元对输入信号的处理包括两个过程:第一个过程 是对输入信号求加权和,然后减去阈值变量θ, 得到神经元的净输入net ,即 net=n-1 i =0Σw i x i -θ 从上式可以看出,连接权大于0的输入对求和起着增强的作用,因而这种连接又称为兴奋连接,相反连接权小于0的连接称为抑制连接。 下一步是对净输入net 进行函数运算,得出神经元的输出y ,即y=f (net ) f 通常被称为变换函数(或特征函数),简单的变换函 数有线性函数、 阈值函数、Sigmiod 函数和双曲正切函数。根据本文的研究特点,变换函数f 取为Sigmoid 函数,即f (x )=11+e (-x ) 1.2神经网络知识表示传统的知识表示都可以看作是知识的一种显示表示,而在ANN 中知识的表示可看作是一种隐式表示。在ANN 中知识并不像传统方法那样表示为一系列规则等形式,而是将某一问题的若干知识在同一网络中表示,表示为网络的权值分布。如下所示阈值型BP 网络表示了四条“异或”逻辑产生式规则[7]: IF x 1=0AND x 2=0THEN y=0IF x 1=0AND x 2=1THEN y=1IF x 1=1AND x 2=0THEN y=1IF x 1=1AND x 2=1THEN y=0基于这种网络知识表示结构,其BP 网络结构如图2所示。 网络通常由输入层、隐层和输出层组成。网络第一层为输入层,由信号源节点组成,传递信号到隐层;第二层为隐层,隐层节点的变换函数是中心点对称且衰减的非负线性函数;第三层为输出层,一般是简单的线性函数,对输入模式做出响应。理论上已证实,在网络隐 —————————————————————— —作者简介:李洪刚(1981-),男,河北石家庄人,硕士,控制工程专 业;郭日红(1982-),男,山西大同人,硕士,测试专业。 装备故障诊断方法研究 Analysis of Fault Diagnosis for Equipment Based on Neural Network System 李洪刚①②LI Hong-gang ;郭日红②GUO Ri-hong (①军械工程学院,石家庄050003;②中国人民解放军66440部队,石家庄050081) (①Ordnance Engineering College ,Shijiazhuang 050003,China ;②No.66440Unit of PLA ,Shijiazhuang 050081,China ) 摘要:分析了神经网络故障诊断的特点,构建了神经网络的装备故障诊断模型,克服了传统故障诊断的缺点,并用某型装备故障 的数据进行了验证,结果表明了神经网络诊断故障是一种有效的诊断方法。 Abstract:Characteristics of the neural network and expert system are analyzed.Fault diagnosis for equipment base on neural network is constructed.A weak of the traditional method of fault diagnose is overcome.And availability of the method based on neutral network system is verified by experimental results of one equipment fault. 关键词:神经网络;故障诊断;装备Key words:neural network ;fault diagnose ;equipment 中图分类号:E911文献标识码:A 文章编号:1006-4311(2012)32-0316-02 ·316·

TE过程及故障诊断方法研究

摘要 化工生产过程是复杂的动态系统,该生产过程一般是在高温高压、低温真空、有毒或腐蚀性等极端条件下进行的,生产系统和设备一旦发生故障,将会造成经济损失,甚至造成人员伤亡和环境污染。利用故障诊断技术提高系统的可靠性和安全性,已经引起了企业和学术界的高度重视,并在该研究领域取得了丰富的研究成果。 本文主要对田纳西-伊斯曼过程(Tennessee - Eastman Process,TEP)进行了模拟与仿真研究。首先在查阅文献基础上对故障诊断方法进行了概述。并对TE过程中的五大操作单元进行了研究。其中包括反应器、冷凝器、汽/液分离器、压缩机及汽提塔五大操作单元。在此基础上,对主元分析的故障诊断法的原理和算法进行了研究,并以TE过程为背景,调用其化工过程数据,编写MATLAB程序实现T2图、Q图以及贡献图,采用主元分析法对TE过程进行了仿真实验研究,证明主元分析方法的有效性。 关键词:TE过程;故障诊断;模拟;T2统计;Q统计

Abstract The chemical production process is a complex dynamic system .The process is generally carried out under the extreme environment which may have high temperature, high pressure,low-temperature vacuum ,poison or corrosiveness etc.. When the industrial production devices result in fault,it will bring economical loss or even cause human injuries and environmental problems .Improving the dependability and security depending on fault diagnosis technology is paid attention by companies and researchers ,lots of achievements have been obtained in fault diagnosis field. This thesis mainly imitate and studied the Tennessee - Eastman process(Tennessee - Eastman Process, TEP). Then described that five big operation elements in TE process. In which including reactor, condenser, steam, fluid separator, compressor and stripper five big operation unit.Method has carried out classification on TE process and the malfunction diagnose.In this foundation,studied the principal component analysis method. Taking the TE process as an application background ,we programmed the MATLAB algorithm of PCA, drawed the T2 statistic 、Q statistic and contribution map ,proved the validity of the method. Keywords: TE pross; Fault diagnosis; imitate; T2statistic; Qstatistic

