文档库 最新最全的文档下载
当前位置:文档库 › 医药化工专业毕业论文 羟基磷灰石的制备及对4-硝基苯酚吸附性能的研究

医药化工专业毕业论文 羟基磷灰石的制备及对4-硝基苯酚吸附性能的研究

医药化工专业毕业论文 羟基磷灰石的制备及对4-硝基苯酚吸附性能的研究
医药化工专业毕业论文 羟基磷灰石的制备及对4-硝基苯酚吸附性能的研究

摘要:通过溶胶-凝胶法合成羟基磷灰石(简称HAP)样品。采用红外光谱,氮吸附等方法对产物的结构进行表征,并对合成的HAP吸附4-硝基苯酚的各种影响因素进行了系统的研究。实验表明,HAP对4-硝基苯酚的吸附基本符合Langmuir、Freundlich等温吸附模型,吸附过程为自发的放热过程。

关键词:羟基磷灰石;溶胶-凝胶法;合成;4-硝基苯酚;吸附

Abstract: The Hydroxylapatite particles are prepared by sol-gel methods and characterized by IR spectroscopy and N2 absorption. The adsorption behavior of p-nitrophenol on HAP is investigated. The results show that the adsorption of p-nitrophenol accorded with Langmiur and Freundlich equation and proved to be a spontaneous, exothermal process. Keywords:Hydroxylapatite; Sol–Gel method; Synthesis; 4-Nitrophenol; Adsorption

目录

1 前言 (1)

2 实验部分 (2)

2.1 实验仪器及试剂 (2)

2.2 羟基磷灰石的合成 (2)

2.3 4-硝基苯酚的吸附实验 (3)

2.3.1 4-硝基苯酚浓度的测定 (3)

2.3.2 4-硝基苯酚的吸附实验 (3)

3 结果与讨论 (3)

3.1 羟基磷灰石的合成与表征 (3)

3.1.1 羟基磷灰石的合成 (3)

3.1.2 HAP红外光谱的表征 (3)

3.1.3 HAP的氮吸附作用试验 (4)

3.2 4-硝基苯酚标准曲线的制作 (4)

3.3 HAP对4-硝基苯酚吸附作用的因素影响 (4)

3.3.1 pH值对吸附的影响 (4)

3.3.2 振荡时间对吸附的影响 (5)

3.3.3 温度对吸附的影响 (6)

3.3.4 初始浓度对吸附的影响 (7)

3.4 吸附等温线 (8)

3.4.1 Langmuir方程线性拟合 (8)

3.4.2 Freundlich方程线性拟合 (8)

3.5 吸附热力学 (9)

4 结论 (10)

参考文献 (10)

谢辞 (11)

羟基磷灰石的制备及对4-硝基苯酚吸附性能的研究

医药化工学院化学工程与工艺专业学生:指导教师:

1 前言

20世纪,生物材料学及领域取得了飞速发展,无机生物医用材料的研究及其应用十分活跃,同时随着生产力的发展,环境功能材料的研究、开发与生产,更多的是追求良好的使用性能和可循环利用。在人类生存环境日趋恶化的当今,新型环境功能材料的合理开发和有效利用显为突出。其中备受关注的是羟基磷灰石(hydroxyapatite,简称HAP)活性陶瓷材料的研究和临床应用[1]。羟基磷灰石属表面活性材料,它与生物体硬组织有相似的化学成分和结构,被广泛地用作生物材料[2]。HAP具有良好的生物活性和相容性,植入人体后对组织无刺激和排斥作用,能与骨形成很强的化学结合,用作骨缺损的充填材料,为新骨的形成提供支架,发挥骨传导作用,是理想的硬组织替代材料。在人类生存环境日趋恶化的当今,新型环境功能材料的合理开发和有效利用显为突出。由于HAP其特殊的晶体化学特征,具有良好的离子交换性能,能吸附并回收利用地下水中的F-、工业废水中大多重金属和有机高分子污染物,特别是对多种金属离子具有广泛的容纳性和良好吸附固定作用,与环境具有良好协调性,同时也不易造成二次污染,从而成为一种新型环境功能材料-吸附材料[3],受到人们强烈关注。HAP使用的原料来源丰富、制备工艺多而且简易。其制备方法大致可分为湿法和干法。湿法包括沉淀法、水热合成法、溶胶一凝胶法、超声波合成法及乳液剂法等[4]。干法为固态反应法等,但这些方法各有优点和不足之处。

4-硝基苯酚是一种重要的精细化工中间体,用作农药、医药和染料的生产原料,生产中排放大量的含4-硝基苯酚废水[5]。4-硝基苯酚是一种高毒性、很难被生物降解的有机物,不仅有碍于水生物的生长和繁殖,而且也有害于人体健康,它是美国环保局的优先控制污染物, 也是我国水中优先控制污染物黑名单上的有毒污染物,从废水中去除4-硝基苯酚主要方法有萃取法、吸附法以及光催化降解法[6]。吸附法与萃取法和光催化氧化法相比,由于不引入新的污染物和不需要光照射,能耗较低,且能从废水中富集分离有机污染物,实现废物资源化,因而受到广泛的重视[7]。羟基磷灰石作为新型高效吸附剂,与目前常用的吸附剂相比,原料来源丰富、制备工艺多而且简易,吸附性能较好等优点,而在水和废水处理中得到较广泛的应用。

