文档库 最新最全的文档下载
当前位置:文档库 › 高中数学求数列通项公式及求和的方法总结教案练习答案

高中数学求数列通项公式及求和的方法总结教案练习答案

高中数学求数列通项公式及求和的方法总结教案练习答案
高中数学求数列通项公式及求和的方法总结教案练习答案

高中数学求数列通项公式及求和的方法总结教案练习答案

数列求通项公式的方法

一、叠加法

1.适用于:1()n n a a f n +=+ ----------这是广义的等差数列 累加法是最基本的两个方法之一。

2.若1()n n a a f n +-=(2)n ≥,

21321(1)(2) ()

n n a a f a a f a a f n +-=-=-=L L

两边分别相加得 111

()n

n k a a f k +=-=∑

例1 已知数列{}n a 满足11211n n a a n a +=++=,,求数列{}n a 的通项公式。 解:由121n n a a n +=++得121n n a a n +-=+则

11232211

2

()()()()[2(1)1][2(2)1](221)(211)12[(1)(2)21](1)1

(1)2(1)1

2

(1)(1)1n n n n n a a a a a a a a a a n n n n n n n

n n n n ---=-+-++-+-+=-++-+++?++?++=-+-++++-+-=+-+=-++=L L L 所以数列{}n a 的通项公式为2n a n =。

例2.已知数列}

{n a 中, 0

>n a 且

)(21n

n n a n a S +=

,求数列

}

{n a 的通项公式.

解:由已知

)(21n

n n a n

a S +=

)(211

1---+-=

n n n n n S S n

S S S ,

化简有n S S n n =--2

12,由类型(1)有n S S n ++++=Λ32212,

又11a S =得11=a ,所以

2)

1(2

+=

n n S n ,又0>n a ,2)

1(2+=n n s n ,

2)

1(2)1(2--+=

n n n n a n

练习1,已知数列{}n a 的首项为1,且

*12()n n a a n n N +=+∈写出数列{}n a 的通项公式.

答案:12

+-n n

练习2.已知数列

}

{n a 满足31=a ,

)

2()1(1

1≥-+

=-n n n a a n n ,求此数列的通项公

式.

答案:裂项求和 1

4n a n =-

练习3. 已知数列{}n a 满足211=a ,n

n a a n n ++=+211,求n a 。

解:由条件知:1

11)1(112

1+-=+=+=

-+n n n n n n a a n n 分别令)1(,,3,2,1-??????=n n ,代入上式得)1(-n 个等式累加之,即

)()()()(1342312--+??????+-+-+-n n a a a a a a a a

)111()4131()3121()211(n

n --+??????+-+-+-=

所以n

a a n 1

11-=-

211=a Θ,n

n a n 1231121-=-+=∴

评注:已知a a =1,)(1n f a a n n =-+,其中f(n)可以是关于n 的一次函数、二次

函数、指数函数、分式函数,求通项n a .

①若f(n)是关于n 的一次函数,累加后可转化为等差数列求和; ②若f(n)是关于n 的二次函数,累加后可分组求和;

③若f(n)是关于n 的指数函数,累加后可转化为等比数列求和; ④若f(n)是关于n 的分式函数,累加后可裂项求和。

二、叠乘法

1.适用于: 1()n n a f n a += ----------这是广义的等比数列 累乘法是最基本的二个方法之二。 2.若

1()n n a f n a +=,则31212(1)(2)()n n

a a a

f f f n a a a +===L L ,,, 两边分别相乘得,1

11

1()n

n k a a f k a +==?∏

例3. 已知数列{}n a 满足321=a ,n n a n n

a 1

1+=

+,求n a 。 解:由条件知

1

1+=+n n

a a n n ,分别令)1(,,3,2,1-??????=n n ,代入上式得)1(-n 个等式累乘之,即

1342312-??????????n n a a a a a a a a n n 1433221-??????????=n

a a n 1

1=? 又321=

a Θ,n

a n 32

=∴ 练习1.已知数列{}n a 满足112(1)53n n n a n a a +=+?=,,求数列{}n a 的通项公式。 解:因为112(1)53n n n a n a a +=+?=,,所以0n a ≠,则

1

2(1)5n n n

a n a +=+,故

13211221

12211(1)(2)21(1)

1

2

[2(11)5][2(21)5][2(21)5][2(11)5]32[(1)32]5332

5!

n n n n n n n n n n n n n a a a a a a a a a a n n n n n -------+-+++--=

?????=-+-+??+?+??=-?????=???L L L L 所以数列{}n a 的通项公式为(1)1

2

32

5

!.n n n n a n --=???

练习2.设{}n a 是首项为1的正项数列,且()0112

21=+-+++n n n n a a na a n (n =1,2,

3,…),则它的通项公式是n a =________. 解:已知等式可化为:

[]0

)1()(11=-++++n n n n na a n a a

Θ0>n a (*

N n ∈)∴(n+1)01

=-+n n na a , 即11+=

+n n

a a n

n ∴2≥n 时,n n a a n n 1

1

-=

- ∴

112211a a a

a a a a a n n n n n ????=

---Λ=121121??--?-Λn n n

n =n 1. 评注:本题是关于n a 和1+n a 的二次齐次式,可以通过因式分解(一般情况时用求根公式)得到n a 与1+n a 的更为明显的关系式,从而求出n a .

练习.已知1

,111->-+=+a n na a n n ,求数列{an}的通项公式.

答案:=n a )

1()!1(1+?-a n -1.

评注:本题解题的关键是把原来的递推关系式

,

11-+=+n na a n n 转化为 ),

1(11+=++n n a n a 若令

1

+=n n a b ,则问题进一步转化为

n

n nb b =+1形式,进而应

用累乘法求出数列的通项公式.

三、待定系数法 适用于1()n n a qa f n +=+

基本思路是转化为等差数列或等比数列,而数列的本质是一个函数,其定义域是自然数集的一个函数。 1.形如

(,1≠+=+c d ca a n n ,其中a a =1)型

(1)若c=1时,数列{n a }为等差数列; (2)若d=0时,数列{n a }为等比数列;

(3)若01≠≠且d c 时,数列{n a }为线性递推数列,其通项可通过待定系数法构造辅助数列来求.

待定系数法:设)

(1λλ+=++n n a c a ,

λ

)1(1-+=+c ca a n n ,与题设

,

1d ca a n n +=+比较系数得

d c =-λ)1(,所以

)0(,1≠-=

c c

d λ所以有:

)1(11-+=-+-c d a c c d a n n 因此数列????

??-+1c d a n 构成以11-+c d a 为首项,以c 为公比的等比数列, 所以

11)1(1-?-+=-+

n n c c d a c d a 即:

1)1(11--?-+=-c d c c d a a n n . 规律:将递推关系

d

ca a n n +=+1化为

)1(11-+=-+

+c d

a c c d a n n ,构造成公比为c

的等比数列}1{-+

c d a n 从而求得通项公式)1(1111-++-=-+c d

a c c d a n n

例4.已知数列{}n a 中,111,21(2)n n a a a n -==+≥,求数列{}n a 的通项公式。 解:121(2),n n a a n -=+≥Q

112(1)n n a a -∴+=+

又{}112,1n a a +=∴+Q 是首项为2,公比为2的等比数列

12n n a ∴+=,即21n n a =-

四.逐项相减法(逐差法1):有时我们从递推关系d

ca a n n +=+1中把n 换成n-1

有d ca a n n +=-1,两式相减有

)

(11-+-=-n n n n a a c a a 从而化为公比为c 的等比数

}

{1n n a a -+,进而求得通项公式.