航空发动机典型故障处理报告

目录 第1章绪论 1.1 发动机概述··2 1.2 可靠性与故障··2 1.2.1 可靠性··2 1.2.2 故障··2 1.2.3 故障分析与排故方法··3 第2 章压气机喘振故障分析 2.1 概述··5 2.2 喘振时的现象··5 2.3 喘振的根本原因··5 2.4 压气机的防喘措施··6 第3 章压气机转子叶片故障分析 3.1 概述··9 3.2 压气机转子叶片受环境影响的损伤特征和有关安全准则与标准··9 3.3 压气机转子叶片故障模式及其分析··10 3.3.1 WP7系列压气机转子叶片现行检查标准﹙含判废标准﹚··10 3.4 WP7系列报废叶片主要失效模式统计分析··12 第4 章发动机篦齿盘均压孔裂纹故障分析及预防 4.1 概述··14 4.2 篦齿盘结构与工作状态分析··14 4.2.1 结构分析··14 4.2.2 工作状态分析··14 4.2.2.1 工作温度高··14 4.2.2.2 工作转速高··14 4.2.2.3 易产生振动··14 4.3 裂纹特征与产生原因分析··15 4.3.1 裂纹特征··15 4.3.2 裂纹原因分析··15 4.4 结论··16 结束语··17 致谢··18 文献··19

第1 章绪论 1.1发动机概述 二十世纪以来,特别是第二次世界大战以后,航空和空间技术有了飞跃的发展。现在,飞机已经成为一种重要的﹑不可缺少的作战武器和运输工具。飞机的飞行速度﹑高度﹑航程﹑载重量和机动作战的能力,都已达到了相当高的水平。这些成就的取得,在很大程度上取决于动力装置的发展。然而,航空发动机属于高速旋转式机械,处于高转速﹑高负荷(高应力)和高温环境下工作的;发动机是飞机的心脏,是体现飞机性能的主要部件。又由于发动机由许多零组件构成,即本身工作情况和外界环境都十分复杂,使发动机容易出现故障,因此航空发动机属于多发性故障的机械。经过多年的努力,在航空领域工作的研究人员已经了解和解决了发动机许多故障,然而,一些故障还是无法完全解决的,只能尽量减少故障对飞机的危害。本论文列举出发动机几种典型故障,并且尽可能的根据科学研究数据来研究分析这几种故障,给出科学的预防故障和排故方法。 1.2可靠性与故障 1.2.1可靠性 产品在规定的条件下和规定的时间内,完成规定功能的能力为产品的可靠性。所谓产品,是指任何元器件、零部件、组件、设备、分系统或系统。规定条件主要指环境条件和使用条件,如产品在工作中所承受的应力水平、温度、振动和腐蚀环境等。规定时间是指广义时间,除产品的工作小时外,还可指其循环次数等。 1.2.2故障 产品或产品的一部分不能或将不能完成预定功能的事件或状态。对某些产品如电子元器件、弹药等称失效。 产品的故障: a. 在规定的条件下,不能完成其规定的功能; b. 在规定的条件下,一个或几个性能参数不能保持在规定的范围内; c. 在规定的应力范围内工作时,发生产品的机械零部件、结构件或元器件的破裂、断裂、卡死等损坏状态,从而导致产品不能满足其规定功能。 故障率: 指工作到时刻t尚未发生故障产品,在该时刻后的单位时间内发生故障的