近年来,国内外不少学者对HAP的新型合成、改性以及在污染治理中的应用,进行了积极的探

索。如胥焕岩等对羟基磷灰石(HAP)固定水溶性Cd2+的影响因素进行了较为系统的实验研究,得出去除率与Cd2+初始浓度呈负相关,在Cd2+初始浓度小于10 mg/L时,与作用时间、pH值、HAP用量呈正相关,温度对去除率的影响较小,通过正交实验确定了最佳吸附条件:HAP用量为5 g/L,pH值为6,作用时间5 min[8]。Miyake等研究了羟基磷灰石对水溶液中锌离子的吸附动力学。研究结果表明羟基磷灰石对水溶液中锌离子的吸附符合Langmiur等温吸附:ρR/q=0.15297ρR+0.12247;该吸附反应符合二级反应,动力学方程:1/ρR=0.01084t+0.49689;反应速率k和温度T之间的关系符合阿仑尼乌斯(Arrhenius)公式:lnk1=-0.89525×1/T+0.15541,吸附的活化能为Ea=7.444 J/mol[9]。胡恋等合成了羟基磷灰石生物活性材料并对其吸附重金属离子进行了理论研究:以鸡蛋壳为原料,利用水热法合成HAP,所合成HAP的Ca/P比为1.74,以制备的HAP吸附去除模拟废水中的Pb2+、Cd2+的研究表明HAP对Pb2+、Cd2+去除率接近100%,HAP对Pb2+、Cd2+的最优吸附条件为:pH<3.5、搅拌时间为1 h、吸附温度为25 ℃,在此条件下,HAP对1000 mg/L的含铅模拟废水Pb2+的吸附容量200 mg/g。HAP用量5 g/L,pH值为6,作用时间5 min,在Cd2+初始浓度小于10 mg/L时,处理后的含镉废水可达到排放标准[10]。目前把羟基磷灰石及其复合材料作为吸附剂应用于有机污染物的去除及测定的报道较少。本文拟利用溶胶-凝胶法,合成羟基磷灰石并对4-硝基苯酚的吸附行为进行研究以期进一步拓展其在环境治理中的作用[11]。

2 实验部分

2.1 实验仪器及试剂

仪器:85-2型恒温磁力搅拌器(巩义市英峪予华仪器厂),DEL-TA320pH计(METTLER TOLED Group),Gminiv表面分析仪(美国麦克公司),FA2004A电子天平(上海精天电子有限公司),D2F-6021型恒温干燥箱(宁波南仪器长),调速多用振荡器(江苏望华科技仪器厂),岛津FTIR-8400型红外光度计(日本岛津),岛津UV-2401 PC型紫外分光光度计(日本岛津),800型离心沉淀器。

药品和试剂:H3PO4,Ca(OH)2,HCl,NaOH(均为分析纯);水为二次蒸馏水。

2.2羟基磷灰石的合成

参照文献[12]的合成方法,实验装置如图1所示。在40 ℃水浴条件下,将一定量的Ca(OH)2置于水溶液中,搅拌,形成乳浊液,再将H3PO4加入到搅拌中的乳浊液里,同时,通过调整H3PO4加入速度来控制整个溶液体系的pH值大于7,即保持碱性环境。反应后的体系形成溶胶,陈化12 h,得到溶胶,抽滤,并放于恒温干燥箱110 ℃条件下干燥24 h后,再放在马弗炉中900℃下焙烧2 h,研磨,即得纯的羟基磷灰石粉末,并称重。

图1 溶胶—凝胶法合成羟基磷灰石的实验装置示意图

Fig.1 Experimental Device of Synthesis of HAP by Sol – Gel Methods

1.恒温浴槽;

2.搅拌器控制装置;

3.半圆底铁架台;

4.搅拌器;

5.精密酸度计;

6.平底烧杯;

7.反应溶液

2.3 4-硝基苯酚的吸附实验

2.3.1 4-硝基苯酚浓度的测定[13]

利用分光光度法,以蒸馏水为参比溶液,在417.5 nm波长下,用1 cm比色皿测量4-硝基苯酚的吸光度,利用外标法计算其浓度。

2.3.2 4-硝基苯酚的吸附实验

准确称取0.5 g羟基磷灰石,置入一系列100 mL锥形瓶中,用移液管移取不同体积的4-硝基苯酚标准液,加入蒸馏水配置所需浓度的溶液,用0.01 mol/L HCL或NaOH溶液调节pH值,在恒温振荡器中振荡至平衡,离心过滤,取适当的滤液在417.5 nm处用紫外分光光度计测定其吸光度,根据以下公式计算吸附量:G=V(C0-C e)/m

式中,G为吸附量(mg/g),V为溶液体积(L),C0和C e分别为原溶液和平衡时溶液的浓度(mg/L),m为羟基磷灰石的用量(g)。

3 结果与讨论

3.1 羟基磷灰石的合成与表征

3.1.1 羟基磷灰石的合成

在40℃水浴条件下,将7.4 g Ca(OH)2置于水溶液中,再加入1.48 mol/L 40.5 mL的H3PO4到乳浊液中里进行反应。所得产物干燥研磨后为白色粉末状颗粒,称重11.84 g,产率为70.81%。

3.1.2 HAP红外光谱的表征

所得产物经红外光谱分析见图2.