)(121a a c a a n

n n -=-+,再利用类型(1)即可求得通项公式.我们看到此方法比较复杂.

例5已知数列{}n a 中,111,21(2)n n a a a n -==+≥,求数列{}n a 的通项公式。 解:121(2),n n a a n -=+≥Q

121n n a a +∴=+

两式相减得112()(2)n n n n a a a a n +--=-≥,故数列{}1n n a a +-是首项为2,公比为2

的等比数列,再用累加法的……

练习.已知数列}

{n a 中,

,21

21,211+=

=+n n a a a 求通项n a 。

答案:1

)21

(1+=-n n a

2.形如:n n n q a p a +?=+1 (其中q 是常数,且n ≠0,1) ①若p=1时,即:n

n n q a a +=+1,累加即可. ②若1≠p 时,即:n n n q a p a +?=+1,

求通项方法有以下三种方向:i. 两边同除以1

+n p .目的是把所求数列构造成等

差数列

即:

n

n

n n n q p p q a p a )(11

1

?+

=

++,令n

n n p a b =,则n n n q p p b b )(11?=-+,然后类型1,累

加求通项.

ii.两边同除以1+n q . 目的是把所求数列构造成等差数列。

即:

q q a q p q a n n n n 1

1

1

+?=

++,

n n

n q a b =

,则可化为

q b q p b n n 1

1+?=

+.然后转化为类型5来解,

iii.待定系数法:目的是把所求数列构造成等差数列 设

)

(11n n n n p a p q a ?+=?+++λλ.通过比较系数,求出λ,转化为等比数列求通项.

注意:应用待定系数法时,要求p ≠q ,否则待定系数法会失效。 例6已知数列

{}

n a 满足

1112431

n n n a a a -+=+?=,,求数列{}n a

的通项公式。

解法一(待定系数法):设11123(3n n n n a a λλλ-++=+?),比较系数得124,2λλ=-=,

则数列

{}1

43n n

a --?是首项为

11

1435a --?=-,公比为2的等比数列, 所以114352n n n a ---?=-?,即11

4352n n n a --=?-?

解法二(两边同除以1+n q ): 两边同时除以13n +得:

11224

3333n n n n a a ++=?+,下面解法略

解法三(两边同除以1+n p ): 两边同时除以12+n 得:n n n n n a a )23(3422

11?+=++,下面解法略

练习. 已知数列{}n a 中,651=

a ,11)2

1

(31+++=n n n a a ,求n a 。 解:在11)21(31+++=n n n a a 两边乘以12+n 得:1)2(3

2

211+?=?++n n n n a a

令n n n a b ?=2,则1321+=+n n b b ,应用例7解法得:n n b )3

2

(23-=

所以n

n n

n n b a )31(2)21(32

-== 3.形如

b

kn pa a n n ++=+1 (其中k,b 是常数,且0≠k )

方法1:逐项相减法(逐差法)

方法2:待定系数法 通过凑配可转化为 )

)1(()(1y n x a p y xn a n n +-+=++-;

解题基本步骤: 1、确定()f n =kn+b 2、设等比数列)

(y xn a b n n ++=,公比为p

3、列出关系式

)

)1(()(1y n x a p y xn a n n +-+=++-,即

1

-=n n pb b

4、比较系数求x,y

5、解得数列

)

(y xn a n ++的通项公式

6、解得数列{}n a

的通项公式 例7 在数列

}

{n a 中,

,

23,111n a a a n n +==+求通项n a .(逐项相减法)

解:Θ,,

231n a a n n +=+ ① ∴2≥n 时,)1(231-+=-n a a n n ,

两式相减得

2

)(311+-=--+n n n n a a a a .令

n

n n a a b -=+1,则

2

31+=-n n b b

利用类型5的方法知2351+?=-n n b 即 1351

1

-?=--+n n n a a ② 再由累加法可得

213251--?=

-n a n n . 亦可联立 ① ②解出

21

3251--?=

-n a n n .

练习. 在数列{}n a 中,362,23

11-=-=

-n a a a n n ,求通项n a .(待定系数法)

解:原递推式可化为

y

n x a y xn a n n ++-+=++-)1()(21

比较系数可得:x=-6,y=9,上式即为1

2-=n n b b

所以{}n b 是一个等比数列,首项

299611=

+-=n a b ,公比为21.1

)21

(29-=∴n n b

即:

n

n n a )21

(996?=+- 故9

6)21

(9-+?=n a n n .

5.形如21 n n n a pa qa ++=+时将n a 作为()f n 求解

分析:原递推式可化为211()() n n n n a a p a a λλλ++++=++的形式,比较系数可求得λ,数列{}1n n a a λ++为等比数列。 例8 已知数列{}

n a 满足

211256,1,2

n n n a a a a a ++=-=-=,求数列

{}

n a 的通项公式。

解:设

211(5)()

n n n n a a a a λλλ++++=++

比较系数得3λ=-或2λ=-,不妨取2λ=-,(取-3 结果形式可能不同,但本质相同) 则

21123(2)

n n n n a a a a +++-=-,则{}12n n a a +-是首项为4,公比为3的等比数列

11243n n n a a -+∴-=?,所以114352n n n a --=?-?

练习1.数列{}n a 中,若2,821==a a ,且满足0

3412=+-++n n n a a a ,求n a .

答案: n

n a 311-=.

练习2.已知数列:,}{且满足的各项都是正数n a N n a a a a n n n ∈-==+),4(21

,110

, 求数列

}

{n a 的通项公式an.

解:

],4)2([21

)4(2121+--=-=

+n n n n a a a a 所以 21)2()2(2--=-+n n a a

n

n n n n n n n n b b b b b a b 222121

22222112)21()21(21)21(2121,2-+++----==?-=--=-=-=ΛΛ则令又

bn=-1,所以1

212)21(22,)21(---=+=-=n

n n n n b a b 即.

方法2:本题用归纳-猜想-证明,也很简捷,请试一试.解法3:设c n

n

b -=,则

c 2

121-=

n n c ,转化为上面类型(1)来解

五、倒数变换法 适用于分式关系的递推公式,分子只有一项 例9 已知数列{}n a 满足112,12

n

n n a a a a +=

=+,求数列{}n a 的通项公式。 解:求倒数得

11111111111,,22n n n n n n a a a a a a +++??=+∴-=∴-????为等差数列,

首项1

1

1a =,公差为

1

2

,112(1),21n n n a a n ∴=+∴=+

六、对数变换法 适用于r

n n pa a =+1(其中p,r 为常数)型 p>0,0>n a 例10. 设正项数列{}n a 满足11=a ,

2

12-=n n a a (n ≥2).求数列{}n a 的通项公式.

解:两边取对数得:1

22log 21log -+=n n a a ,)1(log 21log 1

22+=+-n n

a a ,设

1log 2+=n a n b ,则

1

2-=n n b b {}n b 是以2为公比的等比数列,

11log 1

21=+=b 11221--=?=n n n b ,1221log -=+n a n

,12log 12-=-n a n ,∴

1

21

2--=n n a

练习 数列

{}n a 中,11=a ,1

2

-=n n a a (n ≥2),求数列

{}n a 的通项公式.