[诊断方法,故障,案例]基于案例推理的装甲装备故障诊断方法研究

基于案例推理的装甲装备故障诊断方法研究 0引言 基于案例推理技术摆脱了知识瓶颈的束缚,在很多领域得到了广泛应用,如航空远程故障诊断、民用飞机维修间隔期确定智能化农业和教学指导等。但目前的研究大部分集中在案例检索方面,如高明通过改进最近邻法来实现水轮发电机组的故障诊断;李锋尝试采用人工神经网络方法实现案例检索与案例实现的整体设计方案;程刚提出将无机环图支持向量机多类分类器应用到案例检索中,很少具体考虑应用领域的特点对案例组织与索引的影响。 基于此,笔者在考虑应用领域特点的前提下,探索新的案例库组织形式,并在此基础上确立相应的索引机制,以提高故障案例的覆盖面和案例推理的效能,更好地满足装甲装备诊断与维修需求。 1装甲装备维修保障领域的特点 装甲装备维修领域的知识很难通过规则的形式对其进行全方位的描述,但却比较具体地蕴含在实践过程产生的案例中,该领域具有以下特点。 1.1经验知识占主导地位 装备维修是实践性非常强的活动,其熟练的维修技能依赖于长时间的维修实践积累的经验,因为故障的表现形式十分复杂,依靠建立数学模型等结构化知识来解决维修实践过程中的问题很难有实际的指导意义,但维修方案的验证与存储却相对容易,不存在知识获取的瓶颈,因此经验知识在装备维修领域依然处于主导地位。 1.2理论多是定性化描述 维修领域的理论研究已经比较成熟,但是在比较重要的环节,例如阂值确定等方面却很难有足够实践指导意义的理论支持,即使有相关研究也多是定性化描述,缺少定量的设计。 1.3不同装甲装备型号之间的相似性 需求决定设计,人们对装甲装备火力性、防护性、机动性的需求决定了车型的设计,而技术制约需求,技术发展的连续性决定了人们对装甲装备设计要求的延续性,因此很少有车型是完全创新的,大部分新车型是对老车型的改进,不同型号间车型的结构、功能、运行环境存在很大的相似性,有些系统还包含标准化产品,因而其故障现象、故障原因就可能存在相似性,这就决定了维修方案之间存在极大的相似性,因此不同车型的相似部件的维修方案制定有很大的借鉴意义。 2案例检索 2.1案例的组织与索引策略

故障诊断技术研究及其应用

故障诊断技术研究及其应用 1 引言 以故障为研究对象是新一代系统可靠性理论研究的重要特色,也是过程系统自动化技术从实验室走向工程的重要一环。最近二十多年来,以故障检测、故障定位、故障分离、故障辨识、故障模式识别、故障决策和容错处理为主要内容的故障诊断与处理技术,已成为机械设备维护、控制系统系统可靠性研究、复杂系统系统自动化、遥科学、复杂过程的异变分析、工程监控和容错信号处理等领域重点关注和广泛研究的问题。 诊断(Diagnostics)一词源于希腊文,含义为鉴别与判断,是指在对各种迹象和症状进行综合分析的基础上对研究对象及其所处状态进行鉴别和判断的一项技术活动[1]。故障诊断学则是专门以考察和判断对象或系统是否存在缺陷或其运行过程中是否出现异常现象为主要研究对象的一门综合性技术学科。它是诊断技术与具体工程学科相结合的产物,是一门新兴交叉学科。故障诊断与处理技术,作为一门新兴技术学科,可划分为如下三个不同的研究层次: (1) 以设备或部件为研究对象,重点分析和诊断设备的缺陷、部件的缺损或机械运转失灵,这通常属于设备故障诊断的研究范畴; (2) 以系统为研究对象,重点检测和分析系统的功能不完善、功能异常或不能够完成预期功能,这属于系统故障检测与诊断的研究范畴; (3) 以系统运行过程为研究对象,考察运行过程出现的异常变化或系统状态的非预期改变,这属于过程故障诊断的研究范畴。 概而言之,故障诊断研究的是对象故障或其功能异常、动作失败等问题,寻求发现故障和甄别故障的理论与方法。无论是设备故障诊断、系统故障诊断还是过程故障诊断,都有着广泛的研究对象、实在的问题背景和丰富的研究内容。本文将从故障诊断与处理技术的研究内容、典型方法和应用情况等三个方面,对故障诊断及相关技术的发展状况做一综述,同时简要指出本研究方向的若干前沿。 2 故障诊断与处理的主要研究内容 故障诊断与处理是一项系统工程,它包括故障分析、故障建模、故障检测、故障推断、故障决策和故障处理等五个方面的研究内容。 2.1 故障分析 故障是对象或系统的病态或非常态。要诊断故障,首先必须对故障与带故障的设备、系统、过程都有细致分析和深入研究,明确可能产生故障的环节,故障传播途径,了解故障的典型形式、表现方式、典型特征以及故障频度或发生几率,结合对象的物理背景了解故障产生的机理、故障关联性和故障危害性。 常用的故障分析方法有对象和故障环节的机理分析法、模拟法、数值仿真或系统仿真法和借助数学模型的理论分析法等。 2.2 故障建模 模型分析是现代分析的基本方法,对复杂对象的故障诊断同样具有重要应用价值。为了定量或定性地分析故障、诊断故障和处理故障,建立故障的模型和带故障对象的模型是十分