图2 溶胶-凝胶法合成HAP的红外光谱图

Fig.2 IR Spectrum of HAp Synthesized by Sol-Gel Method

由图2可以看出磷酸根的主要吸收带位于572,602,962,987,1043 cm-1,在632,3572 cm-1 处还有结构羟基引起的微弱吸收,2341和2360 cm-1两个吸收峰,它是反应过程中碳酸根进入羟基磷灰石晶体结构的原因,与羟基磷灰石的标准R谱图相吻合,说明所得产物为目标产物。

3.1.3 HAP的氮吸附作用试验

为了进一步研究产品的吸附性能,对合成产物进行了氮吸附作用实验,对比表面积进行测定,其测定结果为5.03 m2/g,并与传统水热法[14]、沉淀法[15]合成的羟基磷灰石进行了比较,结果如表1:

表1 羟基磷灰石的比表面积比较

Table 1 Comparision of Specific Surface Area of Different HAP

合成方法水热法沉淀法本法溶胶-凝胶法

比表面积 3.94 4.87 5.03

从表中可看出用溶胶-凝胶法合成的羟基磷灰石有较大比表面积,吸附性能较好。

3.2 4-硝基苯酚标准曲线的制作

用移液管从100 mg/L的标准溶液中分别移取2,4,6,8,10 mL于50 mL容量瓶中,用蒸馏水定容,再用1 cm比色皿测定其吸光度,并作标准曲线。

其线性回归方程为y=0.0726x-0.0026,相关系数为0.9996(x为吸附后溶液浓度,y为吸光度)。

3.3 HAP对4-硝基苯酚吸附作用的因素影响

3.3.1 pH值对吸附的影响

在室温条件下,当4-硝基苯酚的初始浓度为30 mg/L,HAP的用量为2 g/L,振荡时间为30 min,

按实验方法2.3.2考察不同pH值对吸附作用的影响,其结果见表2,作pH值与吸附量G、吸附率R 的关系图见图3,图4

羟基磷灰石的制备及表征

羟基磷灰石的制备及表征 一、实验目的 1.掌握纳米羟基磷灰石的制备及原理 2.了解羟基磷灰石的表征方法及生物相容性 二实验原理 羟基磷灰石(hydrrosyapatite,HAP)分子式为Ca10(PO4)6(OH)2是自然骨无机质的主要成分,具有良好的生物相容性和生物活性,可以引导骨的生长,并与骨组织形成牢固的骨性结合。HAP是生物活性陶瓷的代表性材料,生物活性材料是指能够在材料和组织界面上诱导生物或化学反应,使材料与组织之间形成较强的化学键,达到组织修复的目的。HAP在组成上与人体骨的相似性,使HAP与人体硬组织以及皮肤、肌肉组织等都有良好的生物相容性,植入体内不仅安全、无毒,还能引导骨生长,即新骨可以从HAP植入体与原骨结合处沿着植入的体表面或内部贯通性空隙攀附生长,材料植入体内后能与骨组织形成良好的化学键结合。HAP主要的生物学应用作骨组织代替材料,磷酸钙类生物陶瓷材料在临床应用中遇到的最大困难之一是材料强度差,尤其是韧性低,且机械可加工性差,导致其在临床应用中受到了极大的限制。为了改善HAP陶瓷的脆性和强度问题,一般会在其中添加ZrO2和碳纤维或是Al2O3和玻璃等物质进行增韧。纳米级羟基磷灰石的制备方法很多,主要分为固相法和液相法两大类。固相法合成在一定条件下(高温、研磨)让磷酸盐与钙盐充分混合发生固相反应,合成HAP粉末。液相法合成是在水液中,一磷酸盐和钙盐为原料,在一定条件下发生化学反应,生成溶解度较小的HAP晶粒,包括化学沉淀法。水热合成法、溶胶-凝胶法、自然烧法、微乳液法、微波法等。 化学沉淀法因具有实验条件要求不高、反应容易控制,适合制备纳米材料等优点从而得到广泛应用。沉淀法通常是在溶液状态下将不同化学成分的物质混合,在混合溶液中加入适量的沉淀剂得到纳米材料的前驱沉淀物,再将此沉淀物结晶进行干燥或煅烧制得相应的纳米材料。金属离子在沉淀过程是不平衡的,需要控制溶液中的沉淀剂的浓度,使沉淀过程缓慢发生,才会使溶液中的沉淀处于平衡状态,使沉淀能均匀的出现在整个溶液中。此法制备纳米HAP大多采用无机钙盐和磷酸盐反应得到。常采用的钙盐有:CaCl2、Ca(OH)2、Ca(NO)2等,常采用的磷酸盐有:K2HPO4、Na3PO4、(NH4)2HPO4、和H3PO4,发生酸碱中和反应反应生成HAP纳米颗粒。沉淀法的影响因素主要有HP值、合成温度、反应原料纯度、反应原料浓度、反应物的混合步骤、沉淀剂的选择和添加速率等。采用化学沉淀法制备HAP纳米颗粒,需要的设备简单,相应的生产的经济成本也较低,很容易实现工业上大批量的生产。但化学沉淀法制备HAP也存在问题,制备所得的纳米HAP颗粒粒径均匀性差,并且团聚现象严重。化学沉淀法制备HAP的主要原理是在含有可溶性钙盐和磷酸盐的水溶液中,加入适量的沉淀剂,在特定条件,使溶液中两种溶剂发生化学反应,形成不溶性的水合氧化物从溶液中析出,再进行加入脱水对得到的溶液进行离心干燥,进而得到HAP纳米粉体。反应方程式如下: 10Ca(OH)2+6H3PO4→Ca10(PO4)6(OH)2+18H2O 三实验设备及材料

