文档库 最新最全的文档下载
当前位置:文档库 › 电力电子技术在电力系统中的应用及发展

电力电子技术在电力系统中的应用及发展

电力电子技术在电力系统中的应用及发展
电力电子技术在电力系统中的应用及发展

电力电子技术在电力系统中的应用及发展摘要:随着计算机应用技术在电力系统中的不断发展和普及化,对于电力电子技术的重视程度也越发增加。面对我国电力系统的不断建设和庞大的用电量,电力电子技术为我国当代电力生产供应系统提供了良好的技术平台,为电力系统的发电、配电、输电功能给予了支持。

关键词:电力电子技术;电力系统;应用及发展

Application and Development of Power Electronic Technology in

Power System

Abstract: With the continuous development and popularization of computer application technology in power system, the importance of power electronics technology is increasing. In the face of the continuous construction of China's power system and huge power consumption, power electronic technology for China's contemporary power production and supply system provides a good technology platform for power system power generation, distribution, transmission function to support.

Key words: power electronics technology; power system; application and development

0 前言

电力电子技术是综合了电子技术、控制技术和电力技术而发展起来的应用性很强的新兴学科[ 1]。作为一门学科, 其发展始于 1956 年贝尔实验室发明晶闸管,其后经历了上世纪六七十年代的整流器时代(工频), 七八十年代的以 0 ~ 100 Hz 的 G TR 、G TO 为主角的变频调速、高压直流输出、静止或无功补偿等中低频范围应用的逆变器、变频器时代, 至八九十年代以功率 M OSFET 和 IGBT 为代表 , 集高频、高压和大电流于一身的功率半导体复合器件的出现,表明以低频技术处理问题为主的传统电力电子技术已进入以高频技术处理问题为主的现代电力电子时代。电力电子技术是电工技术中的新技术, 是电力与电子技术(强电和弱电技术)的融合, 已在国民经济中发挥着巨大作用, 对未来输电系统性能将产生巨大影响。目前电力电子技术的应用已涉及电力系统的各个方面, 包括发电环节、输配电系统、储能系统等等[2]。

1 电力电子技术的发展进程

众所周知,晶体管的出现标志着固态电子时代的到来,可以说晶闸管的诞生意味着电子技术将奔向更高的发展轨道。近几年,随着各种高端技术不断涌现,电力电子技术得到了发展,应用范围越来越广泛。回顾电力电子技术的发展历程,可以总结出电力电子技术经历了晶闸管时代、逆变时代和变频时代三个阶段。[3]

首先是晶闸管时代,晶闸管时代也叫作晶闸管整流时代,在上世纪六十年代和七十年代中取得了较为优异的成绩。在当时主要是用过50HZ的交流发电机为工业生产提供大功率服务,而直流供电仅占一小部分。当代,我国诸多电厂为满足工业生产供电需求,急需将交流电转换成直流电,因此,大功率的晶闸管和硅整流器顺势而生,可以从根本上解决直流电的供电需求,从此便进入了晶闸管整流时代[4]。

其次是逆变时代,在上世纪七十年代后,世界范围内出现了严重的能源危机,人们对节约能源越加关注,国家为缓解能源危机,制定了节能减排的发展战略,未响应国家号召,工业生产常使用交流电机。在此背景下,自关断器件得到开发和利用,随之进入电力电子技术的逆变时代。逆变就是将直流电转换成交流电,可以有效节约能源,提高工业生产效率,其中就包括GTO、GTR以及大功率逆变晶闸管。

最后是变频器时代,在逆变时代中,虽然有效的将直流电转换成交流电,实现了电流的逆变的整流,但相对来讲,逆变的工作效率较低,无法满足工业生产的供电需求,继而在上世纪八十年代后期,为提高电力供电效率,集成电路应运而生。集成电路可以将高压大电流技术和经济加工技术完美融合,从此进入电力电子变频器时代,电力电子技术得到进一步发展。在此时期,电力电子器件所处的环境越加复杂,各器件的结构也随之越来越紧密,功能越来越强大,这也标志着电力电子技术未来应朝着高频化的方向发展。[5]

