文档库 最新最全的文档下载
当前位置:文档库 › 用ANSYS建立薄壁杆件结构模型的处理技术

用ANSYS建立薄壁杆件结构模型的处理技术

用ANSYS建立薄壁杆件结构模型的处理技术
用ANSYS建立薄壁杆件结构模型的处理技术

ansys使用技巧(后处理)

2009-04-28 14:26 ANSYS中查看截面结果的方法 一般情况下,对计算结果后处理时,显示得到的云图为结构的外表面信息。有时候,需要查看结构内部的某些截面云图,这就需要通过各种后处理技巧来获得截面的结果云图。另外,有时候需要获得截面的结果数据,也需要用到后处理的技巧。 下面对常用的查看截面结果的方法做一个介绍: 1. 通过工作平面切片查看截面云图工作平面实现。 这是比较常用的一种方法。 首先确保已经求解了问题,并得到了求解结果。 调整工作平面到需要观察的截面,可通过移动或者旋转工作平面实现。调整时注意保证工作平面与需要观察的截面平行。 在PlotCtrls菜单中设置观察类型为Section,切片平面为Working Plane。也可以通过等效的/type以及/cplane命令设置。 在通用后处理器中显示云图,得到需要查看的云图。 更简单地说,我们只需在显示云图命令前加上下面两条命令就可以了: /CPLANE,1 ! 指定截面为WP /TYPE,1,5 ! 结果显示方式选项 2. 通过定义截面查看截面云图 这种方法也需要用到工作平面与切片,步骤如下: 首先确保已经得到了求解结果。 调整工作平面到需要观察的截面。 在PlotCtrls菜单中设置观察类型为Working Plane,或者使用命令/cplane,1。通过sucr命令定义截面,选择(cplane)。 通过sumap命令定义需要查看的物理量。 通过supl命令显示结果。 3. 通过定义路径查看云图与保存数据 首先确保已经得到了求解结果。 通过path与ppath命令定义截面路径。 通过pdef命令映射路径。 通过plpath、prpath与plpagm命令显示及输出结果。

ANSYS树形结构的材料模型库

ANSYS树形结构的材料模型库(?第一级●第二级?第三级?第四级?第五级) ?Linear:材料的线性行为 ●Elastic:弹性性能参数 ?Isotropic:各向同性弹性性能参数 ?Orthtropic:正交各向异性弹性性能参数 ?Anisotropic:各向异性弹性性能参数 ?Nonlinear:材料的非线性行为 ●Elastic:非线性的弹性模型 ?Hyperelastic:超弹材料模型(包含多个模型) ?Curve Fitting:通过材料实验数据拟合获取材料模型 ?Mooney-Rivilin:Mooney-Rivilin模型(包含2 、3、 5 与9 参数模型) ?Ogden:Ogden模型(包含1~5 项参数模型与通用模型) ?Neo-Hookean:Neo-Hookean模型 ?Polynomial Form:Polynomial Form模型(包含1~5 项参数模型与通用模型)?Arruda-Boyce:Arruda-Boyce:模型 ?Gent:Gent模型 ?Yeoh:Yeoh模型 ?Blatz-Ko(Foam):Blatz-Ko(泡沫)模型 ?Ogden(Foam) Ogden:(泡沫)模型 ?Mooney-Rivlin(TB,MOON):Mooney-Rivlin(TB,MOON) 模型 ?Multilinear Elastic:多线性弹性模型 ●Inelastic:非线性的非弹性模型 ?Rate Independent:率不相关材料模型 ?Isotropic Hardening Plasticity:各向等向强化率不相关塑性模型 ?Mises Plasticity:各向等向强化的Mises 率不相关塑性模型 Bilinear:双线性模型 Multilinear:多线性模型 Nonlinear:非线性模型 ?Hill Plasticity:各向等向强化的Hill 率不相关塑性模型 Bilinear:双线性模型 Multilinear:多线性模型 Nonlinear:非线性模型 ?Generalized Anisotropic Hill Potenial:广义各向异性Hill 势能率不相关模型 ?Kinematic Hardening Plasticity:随动强化率不相关塑性模型 ?Mises Plasticity:随动强化的Mises率不相关塑性模型 Bilinear:双线性模型 Multilinear(Fixed table):多线性模型 Nonlinear(General) :非线性模型 Chaboche Chaboche:模型 ?Hill Plasticity:随动强化的Hill 率不相关塑性模型 Bilinea:双线性模型 Multilinear(Fixed table):多线性模型 Nonlinear(General):非线性模型 Chaboche Chaboche:模型