答案:n

n a --=22

22

例11 已知数列{}n a 满足5

123n n n a a +=??,17a =,求数列{}n a 的通项公式。 解:因为5

11237n n n

a a a +=??=,,所以100n n a a +>>,。

两边取常用对数得1lg 5lg lg3lg 2n n a a n +=++

设1lg (1)5(lg )n n a x n y a xn y ++++=++ (同类型四)

比较系数得, lg3lg3lg 2

,4164

x y =

=+ 由1lg3lg3lg 2lg3lg3lg 2

lg 1lg 71041644164a +?++=+?++≠,得

lg3lg3lg 2lg 04164

n a n +++≠,

所以数列lg3lg3lg 2

{lg }4164

n a n +++是以lg3lg3lg 2lg 74164+++为首项,以5为公比的等比数列,则1

lg3lg3lg 2lg3lg3lg 2lg (lg 7)541644164

n n a n -+++=+++,因此

111111111

16

164

4

44

1111

15

1616

444

4

541515116

4

lg 3lg 3lg 2lg 3lg 3lg 2

lg (lg 7)54164464

[lg(7332)]5lg(332)

lg(7332)lg(332)lg(732

)

n n n n n n n n n n a n --------=+

++---=???-??=???-??=??

则11

54151516

4

732

n n n n n a -----=??。

七、换元法 适用于含根式的递推关系 例12 已知数列{}n a

满足111

(14116

n n a a a +=+=,,求数列{}n a 的通项公式。

解:令n b ,则2

1(1)24

n n a b =-

代入11

(1416

n n a a +=

+得 22

1111(1)[14(1)]241624

n n n b b b +-=+-+ 即2214(3)n n

b b +=+

因为0n b =≥,

则123n n b b +=+,即11322

n n b b +=+,

可化为11

3(3)2

n n b b +-=-,

所以{3}n b -

是以13332b -===为首项,以2

1

为公比的等

比数列,因此1211

32()()22

n n n b ---==,则21()32n n b -=+,

21()32n -=+,

2111()()3423

n n n a =++。

八、逐差法2(逐项相减法) 1、递推公式中既有n S ,又有n a

分析:把已知关系通过11,1

,2n n n S n a S S n -=?=?-≥?转化为数列{}n a 或n S 的递推关系,然

后采用相应的方法求解。

例13 已知数列{}n a 的各项均为正数,且前n 项和n S 满足1

(1)(2)6

n n n S a a =++,

且249,,a a a 成等比数列,求数列{}n a 的通项公式。

解:∵对任意n N +∈有1

(1)(2)6n n n S a a =++ ⑴

∴当n=1时,11111

(1)(2)6S a a a ==++,解得11a =或12a =

当n ≥2时,1111

(1)(2)6

n n n S a a ---=++ ⑵

⑴-⑵整理得:11()(3)0n n n n a a a a --+--= ∵{}n a 各项均为正数,∴13n n a a --=

当11a =时,32n a n =-,此时2

429a a a =成立

当12a =时,31n a n =-,此时2429a a a =不成立,故12a =舍去

所以32n a n =-

练习。已知数列}{n a 中, 0>n a 且2)1(2

1

+=

n n a S ,求数列}{n a 的通项公式. 答案:n n n a S S =--1 212)1()1(+=--n n a a 12-=n a n 2、对无穷递推数列

例14 已知数列{}n a 满足11231123(1)(2)n n a a a a a n a n -==++++-≥L ,,求{}n a 的通项公式。

解:因为123123(1)(2)n n a a a a n a n -=++++-≥L ①

所以1123123(1)n n n a a a a n a na +-=++++-+L ②

用②式-①式得1.n n n a a na +-= 则1(1)(2)n n a n a n +=+≥ 故

1

1(2)n n

a n n a +=+≥ 所以13222122![(1)43].2

n n n n n a a a n a a n n a a a a a ---=

????=-???=L L ③

由123123(1)(2)n n a a a a n a n -=++++-≥L ,21222n a a a ==+取得,则21a a =,又知11a =,则21a =,代入③得!13452

n n a n =?????=L 。 所以,{}n a 的通项公式为!

.2

n n a =

数列的通项公式与求和

112342421

{},1(1,2,3,)

3

(1),,{}.(2)n n n n n n

a n S a a S n a a a a a a a +===+++L L 数列的前项为且,求的值及数列的通项公式求

练习1

1112

{},1(1,2,).:(1){};(2)4n n n n n

n n n a n S a a S n n

S n

S a +++==

==L 数列的前项和记为已知,证明数列是等比数列

*121

{}(1)()3

(1),;

(2):{}.

n n n n n a n S S a n N a a a =

-∈ 已知数列的前项为,求求证数列是等比数列

11211

{},,.2n n n n a a a a a n n +==++ 已知数列满足求

11

2{},,,.31n n n n n

a a a a a n +==+ 已知数列满足求

111511

{},,().

632n n n n n a a a a a ++==+ 已知数列中,求 练习2 练习3 练习4 练习5 练 习6

1

11{}:1,{}.

31n n n

n n a a a a a a --==?+ 已知数列满足,求数列的通项公式

练 8 若等比数列

{}n a 的前n 项和S

=2n-1,则

2

232221n

a a a a ++++Λ

练习9 求和:5,55,555,5555,…,5(101)

9n

-,…;

练习10 求和:

1111447(32)(31)n n +++??-?+L

练习7

练习11 已知求和:

111112123123n ++++=+++++++L L

练 习12 设{}

n a 是等差数列,{}n b 是各项都为正数的等比数列,且 111

a b ==,

3521

a b +=,

5313

a b +=

(Ⅰ)求

{}

n a ,{}n b 的通项公式;

(Ⅱ)求数列n n a b

??????的前n 项和n S .

答案

练习1答案:

练习2 证明:

(1) 注意到:a(n+1)=S(n+1)-S(n) 代入已知第二条式子得: S(n+1)-S(n)=S(n)*(n+2)/n nS(n+1)-nS(n)=S(n)*(n+2) nS(n+1)=S(n)*(2n+2) S(n+1)/(n+1)=S(n)/n*2

又S(1)/1=a(1)/1=1不等于0 所以{S(n)/n}是等比数列

(2)

由(1)知,

{S(n)/n}是以1为首项,2为公比的等比数列。

所以S(n)/n=1*2^(n-1)=2^(n-1) 即S(n)=n*2^(n-1) (*)

代入a(n+1)=S(n)*(n+2)/n 得 a(n+1)=(n+2)*2^(n-1) (n 属于N)

即a(n)=(n+1)*2^(n-2) (n 属于N 且n>1)

又当n=1时上式也成立

所以a(n)=(n+1)*2^(n-2) (n 属于N) 由(*)式得:

S(n+1)=(n+1)*2^n

=(n+1)*2^(n-2)*2^2 =(n+1)*2^(n-2)*4

对比以上两式可知:S(n+1)=4*a(n

练习3 答案: 1)

234

2

1416,,392711

14()233n n a a a n a n -====??

=?≥?? 234[()1]73

n -

a1=S1=1/3(a1-1) a1=-1/2

a2=S2-S1=1/3(a2-1)+1/2 3a2=a2-1+3/2 2a2=1/2 a2=1/4 2)

3Sn=an-1

3S(n-1)=a(n-1)-1 相减:

3an=an-a(n-1) 2an=-a(n-1) an/a(n-1)=-1/2

所以{an}为等比数列!

练习4 累加法,答案:

练习5 累乘法,答案:

练习6 待定系数法,答案:

练习7 倒数法,答案:

413n -

练习8 公式法,答案:

练习9 答案:555555555n n S =++++678

L L 个

5(999999999)9n =++++678L L 个

235

[(101)(101)(101)(101)]9n =-+-+-++-L 235505[10101010](101)9819n n n n =++++-=--L .

n a n 123-=n a n 32=

113()2()23n n n a =-132n a n =

-

练习11,,列项相消法

1/(1+2+3+……+n)=1/[n(n+1)/2]=2/[n(n+1)] 所以原式=1+2/2*3+2/3*4+……+2/[n(n+1)]

=1+2*[(1/2-1/3)+(1/3-1/4)+……+(1/n-1/(n+1)] =1+2*[1/2-1/(n+1)] =2-2/(n+1)

练习12 (错位相减法) 答案:解:(Ⅰ)设

{}n a 的公差为d ,{}n b 的公比为q ,

则依题意有0q >且4

212211413d q d q ?++=??