2 电力电子技术在电力系统中的应用

2.1 电力电子技术在发电环节中的应用

电力电子技术在发电环节中的应用,主要体现在发电机组的励磁控制和变频调速上。在我国范围内乃至全球范围内的各个大型电厂发电机组中,运用的最为普遍的就是静止励磁系统,电力电子技术的发展,使电子技术取代了励磁控制中的励磁机环节,使静止励磁实现了简单的控制构造和高性能低成本的运作。[6]同时由于电子技术代替了励磁机的环节,使静止励磁能够对自身进行迅速有效的调节,提高电力系统的运作效率。

其次,电子技术也普遍应用在电厂发电机组的变速恒频励磁上。由于在水力发电中,水源头的压力和单位时间内水力的流动量对水力发电的效率产生着影响,水力发电机组的运转速度也在随着水力的压力和流动量不断变化。同样的道理也发生在风力发电和活力发电当中。因此,对发电机组转动的励磁电流频率进行调整,使发电机组的电流频率同转速通过电子技术达到一致,保证发电机组实现最大功效的运作,变速恒频励磁技术就是其中的代表。

同时,电子技术也应用于电厂的风机水泵的变频调速上和太阳能发电控制机组的控制系统中。在电厂的电力生产过程中,由于发动机组等设备对于发电量的损耗相对较大,考虑电力生产中节约能源的要求。在高压电和低压电的转换过程中,使用风机水泵变频机替代原有的变频器,改变电能转换过程中耗能大效率低的问题。这一技术还在不断完善和摸索中,还需要电力研究工作者不断的努力和创新。[7]

而在太阳能发电的控制系统中,电子技术的作用尤为突出,太阳能作为21世纪被广泛

重视的新型能源,发展太阳能发电产业是整个国家乃至全世界的战略目标。然而由于太

阳能发电本身的功率过大,在使用太阳能发电机组发电的时候,需要将生产出来的电能进行转换,这个时候就需要大功率的电流转换器。而电子技术能够很好的解决这一问题。

2.2 电力电子技术在输电线路中的应用

电力电子技术在输电线路中的应用主要体现在柔性交流电技术、高压直流电技术以及静止无功补偿器等上。

(1)柔性交流输电技术[8]

柔性交流输电技术(FACTS)产生于上世纪的80年代,主要以柔性的交流输电设备为表现方式广泛应用于输电线路中。在电力的输送过程中,由于传统电力功率的控制方法过于粗糙,无法实现在输电过程中对于电能的调整,使输电过程中产生大量的电力损耗和高昂的输送成本。而柔性交流输电技术的主要内容是在输电线路的重要部位使用电力电子控制装置,对输电系统中的各项参数进行适时的控制,以实现输送过程中电能功率的合理分配,降低输电过程中的输送成本和电能消耗,大幅度的提高电力系统的稳定性和可靠性。

(2)高压直流输电技术

高压直流输电技术在输电系统中的主要实现是以晶闸管为代表的。晶闸管是电力电子技术发展的一个重要发明,自从晶闸管产生并被尝试应用于直流电的输电系统上,晶闸管换流阀就一直应用于输电系统中的直流电输送中。在这之后又出现了具有可操作的电力输送控制器,例如GTO、IGBT等等,可操作的电力系统输送设备为电流的转换过程减少了交直转换变压器的使用,为电厂的电能生产减少了生产成本,加强了电流交换设备在电力系统中的

竞争力。

(3)静止无功补偿器

静止无功补偿器(SVC)在上世纪70年代被广泛使用电力系统之中,静止无功补偿器在电力系统中被广泛应用于负荷补偿和输电线路补偿当中,在大功率的输电网络中,静止无功补偿器主要起到的是控制电压的作用,也用于提高系统的稳定性和阻尼等。[9]静止无功补偿器的设计不包含旋转部件,它不使用大容量的电容器,所需要的无功功率通过电感器来获得,静止无功补偿器通过对电抗器进行迅速的调控,能够实现发出无功功率到吸收无功功率的平滑转变,特别适用于中高压输电线路中的无功补偿工作。

2.3 电力电子技术在配电过程中的应用

要使配电系统能够配送出高质量的电力资源,需要在配电过程中满足配电频率、电压以及在谐波上满足相应的条件,同时,在配电过程中需要阻止电能的各种不稳定的波动和影响。这个过程中,电力电子技术作为配电环节的质量控制部分,以用户电力技术和FACTS技术为实现形式。FACTS技术在前文已经提及,它是通过在配电线路中增设电力电子装置,加强对与电压,电流和功率的可控性,调控电力传输能力的技术。用户电力技术解决的是配电系统中既时发生的需要马上解决的重要问题,主要复负责配电系统在配电过程中的安全性和稳定性,用于保证配电输电过程中,电力能源的质量。[10]而FACTS技术则更为倾向于配电系统中