ansys实用的后处理

1.ANSYS后处理时如何按灰度输出云图? 1)你可以到utilitymenu-plotctrls-style-colors-window colors试试 2)直接utilitymenu-plotctrls-redirect plots 2 将云图输出为JPG 菜单->PlotCtrls->Redirect Plots->To JPEG Files 3.怎么在计算结果实体云图中切面? 命令流 /cplane /type 图形界面操作 <1.设置工作面为切面 <2.PlotCtrls-->Style-->Hidden line Options 将[/TYPE]选项选为section 将[/CPLANE]选项选为working plane 4.非线性计算过程中收敛曲线实时显示 solution>load step opts>output ctrls>grph solu track>on 5.运用命令流进行计算时,一个良好的习惯是: 使用SELECT COMMEND后.........其后再加上ALLSEL......... 6.应力图中左侧的文字中,SMX与SMN分别代表最大值和最小值 如你plnsolv,s,eqv 则SMX与SMN分别代表最大值等效应力和最小值等效应力 如你要看的是plnsolv,u 则SMX与SMN分别代表位移最大值和位移最小值 不要被S迷惑 mx(max) mn(min) 7.在非线性分析中,如何根据ansys的跟踪显示来判断收敛? 在ansys output windows 有force convergenge valu 值和criterion 值当前者小于后者时,就完成一次收敛

ansys材料模型.doc

B.2.1. Isotropic Elastic Example: High Carbon Steel MP,ex,1,210e9 ! Pa MP,nuxy,1,.29 ! No units MP,dens,1,7850 ! kg/m3

B.2.7. Bilinear Isotropic Plasticity Example: Nickel Alloy MP,ex,1,180e9 ! Pa MP,nuxy,1,.31 ! No units MP,dens,1,8490 ! kg/m3 TB,BISO,1 TBDATA,1,900e6 ! Yield stress (Pa) TBDATA,2,445e6 ! Tangent modulus (Pa)

B.2.10. Bilinear Kinematic Plasticity Example: Titanium Alloy MP,ex,1,100e9 ! Pa MP,nuxy,1,.36 ! No units MP,dens,1,4650 ! kg/m3 TB,BKIN,1 TBDATA,1,70e6 ! Yield stress (Pa) TBDATA,2,112e6 ! Tangent modulus (Pa)

B.2.11. Plastic Kinematic Example: 1018 Steel MP,ex,1,200e9 ! Pa MP,nuxy,1,.27 ! No units

MP,dens,1,7865 ! kg/m3 TB,PLAW,,,,1 TBDATA,1,310e6 ! Yield stress (Pa) TBDATA,2,763e6 ! Tangent modulus (Pa) TBDATA,4,40.0 ! C (s-1) TBDATA,5,5.0 ! P TBDATA,6,.75 ! Failure strain

ANSYS 中的后处理:面

ANSYS Surface 一、看一下GUI,有个感性认识: ||| 二、详解+例子 1.这是个8.0中介绍过的,9.0中正式搞定的功能。你可以通过工作平面(而不是surface 上的节点或points)指定平面,球面,柱面surface。一旦你定位好一个工作平面后,一个平面surface就搞定了,而对于柱面、球面surface你还需指定半径。相应的命令是: 定义Surface的命令:SUCR, SurfName, SurfT ype, nRefine, Radius SurfT ype: CPLANE――surface由window1中的切平面(cutting plane in window one)来定义,这个切平面是通过工作平面来定义的,而不是用通过视矢量来定义的; SPHERE――surface由一个中心在工作平面原点的球面来定义; INFC――surface由一个中心在工作平面原点,且沿着Z轴正负向无限延伸的柱面来定义; PS:切平面的定义用/CPLANE, KEY命令 1)/CPLANE,0――切平面垂直于视矢量(view vector用[/VIEW定义),且通过由/FOCUS命令指定的窗 口的中心点,即聚焦点(focus point); 2)/CPLANE,1工作平面就是切平面; nRefine: 细化水平,用来控制surface上的“网格”的疏密(就是每个单元投射到surface上的facet的多少),具体来讲: For SurfType = CPLANE nRefine是0-3的一个整数,surface上的点(points)的个数,0表示points位于单元与切平面的相交处;For SurfType = SPHERE nRefine=9~90,表示90°弧线的分割数,默认分割为9段; For SurfType = INFC nRefine=9~90,表示90°弧线的分割数,默认分割为9段; nRefine没增加1,就会把原来的每个surface facet分割为4个subsurfacets,这就可供结果插值的点就会增多。 Radius: 合适的半径值:用于For SurfType = INFC、SPHERE 这个命令的用于存储已定义surface上的下面这些数据:

ANSYS建模两种方法和给材料添加材料属性

ansys 实体建模详细介绍3--体 用于描述三维实体,仅当需要体单元的时候才需要定义体。生成体时自动生成低级别的对象,如点、线、面等。 Main menu / preprocessor / modeling / create / volumes 展开体对象创建菜单 1.1 Arbitrary :定义任意形状 a) Through kps :通过关键点定义体 b) By areas :通过边界面生成体 1.2 Block :定义长方体 a) By 2 corners & Z :通过一角点和长、宽、高来确定长方体。 b) By center,corner,Z:用外接圆在工作平面定义长方体的底,用Z方向的坐标定义长方体的厚度。 c) By dimensions :通过指定长方体对角线两端点的坐标来定义长方体。 1.3 Cylinder :定义圆柱体 a)solid cylinder :圆柱体,通过圆柱底面的圆心和半径,以及圆柱的长度定义圆柱 b)hollow cylinder(空心圆柱体):通过空心圆柱体底面圆心和内外半径,以及长度定义空心圆柱 c)partial cylinder(部分圆柱):通过空心圆柱底面圆心和内外半径,以及圆柱开始和结束角度,长度来定义任意弧长空心圆柱。 d)by end pts&Z :通过圆柱体底面直径两端的坐标和圆柱长度来定义圆柱 e)By dimensions:通过圆柱内外半径、圆柱两底面Z坐标、起始和结束角度来定义圆柱。 1.4 Prism :棱柱体 a) Triangular:通过定义正三棱柱底面外接圆圆心与棱柱高度来定义正三棱柱 b) Square、pentagonal、hexagonal、septagonal、octagonal分别为正四棱柱、五棱柱、六棱柱、七棱柱、八棱柱。其体操作与正三棱柱生产方法类似。 c) By inscribed rad:通过正棱柱底面内切圆和棱柱高来定义正棱柱。 d) By circumscr rad:通过正棱柱底面外接圆和棱柱高来定义正棱柱。 e) By side length:通过正棱柱底面边长、边数、棱柱高来定义正棱柱。 f) By vertices :通过棱柱底面多边形定点和棱柱高来定义不规则的棱柱。 1.5 Sphere :球体 a) Solid sphere(实心球体):通过球心和半径来定义实心球体。 b) Hollow sphere(空心球体):通过球心和内外球半径来定义空心球体。 c) By end points:通过球直径定义球体。 d) By dimensions:通过球的尺寸定义球体。 1.6 Cone :圆锥体 a) By picking:通过在工作平面上定位圆锥体底部圆的圆心和半径以及圆锥体的高来定义圆锥体。 b) By dimensions:通过圆锥体尺寸定义圆锥体 1.7 Torus :圆环体

ansys后处理结果图形的处理

a n s y s后处理结果图形 的处理 标准化管理处编码[BBX968T-XBB8968-NNJ668-MM9N]

ansys后处理结果图形的处理 对体和面来说,ANSYS默认的结果输出格式是云图格式,而这种彩色云图打印为黑白图像时对比很不明显,无法表达清楚,这对于发表文章来说是非常不便的。发文章所用的结果图最好是等值线图,并且最好是黑白的等值线图。笔者原来进行这项工作时一般借用photoshop等第三方软件,很麻烦,并且效果不好。现通过摸索,发现通过灵活运用ansys本身也能实现这项功能。现将步骤写给大家,感谢simwe对我的帮助。 (1)将要输出的结果调出,这时为彩色云图; (2)将云图转换为等值线图的形式 GUI:plotCtrls—>Device Options—>[/DEVI]中的vector mode 选为on 命令:/DEVICE,VECTOR,1 这时结果为彩色等值线,若直接输出,打印为黑白图像时仍然不清晰,为此需进行以下几步将图像转换为黑白形式; (3)将背景变为白色 命令:jpgprf,500,100,1 /rep (4)对等值线中的等值线符号(图中为A,B,C等)的疏密进行调整 GUI:plotCtrls—>Style—>Contours—> Contours Labeling 在Key Vector mode contour label 中选中on every Nth elem,然后在N= 输入框中输入合适的数值,例如5,多试几次,直到疏密合适 命令:/clabel,1,5 (5)将彩色等值线变为黑色

GUI:plotCtrls—>Style—>Colors—>Contours Colors 将Items Numbered 1,Items Numbered 2等复选框中的颜色均选为黑色,图像即可变为黑白等值线图像命令:/color,cntr,whit,1 等等 (6)最后一步:出图 GUI:plotCtrls—>Capture Image 希望对大家能有所帮助。 一个使生成的图片在word里面比较好看的方法: 1、Plotctrls>Redirect Plots>To png file 2、选“Force White BG and Black FG",然后把Pixle resolution 换到1200!

ANSYS后处理(结果查看)

一、显示某个时间点的温度云图 1、General Postproc →Read Result →By Time/Freq 2、在跳出的窗口中输入时间点,点击OK按钮 3、然后点Plot Results按下图操作

3、然后点击plot →Replot即可显示该时刻的云图 二、提取某个节点的数值 1、首先通过下列命令,选择部分单元 nsel,s,loc,x,0,0.025 esln,all 然后读取所需节点的编号。 2、点击时间历程后处理器TimeHist postproc弹出如箭头所指对话框。 点击图对话框左上角的绿色增加按钮