++=??,,

解得2d =,2q =.所以1(1)21

n a n d n =+-=-,

11

2n n n b q --==.(Ⅱ)

121

2

n n n a n b --=

1221352321

12222n n n n n S ----=+

++++L ,

①32

52321223222n n n n n S ----=+++++L ,②

②-①得

221

22221

222222n n n n S ---=+++++-L , 221

11

1212212222n n n ---??=+?++++- ???L

11

1

121

2221212n n n ---

-=+?--

12362n n -+=-.

数列的通项公式与求和知识点及题型归纳总结

数列的通项公式与求和知识点及题型归纳总结 知识点精讲 一、基本概念 (1)若已知数列的第1项(或前项),且从第2项(或某一项)开始的任一项与它的前一项(或前几项)间的关系可以用一个公式来表示,那么该公式就叫做这个数列的递推公式.递推公式也是给出数列的一种方法. (2)数列的第n 项n a 与项数n 之间的函数关系,可以用一个公式()n a f n =来表示,那么n a 就是数列 的通项公式. 注:①并非所有的数列都有通项公式; ②有的数列可能有不同形式的通项公式; ③数列的通项就是一种特殊的函数关系式; ④注意区别数列的通项公式和递推公式. 题型归纳及思路提示 题型1 数列通项公式的求解 思路提示 常见的求解数列通项公式的方法有观察法、利用递推公式和利用n S 与n a 的关系求解. 观察法 根据所给的一列数、式、图形等,通过观察法归纳出其数列通项. 利用递推公式求通项公式 ①叠加法:形如1()n n a a f n +=+的解析式,可利用递推多式相加法求得n a ②叠乘法:形如1()n n a f n a -= (0)n a ≠*(2,)n n N ≥∈的解析式, 可用递推多式相乘求得n a ③构造辅助数列:通过变换递推公式,将非等差(等比)数列 构造成为等差或等比数列来求其通项公式.常用的技巧有待定系数法、取倒数法、对称变换法和同除以指数法. 利用n S 与n a 的关系求解 形如 1(,)()n n n f S S g a -=的关系,求其通项公式,可依据 1* 1(1)(2,) n n n S n a S S n n N -=? =?-≥∈?,求出n a 观察法 观察法即根据所给的一列数、式、图形等,通过观察分析数列各项的变化规律,求其通项.使用观察法时要注意:①观察数列各项符号的变化,考虑通项公式中是否有(1)n -或者1 (1) n -- 部分.②考虑各项的变化 规律与序号的关系.③应特别注意自然数列、正奇数列、正偶数列、自然数的平方{}2 n 、{}2n 与(1) n -有 关的数列、等差数列、等比数列以及由它们组成的数列. 例6.20写出下列数列的一个通项公式: (1)325374 ,,,,,,;751381911 - --L

高中数学数列专题大题训练

高中数学数列专题大题组卷 一.选择题(共9小题) 1.等差数列{a n}的前m项和为30,前2m项和为100,则它的前3m项和为()A.130 B.170 C.210 D.260 2.已知各项均为正数的等比数列{a n},a1a2a3=5,a7a8a9=10,则a4a5a6=()A.B.7 C.6 D. 3.数列{a n}的前n项和为S n,若a1=1,a n+1=3S n(n≥1),则a6=() A.3×44B.3×44+1 C.44D.44+1 4.已知数列{a n}满足3a n+1+a n=0,a2=﹣,则{a n}的前10项和等于()A.﹣6(1﹣3﹣10)B.C.3(1﹣3﹣10)D.3(1+3﹣10)5.等比数列{a n}的前n项和为S n,已知S3=a2+10a1,a5=9,则a1=()A.B.C.D. 6.已知等差数列{a n}满足a2+a4=4,a3+a5=10,则它的前10项的和S10=()A.138 B.135 C.95 D.23 7.设等差数列{a n}的前n项和为S n,若S m﹣1=﹣2,S m=0,S m+1=3,则m=()A.3 B.4 C.5 D.6 8.等差数列{a n}的公差为2,若a2,a4,a8成等比数列,则{a n}的前n项和S n=() A.n(n+1)B.n(n﹣1)C.D. 9.设{a n}是等差数列,下列结论中正确的是() A.若a1+a2>0,则a2+a3>0 B.若a1+a3<0,则a1+a2<0 C.若0<a 1<a2,则a2D.若a1<0,则(a2﹣a1)(a2﹣a3)>0 二.解答题(共14小题) 10.设数列{a n}(n=1,2,3,…)的前n项和S n满足S n=2a n﹣a1,且a1,a2+1,a3成等差数列.

高考理科数学复习题解析 数列求和

高考数学复习 第四节 数列求和 [考纲传真] 1.掌握等差、等比数列的前n 项和公式.2.掌握特殊的非等差、等比数列的几种常见的求和方法. 1.公式法 (1)等差数列的前n 项和公式: S n =n a 1+a n 2 =na 1+n n -12 d ; (2)等比数列的前n 项和公式: 2.分组转化法 把数列的每一项分成两项或几项,使其转化为几个等差、等比数列,再求解. 3.裂项相消法 把数列的通项拆成两项之差,在求和时中间的一些项可以相互抵消,从而求得其和. 4.错位相减法 如果一个数列的各项是由一个等差数列和一个等比数列的对应项之积构成的,这个数列的前n 项和可用错位相减法求解. 5.倒序相加法 如果一个数列{a n }的前n 项中与首末两端等“距离”的两项的和相等或等于同一个常数,那么求这个数列的前n 项和即可用倒序相加法求解. 6.并项求和法 一个数列的前n 项和中,可两两结合求解,则称之为并项求和.形如a n =(-1)n f (n )类型,可采用两项合并求解. 例如,S n =1002 -992 +982 -972 +…+22 -12 =(100+99)+(98+97)+…+(2+1)=5 050. [常用结论] 1.一些常见的数列前n 项和公式:

(1)1+2+3+4+…+n = n n +1 2 ; (2)1+3+5+7+…+2n -1=n 2 ; (3)2+4+6+8+…+2n =n 2 +n . 2.常用的裂项公式 (1) 1n n +k =1k ? ?? ??1 n -1n +k ; (2)1 4n 2-1=1 2n -1 2n +1=12? ?? ??1 2n -1-12n +1; (3) 1 n +n +1 =n +1-n ; (4)log a ? ?? ??1+1n =log a (n +1)-log a n . [基础自测] 1.(思考辨析)判断下列结论的正误.(正确的打“√”,错误的打“×”) (1)如果数列{a n }为等比数列,且公比不等于1,则其前n 项和S n =a 1-a n +1 1-q .( ) (2)当n ≥2时, 1n 2-1=12? ?? ??1 n -1-1n +1.( ) (3)求S n =a +2a 2 +3a 3 +…+na n 之和时只要把上式等号两边同时乘以a 即可根据错位相减法求得.( ) (4)推导等差数列求和公式的方法叫做倒序求和法,利用此法可求得sin 2 1°+sin 2 2°+sin 2 3°+…+sin 2 88°+sin 2 89°=44.5.( ) [答案] (1)√ (2)√ (3)× (4)√ 2.(教材改编)数列{a n }的前n 项和为S n ,若a n =1 n n +1 ,则S 5等于( ) A .1 B.56 C.16 D. 1 30 B [∵a n = 1n n +1=1n -1 n +1 , ∴S 5=a 1+a 2+…+a 5=1-12+12-13+…-16=5 6.] 3.若S n =1-2+3-4+5-6+…+(-1) n -1 ·n ,则S 50=________. -25 [S 50=(1-2)+(3-4)+…+(49-50)=-25.] 4.数列112,314,518,7116,…,(2n -1)+1 2 n ,…的前n 项和S n 的值等于________.