汽车故障的诊断方法

要学汽修?汽车故障的基本诊断方法一定要会哦 汽车在使用过程中,不可避免的要发生各种故障。汽车在行车途中,发生故障,要由汽车驾驶员当场检查、当场诊断、当场排除故障,才能使汽车继续行驶;有些故障比较大或比较复杂,汽车驾驶员较难自己解决,要由汽车修理工和汽车维修工程技术人员来检查、诊断、排除。 汽车故障千变万化,千奇百怪,种类繁多,但是故障诊断的方法和步骤都是一定的,只要基本方法正确,思路清晰,方法得当,故障诊断也是容易做出的。 汽车故障诊断的方法基本上可以归纳为12种:望问法、观察法、听觉法、试验法、触摸法、嗅觉法、替换法、仪表法、度量法、分段检查法和局部拆装法等。应用这些方法,要有理论做指导;充分了解汽车的使用和维修情况,充分了解故障的发生情况。 对于汽车上出现的比较简单的故障,只凭经验和感官即可找到原因和所发部位;对于疑难故障,只能凭仪器和应用专门的故障诊断设备才能找到,有了仪器和设备,也要会用,使用中还要结合维修经验,灵活的运用这些故障诊断方法,对故障做出综合评价。在诊断中不断实践,不断总结和积累经验,就会应用自如。 1.用望问法诊断故障 医生看病需要“望闻问切”,汽车故障诊断也是一样,其中望和问是快速诊断汽车故障的有效方法。汽车发生故障需要诊断,修理人员第一眼看到汽车时,就应做出汽车形式和使用年限的初步判断,从外观上即可了解汽车的形式,这是非常重要的;从外观或翻转驾驶室暴露发动机,即可做出使用年限的判断,有经验的维修人员,甚至一下子就能做出汽车故障的判断。一辆汽车需要修理,维修人员一定要向使用者和车主询问,其中包括汽车型号、使用年限、修理情况、使用情况、发生故障的部位和现象,以及发生故障后做了哪些检查和修理,尽可能深入的了解故障,这是一个捷径。通过了解形式,可以反应出汽车的基本构造和性能,如果对汽车形式和结构了解,维修经验丰富,诊断就较容易;如果了解不够,查一查书和资料,也能掌握。通过深入的询问,基本上可以了解到故障所发生的部位。例如,可以询问到故障发生在发动机还是变速器;如果是发动机还能进一步了解到是电气故障还是机械故障;如果是机械故障还能了解到是曲柄连杆机构还是配气机构等,再进一步做出诊断就容易多了。故障确定后,排除与维修就容易了。如果用户讲要对汽车进行大修,还应问清修发动机动力总成,修汽车底盘,修汽车驾驶室和车身,修汽车电气和汽车空调等。哪些部分和总成是维修重点等,以便定出维修方案。 2.用经验法诊断故障 顾名思义,经验法诊断故障,是凭驾驶员和维修人员的基本素质和丰富经验,快速准确地对汽车故障做出诊断。所谓基本素质,无论是驾驶员还是汽车维修人员,都必须向书本学习,并在实践中提高,从而获得基本的汽车知识和维修经验,这是非常重要的。汽车技术是国民经济发展的综合体现,汽车技术的发展越来越快,新的技术越来越多,因此,不努力向书本学习,不努力向实践学习是不行的。例如对汽车上的柴油发动机的单体泵供油和调速技术以及国外新型柴油机新技术,都需要在原有知识的基础上,向书本学习,向资料学习,而后才能进行维修的实践工作。郑州万通汽修的老师们就经常给学生们灌输只有在理论指导下的实践,才是正确的实践,才能在实践中总结和积累经验。所谓维修经验也是十分重要的,有了汽车维修的经验,再遇到相同的故障和类似的故障一下子就可以解决。经验有个人经历的,经过总结和积累的经验;还有是从书本上和其他途径学习来的经验。只有将二者结合起来,才能不断积累经验,比较顺利地对汽车故障做出判断。例如柴油机出了故障,要将驾驶室翻转,一时翻转机构卡住了,驾驶室就翻转不起来,有经验者只要一推一撬一别,驾驶室立即翻转;例如遇到柴油机飞车故障,眼看柴油机转速急骤升高,响声越来越大,没有经验怎么动也不能使柴油机熄火,有经验者只要轻轻将燃油箱上的燃油转换阀门转动45°,柴油