羟基磷灰石的制备及其表征实验方案

实验方案 课题六 纳米羟基磷灰石的制备与表征 小组成员 段东斑、陆文心、耿明宇 1.背意义景 羟基磷灰石(Hydroxyapatite,简称HA,化学分子式:(Ca10 (PO4)6(OH)2)是人体和动物骨骼的主要无机成份。在人体骨中,HA 大约占60%,它是一种长度为20~40nm,厚1.5~3.0nm 的针状结晶,其周围规则地排列着骨胶原纤维[36]。齿骨的结构也类似于自然骨,但齿骨中HA 的含量高达97%。医学领域长期以来广泛使用的金属和有机高分子等生物医学材料,其成分和自然骨完全不同,用来作为齿骨的代材料(人工骨、人工齿)填补骨缺损材料,其生物相容性和人体适应性尚不令人满意。而羟基磷灰石具有无毒、无刺激性、无致敏性、无致突变性和致癌性,是一种生物相容性材料,可与骨发生化学作用,有很好的骨传导性。因此,近二十年来,研究接近或类似于自然骨成份的无机生物医学材料极其活跃,其中特值得重视的是与骨组织生物相容性最好的HA 活性材料的研究、临床应用。近年来,随着人们对纳米领域的认识与关注,医学界也相继开始了对纳米HA 粒子(或称超细HA 粉)的研究,HA 纳米粒子与普通的HA 相比具有不同的理化性能:如溶解度较高、表面能较大、生物活性更好、具有抑癌作用等,可以作为药物载体用于疾病的治疗,是一种生物相容性良好的治疗材料。 目前,人们已经开发出多种方法来制备纳米HA,如水解法、水热反应法、溶胶一凝胶法及最近发展的微乳液法等,其中化学沉淀法是各种水溶性的化合物经混合、反应生成不溶性的沉淀,然后将沉淀物过滤、洗涤、煅烧处理,得到符合要求的粉体。化学沉淀法因工艺简单、成本低、颗粒小等优点被广泛应用。但是目前对这种方法的研究还处于初级阶段,制备出的纳米粒子粒径不均一,分散性差且有易团聚的现象。为此,我们希望对化学沉淀法制备HA纳米粒子的条件的进行深入研究,分析各种因素对纳米HA晶型与粒径的影响,为HA的工业化生产提供依据。 2.1实验基本原理 目前报道,常用的制备羟基磷灰石粉体的钙的反应物有Ca(NO3)2、Ca(OH)2、CaCl2、CaO、Ca(OC2H5)2等,常用的磷的反应物有(NH4)2HPO4、H3PO4、K2HPO4、Na2HP04和((CH3O)3PO)等。 以硝酸钙和磷酸氢二氨为例,反应方程式为: Ca(N03)2·4H20+6(NH4)2HP04+8NH3·H20=Ca10 (P04)6(OH)2+20NH4N03+6H20 以氢氧化钙和磷酸盐为例,反应方程式为: 10Ca(OH)2+6H3P04= Ca10(PO4)6(OH)2+18H20 不同反应物合成HA的方法有一定差异,但总体而言,化学沉淀法的实质是羟基磷灰石的溶解平衡的逆反应,即 10Ca2++6PO43-+2OH- = Ca10(PO4)6(OH)2 Ksp=2.34*10-59 2.2实验条件的选择与调控。 影响化学沉淀法的工艺参数主要有:Ca/P 摩尔比、pH 值、磷酸的加入速度、反应温

羟基磷灰石研究进展

2010-2011 第2学期《生物医用材料》期中考试 姓名: 学号: 学院: 专业: 班级: 任课老师:

羟基磷灰石研究进展 摘要:由于羟基磷灰石( HA) 不但与人体骨骼晶体成分和结构基本一致,而且其生物 相容性、界面生物活性均优于医用钛、硅橡胶及植骨用碳材料等植入医用材料,另外有极好骨传导性和与骨结合的能力, 无毒副作用, 无致癌作用,所以被广泛用作硬组织修复材料和骨填充材料的生理支架以及疾病、意外事故中的骨修复材料。同时,羟基磷灰石具有良好的生物活性,具有特殊的晶体化学特点,是较好的生物材料,被广泛应用于骨组织的修复与替代技术.目前,羟基磷灰石涂层的制备方法有等离子喷涂法、激光熔覆法、电结晶液相沉积法、溶胶-凝胶法等。对于制备要求较高、具有表面活性的吸附材料羟基磷灰石而言,溶胶- 凝胶法是较为合适的方法,本文羟基磷灰石涂层进行了研究。主要从羟基磷灰石的合成制备,复合材料涂层种类及HA涂层影响因素,应用等方面对羟基磷灰石进行介绍,并对其进行研究展望。 关键词:羟基磷灰石制备复合材料涂层研究进展 前言 羟基磷灰石是一种磷酸钙生物陶瓷, 与人体自然骨和牙齿等硬组织中的无机质在 化学成分和晶体结构上具有相似性,是一类重要的骨修复材料,分子式为Ca10 ( PO4) 6 ( OH ) 2 , 简写为HA 或HAP,Ca/ P 物质的量比理论值为1. 67, 属磷酸钙陶瓷中的一种生物活性材料。从分子结构( 如图1) 可以看出, 它易与周围液体发生离子交换。HA 属六方晶系, 空间群为P63/m。其结构为六角柱体, 与c轴垂直的面是一个六边形, a、b 轴的夹角为120 °, 晶胞常数a= b= 9. 324 A , c= 6. 881A 。单位晶胞含有10 个[ Ca]2+、6个[ PO4]3-和2个 [ OH]-, 这样的结构和组成使 得H A 具有较好的稳定性。 磷灰石是自然界广泛分布的 磷酸钙盐矿物,根据其结构通 道中存在的阴离子的种类, 可分为氟-、氯-、羟磷灰石等 不同亚种矿物。其中,羟基磷 灰石(hydroxyapatite,缩写为 HA或HAp)的研究和应用最 广泛。羟基磷灰石是人体和动 物的骨骼和牙齿的主要无机 成分,具有良好的生物相容性和生物活性,HA材料对动物体人体无毒、无害、无致 癌作用,可增强骨愈合作用,能与自然骨产生化学结合,HA植入人体后对组织无刺 激和排斥作用,能与骨形成很强的化学结合,用作骨缺损的充填材料,为新骨的形成提供

纳米羟基磷灰石的结构设计

纳米羟基磷灰石的结构设计 摘要 羟基磷灰石与人体硬组织的化学成分和晶体结构极为相似,具有独特的生物活性和生物相容性,是目前生物材料研究的热点。当尺寸在1~100nm时,羟基磷灰石(HAP)纳米粒子有独特的生物学特性。此外羟基磷灰石粉体在吸附、催化、荧光、半导体、抗癌等领域也有广泛应用。 关键词:纳米材料羟基磷灰石结构设计抗癌 NANO HYDROXY APATITE STRUCTURE DESIGN ABSTRACT Hydroxyapatite is the main inorganic components of bone tissues,has good biocompatibility and biological activity,which is the research hotspot of biologicalmaterials.HAP particles have unique biological properties when their size maintained in nano scale.In addition,HAP also has wide application in adsorption,catalysis,fluorescence,semiconductor,cancer areas. KEYWORDS:nanometer materials hydroxyapatite physical design anticancer

1.1 纳米羟基磷灰石的特点 nHA是一种粒径较一般细胞粒径小,粒径为1~100 nm的超微粒子。当物质小到纳米级后,会具有表面效应、量子尺寸效应、小尺寸效应和宏观量子隧道效应等特点。这些特性导致其特有的热、磁、光敏感特性和表面稳定性,容易通过外场(电、磁、光)实现对其性能的控制,有利于实现靶向输送、控制释放、保护和稳定被输送物质。同时还具有不易被机体网状内皮细胞清除、有效避免脾滤过效应、通过增加渗透和滞留效应增强靶组织累积等优势。 人体骨中无机结构的基本单元式针状和柱状的磷灰石晶体,呈高度有序的排列,其结晶学C轴平行于胶原纤维方向定向生长,这种结构是一种理想的等强度优化结构,具有优良的生物力学性能。人工合成的羟基磷灰石是一种优良的硬组织替代材料,具有良好的生物亲和性,生物相容性,生物活性和骨传导作用。依据“纳米效应”理论,纳米级的羟基磷灰石其粒子活性更高,更有利于骨组织的整合,骨传导性能,溶解性能和力学性能提高。 1.2 纳米磷灰石的基本特性 1.2.1 HAP粒子的晶体结构 羟基磷灰石的理论组成为Ca10(P04)6(OH)2,为六方晶系,属于L6PC对称型和P63/m空间群,其结构为六角柱体,晶胞参数为a0=b0=0.943~0.938nm,C0=0.688~0.686nm,z=2, α=β=900,γ=1200。晶胞含有l0个Ca2+、6个PO43-,和2个OH-,结构中Ca2+离子分别位于配位数为9的Ca(Ⅰ)位置和配位数为7的Ca(Ⅱ)位置,结构比较复杂,其在(0001)面上的投影如图1.1。