数列求通项公式及求和9种方法

【方 a n a S n 数列专题1:根据递推关系求数列的通项公式 根据递推关系求数列的通项公式主要有如下几种类型 亠、S n 是数列{a n }的前n 项的和 S i (n 1) S n S n 1 (n 2 ) S n 1 ”代入消兀消a n 【注意】漏检验n 的值(如n 1的情况 [例 U . ( 1)已知正数数列{a n }的前n 项的和为S n , 且对 任意的正整数n 满足2\金 如1 ,求数列{a n }的 通项公式。 (2)数列{a n }中,印1对所有的正整数n 都有 a 1 a 2 a 3 L a n 『, 求数列 {a n } 的通项公式 【作业一】 2 n 1 n * 1 — 1 ■数列 a n 满足 a 1 3a 2 3 a 3 L 3 a n - (n N ) , 求数列a n 的通项公式. (二).累加、累乘 a 型如 a a f(n) , am f (n )

型一:a n a n 1 f (n),用累加法求通项公式(推导等差数列通项公式的方法) 【方法】 a n a n 1 f(n), a n 1 a n 2 f(n 1), a2 a1 f (2) n 2, 从而a n a1 f (n) f(n 1) L f (2),检验n 1 的情况型二:|电f(n),用累乘法求通项公式(推导等比a n1 数列通项公式的方法) 【方法】n 2,亘也L邑f(n) f(n 1) L f(2) a n 1 a n 2 a i 即色f(n) f(n 1) L f(2),检验n 1的情a1 况 【小结】一般情况下,“累加法”(“累乘法”)里只有n 1个等式相加(相乘). 1 1 【例2】.(1)已知a1 2,a n a n1 ■n^[(n 2),求 a n ■ n 2 (2)已知数列a n满足a n1 - 2a n,且a1 n 2 3 求a n .

高中数学数列放缩专题:用放缩法处理数列和不等问题

用放缩法处理数列和不等问题(教师版) 一.先求和后放缩(主要是先裂项求和,再放缩处理) 例1.正数数列{}n a 的前n 项的和n S ,满足12+=n n a S ,试求: (1)数列{}n a 的通项公式; (2)设11+= n n n a a b ,数列{}n b 的前n 项的和为n B ,求证:2 1

数列求通项与求和总结(精)

数列求和方法 等差数列、等比数列的求和是高考常考的内容之一,一般数列求和的基本思想是将其通项变形,化归为等差数列或等比数列的求和问题,或利用代数式的对称性,采用消元等方法来求和. 下面我们结合具体实例来研究求和的方法. 一、直接求和法(或公式法) 将数列转化为等差或等比数列,直接运用等差或等比数列的前n 项和公式求得. 例1 求22222222 12345699100-+-+-+--+L . 解:原式2 2 2 2 2 2 2 2 (21)(43)(65)(10099)3711199=-+-+-++-=++++L L . 由等差数列求和公式,得原式50(3199) 50502 ?+= =. 二、倒序相加法 此方法源于等差数列前n 项和公式的推导,目的在于利用与首末两项等距离的两项相加有公因式可提取,以便化简后求和. 例2 求2222 2 222 2222123101102938101 ++++++++L 的和. 分析:由于数列的第k 项与倒数第k 项的和为常数1,故采用倒序相加法求和. 解:设2222 2 2222222123101102938101 S =++++++++L 则2222 2 222 2222109811012938101 S =++++++++L . 两式相加,得 2111105S S =+++=∴=L , . 小结:对某些具有对称性的数列,可运用此法. 三、裂项相消法 如果一个数列的每一项都能化为两项之差,而前一项的减数恰与后一项的被减数相同,一减一加,中间项全部相消为零,那么原数列的前n 项之和等于第一项的被减数与最末项的减数之差.多用于分母为等差数列的相邻k 项之积,且分子为常数的分式型数列的求和. 例3 已知2 2 2 1 12(1)(21)6 n n n n +++= ++L , 求 22 2222222 35721()11212312n n n * +++++∈++++++N L L 的和. 分析:首先将数列的通项公式化简,然后注意到它可写成两项的差,在求和的过程中,中间的项相 互抵消了,从而可求出原数列的前n 项和. 解:222 21216 112(1)(1)(21)6 n n n a n n n n n n ++= ==++++++Q L ,