弹出对话框 点击ok按钮,在弹出的对话框中输入节点编号,或者鼠标点击选择节点即可将新的数据读入对话框中如下图所示 然后即可通过窗口上的按钮对数据进行操作处理。

/POST1 set,last !定义数据集从结果文件中读出,last表示读取最后的数据集plnsol,s,eqv !以连续的轮廓线形式显示结果,S表示应力,EQV表示等效应力 查看某个截面的云图 !-----------------选取节点结果 /post1 !seltol,1.0e-10 set,,,,,2.5 !nsel,s,loc,y,0.1,0.1 nsel,s,loc,x,0.02 /page,99999,132,99999,240 !-------------------显示某个截面 wprota,,,90 wpoffs,,,0.02 /CPLANE,1 !指定截面为WP /TYPE,1,5 !结果显示方式选项 工作平面移回全局坐标原点 WPCSYS,-1 nsel,s,loc,x,0,0.025 esln,,1,ACTIVE

ansys材料定义

混凝土 $ *MAT_ELASTIC_PLASTIC_HYDRO $1,2.3,0.13,3.2E-4,,-5.E-5,1. $,,3 2,2.4,0.126,2.5E-4,,-5.E-5,0.4 ,,3. *EOS_GRUNEISEN 2,0.2500,1.0,0.,0.,1.9,0.0 0.,1. $ $国际单位 *MAT_ELASTIC_PLASTIC_HYDRO_SPALL $1,2.3,0.13,3.2E-4,,-5.E-5,1. $,,3 2,2.4E+03,0.126E+11,2.5E+7,,-5.E+6,0.4E+11 ,,3. *EOS_GRUNEISEN 2,0.2500E+4,1.0,0.,0.,1.9,0.0 0.,1. $ 混凝土参数 密度 2.4g/cm剪切模量 12.6Cpa屈服应力 25Mpa抗拉强度 5Mpa失效应变 0.4 GRUNEISEN状态方程参数 C=2500m/s S1=1.0 S2=0 S3=0 ω=1.9 A=0 E0=0 V0=1 sdyyds混凝土随动硬化模型 *mat_plastic_kinematic 3 2100 3.00e+10 0.18 2.0e+07 0 0 0.002 *mat_plastic_kinematic 2 2600 4.75e+10 0.18 6.0e+07 4.75e+09 0 99.3 1.94 0.004

取自龚自明防护工程混凝土靶体尺寸及边界约束对侵彻深度影响的数值模拟*MAT_JOHNSON_HOLMQUIST_CONCRETE 4,2.4,0.123,0.79,1.60,0.007,0.61,2.4E-4 2.7e-5,1.0e-6,0.01,7.0,8.0e-5,5.6e-4,1.05e-2,0.1 0.04,1.0,0.174,0.388,0.298 取自龚自明防护工程 BLU-109B侵彻厚混凝土靶体的计算与分析 *MAT_JOHNSON_HOLMQUIST_CONCRETE 4,2.4,0.132,0.79,1.60,0.007,0.61,3.22E-4 3.15e-5,1.0e-6,0.01,7.0,1.08e-4,7.18e-4,1.05e-2,0.1 0.04,1.0,0.174,0.388,0.298 取自蔡清裕国防科技大学学报模拟刚性动能弹丸侵彻混凝土的FE-SPH方法*MAT_JOHNSON_HOLMQUIST_CONCRETE mid RO G A B C N FC 1, 2.2,0.164,0.75,1.65,0.007,0.61,4.4e-4 T EPS0 EFMIN SFMAX PC UC PL UL 2.4e-5,1.0e-6,0.01,11.7,1.36e-4,5.8e-4,1.05e-2,0.1 D1 D2 K1 K2 K3 FS 0.03,1.0,0.174,0.388,0.298 取自凤国爆炸与冲击《大应变。高应变率及高压下混凝土的计算模型〉 *MAT_JOHNSON_HOLMQUIST_CONCRETE 2,2.44,0.1486,0.79,1.60,0.007,0.61,4.8E-4 4.0e-5,1.0e-6,0.01,7.0,1.6E-4,0.001,8.0E-3,0.1 0.04,1.0,0.85,-1.71,2.08 取自宋顺成爆炸与冲击弹丸侵彻混凝土的SPH算法 *MAT_JOHNSON_HOLMQUIST_CONCRETE 1,2.4,0.1486,0.79,1.60,0.007,0.61,1.4e-4 4.0e-5,1.0e-6,0.01,7.0,1.6e-4,0.001,8.0E-3,0.1 0.04,1.0,0.174,0.388,0.298 *Mat_johnson_holmquist_concrete

ansys后处理及GUI操作大全

第12章创建几何模型结果显示 12.1 利用GUI来显示几何模型结果 在显示几何结果时,可以在模型单元的后处理显示中检查解结果。几何结果的显示包括变形后形状、结果等值线(包括线单元"等值"线,例如力矩图)、向量(箭头)结果,(例如热流向量显示)。仅在通用后处理器POST1中才可使用这些显示。图12-1说明了一个典型的几何结果显示。 图12-1等值线结果显示图 创建和控制几何结果显示最简便的方法是使用Utility Menu>Plot和 utility Menu>Plotctrls中的允许功能。另外,还可以用下节所述的图形作用和控制命令。 12.2 创建结果的几何显示 下列命令在POST1中创建结果的几何显示 表12-1创建结果的几何显示的命令

