文档库 最新最全的文档下载
当前位置:文档库 › 第11讲 空间中的垂直关系

第11讲 空间中的垂直关系

第11讲 空间中的垂直关系
第11讲 空间中的垂直关系

普通高中课程标准实验教科书—数学 [人教B 版]

高三新数学第一轮复习教案(讲座11)—空间中的垂直关系

一.课标要求:

以立体几何的上述定义、公理和定理为出发点,通过直观感知、操作确认、思辨论证,认识和理解空间中线面垂直的有关性质与判定。

通过直观感知、操作确认,归纳出以下判定定理:

◆一条直线与一个平面内的两条相交直线垂直,则该直线与此平面垂直。 ◆ 一个平面过另一个平面的垂线,则两个平面垂直。

通过直观感知、操作确认,归纳出以下性质定理,并加以证明:

◆两个平面垂直,则一个平面内垂直于交线的直线与另一个平面垂直。 能运用已获得的结论证明一些空间位置关系的简单命题。

二.命题走向

近年来,立体几何高考命题形式比较稳定,题目难易适中,常常立足于棱柱、棱锥和正方体,复习是要以多面体为依托,始终把直线与直线、直线与平面、平面与平面垂直的性质和判定作为考察重点。在难度上也始终以中等偏难为主,在新课标教材中将立体几何要求进行了降低,重点在对图形及几何体的认识上,实现平面到空间的转化,示知识深化和拓展的重点,因而在这部分知识点上命题,将是重中之重。

预测高考将以多面体为载体直接考察线面位置关系:

(1)考题将会出现一个选择题、一个填空题和一个解答题;

(2)在考题上的特点为:热点问题为平面的基本性质,考察线线、线面和面面关系的论证,此类题目将以客观题和解答题的第一步为主。

(3)解答题多采用一题多问的方式,这样既降低了起点又分散了难点。

三.要点精讲

1.线线垂直

判断线线垂直的方法:所成的角是直角,两直线垂直;垂直于平行线中的一条,必垂直于另一条。 三垂线定理:在平面内的一条直线,如果它和这个平面的一条斜线的

射影垂直,那么它也和这条斜线垂直。

三垂线定理的逆定理:在平面内的一条直线,如果和这个平面的一条斜线垂直,那麽它也和这条斜线的射影垂直。 推理模式: ,,PO O PA A a AO a a AP αααα⊥∈?

?

=?⊥???⊥?

注意:⑴三垂线指PA ,PO ,AO 都垂直α内的直线a 其实质是:斜线和平面内一条直线垂直的判定

和性质定理 ⑵要考虑a 的位置,并注意两定理交替使用。

2.线面垂直

定义:如果一条直线l 和一个平面α相交,并且和平面α内的任意一条直线都垂直,我们就说直线l 和平面α互相垂直其中直线l 叫做平面的垂线,平面α叫做直线l 的垂面,直线与平面的交点叫做垂足。直线l 与平面α垂直记作:l ⊥α。

直线与平面垂直的判定定理:如果一条直线和一个平面内的两条相交直线都垂直,那么这条直线垂直于这个平面。

直线和平面垂直的性质定理:如果两条直线同垂直于一个平面,那么这两条直线平行。 3.面面垂直

两个平面垂直的定义:相交成直二面角的两个平面叫做互相垂直的平面。 两平面垂直的判定定理:(线面垂直?面面垂直)

如果一个平面经过另一个平面的一条垂线,那么这两个平面互相垂直。

两平面垂直的性质定理:(面面垂直?

线面垂直)若两个平面互相垂直,那么在一个平面内垂直于它

们的交线的直线垂直于另一个平面。

四.典例解析

题型1:线线垂直问题

例1.如图1所示,已知正方体ABCD —A 1B 1C 1D 1中,E 、F 、G 、H 、L 、M 、N 分别为A 1D 1,A 1B 1,BC ,CD ,DA ,DE ,CL 的中点,求证:EF ⊥GF 。

证明:如图2,作GQ ⊥B 1C 1于Q ,连接FQ ,则GQ ⊥平面A 1B 1C 1D 1,且Q 为B 1C 1的中点。

在正方形A 1B 1C 1D 1中,由E 、F 、Q 分别为A 1D 1、A 1B 1、B 1C 1的中点可证明EF ⊥FQ ,由三垂线定理得EF ⊥GF 。

点评:以垂直为背景,加强空间想象能力的考查,体现了立体几何从考查、

论证思想。

例2.(2006全国Ⅱ,19)如图,在直三棱柱ABC -A 1B 1C 1中,AB =BC ,D 、

E 分别为BB 1、AC 1的中点,证明:ED 为异面直线BB 1与AC 1的公垂线。

证明:设O 为AC 中点,连接EO ,BO ,则EO ∥=12C 1C ,又C 1C ∥=B 1B ,所以

EO ∥=DB ,EOBD 为平行四边形,ED ∥O B 。

∵AB =BC ,∴BO ⊥AC ,

又平面ABC ⊥平面ACC 1A 1,BO ?面ABC ,故BO ⊥平面ACC 1A 1, ∴ED ⊥平面ACC 1A 1,BD ⊥AC 1,ED ⊥CC 1,

∴ED ⊥BB 1,ED 为异面直线AC 1与BB 1的公垂线。

点评:该题考点多,具有一定深度,但入手不难,逐渐加深,逻辑推理增强。 题型2:线面垂直问题

例3.(1)(2006北京文,17)如图,ABCD —A 1B 1C 1D 1是正四棱柱,求证:BD ⊥平面ACC 1A 1。 (2)(2006天津文,19)如图,在五面体ABCDEF 中,点O 是矩形ABCD 的对角线的交点,面CDE 是等边三角形,棱1

2

EF BC ∥。 (I )证明FO ∥平面;CDE ;

(II

)设,BC =证明EO ⊥平面。 证明:(1)∵ABCD —A 1B 1C 1D 1是正四棱柱, ∴CC 1⊥平面ADCD, ∴BD ⊥CC 1

∵ABCD 是正方形 ∴BD ⊥AC

又∵AC ,CC 1?平面ACC 1A 1,

B C

D E

A 1

B 1

C 1 O F

1

且AC ∩CC 1=C,

∴BD ⊥平面ACC 1A 1。 (2)证明:

(I )取CD 中点M ,连结OM 。 在矩形ABCD 中,

1,2OM BC ∥又1

,2

EF BC ∥

则.EF OM ∥连结EM ,于是四边形EFOM 为平行四边形。

FO ∴∥EM.

又FO ? 平面CDE ,且EM ?平面CDE , FO ∴∥平面CDE 。

(II )连结FM 。

由(I )和已知条件,在等边CDE ?中,,CM DM = EM CD ⊥

且1

.2

EM BC EF === EO FM ⊥。

因此平行四边形EFOM 为菱形,从而

,,CD OM CD EM CD ⊥⊥∴⊥ 平面

EOM ,从而

.CD EO ⊥

而,FM CD M = 所以EO ⊥平面.CDF

点评:本题考查直线与平面垂直等基础知识,考查空间想象能力和推理论证能力。

例4.如图,直三棱柱ABC —A 1B 1C 1 中,AC =BC =1,∠ACB =90°,AA 1 =2,D 是A 1B 1 中点.(1)求证C 1D ⊥平面A 1B ;(2)当点F 在BB 1 上什么位置时,会使得AB 1 ⊥平面C 1DF ?并证明你的结论。

分析:(1)由于C 1D 所在平面A 1B 1C 1 垂直平面A 1B ,只要证明C 1D 垂直交线A 1B 1 ,由直线与平面垂直判定定理可得C 1D ⊥平面A 1B 。

(2)由(1)得C 1D ⊥AB 1 ,只要过D 作AB 1 的垂线,它与BB 1 的交点即为所求的F 点位置。 (1)证明:如图,∵ ABC —A 1B 1C 1 是直三棱柱, ∴ A 1C 1 =B 1C 1 =1,且∠A 1C 1B 1 =90°。 又 D 是A 1B 1 的中点,∴ C 1D ⊥A 1B 1 。 ∵ AA 1 ⊥平面A 1B 1C 1 ,C 1D ?平面A 1B 1C 1 , ∴ AA 1 ⊥C 1D ,∴ C 1D ⊥平面AA 1B 1B 。