航空发动机的故障诊断方法研究

摘要 通过回顾航空维修理论及技术的发展历程,分析了以可靠性为中心的维修思想的优越性,阐述了几种航空维修方式各自的特点,指出了新维修思想所带来的革命性成果,即保证安全的前提下降低了维护成本和维修工作量。最后,对新维修思想在我国的应用途径与前景提出了自己的观点。 关键词: 可靠性; 航空维修; 视情; 事后。 1课题背景及其意义 航空维修是随着飞机的诞生而出现的,它是一门综合性的学科。随着科学技术的发展,航空维修经历了从经验维修、以预防为主的传统维修阶段到以可靠性为中心和逻辑决断法的现代维修阶段。目前航空维修已经是一门系统性的学科。 1传统和现代维修思想的对比 1.1传统的维修思想 按照传统的观念,航空维修就是对航空技术装备进行维护和修理的简称,即为保持和恢复航空技术装备实现规定功能而采取的一系列工程技术活动。其基本思想是安全第一,预防为主,也就是按使用时间进行预防性维修工作,通过定时检查、定期修理和翻修来控制飞机的可靠性。这种以定时维修为主的传统维修思想将飞机的安全性与各系统、部件、附件、零件的可靠性紧密相联,认为预防性维修工作做得越多,飞机就越可靠,翻修间隔期的长短是控制飞机可靠性的重要因素。西方通常将这种以定期全面翻修为主的预防维修思想也叫定时维修思想称之为翻修期控制思想。 1.2 现代维修思想的形成 随着航空工业的发展,飞机设计及可靠性、维修性都有了极大提高,特别是余度技术的采用使飞行安全基本有了保障。维修手段上检测设备日益完善,磁粉、着色、荧光、X光等无损探伤手段和电子计算机得到普遍运用。详细的寿命统计资料的积累、疲劳对飞机结构影响程度的掌握,充实了维修经验和理论知识,使可靠性理论和维修性理论得到发展。另外,维修的经济性、维修方针的适用性也越来越多地成为航空维修工作中必须考虑的问题。自此,新的维修思想应运而生,以可靠性为中心的现代维修思想在对传统的航空维修思想继承和发展的基础上对航空维修的历史。经验和理论知识进行概括和总结,除了仍坚持传统维修思想

智能故障诊断方法研究与仿真

物理与电子信息工程学院本科毕业设计(论文) 诚信承诺书 1、本人郑重地承诺所呈交的毕业设计(论文),是在指导教师 老师的指导下严格按照学校和学院有关规定完成的。 2、本人在毕业论文(设计)中引用他人的观点和参考资料均加以注释和说明。 3、本人承诺在毕业论文(设计)选题和研究过程中没有抄袭他人研究成果和伪造相关数据等行为。 4、在毕业论文(设计)中对侵犯任何方面知识产权的行为,由本人承担相应的法律责任。 毕业论文(设计)作者签名: 班级:学号: 年月日

目录 摘要................................................................................................................................................ II Abstract .......................................................................................................................................... II 1 引言 (1) 1.1 课题背景与意义 (1) 1.2 相关研究综述 (1) 1.3 本课题的主要研究内容 (2) 1.4 论文组织结构 (2) 2 粒子滤波算法理论分析 (3) 2.1 蒙特卡洛方法 (3) 2.2 贝叶斯定理 (5) 2.3 粒子滤波算法 (5) 3 基于粒子滤波的故障诊断分析 (10) 3.1 故障诊断的基本原理 (10) 3.1.1 故障诊断的发展现状 (10) 3.1.2 故障诊断的定义与分析方法 (10) 3.1.3 故障诊断的方法分类 (11) 3.2 基于粒子滤波的故障诊断方法 (12) 3.3 粒子滤波算法故障诊断仿真结果 (14) 4 结论与展望 (14) 致谢 (15) 参考文献 (16) 附件1 程序代码 (17)

汽车发动机常见故障诊断与排除方法

毕业(设计)论文 系(部)汽车工程系 专业汽车检测与维修技术 班级09级汽车检测与维修三班 指导教师 姓名学号

汽车发动机常见故障诊断与排除方法 【摘要】本文阐述了汽车发动机的常见故障诊断和排除方法,由于新技术在发动机上的运用,发动机的故障更加的复杂化。发动机的故障也是汽车故障中故障率最高、难点最高的组成部分。现对曲柄连杆机构、配气机构、燃油供给系、润滑系、起动系、冷却系以及点火系的常见故障进行分析和排除。主要对燃油供给系、润滑系、起动系作了详细的讲解。 【关键词】配气机构点火系润滑系冷却系故障排除检修

【目录】 第一章发动机的总体组成和作用 (1) (1) 1 第二章曲柄连杆机构的常见故障及排除 (2) 2.1曲柄轴承异响 (2) 2.2连杆轴承异响 (2) 第三章配气机构的常见故障诊断与排除 (3) 3.1凸轮轴异响 (3) 3.2气门脚异响 (3) 3.3气门弹簧异响 (4) 3.4气门座圈异响 (4) 第四章冷却系的作用、组成及常见故障与排除 (5) 4.1作用及组成 (5) 4.2常见故障与排除方法 (5) 4.2.1冷却液充足但发动机过热 (5) 4.2.2 冷却液不足引起发动机过热 (6) 第五章点火系的常见故障的诊断与排除 (7) 5.1故障分类 (7) 5.2点火时间过早 (7) 5.3点火时间过迟 (7) 5.4发动机的回火及放炮 (7) 5.5发动机爆震和过热 (8)