在图12-2中,典型的结果的几何显示(在这个例子中,用PLNSOL命令创建)描述了包含在这样的显示中的信息类型

图12-2一个典型的ANSYS结果显示 12.3 改变POST1结果显示规范 除了阅读下表所列出的信息外,还要参见第8章的通用图形说明,它可以应用于包含几何显示在内的各种显示。 12.3.1 控制变形后形状显示 可以用两种方法控制变形后形状显示 ·重叠没有移位和发生移位的形状。通过比较发生移位前后的形状,结构移位的形状显示将会更有意义。可以用PLDISP命令中的KUND变元重叠没有移位和发生移位的形状。

·放大失真显示的位移:在大多数小变形结构分析中,产生位移后的形状难以舆没有产生位移前的形状分开,在这种情况下,软件会在结果显示上自动放大位移量,这样,效果将更加清晰。可以用/DSCALE命令(Utility Menu>Plotctrls>Style>Displacement Scaling)来调整放大因子。软件把0作为缺省设置值(DMULT=0),这使位移量自动缩放到一个适合观察的值。因此,要获得"零"位移(即无失真的显示),必须设置DMULT=OFF 12.3.2 在结果显示中控制矢量符号 有两种选项用于控制矢量符号: ·显示节点或反作用力符号。使用/PBC命令(Utility Menu>Ployctrls>Symbol)将箭头符号加到结果显示中表示节点力和反作用力(和力矩)。 ·矢量长度的缩放:可以用下列方法之一来控制矢量符号(如/PLVECT或 /PBCDE的显示)的长度: 命令: /VSCALE GUI: Utility Menu>Plotctrls>Style>Vector Arrow Scaling 12.3.3 控制等值线显示 当光源着色被打开时,等值线图例显示的颜色与着色模型显示所用的等值线颜色不完全配合。可以用下列方法调整等值线显示: ·给等值线加标号。在矢量模式与光栅模式中,通常自动进行等值线颜色编码,在矢量模式中,用/CLABEL命令(Utility Menu>Plotctrls>Style>Contour>Contour >Labeling)加入字母等值线标识(和等值线图例)。在光栅模式中,/CLABEL命令增加(或移走)等值线图例。 ·控制等值线图例。有时,图例栏中的图例文本会导致部分等值线图例被截去。可以用/PLOPTS,LEG1,0命令(Utility Menu>Plotctrls>Window Controls>Window Options)使等值线图例获得更大的空间。从等值线栏中移走等值线图例,用/PLOPTS,LEG3,0。 ·改变等值线标识的号码。在矢量模式中,如果应用了等值线标识,缺省时,它们将出现在被等值线穿越的每个单元中。可以用/CLABEL命令来控制每个单元的字母等值线标识的号码。

ANSYS结构分析-材料模型

ANSYS 结构分析材料模型 1 材料模型的分类 a. ANSYS 结构分析材料属性: 线性(Linear)、非线性(Nolinear)、密度(Density)、热膨胀(Thermal Expansion)、阻尼(Damping)、摩擦系数( Friction Coefficient)、特殊材料(Specialized Materials) 等七种,可通过材料属性菜单分别定义。 b. 材料模型: 线性、非线性及特殊材料三类,每类材料中又可分为多种材料类型,而每种材料类型则有不同的属性。 2 材料模型的定义及特点 材料模型及其属性均可通过GUI 方式输入。线弹性材料可通过MP 命

令输入,而非线性及特殊材料则通过TB 命令定义,其属性则通过TBDATA 表输入。 表中前几项是常用的塑性材料模型,其后部分的材料模型有专用材料模型和可与前几项组合使用的材料模型。 表中屈服准则列中的Mises/Hill,指针对不同的单元分别采用Mises 屈服准则或Hill屈服准则,凡是可以考虑塑性的所有单元均可采用二者。 常用的单元 杆单元:LINK8、LINK10、LINK180 梁单元:BEAM3、BEAM4、BEAM188、BEAM189 管单元:PIPE16、PIPE20 2D 实体单元:PLANE82、PLANE183 3D 实体单元:SOLID65、SOLID92/95、SOLID191 壳单元:SHELL63、SHELL93、SHELL181 弹簧单元:COMBIN14、COMBIN39 质量单元:MASS21 矩阵单元:MATRIX27 表面效应单元:SURF154

ANSYS后处理总结

问题:ANSYS如何出等值线图 求解完成后,绘制Y方向变形图,如下图所示: 在出等值线图前要确保colors and numbers按钮处于开启状态,已防止等值线上没有字母。(路径为plotcrtls->numbering->numbering shown with ) (1)显示等值线

plotcrtls->device options->vector mode wireframe: on,也可以在等值线条上点击右键进行该操作。 (2)调整等值线的数目 plotcrtls -> style -> contours -> uniform contours: NCONT Number of contours 填入等应力线的数量,并且在此路径下有:

应力最大值 增量 使得等值线呈现整数。 存在问题: (1)数值的单位能不能改,比如:单位为pa,能否变换为MPa? (2)如何画不等距的等值线, (3)如果可以画不等距的等值线,那么能否能画超过9条的不等距等值线?(3)调整等值线上字母的疏密 plotcrtls ->style ->contours->contour labeling->Key vector mode countour labels: on every Nth els 填入一个数字看效果,直到觉得在每条等应力线边上的字 母数差不多为止。

(4)调整等值线的颜色 plotcrtls -> style -> colors -> banded contours colors: band color 选择选定等应力线的颜色,选定等应力线由下面的N1,N2,INC决定(此操作我很少使用,因为觉得自定义的颜色已经很少用,况且一般出等值线为黑白色)

最新ANSYS材料模型汇总

A N S Y S材料模型

第七章材料模型 ANSYS/LS-DYNA包括40多种材料模型,它们可以表示广泛的材料特性,可用材料如下所示。本章后面将详细叙述材料模型和使用步骤。对于每种材料模型的详细信息,请参看Appendix B,Material Model Examples或《LS/DYNA Theoretical Manual》的第十六章(括号内将列出与每种模型相对应的LS-DYNA材料号)。 线弹性模型 ·各向同性(#1) ·正交各向异性(#2) ·各向异性(#2) ·弹性流体(#1) 非线弹性模型 ·Blatz-ko Rubber(#7) ·Mooney-Rivlin Rubber(#27) ·粘弹性(#6) 非线性无弹性模型 ·双线性各向同性(#3) ·与温度有关的双线性各向同性(#4) ·横向各向异性弹塑性(#37) ·横向各向异性FLD(#39) ·随动双线性(#3) ·随动塑性(#3) ·3参数Barlat(#36) ·Barlat各向异性塑性(#33)

·与应变率相关的幂函数塑性(#64) ·应变率相关塑性(#19) ·复合材料破坏(#22) ·混凝土破坏(#72) ·分段线性塑性(#24) ·幂函数塑性(#18) 压力相关塑性模型 ·弹-塑性流体动力学(#10) ·地质帽盖材料模型(#25) 泡沫模型 ·闭合多孔泡沫(#53) ·粘性泡沫(#62) ·低密度泡沫(#57) ·可压缩泡沫(#63) ·Honeycomb(#26) 需要状态方程的模型 ·Bamman塑性(#51)·Johnson-Cook塑性(#15)·空材料(#9) ·Zerilli-Armstrong(#65) ·Steinberg(#11) 离散单元模型 ·线弹性弹簧

ansys后处理技巧

让ansys中途停止计算 计算中途停止计算:假如觉得计算时间太长或感觉某些方面设置不对要求重新计算或停止计算,提前查看已经计算的结果(直接关闭ANSYS方法显然不可取),可以在计算的时候按ctrl+c,这样计算就停止了,然后在output 窗口中输入quit 就可以退出计算。 绘制等值线 期刊上大都不用彩色,所以打出的云图一片模糊,无法识别,这时候可以选择出等值线图,但是等值线图也是彩色的,如何把它转成黑白的呢?开始是抓图后用Photoshop处理,太麻烦,ansys自己行不行呢? 方法如下: 1 用命令jpgprf,500,100,1将背景变为白色; 2 plotctrls>device option中,把vector mode改为on,画出等值线图; 3 plotctrls>style>contour>contour labeling, 将key vector mode contour labels设为on every Nth ele,对N输入一个数值,值越大,图中的label越少; 4 plotctrls>style>colors>contour colors,将所有的系列都改为黑色; 5 如果不喜欢ansys给出的MX,MN标志,可以用plotctrls>window controls>window options把它们去掉,将MINM 后的Mix-Min Symbols改为off就可以了。 这时候,一幅清晰的黑白等值线图就出来了。 ansys如何美化你的输出 嗯,先拿个例子,如当你list nodal solution时,可能会生成如下的结果

NODE UX 1 0.0000 2 -0.68950E-02 3 0.52000E-05 4 -0.69579E-05 5 -0.40977E-04 6 -0.10699E-03 7 -0.22181E-03 8 -0.40028E-03 9 -0.65161E-03 10 -0.98022E-03 11 -0.13885E-02 12 -0.18956E-02 13 -0.25216E-02 14 -0.32836E-02