羟基磷灰石微纳结构对蛋白吸附的影响

第30卷 第5期 无 机 材 料 学 报 Vol. 30 No. 5 2015年5月 Journal of Inorganic Materials May, 2015 收稿日期: 2014-10-10; 收到修改稿日期: 2014-11-20 基金项目: 国家重点基础研究发展计划(2012CB933600); 国家自然科学基金(51172188); 四川省科技支撑计划(2010FZ0048); 四川省高校科研创新团队建设计划项目(14TD0050) National Basic Research Program of China (2012CB933600); National Natural Science Foundation of China (51172188); Science and Technology Pillar Project of Sichuan (2010FZ0048); Research and Innovation Team Project of Sichuan for Central Universities(14TD0050) 作者简介: 付亚康(1988–), 男, 硕士研究生, 助教. E-mail: fykmail@https://www.wendangku.net/doc/6f9451824.html,; 810667526@https://www.wendangku.net/doc/6f9451824.html, 通讯作者: 翁 杰, 教授. E-mail: jweng@https://www.wendangku.net/doc/6f9451824.html, 文章编号: 1000-324X(2015)05-0523-06 DOI: 10.15541/jim20140510 羟基磷灰石微纳结构对蛋白吸附的影响 付亚康1, 2, 周 雪1, 肖东琴1, 匙 峰1, 卢晓英1, 翁 杰1 (1. 西南交通大学 材料先进技术教育部重点实验室, 成都 610031; 2. 雅安职业技术学院, 雅安 625000) 摘 要: 本研究采用水热反应法, 在不同浓度环己烷六羧酸(H 6E)模板调控作用下, 合成了具有不同表面微纳结构的羟基磷灰石(HAP)微粒, 并采用XRD 、BET 、FTIR 和SEM 对其进行表征。对HAP 微粒进行了牛血清白蛋白(BSA)、纤维蛋白原(FN)和溶菌酶(LYS)的吸附及释放实验。结果表明: H 6E 能够在HAP 微粒表面构建微纳结构, 不同微纳结构对不同蛋白质具有选择性吸附作用; 在H 6E 浓度为50 mmol/L 的合成条件下制备的中空结构HAP 微粒(HAP50)其载蛋白后体外释放具有明显的蛋白缓释性能。 关 键 词: 羟基磷灰石; 环己烷六羧酸; 微纳结构; 蛋白吸附 中图分类号: R318; TQ174 文献标识码: A Influence of Micro-nano Structure of Haydroxyapatite Particles on Protein Adsorption FU Ya-Kang 1, 2, ZHOU Xue 1, XIAO Dong-Qin 1, SHI Feng 1, LU Xiao-Ying 1, WENG Jie 1 (1. Key Laboratory of Advanced Technologies of Materials, Ministry of Education, School of Materials Science and Engineer- ing, Southwest Jiaotong University, Chengdu 610031, China; 2. Ya’an Vocational College, Ya’an 625000, China) Abstract: Hydroxyapatite (HAP) particles were hydrothermally synthesized with the surface morphologies adjusted by cyclohexane-1, 2, 3, 4, 5, 6-hexacarboxylic acid (H 6E) as the template. HAP particles were characterized by XRD, BET, SEM and FTIR. The protein adsorption-desorption behaviors of positively charged lysozyme (LYS), fibrinogen (FN) and negatively charged bovine serum albumin (BSA) on these HAP particles were examined. The results indicate that using H 6E as a template to fabricate micro-nano structures on HAP particles through hydrothermal reaction is simple and controllable. HAP particles with micro-nano structures show selective protein adsorption-desorption prop-erties for different proteins. The protein-loaded shell-like HAP particle (HAP50-protein) shows an excellent protein release behavior in vitro. Key words: hydroxyapatite; H 6E; micro-nano structure; protein adsorption 生物材料植入体内后很快发生来自血液及其它 组织液中蛋白质在植入体表面的吸附, 这层吸附的 蛋白质将直接影响细胞粘附、增殖和分化, 并最终 决定植入的成败[1]。因此, 考察生物材料蛋白吸附行 为已经成为评价其生物相容性和生物活性的一种重要方式[2]。 羟基磷灰石(hydroxyapatite, HAP)具有与人体硬组织中相近的无机成分, 其良好的生物相容性和