第六章润滑系作用、组成及常见故障与排除 (9) 6.1作用和组成 (9) 6.2润滑系常见故障及排除 (9) 6.2.1 机油压力过低 (9) 6.2.2 机油压力过高 (10) 6.2.3 机油消耗过多 (10) 第七章燃油供给系的常见故障排除及检修要点 (11) 7.1电控燃油供给系统的组成 (11) 7.2不来油或来油不畅 (11) 7.3发动机怠速不良故障 (12) 7.4混合气稀故障 (12) 7.5加速不良故障 (13) 7.6电控燃油系统检查要点 (14) 第八章起动系的组成及常见故障诊断分析 (15) 8.1起动机不运转 (15) 8.2起动机运转无力 (16) 第九章结论 (17) 参考文献 (18) 致 (19)

《汽车故障诊断技术》复习题和答案

精品资料 《汽车故障诊断技术》复习题 一、单项选择题 1、汽车的症状表现为怠速不稳定,这属于问诊中的以下哪一项内容(A ) A、怠速不良 B、发动机工作不正常 C、故障发生时的情况 D、故障发生的频率 2、以下哪些原因不会导致起动机运转无力。(B ) A、蓄电池亏电 B、起动保险熔断 C、电磁开关线圈短路 D、起动机内炭刷接触不良 3、发动机在工作的时候会出现抖动的现象,以下哪些原因有可能。( A ) A、个别喷油器不工作 B、油道被堵塞 C、油泵不工作 D、点火控制器有问题 4、叶片式空气流量计在拆下单件检查时,在部分打开与不开时出现 FC–E1之间无穷大的情况,这说明。( A ) A、叶片式空气流量计损坏 B、叶片式空气流量计良好 C、不能判断 D、可造成汽车起动困难 5、接通起动开关时,起动机能带动发动机正常转动,但是不能够起动发动机让其工作,有时候伴随着车的迹象。采用调火方法进行判断时,可见高压火为黄红色,造成这一现象的原因是。(A ) A、点火线圈性能劣化 B、叶片式空气流量传感器损坏 C、曲轴位置传感器无信号 D、不能判断原因 6、以下哪个原因不会造成汽车的发动机冷却系统泄漏。(D ) A、气缸垫损坏 B、水套侧盖衬垫损坏、螺钉松动或螺钉未按规定顺序紧固 C、机体上的水堵封水不严 D、在天气炎热或高原地区长时间行驶 7、以下哪个原因会造成汽车的发动机暖机时频繁失速。(A ) A、怠速控制阀有故障 B、水套侧盖衬垫损坏、螺钉松动或螺钉未按规定顺序紧固 C、机体上的水堵封水不严 D、在天气炎热或高原地区起动汽车 8、以下哪个原因会造成汽车不能起动。( B ) A、三元催化转换器失效 B、点火器损坏 C、电控燃油泵性能不良 D、个别喷油器堵塞 9、能够造成汽车有着车征兆,但发动机不能起动的原因是。( B ) A、怠速控制阀有故障 B、分电器盖漏电 C、汽车存在故障码 D、燃油压力过高 10、踩下离合器踏板,消除分离杆内端与分离轴承之间的间隙所需的 离合器踏板行程,称为离合器踏板的(B )。 A自由间隙B自由行程 C自由高度D踏板高度 11、关于ABS,下列说法哪个错误(B ) A.可将车轮滑动率控制在较为理想的范围内 B.可使制动力最大

基于故障树分析法的某型航空电子装备故障诊断方法研究

基于故障树分析法的某型航空电子装备故障诊断方法研究 為了解决以微机芯片单元为核心的系统故障诊断问题,文章提出了基于输入输出型故障树的故障诊断方法。按照功能模块划分系统,单独引出关键元器件,从故障树事件层间引出关键节点,经实际应用证明,该方法提高了某型航空电子装备故障诊断的速度和精度。 标签:MCU单元;故障诊断;输入输出型故障树;关键节点 引言 随着我军装备更新换代,装备的智能化、集成化程度越来越高,故障诊断的难度却没有降低。以某型航空电子装备故障诊断为例,该型装备是以微机芯片为控制核心的复杂系统。虽然系统整体可靠性比以前分立式电路组成的系统更高,但是微机芯片外围电路的可靠性与微机芯片相比仍有差距,这已经成为影响系统整体可靠性继续提升的关键因素,同时外围电路也是故障多发点。据相关数据统计表明,外围电路故障约占装备总故障数的95%。目前在该型装备维修过程中,技术人员应用故障树模型进行故障诊断。 1 基于故障树模型的故障诊断概述 故障树分析法是基于故障树模型的一种分析系统可靠性和安全性的方法。使用该方法不但可以进行故障分析,还可以计算、分析单元可靠度对系统的影响。以便设计人员查找薄弱环节并采取改进措施,优化系统设计[1]。 近年来,技术人员开始研究如何利用故障树模型搜索故障源。基于故障树模型的故障诊断就是将故障原因自上而下逐层分解,从整体到局部逐步细化,对系统进行故障分析和可靠性评价的方法。它可以清楚地分析故障的产生以及传播过程,为装备故障定位提供了一种有效的方法。图1为某型航空电子装备发射电路部分原理图。MCU单元(以微机芯片为核心组成的运算和控制电路)处理输入输出信号之间的关系,是整个电路的控制核心。 2 建立故障树模型 不同的故障树模型表征不同的系统特征,其中有的适合故障诊断,有的适合可靠性分析。为了完成特定任务需要建立相应的故障树模型,首先对系统进行划分,一般有两种常用的方法:按功能模块划分和按照结构特征划分。下面开始按照故障树分析法建立图1所示电路的故障树模型,发射电路故障是最不希望发生的,我们将其选取为顶事件,将划分好的输入输出功能模块选取为底事件。将顶事件从上到下分割为输入故障、输出故障和MCU单元内部故障三个中间事件,再将中间事件分割为各个底事件,故障树模型如图2所示,我们将其定义为输入输出型故障树。以MCU单元为核心的系统具有相似性,组成结构上一般可划分为MCU单元、输入输出电路和最小系统电路,并且MCU单元完成了系统的大