(2)解:作DE ⊥AB 1 交AB 1 于E ,延长DE 交BB 1 于F ,连结C 1F ,则

AB 1 ⊥平面C 1DF ,点F 即为所求。

事实上,∵ C 1D ⊥平面AA 1BB ,AB 1 ?平面AA 1B 1B , ∴ C 1D ⊥AB 1 .又AB 1 ⊥DF ,DF C 1D =D ,

D

C

A

B

E

O

F

M

∴ AB 1 ⊥平面C 1DF 。

点评:本题(1)的证明中,证得C 1D ⊥A 1B 1 后,由ABC —A 1B 1C 1 是直三棱柱知平面C 1A 1B 1 ⊥平面AA 1B 1B ,立得C 1D ⊥平面AA 1B 1B 。(2)是开放性探索问题,注意采用逆向思维的方法分析问题。 题型3:面面垂直问题

例5.如图,△ABC 为正三角形,EC ⊥平面ABC ,BD ∥CE ,CE =

CA =2 BD ,M 是EA 的中点,求证:(1)DE =DA ;(2)平面BDM ⊥平

面ECA ;(3)平面DEA ⊥平面ECA 。

分析:(1)证明DE =DA ,可以通过图形分割,证明△DEF ≌△DBA 。(2)证明面面垂直的关键在于寻找平面内一直线垂直于另一平面。由(1)知DM ⊥EA ,取AC 中点N ,连结MN 、NB ,易得四边形MNBD 是矩形。从而证明DM ⊥平面ECA 。

证明:(1)如图,取EC 中点F ,连结DF 。

∵ EC ⊥平面ABC ,BD ∥CE ,得DB ⊥平面ABC 。 ∴ DB ⊥AB ,EC ⊥BC 。 ∵ BD ∥CE ,BD =21CE =2

1

FC ,则四边形FCBD 是矩形,DF ⊥

EC 。

又BA =BC =DF ,

∴ Rt △DEF ≌Rt △ABD ,所以DE =DA 。 (2)取AC 中点N ,连结MN 、NB , ∵ M 是EA 的中点,

∴ MN 2

1

EC 。

由BD

2

1

EC ,且BD ⊥平面ABC ,可得四边形MNBD 是矩形,于是DM ⊥MN 。 ∵ DE =DA ,M 是EA 的中点, ∴ DM ⊥EA .又EA MN =M ,

∴ DM ⊥平面ECA ,而DM ?平面BDM ,则平面ECA ⊥平面BDM 。 (3)∵ DM ⊥平面ECA ,DM ?平面DEA , ∴ 平面DEA ⊥平面ECA 。

点评:面面垂直的问题常常转化为线面垂直、线线垂直的问题解决。

题型4:射影问题

例6.如图,⊥SA 正方形ABCD 所在平面,过A 作与SC 垂直的平面分别交SB 、SC 、SD 于E 、K 、H ,求证:E 、H 分别是点A 在直线SB 和SD 上的射影.

证明:∵ ⊥SA 面ABCD ,∴ CD SA ⊥, ∵ ABCD 为正方形,∴ AD CD ⊥,

∵ SA 与AD 相交,∴ ⊥CD 面SAD ,?AH 面SAD , ∴ AH CD ⊥.

由已知⊥SC 面AEKH ,且?AH 面AEKH , ∴ AH SC ⊥,

∵ C CD SC = ,∴ ⊥AH 面SCD ,?SD 面SCD ,∴

SD AH ⊥,

即 H 为点A 在直线SD 上的射影,

同理可证得E 为点A 在直线SB 上的射影。

点评:直线与平面垂直的判定定理和性质定理是解决两条直线的主要途径之一,另外,三垂线定理及逆定理、两条直线所成的角等也是证明两条直线垂直的常用的方法。 题型5:垂直的应用

例7.已知A 是边长为a 的正三角形BCD 所在平面外一点,==AC AB a AD =,求异面直线AB 与CD 的距离。

解析:分别取

AB 、CD 中点E 、F ,连结EF

(图⑴)。

连结EC 、

ED (图⑵)

a BD BC ==,

BE 为公共边,?=∠=∠60EBD EBC ,

∴EBC ?≌EBD ? ∴ED EC =

∵点F 为CD 中点 ∴CD EF ⊥ 同理:AB FE ⊥(图⑶) 又E EF AB = ,F EF CD = , ∴EF 即为异面直线AB 与CD 的公垂线段 如图⑵,在CEF Rt ?中,?=∠90CFE ,a CF 21=

,a CE 2

3=, ∴a a a EF 22

212322

=??? ??-???

? ??= ∴异面直线AB 与CD 的距离a 22。 点评:求异面直线的距离,必须先找到两条异面直线的公垂线段。

例8.如图,在空间四边形ABCD 中,E 、F 、

G 、H 分别是边AB 、BC 、CD 、DA 的中点,对角线a BD AC ==且它

们所成的角为?30。

⑴求证:HF EG ⊥,⑵求四边形EFGH 的面积。

解析:⑴在ABD ?中,E 、H 分别是边AB 、

AD 的中点,∴

EH ∥BD 2

1

在CBD ?中,F 、G 分别是边CB 、CD 的中点,∴FG ∥

BD 2

1

F C

A B

D

E

F

C

A B

D

E

F

C

A B

D

E

图⑴

图⑵

图⑶

A

B

C

D E F

G H

∴EH ∥FG 且BD FG EH 2

1

=

=, 同理:EF ∥HG 且AC HG EF 2

1

==,

∵a BD AC ==,∴a HE GH FG EF 2

1

====, ∴四边形EFGH 为菱形,∴HF EG ⊥。 ⑵∵EF ∥AC ,FG ∥BD ,

∴EFG ∠(或EFG ∠的补角)即为异面直线AC 与BD 所成的角, 由已知得:?=∠30EFG (或?=∠150EFG ), ∴四边形EFGH 的面积为:28

1

2122sin 212a a a EFG FG EF =??=???

??∠????。 题型6:课标创新题

例9.(1)(2000全国,16)如图(1)所示,E 、F 分别为正方体的面ADD 1A 1、面BCC 1B 1的中心,则四边形BFD 1E 在该正方体的面上的射影可能是图(2)的 (要求:把可能的图的序号都.

填上)

图(1)

图(2)

答案:②③

解析:∵面BFD 1E ⊥面ADD 1A 1,所以四边形BFD 1E 在面ADD 1A 1上的射影是③,同理,在面BCC 1B 1

上的射影也是③。

过E 、F 分别作DD 1和CC 1的垂线,可得四边形BFD 1E 在面DCC 1D 1上的射影是②,同理在面ABB 1A 1,面ABCD 和面A 1B 1C 1D 1上的射影也是②。

(2)(2000上海,7)命题A :底面为正三角形,且顶点在底面的射影为底面中心的三棱锥是正三棱锥。

命题A 的等价命题B 可以是:底面为正三角形,且 的三棱锥是正三棱锥。 答案:侧棱相等(或侧棱与底面所成角相等……)

解析:要使命题B 与命题A 等价,则只需保证顶点在底面上的射影S 是底面正三角形的外心即可,因此,据射影定理,得侧棱长相等。

例12.(1999全国,18)α、β是两个不同的平面,m 、n 是平面α及β之外的两条不同直线.给出四个论断:

①m ⊥n ②α⊥β ③n ⊥β ④m ⊥α

以其中三个论断作为条件,余下一个论断作为结论,写出你认为正确的一个..