多孔羟基磷灰石生物陶瓷的合成和特性研究进展

多孔羟基磷灰石生物陶瓷的合成和特性研究进展3 牛金龙 综述 张镇西 蒋大宗 审校 (西安交通大学生物医学工程研究所,西安 710049) 摘要 人体骨组织的多孔结构,有利于骨组织生长代谢所需物质的交流,并能很好地适应外部应力的变化。合成模拟骨组织多孔结构的生物活性陶瓷材料,用于临床人体骨组织缺失的修复,是组织工程所需要的。将化学沉淀法合成的羟基磷灰石原始粉末与过氧化氢、聚乙烯醇、甲基纤维素等成孔物质混合,经低温发泡,中温脱碳,高温烧结,可以获得孔径理想,互通性能良好的多孔羟基磷灰石陶瓷。这种陶瓷,在一定程度上具有骨诱导性能,但更重要的是它能够很好的吸附人体骨形成蛋白等骨生长因子,使其具有良好的骨再生能力,从而获得了良好的临床应用性能。本文从临床应用性能的角度,评述了近几年多孔羟基磷灰石生物活性陶瓷的研究进展。 关键词 羟基磷灰石 多孔陶瓷 制备 特性 生物陶瓷 Syn thesis and Character istics of Porous Hydroxyapa tite B ioceram ics N iu J i n long Zhang Zhenx i J i ang Dazong (Institu te of B io m ed ica l E ng ineering,X ian J iaotong U n iversity,X i’an 710049) Abstract T he m acropo rous structure of hum an bone allow s the ingrow th of the soft tissues and o rganic cells into the bone m atrix,p rofits the developm ent and m etabo lis m of bone tissue,and adap ts the bone to the change of load.T here is great requirem ent fo r artificial bi om i m ic po rous bi oactive ceram ics w ith the si m ilar structure of bone tissue that can be used clinically fo r repairing lo st bone.F ine hydroxyapatite(HA p)pow der p roduced by w et chem ical reacti on w as m ixed w ith hydrogen peroxide(H2O2),po lyvinyl alcoho l,m ethyl cellulo se o r o ther po res2 m ak ing m aterials to fo r m green cake.A fter drying at low temperature(below100℃)and decarbonizing at about 300℃~400℃,the spongy ceram ic block w as sintered at h igh temperature,thus,m acropo rous HA p bi oceram ic w ith interconnected po res and reasonable po ro sity and po re2diam eter w as m anufactured.T h is k ind of po rous HA p bi oceram ics w ere intrinsically o steo inductive to a certain degree,but its outstanding p roperty w as that they can ab2 so rb hum an bone mo rphogenetic p ro teins and o ther bone grow th facto rs to fo r m compo sites,so that the m acrop2 o rous HA p bi oactive ceram ic has app rop riate feasibility fo r clinical app licati on.F rom the po int of bi om edical app li2 cati on,the recent developm ents in synthesis and characteristics investigati on of m acropo rous HA p are review ed in th is paper. Key words H ydroxyapatite Po rous ceram ics Synthesis Characteristics B i oceram ics 生物骨组织的多孔结构,使其能够适应一定范围的应力变化,同时多孔组织能够使血液流通,保证了骨组织的正常生长代谢。人体骨组织的缺损,特别是骨髓炎、骨肿瘤、骨囊肿等手术切除,以及创伤引起的较大面积的骨缺损,严重影响了人体骨组织的生理功能。骨缺损的手术治疗,用适当的骨填充材料修复缺陷,是快速恢复病态的或创伤性的骨缺损组织生理功能的有效方法。自体骨组织是骨填充的理想材料,但来源很少还需要二次手术;异体骨组织可能存在排异反应和疾病传播等问题。随着外科技术 3陕西省自然科学基础研究计划(2000C17)、西安交通大学博士学位论文基金资助项目(D FXJU200029)和医疗水平的不断提高,对于合成的骨替代材料的需求不断增加。合成和应用模拟人体骨组织多孔特性的生物活性和生物相容性的生物陶瓷材料,引起了科学家和临床医生的关注。多孔羟基磷灰石陶瓷,多孔磷酸钙陶瓷,具有高度生物活性和生物相容性,与骨组织的键合能力很强,是良好的骨组织缺损填充材料。我们从羟基磷灰石粉体的合成,多孔成型,以及合成的多孔羟基磷灰石陶瓷的性能等方面,评述近年多孔羟基磷灰石陶瓷的研究进展。 1 羟基磷灰石粉体的化学合成 用于烧结法制备多孔羟基磷灰石陶瓷的原始粉 生物医学工程学杂志 J B i om ed Eng 2002;19(2)∶302~305