汽车常见故障诊断排除方法详细

汽车常见故障诊断排除 方法详细 Company number:【0089WT-8898YT-W8CCB-BUUT-202108】

汽车常见故障诊断排除方法详细 常见故障一:汽油消耗量过大是何原因 1、机械因素: 汽车故障导致效率下降,请回厂检修确定无故障。 汽车发动机磨损老旧:大修发动机。 2、胎压不足:请时常注意轮胎状况,保持胎压,不但省油且增长使用寿命。 刹车咬住:可自行作慢速测试,确定刹车无此状况。 3、人为操作因素: 温车过久:在发动后至多30秒钟,确认所有警示灯熄灭即可上路。 狂暴驾驶:急踩油门加速又紧急刹车,或飙至极速,除了耗油外,机械亦加速磨损,应尽量避免。 开冷气睡觉或长时间等人而不熄火,除了耗油,且发动机容易积碳。 长时间使用不必要的电器,如除雾线、加强等,因为天下没有白吃的午餐,电力的消耗也会转嫁于汽油消耗。 空调制冷效率下降

4、交通因素: 短程使用:发动机可能尚未加热至正常工作温度,即抵达目的地,由于冷机效率低,燃料大半消耗于将发动机及加温,耗油是不可避免的,此种用车状况亦会导致发动机积碳。 市区行车:市区行车因堵车及红绿灯,停停行行耗油量甚至数倍于高速公路行车。 5、其它因素: 车上如放置过多的杂物长期下来也会导致耗油量增加。 常见故障二:排气管冒黑烟是什么原因冒白烟是什么原因冒蓝烟是什么原因 1、排气管冒黑烟: 说明发动机混合气过浓导致燃烧不充分。当过脏、不良、故障等,均会造成发动机冒黑烟。2、排气管冒白烟: 3、 4、说明喷油器雾化不良或滴油使部分汽油不燃烧;汽油中有水;盖和有肉眼看不见的裂纹,垫 损坏使内进水;机温太低。可以通过以下方法解决:清洗或更换喷油器,调整喷油压力;清除油箱和油路中水分;不买低价劣质油;更换气缸垫、、气缸盖. 5、 6、3、排气管冒蓝烟: 7、 8、说明机油进入燃烧室参加燃烧,与未完全磨合,机油从缝隙进入;粘合在槽内,的锥面装 反,失去刮油的作用;活塞环磨损过度,机油从开口间隙跑进燃烧室;油面过高;气门与导管磨损,间隙过大。可以通过以下方法解决:新车或大修后的机车都必须按规定磨合发动机,使各部零