命题: 。

答案:m⊥α,n⊥β,α⊥β?m⊥n或m⊥n,m⊥α,n⊥β?α⊥β

点评:本题主要考查线线、线面、面面之间关系的判定与性质.但题型较新颖,主要表现在:题目中以立体几何知识为背景,给出了若干材料,要求学生能将其组装成具有一定逻辑关系的整体。考查知识立足课本,对空间想象能力、分析问题的能力、操作能力和思维的灵活性等方面要求较高,体现了加强能力考查的方向。

五.思维总结

1.通过典型问题掌握基本解题方法,高考中立体几何解答题基本题型是:

(Ⅰ)证明空间线面平行或垂直;

(Ⅱ)求空间中线面的夹角或距离;

(Ⅲ)求几何体的侧面积及体积。

证明空间线面平行或垂直需注意以下几点:

①由已知想性质,由求证想判定,即分析法与综合法相结合寻找证题思路。

②立体几何论证题的解答中,利用题设条件的性质适当添加辅助线(或面)是解题的常用方法之一。

③明确何时应用判定定理,何时应用性质定理,用定理时要先申明条件再由定理得出相应结论。

④三垂线定理及其逆定理在高考题中使用的频率最高,在证明线线垂直时应优先考虑.应用时常需先认清所观察的平面及它的垂线,从而明确斜线、射影、面内直线的位置,再根据定理由已知的两直线垂直得出新的两直线垂直.另外通过计算证明线线垂直也是常用的方法之一。

垂直和平行涉及题目的解决方法须熟练掌握两类相互转化关系:

1平行转化:线线平行?线面平行?面面平行;

2垂直转化:线线垂直?线面垂直?面面垂直;

每一垂直或平行的判定就是从某一垂直或平行开始转向另一垂直或平行最终达到目的。

例如:有两个平面垂直时,一般要用性质定理,在一个平面内作交线的垂线,使之转化为线面垂直,然后进一步转化为线线垂直。

2.“升降维”思想

直线是一维的,平面是二维的,立体空间是三维的。运用降维的方法把立体空间问题转化为平面或直线问题进行研究和解题,可以化难为易,化新为旧,化未知为已知,从而使问题得到解决。运用升维的方法把平面或直线中的概念、定义或方法向空间推广,可以立易解难,温旧知新,从已知探索未知,是培养创新精神和能力,是“学会学习”的重要方法。平面图形的翻折问题的分析与解决,就是升维与降维思想方法的不断转化运用的过程。

2.反证法

反证法是立体几何中常用的间接证明方法。

其步骤是:①否定结论;②进行推理;③导出矛盾;④肯定结论.用反证法证题要注意:①宜用此法否;②命题结论的反面情况有几种。

空间中的垂直关系(带答案)

空间中得垂直关系专题训练 知识梳理 一、线线垂直: 如果两条直线于一点或经过后相交于一点,并且交角为 ,则称这两条直线互相垂直、 二、线面垂直: 1、定义:如果一条直线与一个平面相交,并且与这个 平面内得_________________,则称这条直线与这个平 面垂直、也就就是说,如果一条直线垂直于一个平面, 那么她就与平面内任意一条直线都、直线l与平面 α互相垂直,记作l⊥α、 2、判定定理:如果一条直线与平面内得直线垂直,则这条直线与这个平面垂 直、 推论①:如果在两条平行直线中,有一条垂直于平面,那么另一条直线也于这个平面、 推论②:如果两条直线同一个平面,那么这两条直线平行、 3、点到平面得距离: 长度叫做点到平面得距离、 三、面面垂直: 1、定义:如果两个相交平面得交线与第三个平面 ,又这两个平面与第三个平面相交 所得得两条交线 ,就称这两个平面互相垂直、平面α,β互相垂直,记作α⊥β、 2、判定定理:如果一个平面经过另一个平面得___________,则这两个平面互相垂直、 3、性质定理:如果两个平面互相垂直,那么在一个平面内垂直于直线垂直于另 一个平面、 四、求点面距离得常用方法: 1、直接过点作面得垂线,求垂线段得长,通常要借助于某个三角形、 2、转移法:借助线面平行将点转移到直线上某一特殊点到平面得距离来求解、 3、体积法:利用三棱锥得特征转换位置来求解、 题型一线线垂直、线面垂直得判定及性质 例1、如图,在四棱锥PABCD中,PA⊥底面ABCD,AB⊥AD,AC⊥CD,∠ABC=60°,PA=AB=BC,E就是PC得中点、求证: (1)CD⊥AE;

空间几何——平行与垂直证明

c c ∥∥b a b a ∥?一、“平行关系”常见证明方法 (一)直线与直线平行的证明 1) 利用某些平面图形的特性:如平行四边形的对边互相平行 2) 利用三角形中位线性质 3) 利用空间平行线的传递性(即公理4): 平行于同一条直线的两条直线互相平行。 4) 利用直线与平面平行的性质定理: 如果一条直线与一个平面平行,经过这条直线的平面和这个平面相交,那 么这条直线和交线平行。 5) 利用平面与平面平行的性质定理: 如果两个平行平面同时和第三个平面相交,那么它们的交线平行. 6) 利用直线与平面垂直的性质定理: 垂直于同一个平面的两条直线互相平行。 a b α β b a a =??βαβ α∥b a ∥? b a b a ////??? ? ?? ==γβγαβα β α ⊥⊥b a b a ∥?

7) 利用平面内直线与直线垂直的性质: 在同一个平面内,垂直于同一条直线的两条直线互相平行。 8) 利用定义:在同一个平面内且两条直线没有公共点 (二)直线与平面平行的证明 1) 利用直线与平面平行的判定定理: 平面外的一条直线与此平面内的一条直线平行,则该直线与此平面平行。 2) 利用平面与平面平行的性质推论: 两个平面互相平行,则其中一个平面内的任一直线平行于另一个平面。 3) 利用定义:直线在平面外,且直线与平面没有公共点 (三)平面与平面平行的证明 常见证明方法: 1) 利用平面与平面平行的判定定理: 一个平面内的两条相交直线与另一个平面平行,则这两个平面平行。 α b a β α a β αα∥?a β ∥a ?b ∥a b a αα??α ∥a ?

空间中的垂直关系(带答案)

! 空间中的垂直关系专题训练 知识梳理 一、线线垂直: 如果两条直线于一点或经过后相交于一点,并且交角为,则称这两条直线互相垂直. 二、线面垂直: 1.定义:如果一条直线和一个平面相交,并且和这个 平面内的_________________,则称这条直线和这个平 面垂直. 也就是说,如果一条直线垂直于一个平面,那 么他就和平面内任意一条直线都 .直线l和平面 ! α互相垂直,记作l⊥α. 2.判定定理:如果一条直线与平面内的直线垂直,则这条直线与这个平面垂 直. 推论①:如果在两条平行直线中,有一条垂直于平面,那么另一条直线也于这个平面. 推论②:如果两条直线同一个平面,那么这两条直线平行. 3.点到平面的距离:长度叫做点到平面的距离. 三、面面垂直: 1.定义:如果两个相交平面的交线与第三个平面,又这两个平面与第三个平面相交 所得的两条交线,就称这两个平面互相垂直.平面α,β互相垂直,记作α⊥β. — 2.判定定理:如果一个平面经过另一个平面的___________,则这两个平面互相垂直. 3.性质定理:如果两个平面互相垂直,那么在一个平面内垂直于直线垂直于 另一个平面. 四、求点面距离的常用方法: 1.直接过点作面的垂线,求垂线段的长,通常要借助于某个三角形. 2.转移法:借助线面平行将点转移到直线上某一特殊点到平面的距离来求解. 3.体积法:利用三棱锥的特征转换位置来求解. 】

题型一线线垂直、线面垂直的判定及性质 例1.如图,在四棱锥P-ABCD中,PA⊥底面ABCD,AB⊥AD,AC⊥CD, ∠ABC=60°,PA=AB=BC,E是PC的中点.求证: (1)CD⊥AE; (2)PD⊥平面ABE. 《 【变式1】已知:正方体ABCD﹣A1B1C1D1 ,AA1=2,E为棱CC1的中点. (Ⅰ )求证:B1D1⊥AE; (Ⅱ )求证:AC∥平面B1DE. 【解答】(Ⅰ)连接BD,则BD∥B1D1,∵ABCD是正方形,∴AC⊥ BD. ∵CE⊥平面ABCD,BD?平面ABCD,∴CE⊥BD. 又∵AC∩CE=C,∴BD⊥面ACE.∵AE?面ACE,∴BD⊥AE,∴B1D1⊥AE.﹣ ﹣﹣(5分) - (Ⅱ)证明:取BB1的中点F,连接AF、CF、EF.∵ E、F是C1C、B1B的中点, ∴ CE∥B1F且CE=B1F,∴ 四边形B1FCE是平行四边形,∴ CF∥ B1E.∵ 正方形BB1C1C 中,E、F是CC、BB的中点,∴ EF∥BC且EF=BC