数列的通项公式与求和的常见方法

数列的通项公式与求和 的常见方法 Company number:【WTUT-WT88Y-W8BBGB-BWYTT-19998】

常见数列通项公式的求法 类型一:公式法1(或定义法) 例1. 已知数列{}n a 满足11a =, 12n n a a +-=*()n N ∈,求数列{}n a 的通项公式。 例2.已知数列{}n a 满足12a =,13n n a a += *()n N ∈,求数列{}n a 的通项公式。 变式练习: 1.已知数列{}n a 满足12a =, 110n n a a +-+=*()n N ∈,求数列{}n a 的通项公式。 2.已知数列{}n a 满足16a =-, 13n n a a +=+*()n N ∈,求数列{}n a 的通项公式。 3. 已知数列{}n a 满足11a =,2 1 2=a , 11112n n n a a a -++=(2)n ≥,求数列{}n a 的通项公式。 4.已知数列{}n a 满足11a =,13n n a a +=*()n N ∈,求数列{}n a 的通项公式。 类型二:(累加法))(1n f a a n n +=+ 解法:把原递推公式转化为)(1n f a a n n =-+,利用累加法(逐差相加法)求解 例:已知数列{}n a 满足121n n a a n +=++*()n N ∈, 11a =,求数列{}n a 的通项公式。 变式练习: 1.已知数列{}n a 满足21 1=a ,n a a n n 21+=+, * ()n N ∈求数列{}n a 的通项公式。 2.已知数列{}n a 满足11a =,11 (1) n n a a n n -=+-, (2)n ≥,求数列{}n a 的通项公式。 3.已知数列{}n a 满足1231n n n a a +=+?+, * ()n N ∈,13a =,求数列{}n a 的通项公式。 4.已知数列{}n a 中,12a =,11 ln(1)n n a a n +=++, 求数列{}n a 的通项公式。 类型三:(叠乘法)n n a n f a )(1=+ 解法:把原递推公式转化为)(1 n f a a n n =+,利用累乘法(逐商相乘法)求解 例:在数列{}n a 中,已知11a =,1(1)n n na n a -=+, (2)n ≥,求数列{}n a 的通项公式。 变式练习: 1.已知数列{}n a 满足321= a ,n n a n n a 1 1+=+,* ()n N ∈,求数列{}n a 的通项公式。 2.已知31=a ,n n a n n a 2 3131 +-=+ )1(≥n ,求数列{}n a 的通项公式。 3.已知数列 {}n a 满足125n n n a a +=?* ()n N ∈, 13a =,求数列{}n a 的通项公式。 类型四:递推公式为n S 与n a 的关系式()n n S f a = 解法:这种类型一般利用 与)()(11---=-=n n n n n a f a f S S a 消去n S )2(≥n 或与)(1--=n n n S S f S )2(≥n 消去n a 进行求解。 例. 已知数列{}n a 的前n 项和为n S ,12a =且 12n n S a +=(2)n ≥.求数列{}n a 的通项公式。 1. 已知数列{}n a 的前n 项和为n S ,42n n S a =+, 求数列{}n a 的通项公式。 2.已知数列{}n a 的前n 项和为n S ,251n S n n =+- 求数列{}n a 的通项公式。 3.已知数列{}n a 的前n 项和为n S ,23n n S =+, 求数列{}n a 的通项公式。 类型五:待定系数法 q pa a n n +=+1(其中p ,q 均为常数, )0)1((≠-p pq ) 解法:构造新数列{}n b ; p a a n n =+++λ λ 1解出λ,可 得数列λ+=n n a b 为等比数列 例:已知数列{}n a 中,11=a ,121+=+n n a a ,求数列{}n a 的通项公式。 变式练习: 1. 已知数列{}n a 满足13a =,121n n a a +=- *()n N ∈,求数列{}n a 的通项公式。 2.已知数列{}n a 中,11=a ,6431+=+n n a a ,求数列{}n a 的通项公式。 3.已知数列{}n a 的前n 项和为n S ,且 232n n S a n =-*()n N ∈.求数列{}n a 的通项公式。 类型六:交叉项问题 解法:一般采用求倒数或除以交叉项得到一个新 的等差数列。 例:已知数列{}n a 满足11a =, 122 n n n a a a +=+*()n N ∈,求数列{}n a 的通项公式。 变式练习: 1.已知数列{}n a 满足11a =, 1(1)n n na n a +=++(1)n n +, *()n N ∈,求数列{} n a 的通项公式。 2. 已知首项都为1的两个数列{}n a 、{}n b (0n b ≠*n N ∈),满足 11120n n n n n n a b a b b b +++-+=,令n n n a c b = 求数列{}n c 的通项公式。 类型七:(公式法2) (n n n p pa a ?+=+λ1)p>0; 解法:将其变形为p p a p a n n n n λ =-++11,即数列?? ????n n p a 为以 p λ 为公差的等差数列; 例. 已知数列{}n a 满足1232n n n a a +=+?,12a =,求数列{}n a 的通项公式。 变式练习: 1.已知数列{}n a 满足1155+++=n n n a a ,11=a ,求数列{}n a 的通项公式 2.已知数列{}n a 满足n n n a a 3431?+=+,11=a ,求数列{}n a 的通项公式。 数列求和的常用方法 类型一:公式法 例 .已知3 log 1log 23=x ,求32x x x ++???++???+n x 的前n 项和. 变式练习 1.数列}{n a 中,12+=n a n ,求n S . 2.等比数列}{n a 的前n 项和12-=n n S ,求 2 232221n a a a a ++++ . 类型二:分组求和法 例. 求数列的前n 项和: 2321 ,,721,421,1112-+???+++-n n ,… 变式练习 1.已知数列}{n a 中,n n n a 32+=,求n S . 2.已知数列}{n a 中,n n n a 21 )12(++=,求n S . 类型三:倒序相加法 例.求 88sin 3sin 2sin 1sin 2 222+???+++ 89sin 2 +的值. 1.已知x x f += 11 )(,求)3()2()1(f f f ++ 类型四:错位相减法: 例.数列}{n a 中,12)12(-?-n n n a ,求n S . 变式练习 1.求数列 ??????,2 2,,26,24,2232n n 前n 项的和. 2.数列}{n a 的前n 项和为2 2n S n =,}{n b 为等比数列, 且.)(,112211b a a b b a =-= (1)求数列}{n a 和}{n b 的通项公式;

数列求通项公式及求和9种方法

数列求通项公式及求和 9种方法 -CAL-FENGHAI.-(YICAI)-Company One1

数列专题1:根据递推关系求数列的通项公式 根据递推关系求数列的通项公式主要有如下几种类型一、 n S是数列{}n a的前n项的和 1 1 (1) (2) n n n S n a S S n - = ? =? -≥ ? 【方法】:“ 1 n n S S - -”代入消元消n a 。 【注意】漏检验n的值 (如1 n=的情况 【例1】.(1)已知正数数列{} n a的前n项的和为n S, 且对任意的正整数n满足1 n a =+,求数列{} n a 的通项公式。 (2)数列{} n a中,1 1 a=对所有的正整数n都 有2 123n a a a a n ????=,求数列{}n a的通项公式 【作业一】 1-1.数列{} n a满足 21* 123 333() 3 n n n a a a a n N - ++++=∈,求数列{}n a的通项公式. (二).累加、累乘型如 1 () n n a a f n - -=, 1 () n n a f n a - =

1()n n a a f n --= ,用累加法求通项公式(推导等差数列通项公式的方法) 【方法】 1()n n a a f n --=, 12(1)n n a a f n ---=-, ……, 21(2)a a f -=2n ≥, 从而1()(1)(2)n a a f n f n f -=+-+ +,检验1n =的情 况 ()f n =,用累乘法求通项公式(推导等比数列通项公式的方法) 【方法】2n ≥,12 121 ()(1)(2)n n n n a a a f n f n f a a a ---???=?-?? 即1 ()(1)(2)n a f n f n f a =?-??,检验1n =的情况 【小结】一般情况下,“累加法”(“累乘法”)里只有1n -个等式相加(相乘). 【例2】. (1) 已知2 11=a ,)2(1 1 21≥-+=-n n a a n n ,求 n a . (2)已知数列 {}n a 满足1 2 n n n a a n +=+,且32 1=a ,求n a .

备战高考技巧大全之高中数学黄金解题模板:专题26 数列求和方法答案解析

【高考地位】 数列是高中数学的重要内容,又是高中数学与高等数学的重要衔接点,其涉及的基础知识、数学思想与方法,在高等数学的学习中起着重要作用,因而成为历年高考久考不衰的热点题型,在历年的高考中都占有重要地位。数列求和的常用方法是我们在高中数学学习中必须掌握的基本方法,是高考的必考热点之一。此类问题中除了利用等差数列和等比数列求和公式外,大部分数列的求和都需要一定的技巧。下面,就近几年高考数学中的几个例子来谈谈数列求和的基本方法和技巧。 【方法点评】 方法一 公式法 解题模板:第一步 结合所求结论,寻找已知与未知的关系; 第二步 根据已知条件列方程求出未知量; 第三步 利用前n 项和公式求和结果 例1.设}{n a 为等差数列,n S 为数列}{n a 的前n 项和,已知77=S ,7515=S ,n T 为数列}{n S n 的前n 项和,求n T . 【评析】直接应用公式求和时,要注意公式的应用范围,如当等比数列公比为参数(字母)时,应对其公比是否为1进行讨论.常用的数列求和公式有:

等差数列前n 项和公式: 11()(1)22 n n n a a n n S na d +-==+. 等比数列前n 项和公式:111(1)(1)(1)11n n n na q S a q a a q q q q =??=--?=≠?--? . 自然数方幂和公式:1123(1)2 n n n +++???+=+ 22221123(1)(21)6 n n n n +++???+=++ 333321123[(1)]2 n n n +++???+=+ 【变式演练1】已知{a n }是等差数列,a 1+a 2=4,a 7+a 8=28,则该数列前10项和S 10等于( ) A.64 B.100 C.110 D.120 【答案】B 【解析】 试题分析:a 1+a 2=4,a 7+a 8=28,解方程组可得11,2a d == 101109101002 S a d ?∴=+ = 考点:等差数列通项公式及求和 方法二 分组法 解题模板:第一步 定通项公式:即根据已知条件求出数列的通项公式; 第二步 巧拆分:即根据通项公式特征,将其分解为几个可以直接求和的数列; 第三步 分别求和:即分别求出各个数列的和; 第四步 组合:即把拆分后每个数列的求和进行组合,可求得原数列的和. 例2. 已知数列{a n }是3+2-1,6+22-1,9+23-1,12+24-1,…,写出数列{a n }的通项公式并求其前n 项 S n .