Ansys材料参数的定义问题

材料参数的定义问题 我想用过ANSYS的人都知道:ANSYS计算结果的精度,不仅与模型,网格,算法紧密相关,而且材料参数的定义正确与否对结果的可靠性也有决定性的作用,为方便大家的学习,本人就用过的一些材料模型,作出一些总结,并给出相关的命令操作,希望对从事ANSYS应用的兄弟姐妹们有所帮助,水平有限,不对之处还望及时纠正. 先给出线性材料的定义问题,线性材料分为三类: 1.isotropic:各向同性材料 2.orthotropic:正交各向异性材料 3.anisotropic:各向异性材料 1. isotropic各向同性材料的定义: 这种材料比较普遍,而且定义也非常简单,只需定义两个常数:EX, NUXY NUXY默认为0.3,剪切模量GXY默认为EX/(2(1+NUXY)),如果你定义的是各向同性的弹性材料的话,这个参数一般不用定义.如果要定义,一定要和公式: EX/(2(1+NUXY))的值匹配,否则出错,另泊松比的定义一般推荐不要超过0.5. 相关命令,例如: mp,ex,1,300e9 mp,nuxy,1,0.25 2.orthotropic:正交各向异性材料: 这种材料也是比较常见的,不过定义起来稍微麻烦一点,需定义的常数 有: EX, EY, EZ, NUXY, NUYZ, NUXZ, GXY, GYZ, GXZ 注意:在这里没有默认值,就是说,如果你某些参数不定义的话,程序会提示出错,比如:XY平面的平面应力问题,如果你只定义了EX, EY,程序将提示你,这是正交各向异性材料, GXY, NUXY是必须的. 相关命令,例如: mp,ex,1,300e9 mp,ey,1,200e9 mp,nuxy,1,0.25 mp,gxy,1,170e9 … 3.anisotropic:各向异性材料: 各向异性材料定义起来较为复杂,这里我只作些简单的说明,更详细的资料,大家可以去看帮助.对于各向异性弹性材料的定义,需要定义弹性系数矩阵,这个矩阵是一个对称正定阵,因而输入的值一定要为正值. 弹性常数矩阵如下图所示,各向异性体只有21个独立的弹性常数,因而我们也就只需输入21个参数即可,而且对于二维问题,弹性常数缩减为10个.弹性系数矩阵可以用刚度或柔度两种形式来定义,自己根据情况选用,输入的时候,可以通过菜单或者TB命令的TBOPT选项来控制. 相关的命令流,例如: tb,anel,1

ANSYS后处理中应力查看总结

ANSYS后处理中应力查看总结 ------------------------------------------------------------------------------------------------------- SX:X-Component of stress;SY: Y-Component of stress;SZ: Z-Component of stress,X,Y,Z轴方向应力 SXY:XY Shear stress;SYZ:YZ Shear stress;,SXZ:XZ Shear stress,X,Y,Z三个方向的剪应力。 S1:1st Principal stress;S2: 2st Principal stress;,S3:3st Principal stress 第一、二、三主应力。区分:首先把一个微元看成是一个正方体,那么假设三个主应力分别是F1 F2 F3,那么如果三个力中哪个力最大,就是F1,也是最大主应力,也叫第一主应力,第二大的叫第二主应力,最小的叫第三主应力,因此,是根据大小来定的。

SINT:stress intensity(应力强度),是由第三强度理论得到的当量应力,其值为第一主应力减去第三主应力。 SEVQ:Von Mises是一种屈服准则,屈服准则的值我们通常叫等效应力。Ansys后处理中 'Von Mises Stress'我们习惯称Mises等效应力,它遵循材料力学第四强度理论(形状改变比能理论)。 我们分析后查看应力,目的就是在于确定该结构的承载能力是否足够。那么承载能力是如何定义的呢?比如混凝土、钢材,应该就是用万能压力机进行的单轴破坏试验吧。也就是说,我们在ANSYS计算中得到的应力,总是要和单轴破坏试验得到的结果进行比对的。所以,当有限元模型本身是一维或二维结构时,通过查看某一个方向,如plnsol,s,x等,是有意义的。但三维实体结构中,应力分布要复杂得多,不能仅用单一方向上的应力来代表结构此处的确切应力值——于是就出现了强度理论学说。 材料力学中的四种强度理论

ansys后处理常用命令

结合自身经验,谈ANSYS中的APDL命令(一) 发表时间:2009-4-7 作者: 倪欣来源: e-works 关键字: ansys APDL 命令流 在ANSYS中,命令流是由一条条ANSYS的命令组成的一个命令组合,这些命令按照一定顺序排布,能够完成一定的ANSYS功能,本文是作者结合自身经验所总结的一些命令。 在ANSYS中,命令流是由一条条ANSYS的命令组成的一个命令组合,这些命令按照一定顺序排布,能够完成一定的ANSYS功能,这些功能一般来说通过菜单操作也能够实现(而那些命令流能够实现,菜单操作实现不了的单个命令比较少见)。 以下命令是结合我自身经验,和前辈们的一些经验而总结出来的,希望对大家有帮助。 (1).Lsel, type, item, comp, vmin, vmax, vinc, kswp 选择线 type: s 从全部线中选一组线 r 从当前选中线中选一组线 a 再选一部线附加给当前选中组 au none u(unselect) inve: 反向选择 item: line 线号 loc 坐标 length 线长 comp: x,y,z kswp: 0 只选线 1 选择线及相关关键点、节点和单元 (2).Nsel, type, item, comp, vmin, vmax, vinc, kabs 选择一组节点 type: S: 选择一组新节点(缺省) R: 在当前组中再选择 A: 再选一组附加于当前组 U: 在当前组中不选一部分 All: 恢复为选中所有 None: 全不选 Inve: 反向选择 Stat: 显示当前选择状态 Item: loc: 坐标 node: 节点号 Comp: 分量 Vmin,vmax,vinc: ITEM范围 Kabs: “0”使用正负号 “1”仅用绝对值 (3).Esel, type, item, comp, vmin, vmax, vinc, kabs 选择一组单元 type: S: 选择一组单元(缺省)