空间中的平行与垂直

空间中的平行与垂直(文/理) 热点一空间线面位置关系的判定 空间线面位置关系判断的常用方法 (1)根据空间线面平行、垂直关系的判定定理和性质定理逐项判断来解决问题; (2)必要时可以借助空间几何模型,如从长方体、四面体等模型中观察线面位置关系,并结合有关定理来进行判断. 例1(1)(·广东)若直线l1和l2是异面直线,l1在平面α内,l2在平面β内,l是平面α与平面β的交线,则下列命题正确的是() A.l与l1,l2都不相交 B.l与l1,l2都相交 C.l至多与l1,l2中的一条相交 D.l至少与l1,l2中的一条相交 (2)关于空间两条直线a、b和平面α,下列命题正确的是() A.若a∥b,b?α,则a∥α B.若a∥α,b?α,则a∥b C.若a∥α,b∥α,则a∥b D.若a⊥α,b⊥α,则a∥b 答案(1)D(2)D 解析(1)若l与l1,l2都不相交,则l∥l1,l∥l2,∴l1∥l2,这与l1和l2异面矛盾,∴l至少与l1,l2中的一条相交. (2)线面平行的判定定理中的条件要求a?α,故A错;对于线面平行,这条直线与面内的直线的位置关系可以平行,也可以异面,故B错;平行于同一个平面的两条直线的位置关系:平行、相交、异面都有可能,故C错;垂直于同一个平面的两条直线是平行的,故D正确,故选D. 思维升华解决空间点、线、面位置关系的组合判断题,主要是根据平面的基本性质、空间位置关系的各种情况,以及空间线面垂直、平行关系的判定定理和性质定理进行判断,必要时可以利用正方体、长方体、棱锥等几何模型辅助判断,同时要注意平面几何中的结论不能完全引用到立体几何中. 跟踪演练1设m,n是两条不同的直线,α,β是两个不同的平面,给出下列四个命题: ①若m∥n,m⊥β,则n⊥β;②若m∥α,m∥β,则α∥β;

空间中的垂直关系(带答案)教学提纲

空间中的垂直关系(带 答案)

空间中的垂直关系专题训练 知识梳理 一、线线垂直: 如果两条直线于一点或经过后相交于一点,并且交角 为,则称这两条直线互相垂直. 二、线面垂直: 1.定义:如果一条直线和一个平面相交,并且 和这个 平面内的_________________,则称这条直线和这个平 面垂直. 也就是说,如果一条直线垂直于一个平面,那么他就和平面内任意一条直线都 .直线l和平面 α互相垂直,记作l⊥α. 2.判定定理:如果一条直线与平面内的直线垂直,则这条直线 与这个平面垂直. 推论①:如果在两条平行直线中,有一条垂直于平面,那么另一条直线也于这个平面. 推论②:如果两条直线同一个平面,那么这两条直线平行. 3.点到平面的距离:长度叫做点到平面的距离. 三、面面垂直: 1.定义:如果两个相交平面的交线与第三个平面,又这两个平面与第 三个平面相交所得的两条交线,就称这两个平面互相垂直.平面α,β互相垂直,记作 α⊥β. 2.判定定理:如果一个平面经过另一个平面的___________,则这两个平面互相垂直. 3.性质定理:如果两个平面互相垂直,那么在一个平面内垂直于 直线垂直于另一个平面. 四、求点面距离的常用方法:

1.直接过点作面的垂线,求垂线段的长,通常要借助于某个三角形. 2.转移法:借助线面平行将点转移到直线上某一特殊点到平面的距离来求解. 3.体积法:利用三棱锥的特征转换位置来求解. 题型一线线垂直、线面垂直的判定及性质 例1.如图,在四棱锥P-ABCD中,PA⊥底面ABCD,AB⊥AD, A C⊥CD,∠ABC=60°,PA=AB=BC,E是PC的中点.求证: (1)CD⊥AE; (2)PD⊥平面ABE. 【变式1】已知:正方体ABCD﹣A1B1C1D1 ,AA1=2,E为棱CC1的中点. (Ⅰ)求证:B1D1⊥AE; (Ⅱ)求证:AC∥平面B1DE. 【解答】(Ⅰ)连接BD,则BD∥B1D1,∵ABCD是正方形,∴AC⊥ BD.

第2讲 空间中的平行与垂直

第2讲空间中的平行与垂直 高考定位 1.以几何体为载体考查空间点、线、面位置关系的判断,主要以选择题、填空题的形式出现,题目难度较小;2.以解答题的形式考查空间平行、垂直的证明,并与空间角的计算综合命题. 真题感悟 1.(2019·全国Ⅲ卷)如图,点N为正方形ABCD的中心,△ECD为正三角形,平面ECD⊥平面ABCD,M是线段ED的中点,则() A.BM=EN,且直线BM,EN是相交直线 B.BM≠EN,且直线BM,EN是相交直线 C.BM=EN,且直线BM,EN是异面直线 D.BM≠EN,且直线BM,EN是异面直线 解析连接BD,BE, ∵点N是正方形ABCD的中心, ∴点N在BD上,且BN=DN, ∴BM,EN是△DBE的中线, ∴BM,EN必相交. 连接CM,设DE=a,则EC=DC=a,MC=3 2a,

∵平面ECD ⊥平面ABCD ,且BC ⊥DC , ∴BC ⊥平面EDC , 则BD =2a ,BE = a 2+a 2=2a , BM = ? ?? ?? 32a 2 +a 2=72a , 又EN = ? ????a 22 +? ?? ?? 32a 2 =a , 故BM ≠EN . 答案 B 2.(2019·全国Ⅰ卷)已知∠ACB =90°,P 为平面ABC 外一点,PC =2,点P 到∠ACB 两边AC ,BC 的距离均为3,那么P 到平面ABC 的距离为________. 解析 如图,过点P 作PO ⊥平面ABC 于O ,则PO 为P 到平面ABC 的距离. 再过O 作OE ⊥AC 于E ,OF ⊥BC 于F , 连接PC ,PE ,PF ,则PE ⊥AC ,PF ⊥BC . 所以PE =PF =3,所以OE =OF , 所以CO 为∠ACB 的平分线, 即∠ACO =45°. 在Rt △PEC 中,PC =2,PE =3,所以CE =1, 所以OE =1,所以PO =PE 2-OE 2= (3)2-12= 2. 答案 2 3.(2020·全国Ⅲ卷)如图,在长方体ABCD -A 1B 1C 1D 1中,点E ,F 分别在棱DD 1,BB 1上,且2DE =ED 1,BF =2FB 1.证明:

17空间中平行垂直关系-知识总结

《空间中平行垂直关系》知识点总结 1 直线、平面平行的判定及其性质 1.1 直线与平面平行的判定 直线与平面平行的判定定理:平面外一条直线与此平面内的一条直线平行,则该直线与此平面平行。 简记为:线线平行,则线面平行。 符号表示: a α b β=>a∥α a∥b 1.2 平面与平面平行的判定 1、两个平面平行的判定定理:一个平面内的两条交直线与另一个平面平行,则这两个平面平行。 符号表示: a β b β a∩b=P β∥α a∥α b∥α 2、判断两平面平行的方法有三种: (1)用定义; (2)判定定理; (3)垂直于同一条直线的两个平面平行。 1.3—1.4直线与平面、平面与平面平行的性质 1、定理:一条直线与一个平面平行,则过这条直线的任一平面与此平面的交线与该直线平行。 简记为:线面平行,则线线平行。 符号表示:

a∥α a βa∥b α∩β= b 作用:利用该定理可解决直线间的平行问题。 2、定理:如果两个平面同时与第三个平面相交,那么它们的交线平行。 符号表示: α∥β α∩γ= a a∥b β∩γ= b 作用:可以由平面与平面平行得出直线与直线平行 2 直线、平面垂直的判定及其性质 2.1直线与平面垂直的判定 1、定义 如果直线L与平面α内的任意一条直线都垂直,我们就说直线L与平面α互相垂直,记作L⊥α,直线L叫做平面α的垂线,平面α叫做直线L的垂面。如图,直线与平面垂直时,它们唯一公共点P叫做垂足。 L p α 2、判定定理:一条直线与一个平面内的两条相交直线都垂直,则该直线与此平面垂直。 注意点:a)定理中的“两条相交直线”这一条件不可忽视; b)定理体现了“直线与平面垂直”与“直线与直线垂直”互相转 化的数学思想。 2.2平面与平面垂直的判定 1、二面角的概念:表示从空间一条直线出发的两个半平面所组成的图形