对于电能的输送能力和有效控制力。FACTS技术和用户电力技术都是针对配电系统开发出的新型电力电子技术,两者的构造和工作原理大致上相同,随着电子技术的不断发展,在近些年,FACTS技术和用户电力技术在一定程度上已经逐步同步并合用,其中比较具有代表性的就是定制电力(DFACTS)技术。

2.4 电力电子技术在电力系统节能方面的应用

电子技术在电力系统节能方面的应用主要体现在两个方面,分别是:变负荷电动机调速运行方面和提高电能使用率方面。电厂生产电能和配送电过程中,常常产生大量的电能浪费。上文已述,电厂在生产电能的过程中,由于发电能源的变化,发电机组不能够很好的实现配合,会产生无功功率的浪费现象。通过对变负荷电动机的运转速度进行调整和控制,能够实现电能的良好生产和配用。这项技术在国外已经比较成熟,但是我国仍然处在研究和探索的阶段。但是,变负荷电动机在实际的应用中也存在不可忽视的缺陷,变负荷电动机在控制和调控运转速度方面适用的发电机组较为广泛,在实际运行中的工作效率也十分准确。但是变负荷电动机的生产和配置成本较高,而且在工作过程中对电网的影响较大,只适用于中大型电厂。[11]同时,我国电力系统现用的电力设备,在配送电的过程中,对于电能的损耗和生产的成本较高,对于电能的质量影响较大。而电子技术能够通过在配送电系统中增设可控设备,对配送电过程中的电能进行调控,保证电能的质量和稳定。

3 总结

电力电子技术在电力系统中的应用和发展对于电力系统的建设和发展起到了里程碑的作用。随着计算机技术和电力技术的不断发展,电力电子技术也在不断的吸收新的技术不断的发展。然而,作为一种处在发展过程中的电力控制技术。电力电子技术在电力系统中的应用和稳定性还远远不能够达到电力电子技术的设计要求。如何实现电力电子技术在电力系统中应当起到的控制作用,我们要从电子设备的革新和电力电子技术的不断发展上谋求出路,不断的探索和发展电力电子技术对于提高电力的生产质量,减少生产成本和配送损耗,实现电力系统的经济效益,有着重要的意义。

参考文献

[1]Ma tsuno K .An experience o f FACT S dev elopment 1980s a nd 1990s[ C] .Transmission and Distributio n Comfe rence and Ex hibi tion 2002 :A sia Pacific IEEE/ P ESV o l.2.[ s .l.] , 2002 :1378-1381 .

[2]Hammons T J .Ro le of HVDC transmission in future ene rg y developme nt[ J] .IEEE Power Engineering Re view , 2000, 10(5):857-859 .

[3]王芳. 电力电子技术在电气工程中的应用[J]. 电子世界,2017,(14):51+53.

[4]熊民敏.浅谈计算机科学的现状与发展趋势[J].科技创新与应用,2015(16):96.

[5]李伟,林丽,向超. 电力电子技术在电力系统中应用[J]. 中小企业管理与科技(中旬刊),2015,(03):119-120.

[6]R. Randoll,W. Wondrak,A. Schletz. Lifetime and manufacturability of integrated power electronics[J]. Microelectronics Reliability,2016,64:.

[7]赵金亮. 我国电力电子技术的现状及应用[J]. 北方经贸,2010,(07):18-19. [2017-08-23].

[8]Md. Khalilur Rahman. A Review of the Study on the Electromigration and Power Electronics[J]. Journal of Electronics Cooling and Thermal Control,2016,06(01):.

[9]范向红. 先进的电力电子技术在智能电网中优势体现[J/OL]. 电子制作,2015,(12):122. (2015-05-22)[2017-08-23].

[10]高艳青. 现代电力电子及电源技术的发展趋势[J]. 电脑与电信,2007,(01):33-36.

[11]A.M. Vural,K.C. Bayindir. Quasi-multi-pulse voltage source converter design with two control degrees of freedom[J]. International Journal of Electronics,2015,102(5):.