2020届高考数学一轮复习通用版讲义数列求和

第四节数列求和 一、基础知识批注——理解深一点 1.公式法 (1)等差数列{a n }的前n 项和S n =n (a 1+a n )2=na 1+n (n -1)d 2 . 推导方法:倒序相加法. (2)等比数列{a n }的前n 项和S n =????? na 1 ,q =1,a 1(1-q n )1-q ,q ≠1. 推导方法:乘公比,错位相减法. (3)一些常见的数列的前n 项和: ①1+2+3+…+n = n (n +1) 2 ; ②2+4+6+…+2n =n (n +1); ③1+3+5+…+2n -1=n 2. 2.几种数列求和的常用方法 (1)分组转化求和法:一个数列的通项公式是由若干个等差或等比或可求和的数列组成的,则求和时可用分组求和法,分别求和后相加减. (2)裂项相消法:把数列的通项拆成两项之差,在求和时中间的一些项可以相互抵消,从而求得前n 项和. (3)错位相减法:如果一个数列的各项是由一个等差数列和一个等比数列的对应项之积构成的,那么求这个数列的前n (4)倒序相加法:如果一个数列{a n }与首末两端等“距离”的两项的和相等或等于同一个常数,那么求这个数列的前n 项和即可用倒序相加法求解. 二、基础小题强化——功底牢一点 (一)判一判(对的打“√”,错的打“×”) (1)如果数列{a n }为等比数列,且公比不等于1,则其前n 项和S n =a 1-a n +1 1-q .( ) (2)当n ≥2时, 1n 2 -1=12? ???1 n -1-1n +1.( ) (3)求S n =a +2a 2+3a 2+…+na n 之和时,只要把上式等号两边同时乘以a 即可根据错位相减法求得.( )

数列的通项及求和公式

数列的通项及求和公式专题课内导学案11 一、基本公式法:等差数列,等比数列。 例1、(1)若{}n a 是等差数列,公差0d ≠, 236,,a a a 成等比,11a =,则n a =_________。 (2)若{}n a 是等比数列,243,,a a a 成等差, 13a =,则n a =_________。 二、已知n S 求n a :11 (2) (1)n n n S S n a S n --≥?=? =?。 类型1、(1)已知2 1n S n n =++,求n a 。 (2)已知101n n S =-,求n a 。 类型2、(1)已知32n n S a =-,求n a ; (2)已知3 32 n n S a =-,求n a ; (3)已知22n n S a +=,求n a 。 类型3、(1)2 24n n n a a S +=,0n a >,求n a ; (2)2 1056n n n S a a =++,0n a >,求n a ; (3)2111 424 n n n S a a = ++,0n a >,求n a 。 类型4、(1)11a =,12n n a S +=,求n a ; (2)11a =,12n n S a +=,求n a ; (3)13a =,11n n S a +=+,求n a 。

类型5、(1)122n n a a a ++???+=,则n a =_____ (2)123n a a a a n ?????=,则n a =_____ (3)12323n a a a na n +++???+=,则n a =_____ (4) 3 12123n a a a a n n +++???+=,则n a =_____ (5)231233333n n a a a a n +++???+=,n a =___ 三、形如1()n n a a f n +-=的递推数列求通项公式,使用累加法。 例1、(1)数列{}n a 中满足12a =,1n n a a n +=+,求n a 的通项公式。 (2)已知数列{}n a 中满足13a =, 12n n n a a +=+,求n a 的通项公式。 (3)求数列2,4,9,17,28,42,???的通项公式。 四、形如 1 ()n n a f n a +=的递推数列求通项公式,使用累乘法。 例1、(1)数列{}n a 中满足15a =,12n n n a a +=?, 求n a 的通项公式。 (2)数列{}n a 中满足14a =,11 n n n a a n +=?+,求n a 的通项公式。 (3)112a = ,111 n n n a a n --=+(2n ≥),求n a 的通项公式。 五、构造法 例1、(1)14a = 2=,求n a ; (2)14a =,22 12n n a a +-=,求n a ; (3)14a =, 144 2n n a a +-=,求n a ; (4)12a =,112(1)n n a a +-=-,求n a ; (5)11a =,1(1)3n n n a na ++=,求n a ; (6)11a =,121n n a a n n +-=+,求n a 。

高中数学数列求和专题复习知识点习题.doc

数列求和例题精讲 1. 公式法求和 (1)等差数列前 n 项和公式 S n n(a 1 a n ) n(a k 1 a n k ) n( n 1) d 2 2 na 1 2 (2)等比数列前 n 项和公式 q 1 时 S n na 1 q 1 时 S n a 1 (1 q n ) a 1 a n q 1 q 1 q (3)前 n 个正整数的和 1 2 3 n(n 1) n 2 前 n 个正整数的平方和 12 22 32 n 2 n(n 1)(2n 1) 6 前 n 个正整数的立方和 13 23 33 n 3 [ n(n 1) ] 2 ( 1)弄准求和项数 n 的值; 2 公式法求和注意事项 ( 2)等比数列公比 q 未知时,运用前 n 项和公式要分类。 例 1.求数列 1,4,7, ,3n 1 的所有项的和 例 2.求和 1 x x 2 x n 2 ( n 2, x 0 )

2.分组法求和 例 3.求数列 1, 1 2,1 2 3,,1 2 3 n 的所有项的和。 5n 1 (n为奇数 ) 例 4.已知数列a n中,a n ,求 S2m。 ( 2) n (n为偶数 ) 3.并项法求和 例 5.数列a n 中, a n ( 1) n 1 n2,求 S100。 例 6.数列a n中,,a n( 1) n 4n ,求 S20及 S35。 4.错位相减法求和 若a n 为等差数列,b n 为等比数列,求数列a n b n(差比数列)前n项 b n 的公比。 和,可由S n qS n求 S n,其中q 为

例 7.求和12x 3x 2nx n 1(x0 )。 5.裂项法求和 :把数列各项拆成两项或多项之和,使之出现成对互为相反数的项。 例 8.求和 1 1 1 1 。 1 3 3 5 5 7 (2n 1)(2n 1) 例 9.求和 1 1 1 1 2 1 3 2 23 。 n 1n [练习] 1 1 1 1 1 2 3 2 3 n 1 2 1 a n S n 2 1 n 1

高中数列求和公式

数列求和的基本方法和技巧 利用下列常用求和公式求和是数列求和的最基本最重要的方法. 1、 等差数列求和公式:d n n na a a n S n n 2 )1(2)(11-+=+= 2、等比数列求和公式:?????≠--=--==)1(11)1()1(111q q q a a q q a q na S n n n 3、 )1(21 1 +==∑=n n k S n k n 自然数列 4、 )12)(1(611 2++==∑=n n n k S n k n 自然数平方组成的数列 [例1] 已知3log 1log 23-= x ,求???++???+++n x x x x 32的前n 项和. 解:由2 12log log 3log 1log 3323=?-=?-=x x x 由等比数列求和公式得 n n x x x x S +???+++=32 (利用常用公式) =x x x n --1)1(=2 11)211(21--n =1-n 21 [例2] 设S n =1+2+3+…+n ,n ∈N *,求1 )32()(++=n n S n S n f 的最大值. 解:由等差数列求和公式得 )1(21+= n n S n , )2)(1(21++=n n S n (利用常用公式) ∴ 1)32()(++=n n S n S n f =64 342++n n n =n n 64 341 ++=50)8 (12+-n n 50 1≤ ∴ 当 8 8-n ,即n =8时,501)(max =n f 二、错位相减法求和 这种方法是在推导等比数列的前n 项和公式时所用的方法,这种方法主要用于求数列{a n · b n }的前n 项和,其中{ a n }、{ b n }分别是等差数列和等比数列.错位相减法:如果数列的通项是由一个等差数列的通项与一个等比数列的通项相乘构成,那么常选用错位相减法(这也是等比数列前n 和公式的推导方法).