高考数学复习《空间中的平行关系》

空间中的平行关系 【考点导读】 1.掌握直线和平面平行、两个平面平行的判定定理和性质定理。 2.明确定义与定理的不同,定义是可逆的,既是判定也是性质,而判定定理与性质定理多是不可逆的。 3.要能灵活的对“线线平行”、“线面平行”和“面面平行”进行转化。 【基础练习】 1.若b a 、为异面直线,直线c ∥a ,则c 与b 的位置关系是 异面或相交 。 2.给出下列四个命题: ①垂直于同一直线的两条直线互相平行. ②垂直于同一平面的两个平面互相平行. ③若直线12,l l 与同一平面所成的角相等,则12,l l 互相平行. ④若直线12,l l 是异面直线,则与12,l l 都相交的两条直线是异面直线. 其中假. 命题的个数是 4 个。 3.对于任意的直线l 与平面a ,在平面a 内必有直线m ,使m 与l 垂直 。 4. 已知a 、b 、c 是三条不重合的直线,α、β、r 是三个不重合的平面,下面六个命题: ①a ∥c ,b ∥c ?a ∥b ;②a ∥r ,b ∥r ?a ∥b ;③α∥c ,β∥c ?α∥β; ④α∥r ,β∥r ?α∥β;⑤a ∥c ,α∥c ?a ∥α;⑥a ∥r ,α∥r ?a ∥α. 其中正确的命题是 ①④ 。 【范例导析】 例1.如图,在四面体ABCD 中,截面EFGH 是平行四边形. 求证:AB ∥平面EFG . 证明 :∵面EFGH 是截面. ∴点E ,F ,G ,H 分别在BC ,BD ,DA ,AC 上. ∴EH 面ABC ,GF 面ABD , 由已知,EH ∥GF .∴EH ∥面ABD . 又 ∵EH 面BAC ,面ABC ∩面ABD=AB ∴EH ∥AB . ∴AB ∥面EFG . 例2. 如图,在正方体ABCD —A 1B 1C 1D 1中,点N 在BD 上,点M 在B 1C 上,并且CM=DN. 求证:MN ∥平面AA 1B 1B. 分析:“线线平行”、“线面平行”、“面面平行”是可以互相转化的。本题可以采用任何一种转化方式。 简证:法1:把证“线面平行”转化为证“线线平行”。

16-17版 第1部分 专题4 突破点11 空间中的平行与垂直关系

突破点11 空间中的平行与垂直关系 提炼1 异面直线的性质 (1)面内的两条直线或平面内的一条直线与平面外的一条直线. (2)异面直线所成角的范围是? ????0,π2,所以空间中两条直线垂直可能为异面垂直或相交垂直. (3)求异面直线所成角的一般步骤为:①找出(或作出)适合题设的角——用平移法;②求——转化为在三角形中求解;③结论——由②所求得的角或其补角即为所求. 提炼2 平面与平面平行的常用性质 (1)(2)经过平面外一点有且只有一个平面与已知平面平行. (3)如果两个平面分别平行于第三个平面,那么这两个平面互相平行. (4)两个平面平行,则其中一个平面内的任意一条直线平行于另一个平面. 提炼3 证明线面位置关系的方法 (1)平行的性质定理;③面面平行的性质定理;④线面垂直的性质定理. (2)证明线面平行的方法:①寻找线线平行,利用线面平行的判定定理;②寻找面面平行,利用面面平行的性质. (3)证明线面垂直的方法:①线面垂直的定义,需要说明直线与平面内的所有直线都垂直;②线面垂直的判定定理;③面面垂直的性质定理. (4)证明面面垂直的方法:①定义法,即证明两个平面所成的二面角为直二面角;②面面垂直的判定定理,即证明一个平面经过另一个平面的一条垂线.

回访1异面直线的性质 1.(2016·全国乙卷)平面α过正方体ABCD-A1B1C1D1的顶点A,α∥平面CB1D1,α∩平面ABCD=m,α∩平面ABB1A1=n,则m,n所成角的正弦值为() A. 3 2 B. 2 2 C. 3 3 D. 1 3 A[设平面CB1D1∩平面ABCD=m1. ∵平面α∥平面CB1D1,∴m1∥m. 又平面ABCD∥平面A1B1C1D1, 且平面CB1D1∩平面A1B1C1D1=B1D1, ∴B1D1∥m1.∴B1D1∥m. ∵平面ABB1A1∥平面DCC1D1, 且平面CB1D1∩平面DCC1D1=CD1, 同理可证CD1∥n. 因此直线m与n所成的角即直线B1D1与CD1所成的角.在正方体ABCD-A1B1C1D1中,△CB1D1是正三角形, 故直线B1D1与CD1所成角为60°,其正弦值为 3 2.] 2.(2015·广东高考)若直线l1和l2是异面直线,l1在平面α内,l2在平面β内,l是平面α与平面β的交线,则下列命题正确的是() A.l与l1,l2都不相交 B.l与l1,l2都相交 C.l至多与l1,l2中的一条相交 D.l至少与l1,l2中的一条相交 D[由直线l1和l2是异面直线可知l1与l2不平行,故l1,l2中至少有一条与l相交.] 回访2面面平行的性质与线面位置关系的判断 3.(2013·全国卷Ⅱ)已知m,n为异面直线,m⊥平面α,n⊥平面β.直线l

人教版高数必修二第6讲:空间中的垂直关系(教师版)

空间中的垂直关系 __________________________________________________________________________________ __________________________________________________________________________________ 理解空间中三种垂直关系的定义; 掌握空间中三种垂直关系判定及性质; 用空间中三种垂直关系的定义、判定及性质解决垂直问题. 一、直线与平面垂直 1.如果两条直线相交于一点或经过平移后相交于一点,并且交角为直角,则称这两条直线互垂直. 2.如果一条直线(AB)和一个平面(α)相交于点O,并且和这个平面内过点O的任何直线都垂直, 我们就说这条直线和这个平面互相垂直,记作AB⊥α,直线叫做平面的垂线,平面叫做直线的垂面,交点叫做垂足.垂线上任一点到垂足间的线段,叫做这点到这个平面的垂线段.垂线段的长度叫做这点到平面的距离 3.直线和平面垂直的判定 4.(1)判定定理:如果一条直线和一个平面内的任何两条相交直线都垂直,那么这条直线垂直于 这个平面. 符号语言:l⊥a,l⊥b,a∩b=A,a?α,b?α?l⊥α, 如图: (2)如果两条平行线中的一条垂直于一个平面,那么另一条也垂直于同一个平面. 符号语言:a∥b,a⊥α?b⊥α, 如图:

5.直线与平面垂直的性质 (1)性质定理:如果两条直线同垂直于一个平面,那么这两条直线平行. 符号语言:a⊥α,b⊥α?a∥b, 如图: (2)一条直线垂直于一个平面,它就和平面内的任意一条直线垂直. 符号语言:a⊥α,b?α?a⊥b, 如图: 6.设P是三角形ABC所在平面α外一点,O是P在α内的射影 (1)若PA=PB=PC,则O为△ABC的外心.特别地当∠C=90°时,O为斜边AB中点. (2)若PA、PB、PC两两垂直,则O为△ABC的垂心. (3)若P到△ABC三边距离相等,则O为△ABC的内心. 7.(1)过一点有且只有一条直线与已知平面垂直. (2)过一点有且只有一个平面与已知直线垂直. 二、直线和平面平行 1.平面与平面垂直的定义: 如果两个相交平面的交线与第三个平面垂直,又这两个平面与第三个平面相交所得的两条交线互相垂直,就称这两个平面互相垂直.平面α、β互相垂直,记作α⊥β. 2.两个平面垂直的判定定理: 如果一个平面经过另一个平面的一条垂线,那么这两个平面互相垂直. 符号表示:a⊥α,a?β?α⊥β, 如图: 3.两个平面垂直的性质定理:如果两个平面垂直,那么在一个平面内垂直于它们交线的直线,垂直于另一个平面. 符号表示:α⊥β,α∩β=CD,BA?α,BA⊥CD,B为垂足?BA⊥β,

空间中的垂直关系习题

空间中的垂直关系练习题 知识点小结 一.线面垂直定义:如果直线AB 与平面α相交于点O,并且和这个平面内过交点O 的任何直线都垂直,我们就说直线AB 与平面α互相垂直,直线AB 叫做平面α的_________,平面α叫做直线L 的_________,交点P 叫做_________。 垂线上任意一点到垂足间的线段,叫做这个点到这个平面的_________,垂线段的长度叫做点到平面的_________。 由定义:如果一条直线垂直于一个平面,那么_____________________________。 二.判定定理:如果一条直线与平面内的______________垂直,则这条直线与这个平面垂直。 符号语言: 推论1 如果在两条平行直线中,有一条垂直于平面,那么__________________________。 推论2 如果在两条直线垂直于同一平面,那么这两条直线_________。 三.平面与平面垂直的判定 1.平面与平面垂直定义 如果两个相交平面的交线与第三个平面垂直,又这两个平面与_________________互相垂直,就称这两个平面互相垂直。 2.平面与平面垂直的判定定理 如果一个平面过另一个平面的_________,则两个平面互相垂直。 3.平面与平面垂直的性质定理 如果两个平面互相垂直,那么_____________________________________。 一.选择题 1在空间,如果一个角的两边分别与另一个角的两边垂直,那么这两个角的关系是( ) A.相等 B.互补 C.相等或互补 D.无法确定 2.个平面γβα,,,之间有α⊥γ,β⊥ γ,则α与β ( ) A.垂直 B.平行 C.相交 D.以上三种可能都有 3.下列命题正确的是( ) A 、若两条直线和同一个平面所成的角相等,则这两条直线平行 B 、若一个平面内有三个点到另一个平面的距离相等,则这两个平面平行 C 、若一条直线平行于两个相交平面,则这条直线与这两个平面的交线平行 D 、若两个平面都垂直于第三个平面,则这两个平面平行 4.若l 为一条直线,α、β、γ为三个互不重合的平面,给出下面三个命题: ①α⊥γ,β⊥γ?α⊥β;②α⊥γ,β∥γ?α⊥β; ③l ∥α,l ⊥β?α⊥β. 其中的真命题有( ) A .0个 B .1个 C .2个 D .3个

七年级数学:空间里的平行关系(教学实录)

( 数学教案 ) 学校:_________________________ 年级:_________________________ 教师:_________________________ 教案设计 / 精品文档 / 文字可改 七年级数学:空间里的平行关系 (教学实录) Mathematics is a tool subject, it is the basis for learning other subjects, and it is also a subject that improves people's judgment, analysis, and comprehension abilities.

七年级数学:空间里的平行关系(教学实 录) 教学建议 一、知识结构 在平行线知识的基础上,教科书以学生对长方体的直观认识为基础,通过观察长方体的某些棱与面、面与面的不相交,进而把它们想象成空间里的直线与平面、平面与平面的不相交,来建立空间里平行的概念.培养学生的空间观念. 二、重点、难点分析 能认识空间里直线与直线、直线与平面、平面与平面的平行关系既是本节教学重点也是难点.本节知识是线线平行的相关知识的延续,对培养学生的空间观念,进一步研究空间中的点、线、面、

体的关系具有重要的意义. 1.我们知道在同一平面内的两条直线的位置关系有两种:相交或平行,由于垂直和平行这两种关系与人类的生产、生活密切相关,所以这两种空间位置关系历来受到人们的关注,前面我们学过在平面内直线与直线垂直的情况,以及在空间里直线与平面,平面与平面的垂直关系. 2.例如:在图中长方体的棱AA'与面ABCD垂直,面A'ABB'与面ABCD互相垂直并且当时我们还从观察中得出下面两个结论: (1)一条棱垂直于一个面内两条相交的棱,这条棱与这个面就互相垂直. (2)一个面经过另一个面的一条垂直的棱,这两个面就互相垂直. 正如上述,在空间里有垂直情况一样,在空间里也有平行的情况,首先看棱AB与面A'B'C'D'的位置关系,把棱AB向两方延长,面A'B'C'D'向各个方向延伸,它们总也不会相交,像这样的棱和面就是互相平行的,同样,棱AB与面DD'C'C是互相平行的,棱AA'与面

立体几何空间中的垂直关系及答案

空间中的垂直关系 1.线线垂直 如果两条直线所成的角是______(无论它们是相交还是异面),那么这两条直线互相垂直. 2.直线与平面垂直 (1)定义:如果直线l与平面α内的任意一条直线都垂直,我们就说______________________,记作______.直线l叫做______________,平面α叫做______________.直线与平面垂直时,它们惟一的公共点P叫做______.垂线上任意一点到垂足间的线段,叫做这个点到这个平面的垂线段,垂线段的长度叫做这个点到平面的________. (2)判定定理:一条直线与一个平面内的______________都垂直,则该直线与此平面垂直. 推论:如果在两条平行直线中,有一条垂直于平面,那么另一条直线也垂直于这个平面.用符号表示:a∥b,a⊥α?b⊥α. (3)性质定理:垂直于同一个平面的两条直线__________. 3.直线和平面所成的角 平面的一条斜线和它在平面上的射影所成的________,叫做这条直线和这个平面所成的角. 一条直线垂直于平面,我们说它们所成的角是直角;一条直线和平面平行,或在平面内,我们说它们所成的角是0°的角.任一直线与平面所成角θ的范围是____________. 4.二面角的有关概念 (1)二面角:从一条直线出发的______________________叫做二面角. (2)二面角的平面角:以二面角的棱上任一点为端点,在两个半平面内分别作______________的两条射线,这两条射线所成的角叫做二面角的平面角.二面角的范围是__________. 5.平面与平面垂直 (1)定义:一般地,两个平面相交,如果它们所成的二面角是____________,就说这两个平面互相垂直. (2)判定定理:一个平面过另一个平面的________,则这两个平面垂直. (3)性质定理:两个平面垂直,则一个平面内垂直于______的直线与另一个平面垂直. 自查自纠: 1.直角 2.(1)直线l与平面α互相垂直l⊥α平面α的垂线 直线l的垂面垂足距离(2)两条相交直线(3)平行 3.锐角[0°,90°] 4.(1)两个半平面所组成的图形(2)垂直于棱[0°,180°] 5.(1)直二面角(2)垂线(3)交线 (2018·广东清远一中月考)已知直线l⊥平面α,直线m?平面β,给出下列命题:①α⊥β?l ∥m;②α∥β?l⊥m;③l⊥m?α∥β;④l∥m?α⊥β,其中正确命题的序号是() A.①②③B.②③④C.①③D.②④ . (2017·全国卷Ⅲ)在正方体ABCD-A1B1C1D1中,E为棱CD的中点,则() A.A1E⊥DC1B.A1E⊥BD