羟基磷灰石合成方案

羟基磷灰石合成方案 羟基磷灰石基本信息:羟基磷灰石(Ca 10(PO 4 ) 6 (OH) 2 ,M=1004),熔点:1650℃, 比重:3.16g/cm3,溶解度:0.4ppm,Ca/P:1.67 合成方法:化学共沉淀法 原料:四水合硝酸钙(Ca(NO 3) 2 ·4H 2 O,M=236.15)、磷酸氢二铵((NH 4 ) 2 HPO 4 , M=132.06)和氨水(NH 3·H 2 O,M=35.05)。 反应方程式: 需要设备:搅拌器、恒温水浴锅、酸度计、离心机、pH试纸、烧杯(2L、1L、500ml),量筒(500ml或1L),1L容量瓶(2个),分液漏斗(500ml,2个),玻璃棒,保鲜膜。 实验步骤 1、配制浓度为0.5mol/L硝酸钙和磷酸氢二氨溶液; 2、将恒温水浴锅恒温至50℃,用量筒量取1000ml浓度为0.5mol/L硝酸钙溶液倒入大烧杯中,并将烧杯置于恒温水浴锅中,再用分液漏斗滴加氨水将溶液的pH值调节至10~11; 3、在搅拌器的不停搅拌下,用量筒量取600ml、0.5mol/L磷酸氢二氨溶液,将其装入分液漏斗,然后缓慢加入烧杯中。在滴加的过程中,使用pH酸度仪实时监测并通过滴加氨水来控制其pH值保持在10~11。当磷酸氢二铵溶液滴加完后,用适量的水冲洗漏斗。继续搅拌30分钟,用保鲜膜封闭烧杯口; 4、静置陈化24小时; 5、将反应产物用离心机离心分离。除去上清液,加入蒸馏水,用玻璃棒搅拌均匀后,继续离心3~5分钟:重复步骤多次,直至测得的pH值在7~8之间(一般需要离心4—5次);向沉淀物中加入酒精,再离心清洗2次,最后得到纯净的HA乳状胶体; 5、将HA乳状胶体倒入培养皿中,置于恒温为70℃干燥箱中干燥24小时; 6、将干燥后的HA粉体置于马弗炉中,700℃烧结2小时,得到羟基磷灰石粉末。

羟基磷灰石(HA)陶瓷生产实验..

羟基磷灰石(HA)陶瓷生产实验 1.实验目的 1.1初步训练方案设计、实验、生产、检验等的能力; 1.2培养查阅文献、市场调研、搜集和整理资料、设计、项目管理、科学实验、生产制造、分析问题和解决问题、发表见解的初步能力; 1.3掌握羟基磷灰石的基本性质、功能和用途,以及几种制备羟基磷灰石的原理和方法; 1.4实践利用湿化学法中的沉淀法制备羟基磷灰石粉体; 1.5熟悉和掌握相关仪器设备的使用。 2.实验原理 羟基磷灰石[Hydroxyapatite,HA;分子式:Ca10(PO4)6(OH)2]的化学组成和结晶结构类似于人骨骼系统中的磷灰石,优良的生物活性和生物相容性是其最大的优点,人体骨细胞可以在羟基磷灰石上直接形成化学结合,在普通合成的生物材料中添加少量纳米羟基磷灰石可显著改善材料对成骨细胞的粘附和增殖能力,促进新骨形成,因此适宜于做骨替代物。羟基磷灰石的钙磷摩尔比为1.67,与天然骨相近。 目前生产羟基磷灰石的方法主要分为湿法合成和干法合成,其中湿法包括溶胶-凝胶法、沉淀法和水热法三种[3,4,5]。 2.1溶胶-凝胶法 溶胶-凝胶法是近些年来才发展起来的新方法,已经引起了广泛

的关注。找到合适的、能够合成最终的羟基磷灰石的溶胶一凝胶体系是其合成的关键。其原理是:将醇盐溶解在选定的有机溶剂中,在其中加蒸馏水使醇盐发生水解、聚合反应后生成溶胶,再将Ca2+溶胶缓慢滴加到(PO4)3-溶胶中,加水变为凝胶,凝胶经老化、洗涤、真空状态下低温干燥,得到干凝胶,再将干凝胶高温煅烧.就得到羟基磷灰石的纳米粉体。该方法的优点为:合成及烧结温度低、可存分子水平上混合钙磷的前驱体,使溶胶具有高度的化学均匀性。缺点是化学过程比较复杂、醇盐原料价格昂贵、有机溶剂毒性大,对环境易造成污染等。 2. 2沉淀法 沉淀法是制备羟基磷灰石粉体最典型的方法。这种方法通常采用把一定浓度的磷酸氢铵和硝酸钙反应或者磷酸与氢氧化钙在一定的温度下搅拌反应生成羟基磷灰石沉淀,反应过程中使用氨水(NaOH 溶液1mol/L)调节pH值,把沉淀物高温煅烧从而得到羟基磷灰石粉体。其典型工艺:Ca(NO3)2与磷酸盐[(NH4)3PO4、(NH4)2HPO4、NH4H2PO4]溶液进行反应,沉淀经过滤、干燥,制成粉末颗粒。2.3.水热法 水热法其特点是在特制的密闭的反应器(高压釜)内,水溶液为反应介质。在高温高压环境中,不受沸点的限制,可以使介质的温度上升到200-400℃,使原来难溶或不溶的物质溶解并重新结品的方法。这种方法通常采用磷酸氢钙等为原料的水溶液体系。在高压釜中制备HA粉体。其典型的工艺为:以CaCl2[或Ca(NO3)2]与NH4H2PO4

相关文档