数列求通项公式及求和9种方法

数列专题1:根据递推关系求数列的通项公式 根据递推关系求数列的通项公式主要有如下几种类型一、 n S是数列{}n a的前n项的和 1 1 (1) (2) n n n S n a S S n - = ? =? -≥ ? 【方法】:“ 1 n n S S - -”代入消元消n a。 【注意】漏检验n的值(如1 n=的情况 【例1】.(1)已知正数数列{} n a的前n项的和为n S, 且对任意的正整数n满足1 n a =+,求数列{} n a的通项公式。 (2)数列{} n a中,1 1 a=对所有的正整数n都有 2 123n a a a a n ????=,求数列{}n a的通项公式 【作业一】 1-1.数列{} n a满足 21* 123 333() 3 n n n a a a a n N - ++++=∈,求数列 {} n a的通项公式. (二).累加、累乘型如 1 () n n a a f n - -=, 1 () n n a f n a - =

1()n n a a f n --= ,用累加法求通项公式(推导等差数列通项公式的方法) 【方法】 1()n n a a f n --=, 12(1)n n a a f n ---=-, ……, 21(2)a a f -=2n ≥, 从而1()(1)(2)n a a f n f n f -=+-+ +,检验1n =的情 况 ()f n =,用累乘法求通项公式(推导等比数列通项公式的方法) 【方法】2n ≥,1 2 12 1 ()(1)(2)n n n n a a a f n f n f a a a ---??? =?-?? 即1 ()(1)(2)n a f n f n f a =?-? ?,检验1n =的情 况 【小结】一般情况下,“累加法”(“累乘法”)里只有1n -个等式相加(相乘). 【例2】. (1) 已知21 1=a ,)2(1 1 2 1≥-+ =-n n a a n n ,求n a . (2)已知数列{}n a 满足1 2n n n a a n +=+,且3 21=a ,求n a .

高中数学数列求和

第四节数列求和 [备考方向要明了] 考什么怎么考 熟练掌握等差、等比数 列的前n项和公式. 1.以选择题或填空题的形式考查可转化为等差或等比数列的数列 求和问题,如2012年新课标全国T16等. 2.以解答题的形式考查利用错位相减法、裂项相消法或分组求和法 等求数列的前n项和,如2012年江西T16,湖北T18等. [归纳·知识整合] 数列求和的常用方法 1.公式法 直接利用等差数列、等比数列的前n项和公式求和 (1)等差数列的前n项和公式: S n= n(a1+a n) 2=na1+ n(n-1) 2d; (2)等比数列的前n项和公式: S n= ?? ? ??na1,q=1, a1-a n q 1-q = a1(1-q n) 1-q ,q≠1. 2.倒序相加法 如果一个数列{a n}的前n项中首末两端等“距离”的两项的和相等或等于同一个常数,那么求这个数列的前n项和即可用倒序相加法,如等差数列的前n项和即是用此法推导的.3.错位相减法 如果一个数列的各项是由一个等差数列和一个等比数列的对应项之积构成的,那么这个数列的前n项和即可用此法来求,如等比数列的前n项和就是用此法推导的.4.裂项相消法 把数列的通项拆成两项之差,在求和时中间的一些项可以相互抵消,从而求得其和.[探究] 1.应用裂项相消法求和的前提条件是什么? 提示:应用裂项相消法求和的前提条件是数列中的每一项均可分裂成一正一负两项,且在求和过程中能够前后抵消. 2.利用裂项相消法求和时应注意哪些问题?

提示:(1)在把通项裂开后,是否恰好等于相应的两项之差; (2)在正负项抵消后,是否只剩下了第一项和最后一项,或前面剩下两项,后面也剩下两项. 5.分组求和法 一个数列的通项公式是由若干个等差数列或等比数列或可求和的数列组成,则求和时可用分组求和法,分别求和后再相加减. 6.并项求和法 一个数列的前n 项和,可两两结合求解,则称之为并项求和.形如a n =(-1)n f (n )类型,可采用两项合并求解. 例如,S n =1002-992+982-972+…+22-12 =(100+99)+(98+97)+…+(2+1)=5 050. [自测·牛刀小试] 1. 11×4+14×7+17×10+…+1 (3n -2)(3n +1) 等于( ) A.n 3n +1 B.3n 3n +1 C .1-1 n +1 D .3-1 3n +1 解析:选A ∵1(3n -2)(3n +1)=13????1 3n -2-13n +1, ∴ 11×4+14×7+17×10+…+1 (3n -2)(3n +1) =13?? ? ???1-14+????14-17+???? 17-110+…+ ??????13n -2-13n +1=13????1-13n +1=n 3n +1 . 2.已知数列{a n }的通项公式是a n =2n -12n ,其前n 项和S n =321 64,则项数n 等于( ) A .13 B .10 C .9 D .6 解析:选D ∵a n =2n -12n =1-1 2n , ∴S n =????1-12+????1-122+…+????1-1 2n =n -????12+12 2+ (12)

求数列通项公式与数列求和精选练习题(有答案)

数列的通项公式与求和 1 练习1数列佝}的前n项为S n,且a =1, a ni=-S n(n =1,2,3,) 3 (1) 求a2,a3, a4B值及数列{a n}的通项公式. (2) 求a2a4一-玄 n ■ 2 练习2 数列{a n}的前n项和记为S n,已知a^1, 3n1 6(n = 1,2,…)?证明: n (1) 数列{§L}是等比数列; n (2) S n 1 = 4a n 1 * 练习3 已知数列{a n}的前n项为S n,S n = —@n -1)(门,N ) 3 (1)求耳忌 ⑵求证:数列{a n}是等比数列.

1 1 已知数列{a n }满足 @ = — ,a n1 =a n ? - ,求a n . 2 n +n 练习5 已知数列 {an } 满足?岭…&an,求歸 5 1 1 n * 练习6已知数列?}中,印 ,a n 1 a n - H),求a n . 6 3 2 练习7已知数列{a n }满足:a n 色^ , a , =1,求数列{a n }的通项公式 3色」+1 { } 2 十2十2+…十2 等比数列 {a n } 的前n 项和S n = 2n - 1,则a1 a 2 a 3 a n 5 (10n -1) 练习 9 求和:5, 55, 555, 5555,…,9 练习4 练习

练习10 求和: + +… + 1 4 4 7 (3n - 2) (3n 1) ’ 1 1 1 1 练习11 求和: 1 2 12 3 12 3 n 练习12 设 {a n } 是等差数列, {b n } 是各项都为正数的等比数列,且 = b^=1 , fa 1 a 5 b 3 =13 (I)求 {a n } , { b n } 的通项公式;(H)求数列? 的前门项和S n . Sb = 21

相关文档
相关文档 最新文档