(典型题)高考数学二轮复习 知识点总结 空间中的平行与垂直

空间中的平行与垂直 高考对本节知识的考查主要是以下两种形式:1.以选择、填空题的形式考查,主要利用平面的基本性质及线线、线面和面面的判定与性质定理对命题真假实行判断,属基础题.2.以解答题的形式考查,主要是对线线、线面与面面平行和垂直关系交汇综合命题,且多以棱柱、棱锥、棱台或其简单组合体为载体实行考查,难度中等. 1.线面平行与垂直的判定定理、性质定理 线面平行的判定定理 ? ??? ? a ∥ b b ?αa ?α?a ∥α 线面平行的性质定理 ? ??? ?a ∥α a ?βα∩β= b ?a ∥b 线面垂直的判定定理 ? ??? ?a ?α,b ?αa ∩b =O l ⊥a ,l ⊥b ? l ⊥α 线面垂直的性质定理 ? ????a ⊥αb ⊥α?a ∥b 2. 面面垂直的判定定理 ? ????a ⊥αa ?β?α⊥β 面面垂直的性质定理 ? ??? ?α⊥β α∩β=c a ?αa ⊥c ?a ⊥β

面面平行的判定定理 ? ????a ?βb ?β a ∩ b =O a ∥α, b ∥α? α∥β 面面平行的性质定理 ? ??? ?α∥β α∩γ=a β∩γ=b ?a ∥b 3. 平行关系及垂直关系的转化示意图 考点一 空间线面位置关系的判断 例1 (1)l 1,l 2,l 3是空间三条不同的直线,则下列命题准确的是 ( ) A .l 1⊥l 2,l 2⊥l 3?l 1∥l 3 B .l 1⊥l 2,l 2∥l 3?l 1⊥l 3 C .l 1∥l 2∥l 3?l 1,l 2,l 3共面 D .l 1,l 2,l 3共点?l 1,l 2,l 3共面 (2)设l ,m 是两条不同的直线,α是一个平面,则下列命题准确的是 ( ) A .若l ⊥m ,m ?α,则l ⊥α B .若l ⊥α,l ∥m ,则m ⊥α C .若l ∥α,m ?α,则l ∥m D .若l ∥α,m ∥α,则l ∥m 答案 (1)B (2)B 解析 (1)对于A ,直线l 1与l 3可能异面、相交;对于C ,直线l 1、l 2、l 3可能构成三棱柱的三条棱而不共面;对于D ,直线l 1、l 2、l 3相交于同一个点时不一定共面,如正方体一个顶点的三条棱.所以选B. (2)A 中直线l 可能在平面α内;C 与D 中直线l ,m 可能异面;事实上由直线与平面垂直的判定定理可得B 准确. 解决空间点、线、面位置关系的组合判断题,主要是根据平面的基本性质、空间位置关系的各种情况,以及空间线面垂直、平行关系的判定定理和性质定理实行判断,必要时能够利用正方体、长方体、棱锥等几何模型辅助判断,同时要注意平面几何中的结论不能完全移植到立体几何中. (1)(2013·广东)设m ,n 是两条不同的直线,α,β是两个不同的平面,下列命题中准确的是 ( )

空间中的平行关系练习题

1.2.2空间中的平行关系 【目标要求】 1.理解并掌握公理4,能应用其证明简单的几何问题. 2.理解并掌握直线与平面平行的判定定理和性质定理,明确线线平行与面面平行的关系. 3.能够熟练的应用线面平行的性质定理和判定定理. 1.以下说法中正确的个数是(其中a,b表示直线,表示平面α) ( ) ①若a∥b,b∥α,则a∥α②若a∥α,b∥α,则a∥b ③若a∥b,b∥α,则a∥α④若a∥α,b∥α,则a∥b A. 0个 B. 1个 C. 2个 D. 3个 2.a∥α,b∥β,a∥b,则α与β的位置关系是() A.平行 B.相交 C.平行或相交 D.一定垂直 3.如果平面α外有两点A、B,它们到平面α的距离都是d,则直线AB和平面α的位置关系一定是() A.平行 B.相交 C.平行或相交 D. AB?α 4.当α∥β时,必须满足的条件() A.平面α内有无数条直线平行于平面β B.平面α与平面β同平行于一条直线 C.平面α内有两条直线平行于平面β D.平面α内有两条相交直线与β平面平行 5.已知a∥α,b∥α,则直线a,b的位置关系①平行;②垂直不相交;③垂直相交;④相交;⑤不垂直且 不相交.;其中可能成立的有() A.2个 B.3个 C.4个 D.5个 6.直线a∥平面α,点A∈α,则过点A且平行于直线a的直线() A.只有一条,但不一定在平面α内 B.只有一条,且在平面α内 C.有无数条,但都不在平面α内 D.有无数条,且都在平面α内 7.已知直线a∥平面α,且它们的距离为d,则到直线a与到平面α的距离都等于d的点的集合是 () A.空集 B.两条平行直线 C.一条直线 D.一个平面 8. A、B是直线l外的两点,过A、B且和l平行的平面的个数是() A.0个 B.1个 C.无数个 D.以上都有可能 9.设α,β是不重合的两个平面,l和m是不重合的两条直线,则能得出α∥β的是() A.l?α,m?α,且l∥β,m∥β B.l?α,m?β,且l∥m C.l⊥α,m⊥β,且l∥m D.l∥α,m∥β,且l∥m 10.已知直线a、b,平面α、β,以下条件中能推出α∥β的是() ①a?α,b?β,a∥b;②a?α,b?α,a∥β,b∥β;③a∥b,a⊥α,b⊥β. A.① B.② C.③ D.均不能 11.若平面α∥平面β,直线a?α,直线b?β,那么直线a,b的位置关系是() A.垂直 B.平行 C.相交 D.不相交 12.梯形ABCD中AB∥CD,AB?平面α,则直线CD与平面α的位置关系是() A.平行 B.平行或相交 C.相交 D. CD平行平面α或CD?α 13.正方体AC1中,E、F、G分别为B1C1、A1D1、A1B1的中点 求证:平面EBD//平面FGA.

高考数学专题复习与策略专题立体几何突破点空间中的平行与垂直关系教师用书理

突破点11 空间中的平行与垂直关系 (对应学生用书第167页) 提炼1 异面直线的性质 (1)直线或平面内的一条直线与平面外的一条直线. (2)异面直线所成角的范围是? ????0,π2,所以空间中两条直线垂直可能为异面垂直或相交垂直. (3)求异面直线所成角的一般步骤为:①找出(或作出)适合题设的角——用平移法;②求——转化为在三角形中求解;③结论——由②所求得的角或其补角即为所求. 提炼2 平面与平面平行的常用性质 (1)(2)经过平面外一点有且只有一个平面与已知平面平行. (3)如果两个平面分别平行于第三个平面,那么这两个平面互相平行. (4)两个平面平行,则其中一个平面内的任意一条直线平行于另一个平面. 提炼3 证明线面位置关系的方法 (1)定理;③面面平行的性质定理;④线面垂直的性质定理. (2)证明线面平行的方法:①寻找线线平行,利用线面平行的判定定理;②寻找面面平行,利用面面平行的性质. (3)证明线面垂直的方法:①线面垂直的定义,需要说明直线与平面内的所有直线都垂直;②线面垂直的判定定理;③面面垂直的性质定理. (4)证明面面垂直的方法:①定义法,即证明两个平面所成的二面角为直二面角;②面面垂直的判定定理,即证明一个平面经过另一个平面的一条垂线. 回访1 异面直线的性质 1.(2016·全国乙卷)平面α过正方体ABCD -A 1B 1C 1D 1的顶点A ,α∥平面CB 1D 1,α∩平面ABCD =m ,α∩平面ABB 1A 1=n ,则m ,n 所成角的正弦值为( )

A. 3 2 B. 2 2 C. 3 3 D. 1 3 A [设平面C B 1D1∩平面ABCD=m1. ∵平面α∥平面CB1D1,∴m1∥m. 又平面ABCD∥平面A1B1C1D1, 且平面CB1D1∩平面A1B1C1D1=B1D1, ∴B1D1∥m1.∴B1D1∥m. ∵平面ABB1A1∥平面DCC1D1, 且平面CB1D1∩平面DCC1D1=CD1, 同理可证CD1∥n. 因此直线m与n所成的角即直线B1D1与CD1所成的角.在正方体ABCD-A1B1C1D1中,△CB1D1是正三角形, 故直线B1D1与CD1所成角为60°,其正弦值为 3 2 .] 2.(2015·广东高考)若直线l1和l2是异面直线,l1在平面α内,l2在平面β内,l 是平面α与平面β的交线,则下列命题正确的是( ) A.l与l1,l2都不相交 B.l与l1,l2都相交 C.l至多与l1,l2中的一条相交 D.l至少与l1,l2中的一条相交 D [由直线l1和l2是异面直线可知l1与l2不平行,故l1,l2中至少有一条与l相交.] 回访2 面面平行的性质与线面位置关系的判断 3.(2013·全国卷Ⅱ)已知m,n为异面直线,m⊥平面α,n⊥平面β.直线l满足l⊥m,l⊥n,l?α,l?β,则( ) A.α∥β且l∥α B.α⊥β且l⊥β C.α与β相交,且交线垂直于l D.α与β相交,且交线平行于l D [根据所给的已知条件作图,如图所示. 由图可知α与β相交,且交线平行于l,故选D.]