电力电子技术的发展史

电力电子技术的发展史 电子技术是根据电子学的原理,运用电子器件设计和制造某种特定功能的电路以解决实际问题的科学,包括信息电子技术和电力电子技术两大分支。信息电子技术包括 Analog (模拟) 电子技术和 Digital (数字) 电子技术。电子技术是对电子信号进行处理的技术,处理的方式主要有:信号的发生、放大、滤波、转换。 目录 电力电子技术 现代电力电子技术 高频开关电源的发展趋势 半导体器件基础 电路发展 1.电力电子技术发展 现代电力电子技术的发展方向,是从以低频技术处理问题为主的传统电力电子学,向以高频技术处理问题为主的现代电力电子学方向转变。电力电子技术起始于五十年代末六十年代初的硅整流器件,其发展先后经历了整流器时代、逆变器时代和变频器时代,并促进了电力电子技术在许多新领域的应用。八十年代末期和九十年代初期发展起来的、以功率MOSFET和IGBT为代表的、集高频、高压和大电流于一身的功率半导体复合器件,表明传统电力电子技术已经进入现代电力电子时代。 整流器时代 大功率的工业用电由工频(50Hz)交流发电机提供,但是大约20%的电能是以直流形式消费的,其中最典型的是电解(有色金属和化工原料需要直流电解)、牵引(电气机车、电传动的内燃机车、地铁机车、城市无轨电车等)和直流传动(轧钢、造纸等)三大领域。大功率硅整流器能够高效率地把工频交流电转变为直流电,因此在六十年代和七十年代,大功率硅整流管和晶闸管的开发与应用得以很大发展。当时国内曾经掀起了-股各地大办硅整流器厂的热潮,目前全国大大小小的制造硅整流器的半导体厂家就是那时的产物。 逆变器时代 七十年代出现了世界范围的能源危机,交流电机变频调速因节能效果显著而迅速发展。变频调速的关键技术是将直流电逆变为0~100Hz的交流电。在七十年代到八十年代,随着变频调速装置的普及,大功率逆变用的晶闸管、巨型功率晶体管(GTR)和门极可关断晶闸管(GT0)成为当时电力电子器件的主角。类似的应用还包括高压直流输出,静止式无功功率动态补偿等。这时的电力电子技术已经能够实现整流和逆变,但工作频率较低,仅局限在中低频范围内。 变频器时代 进入八十年代,大规模和超大规模集成电路技术的迅猛发展,为现代电力电子技术的发展奠定了基础。将集成电路技术的精细加工技术和高压大电流技术有机结合,出现了一批全新的全控型功率器件、首先是功率M0SFET的问世,导致了中小功率电源向高频化发展,而后绝缘门极双极晶体管(IGBT)的出现,又为大中型功率电源向高频发展带来机遇。MOSFET和IGBT的相继问世,是传统的电力电子向现代电力电子转化的标志。据统计,到1995年底,功率M0SFET和GTR在功率半导体器件市场上已达到平分秋色的地步,而用IGBT代替GTR在电力电子领域巳成定论。新型器件的发展不仅为交流电机变频调速提供了较高的频率,使其性能

电力电子技术的产品、技术和前沿动态

电力电子技术的简介、产品、技术及前沿动态摘要:本文简要地介绍了电力电子技术的内涵、产品;回顾了电力电子技术的发展历程以及主要应用;介绍了我国电力电子技术产业的发展现状以及电力电子技术将来的发展趋势。 关键词:电力电子、电力电子器件、电力电子设备和系统 如今,公认的是“电力技术是通向可持续发展的桥梁”,因为在保证相同的能源服务水平的前提下, 使用电力这种优质能源最清洁、方便,易于控制、效率最高。以下将对若干电力电子技术的产品,发展历史,以及前沿技术的现状和未来发展前景进行论述。 一、电力电子技术简介 现代电力电子技术的发展方向,是从以低频技术处理问题为主的传统电力电子学,向以高频技术处理问题为主的现代电力电子学方向转变。电力电子技术其发展先后经历了整流器时代、逆变器时代和变频器时代,促进了电力电子技术在许多新领域的应用。现在已经进入现代电力电子时代。 电力电子技术是使用电力电子器件对电能进行变换和控制的电子技术。它包括电力电子器件、电力电子设备和系统及其控制三个方面,与以信息处理为主的信息电子技术不同,电力电子技术主要用于功率变换。 二、电力电子技术的应用及产品 电力电子设备和系统种类繁多、行业应用范围极广,主要包括三大类产品:变频器、电能质量类产品以及电子电源产品。