ANSYS中材料非线性模型介绍与选择

1.强化 应力达到屈服点后,继续加载(如果切线弹模大于0),有塑形变形,应力升高,然后卸载,这时是弹性的,再加载还是弹性的,直到应力得到卸载时的应力值才开始新的屈服。这种屈服点升高的现象称为强化。 强化机理:塑性变形对应于微观上的位错运动。在塑性变形过程中不断产生新的位错,位错的相互作用提高了位错运动的阻力。这在宏观上表现为材料的强化,在塑性力学中则表现为屈服面的变化。各种材料的强化规律须通过材料实验资料去认识。利用强化规律得到的加载面(即强化后的屈服面)可用来导出具体材料的本构方程。 强化规律比较复杂,一般用简化的模型近似表示。目前广泛采用的强化模型是等向强化模型和随动强化模型。 2.等向强化 如果材料在一个方向屈服强度提高(强化)在其它方向的屈服强度也同时提高,这样的材料叫等向强化材料。等向强化模型假设,在塑性变形过程中,加载面作均匀扩大,即加载面仅决定于一个强化参量q。如果初始屈服面是f*(σij)=0,则等向强化的加载面可表为:f(σij)=f*(σij)-C(q)=0, 式中σij为应力分量;C(q)是强化参量q的函数。通常q可取为塑性功或等效塑性应变 式中dε为塑性应变ε的增量;式中重复下标表示约定求和。

3.随动强化 如果材料在应该方向的屈服点提高,其它方向的屈服应力相应下降,比如拉伸的屈服强度提高多少,反向的压缩屈服强度就减少多少,这样的材料叫随动强化材料。 随动强化模型假设,在塑性变形过程中,加载面的大小和形状不变,仅整体地在应力空间中作平动。以αij代表加载面移动矢量的分量,则加载面可表为:f(σij)=f*(σij-αij)=0, 式中可取αij=Aε,A为常数。 4.材料模型选择 对于多数实际材料,强化规律大多介于等向强化和随动强化之间。在加载过程中,如果在应力空间中应力矢量的方向(或各应力分量的比值)变化不大,则等向强化模型与实际情况较接近。由于这种模型便于数学处理,所以应用较为广泛。随动强化模型考虑了包辛格效应,可应用于循环加载和可能反向屈服的问题中。 为了简化计算,常常将强化模型作某些简化。例如,在等向强化模型中,C(q)可进一步假设是塑性功的线性函数或幂次函数,所得到的模型分别称为线性强化模型和幂次强化模型。 等向强化模型假定材料在塑性变形后,仍保持各向同性的性质,忽略了由于塑性变形引起的各向异性的影响,因此,只有在变形不大,以及应力偏量之间的相互改变比例不大时,才能比较符合实际。 随动硬化模型中,弹性卸载区间是初始屈服应力的两倍,根据这

ansys材料模型

各向同性弹性模型 各向同性弹性模型。使用MP命令输入所需参数: MP,DENS—密度 MP,EX—弹性模量 MP,NUXY—泊松比 此部分例题参看B.2.1,Isotropic Elastic Example:High Carbon Steel。 B.2.1. Isotropic Elastic Example: High Carbon Steel MP,ex,1,210e9 ! Pa MP,nuxy,1,.29 ! No units MP,dens,1,7850 ! kg/m3 双线性各向同性模型 使用两种斜率(弹性和塑性)来表示材料应力应变行为的经典双线性各向同性硬化模型(与应变率无关)。仅可在一个温度条件下定义应力应变特性。(也有温度相关的本构模型;参看Temperature Dependent Bilinear Isotropic Model)。用MP命令输入弹性模量(Exx),泊松比(NUXY)和密度(DENS),程序用EX和NUXY值计算

体积模量(K)。用TB和TBDATA命令的1和2项输入屈服强度和切线模量: TB,BISO TBDATA,1, (屈服应力) Y TBDATA,2, E(切线模量) tan 例题参看B.2.7,Bilinear Isotropic Plasticity Example:Nickel Alloy。 B.2.7. Bilinear Isotropic Plasticity Example: Nickel Alloy MP,ex,1,180e9 ! Pa MP,nuxy,1,.31 ! No units MP,dens,1,8490 ! kg/m3 TB,BISO,1 TBDATA,1,900e6 ! Yield stress (Pa) TBDATA,2,445e6 ! Tangent modulus (Pa) 双线性随动模型 (与应变率无关)经典的双线性随动硬化模型,用两个斜率(弹性和塑性)来表示材料的应力应变特性。用MP命令输入弹性模量

相关文档