专题 空间几何中的平行与垂直

专题空间几何中的平行与垂直 考点 点、线、面位置关系的判断 一 1.(优质试题浙江卷)已知互相垂直的平面α,β交于直线l,若直线m,n 满足m∥α,n⊥β,则( ). A.m∥l B.m∥n C.n⊥l D.m⊥n 【解析】∵α∩β=l,∴l?β.∵n⊥β,∴n⊥l. 【答案】C 2.(优质试题安徽卷)已知m,n是两条不同直线,α,β是两个不同平面, 则下列命题正确的是( ). A.若α,β垂直于同一平面,则α与β平行 B.若m,n平行于同一平面,则m与n平行 C.若α,β不平行,则在α内不存在与β平行的直线 D.若m,n不平行,则m与n不可能垂直于同一平面 【解析】A项,α,β可能相交,故错误;B项,直线m,n的位置关系不确定,可能相交、平行或异面,故错误;C项,若m?α,α∩β=n,m∥n,则m∥β,故错误;D项,假设m,n垂直于同一平面,则必有m∥n,所以原命题正确.故D项正确. 【答案】D 3.(优质试题广东卷)若直线l1和l2是异面直线,l1在平面α内,l2在平 面β内,l是平面α与平面β的交线,则下列命题正确的是( ). A.l与l1,l2都不相交 B.l与l1,l2都相交

C.l至多与l1,l2中的一条相交 D.l至少与l1,l2中的一条相交 【解析】由直线l1和l2是异面直线可知l1与l2不平行也不相交,故l1,l2中至少有一条与l相交. 【答案】D 4.(优质试题全国Ⅲ卷)在正方体ABCD -A1B1C1D1中,E为棱CD的中点,则( ). A.A1E⊥DC1 B.A1E⊥BD C.A1E⊥BC1 D.A1E⊥AC 【解析】连接B1C,由题意得BC1⊥B1C. ∵A1B1⊥平面B1BCC1,且BC1?平面B1BCC1, ∴A1B1⊥BC1, ∵A1B1∩B1C=B1,∴BC1⊥平面A1ECB1, ∵A1E?平面A1ECB1,∴A1E⊥BC1.故选C. 【答案】C 5.(优质试题上海卷)如图,在正方体ABCD-A1B1C1D1中,E、F分别为BC、BB1的中点,则下列直线中与直线EF相交的是( ). A.直线AA1 B.直线A1B1 C.直线A1D1 D.直线B1C1

高中数学-立体几何-空间中的平行和垂直关系

高中数学总复习- 第七章立体几何-空间中的平行和垂直关系 【知识结构图】 第3课空间中的平行关系 【考点导读】 1 ?掌握直线和平面平行、两个平面平行的判定定理和性质定理。 2 ?明确定义与定理的不同,定义是可逆的,既是判定也是性质,而判定定理与性质定理多是不可逆的。 3. 要能灵活的对“线线平行”、“线面平行”和“面面平行”进行转化。 【基础练习】 1. 若a、b为异面直线,直线c // a,则c与b的位置关系是异面或相交

2 ?给出下列四个命题①垂直于同一直线的两条直线互相平行?②垂直于同一平面的两个平面互相平 行. ③若直线1(2与同一平面所成的角相等,则1」2互相平行. ④若直线1(2是异面直线,则与1(2都相交的两条直线是异面直线. 其中假命题的个数是_4 _______ 个。 3?对于任意的直线I与平面a,在平面a内必有直线m使m与I 垂直。: 4. 已知a、b、c是三条不重合的直线, a、B、r是三个不重合的平面,下面 六个命题: ①a// c, b// c a// b;②a // r, b II r a // b;③a// c, B // c a// B ; ④a// r, B // r a// B ;⑤a// c,a// c a//a;⑥a // r ,a// r a //a. 其中正确的命题是①④________ 【范例导析】例1.如图,在四面体ABCD中,截面EFGH是平行四边形. 求证:AB//平面EFG 证明:?面EFGH是截面. ???点E, F, G, H分别在BC, BD, DA AC上. ??? EH 面ABC GF 面ABD 由已知,EH// GF. ? EH// 面ABD 又T EH,—面BAC 面AB6面ABD=AB ?EH// AB. ?AB// 面EFG 例2. 如图,在正方体ABC—A1B1C1D中,点N在BD上,点M在BC上,并且CM=DN. D C

线面平行与垂直关系的转化

三垂线定理 一、温故 1.线面平行的判定及性质定理 2.线面垂直的判定及性质定理 3.求线面所成角步骤 二、探究 思考1:面的垂线垂直于平面内的每一条直线;平面的斜线不能垂直于平面的每一条直线,但也不是与每一条直线都不垂直。那么平面的斜线与平面内的直线在什么情况下是垂直的呢? 例1:已知:,PA PO 分别是平面α的垂线和斜线,AO 是PO 在平面α的射影,, a α?a AO ⊥。 求证:a PO ⊥; 例2.已知P 是平面ABC 外一点,,PA ABC AC BC ⊥⊥。 求证:PC BC ⊥。 P B

例3.已知:点O 是ABC ?的垂心,PO ABC ⊥平面,垂足为O ,求证:PA BC ⊥ 例4.已知PA ⊥正方形ABCD 所在平面,O 为对角线BD 的中点。 求证:,PO BD PC BD ⊥⊥。 例5.在正方体1AC 中,求证:1111 1,AC B D AC BC ⊥⊥; 例6.已知:,PA PO 分别是平面α的垂线和斜线,AO 是PO 在平面α的射影,, a α?a PO ⊥。 求证:a AO ⊥; P B 1 A C O D A C B P

例7.在空间四边形ABCD 中,设,AB CD AC BD ⊥⊥。 求证:(1)AD BC ⊥; (2)点A 在底面BCD 上的射影是BCD ?的垂心; 线面平行与垂直关系的转化 1.对于命题:①b a a b b a ⊥?⊥,//; ②αα//,b a b a ?⊥⊥; ③ c a b a c b a ////,,,?=???βαβα;④ c b a c a b ////,,,?=?=?=?ααγγββα,其中正确的命题个数是 2.若直线a ,b 没有公共点,则下列命题:①存在与a ,b 平行的直线;②存在与a ,b 垂直的平面;③存在经过a 而与b 垂直的平面;④存在经过a 而与b 平行的平面. 其中正确的命题序号是 3.已知a ,b 和平面α,下列推理:①α⊥a 且b a a b ⊥??;②αα⊥?⊥b a b a 且//;③b a a //b //??αα且;④ααα??⊥⊥a a b a 或且//b ,其中正确的命题序号是 4.下列说法:①如果一条直线和平面内的一条直线垂直,该直线与这个平面必相交;②如果一条直线和平面的一组平行线垂直,该直线必在这个平面内;④如果一条直线和一个平面垂直,该直线垂直于平面内的任何直线,其中正确的个数是 5.空间四边形ABCD 的四条边相等,则它的对角线AD 、BC 的关系是 6.对于命题:① αα⊥????⊥a b b a //;②αα////a b b a ?????;③αα⊥?? ?? ⊥a b b a //;④ αα//b b a a ?? ?? ⊥⊥其中正确的命题是 7.在正方体ABCD-A ?B ?C ?D ?中,边对角线BD ?的一个平面交AA ?于E ,交CC ?于F , D A B C

相关文档
相关文档 最新文档