最新2016航空发动机典型故障分析

目录 第 1章绪论 1.1 发动机概述〃〃〃〃〃〃〃〃〃〃〃〃〃〃〃〃〃〃〃〃〃〃〃〃〃〃〃〃〃〃〃〃〃2 1.2 可靠性与故障〃〃〃〃〃〃〃〃〃〃〃〃〃〃〃〃〃〃〃〃〃〃〃〃〃〃〃〃〃〃〃2 1.2.1 可靠性〃〃〃〃〃〃〃〃〃〃〃〃〃〃〃〃〃〃〃〃〃〃〃〃〃〃〃〃〃〃〃〃〃〃〃〃2 1.2.2 故障〃〃〃〃〃〃〃〃〃〃〃〃〃〃〃〃〃〃〃〃〃〃〃〃〃〃〃〃〃〃〃〃〃〃〃〃〃〃2 1.2.3 故障分析与排故方法〃〃〃〃〃〃〃〃〃〃〃〃〃〃〃〃〃〃〃〃〃〃〃〃3 第 2 章压气机喘振故障分析 2.1 概述〃〃〃〃〃〃〃〃〃〃〃〃〃〃〃〃〃〃〃〃〃〃〃〃〃〃〃〃〃〃〃〃〃〃〃〃〃〃〃5 2.2 喘振时的现象〃〃〃〃〃〃〃〃〃〃〃〃〃〃〃〃〃〃〃〃〃〃〃〃〃〃〃〃〃〃〃5 2.3 喘振的根本原因〃〃〃〃〃〃〃〃〃〃〃〃〃〃〃〃〃〃〃〃〃〃〃〃〃〃〃〃〃5 2.4 压气机的防喘措施〃〃〃〃〃〃〃〃〃〃〃〃〃〃〃〃〃〃〃〃〃〃〃〃〃〃〃6 第 3 章压气机转子叶片故障分析 3.1 概述〃〃〃〃〃〃〃〃〃〃〃〃〃〃〃〃〃〃〃〃〃〃〃〃〃〃〃〃〃〃〃〃〃〃〃〃〃〃〃9 3.2 压气机转子叶片受环境影响的损伤特征和有关安全准则与标准〃〃〃〃〃〃〃〃〃〃〃〃〃〃〃〃〃〃〃〃〃〃〃〃〃〃〃〃〃〃〃〃〃〃〃〃〃〃〃〃9 3.3 压气机转子叶片故障模式及其分析〃〃〃〃〃〃〃〃〃〃〃〃〃10 3.3.1 WP7系列压气机转子叶片现行检查标准﹙含判废标准﹚〃〃〃〃〃〃〃〃〃〃〃〃〃〃〃〃〃〃〃〃〃〃〃〃〃〃〃〃〃〃〃〃〃〃〃〃〃〃〃〃〃〃〃10 3.4 WP7系列报废叶片主要失效模式统计分析〃〃〃〃〃12 第 4 章发动机篦齿盘均压孔裂纹故障分析及预防 4.1 概述〃〃〃〃〃〃〃〃〃〃〃〃〃〃〃〃〃〃〃〃〃〃〃〃〃〃〃〃〃〃〃〃〃〃〃〃〃〃14 4.2 篦齿盘结构与工作状态分析〃〃〃〃〃〃〃〃〃〃〃〃〃〃〃〃〃〃14 4.2.1 结构分析〃〃〃〃〃〃〃〃〃〃〃〃〃〃〃〃〃〃〃〃〃〃〃〃〃〃〃〃〃〃〃〃〃14 4.2.2 工作状态分析〃〃〃〃〃〃〃〃〃〃〃〃〃〃〃〃〃〃〃〃〃〃〃〃〃〃〃〃〃14 4.2.2.1 工作温度高〃〃〃〃〃〃〃〃〃〃〃〃〃〃〃〃〃〃〃〃〃〃〃〃〃〃〃〃〃14 4.2.2.2 工作转速高〃〃〃〃〃〃〃〃〃〃〃〃〃〃〃〃〃〃〃〃〃〃〃〃〃〃〃〃〃14 4.2.2.3 易产生振动〃〃〃〃〃〃〃〃〃〃〃〃〃〃〃〃〃〃〃〃〃〃〃〃〃〃〃〃〃14 4.3 裂纹特征与产生原因分析〃〃〃〃〃〃〃〃〃〃〃〃〃〃〃〃〃〃〃15 4.3.1 裂纹特征〃〃〃〃〃〃〃〃〃〃〃〃〃〃〃〃〃〃〃〃〃〃〃〃〃〃〃〃〃〃〃〃〃15 4.3.2 裂纹原因分析〃〃〃〃〃〃〃〃〃〃〃〃〃〃〃〃〃〃〃〃〃〃〃〃〃〃〃〃〃15 4.4 结论〃〃〃〃〃〃〃〃〃〃〃〃〃〃〃〃〃〃〃〃〃〃〃〃〃〃〃〃〃〃〃〃〃〃〃〃〃16 结束语〃〃〃〃〃〃〃〃〃〃〃〃〃〃〃〃〃〃〃〃〃〃〃〃〃〃〃〃〃〃〃〃〃〃〃〃〃〃〃〃〃〃〃17 致谢〃〃〃〃〃〃〃〃〃〃〃〃〃〃〃〃〃〃〃〃〃〃〃〃〃〃〃〃〃〃〃〃〃〃〃〃〃〃〃〃〃〃〃〃〃18 文献〃〃〃〃〃〃〃〃〃〃〃〃〃〃〃〃〃〃〃〃〃〃〃〃〃〃〃〃〃〃〃〃〃〃〃〃〃〃〃〃〃〃〃〃〃19

相关文档
相关文档 最新文档