电力电子技术应用领域十分广泛几乎涉及到国民经济各个工业部门和社会生活各个方面。下面具体说一下其的应用领域。 1、一般工业 工业中大量应用各种交直流电动机。例如,很多交流电机都广泛采用电力电子交直流调速技术来提高调速性能。一些对调速性能要求不高的大型鼓风机等近年来也采用了变频装置,以达到节能的目的。还有些不调速的电机为了避免起动时的电流冲击而采用了软起动装置,这种软起动装置也是电力电子装置。 2、交通运输 电气化铁道中广泛采用电力电子技术。电气机车中的直流机车中采用整流装置,交流机车采用变频装置;直流斩波器也广泛用于铁道车辆;车辆中的各种辅助电源、蓄电池的充电也应用了电力电子技术;此外,一台高级汽车中需要许多控制电机,它们也要靠变频器和斩波器驱动并控制。飞机、船舶需要很多不同要求的电源,因此航空和航海都离不开电力电子技术。 3、电力系统 电力电子技术在电力系统中有着非常广泛的应用。直流输电其送电端的整流阀和受电端的逆变阀都采用晶闸管变流装置。此外,近年发展起来的柔性交流输电也是依靠电力电子装置才得以实现的。晶闸管控制电抗器、晶闸管投切电容器都是重要的无功补偿装置。在配电网系统,电力电子装置还可用于防止电网瞬时停电、瞬时电压跌落、闪变等,以进行电能质量控制,改善供电质量。

电力电子技术的实际应用(读书笔记)

电力电子技术的实际应用 摘要 随着科技的飞速进步,时代的高速发展,电力电子技术作为一个新兴的学科诞生并被迅速应用于电力电子领域中,已在国民经济中发挥着巨大作用,已对输变电系统性能将产生巨大影响。目前电力电子技术的应用已涉及电力系统的各个方面,包括发电环节、输配电系统、储能系统等等。电力电子技术是使用电力电子器件(如晶闸管,GTO,IGBT等)对电能进行变换和控制的技术,其发展在优化电能使用、改造传统产业和发展机电一体化等新兴产业、扩大电网规模和功能等方面起到了重要作用。本文将重点介绍电力电子技术在电 理网络中的应用。 关键字:电力电子技术、输配电系统、晶闸管、电力网络。 在电气工程领域,电力电子技术作为一个新兴的学科,因其在电力领域中起到的巨大作用,越来越受到重视。随着晶闸管等电力器件的发明并被应用于电力领域,正式标志着电力电子技术被应用于电力系统,其在全球电力领域的发展中,有着里程碑的意义。 电力电子技术主要应用于电力领域中的电力系统中。电力系统由发电、输电、变电、配电和用电等环节组成的电能生产与消费系统。其功能就是产生电能,再经输电系统、变电系统和配电系统将电能供应到用户。为了实现此功能,电力电子技术的应用起到了举足轻重的作用。保证了用户能够获得安全、经济、优质的电能。 电力电子技术最初应用到电力领域的历史最早是在20世纪50年代利用不可控器件二极管构成的整流器来替代直流发电机对同步发电机进行励磁调节。随后出现的利用半控器件晶闸管构成的可控整流器更是为发电机的励磁提供里一个快捷有效的控制手段,从根本上改变了发电机的动态和静态性能,有效的改善了系统的稳定性。 在当前大范围使用的电力系统中,通常都是以固定的电压和频率来向用户提供交流电能的(例如我国使用220V、50Hz的交流电),但是最终的用户需要的电能可能形式会有着各式各样的差别,可能是不同频率的交流电、可能是同频率但电压不同的交流电也可能是直流电等等、如果这些要由普通的常规电力系统器件来完成,例如使用变频器,变压器和整流器等,这就需要大量的此类设备,且还要根据不同用户的要求而使用不同的器件,这是很不经济的,也不可能实现。而电力电气器件可以作为电力系统和用户之间的接口,通过受控的开关作用对系统输送到用户的电能进行不同的变换来满足用户不同的需求。故而自其问世以来,就被广泛的应用在电力领域的各个角落。 在电力领域中,实现常规电流变换的装置包括:整流器、逆变器、交流变换器和斩波器四种基本类型。整流器是利用电力电子器件的单向导电性和可控性将交流电能转换为可控的直流电能的变流装置;逆变器是将直流电能转换为交流电能的装置;交流变换器是把一种交流电能变换为另一种交流电能的装置;斩波器是把一种直流电脑变为另一种直流电能的装置。

电力电子技术的发展及应用趋势

浅析电力电子技术的发展及应用 张友均 摘要:本文主要简要回顾了电力电子技术的发展史,简述了电力电子在电力系统中的一些应用及发展趋势。关键词:电力电子技术;发展史;电力系统;应用;发展趋势 1 引言 自上世纪五十年代末第一只晶闸管问世以来,电力电子技术开始登上现代电气控制技术舞台,标志着电力电子技术的诞生。究竟什么是电力电子技术呢?美国电气与电子工程师协会下设的电力电子学会对“电力电子技术”的阐述是:有效的使用电力半导体器件,应用电路设计理论以及分析开发工具,实现对电能高效能变换和控制的一门技术。对电能的高效能变换和控制包括对电压,电流,频率或波形等方面的变换。它广泛应用于电力、电气自动化及各种电源系统等工业生产和民用部门。它是介于电力、电子和控制三大领域之间的交叉学科。目前,电力电子技术的应用已遍及电力、汽车、现代通信、机械、石化、纺织、家用电器、灯光照明、冶金、铁路、医疗设备、航空、航海等领域。进入21世纪,随着新的理论、器件、技术的不断出现,特别是与微控制器技术的日益融合,电力电子技术的应用领域也必将不断地得以拓展,随之而来的必将是智能电力电子时代。 2 电力电子技术的发展史 电力电子技术起始于五十年代末六十年代初的硅整流器件,其发展先后经历了整流器时代、逆变器时代和变频器时代,并促进了电力电子技术在许多新领域的应用。八十年代末期和九十年代初期发展起来的、以功率MOSFET和IGBT为代表的、集高频、高压和大电流于一身的功率半导体复合器件,表明传统电力电子技术已经进入现代电力电子时代。 2.1 整流器时代 大功率的工业用电由工频( 50Hz)交流发电机提供,但是大约20%的电能是以直流形式消费的,其中最典型的是电解(有色金属和化工原料需要直流电解) 、牵引(电气机车、电传动的

电力电子技术的应用及其发展

【应用管理】 电力电子技术是利用电力电子器件对电能进行控制和转换的学科。它包括电力电子器件、变流电路和控制电路三部分,是电力、电子、控制三大电气工程技术领域之间的交叉学科。随着科学技术的发展,电力电子技术由于和现代控制理论、材料科学、电机工程、微电子技术等血多领域密切相关,已逐步发展成为一门多学科相互渗透的综合性技术学科。随着电力电子、计算机技术的迅速发展,交流调速取代直流调速已成为发展趋势。变频调速以其优异的调速和启、制动性能被国内外公认为是最有发展前途的调速方式。变频技术是交流调速的心技术,电力电子和计算机技术又是变频技术的核心,而电力电子器件是电力电子技术的基础。电力电子技术是近几年迅速发展的一种高新技术,广泛应用于机电一体化、电机传动、航空航天等领域,现已成为各国竞相发展的一种高新技术。 一、电力电子技术应用 用电领域中的电力电子技术,电动机的优化运行。全世界的用电量中约有60%左右是通过电动机来消耗的。高能量密度的电源应用,电化学电源广泛应用在作为国民经济的铜、铝、锌、镍等有色金属以及氯碱等电解产业中;体积小、重量轻、效率高的各种开关电源应用也是十分广泛;信息领域中的电力电子技术,电力电子技术为信息技术提供先进的电源和运动控制系统,日益成为信息产品中不可缺少的一部分;发电领域中的电力电子技术,发电机的直流励磁。常规发电机中励磁的建立已经由传统的直流磁励机转变为由中频交流励磁机加电力电子整流的方法,并已取得良好的经济效益,可靠性较高。水轮发电机的变频励磁。发电频率取决于发电机的转速,采用了电力电子技术后,将水轮发电机直流励磁转变为低频交流变频励磁。当水流量减少时,提高励磁频率,可以把发电频率补偿到额定,延长水轮发电机的发电周期,解决了水力发电中发电机工作时间受季节性水流量影响而导致的频率无法调节、浪费较多水能的问题;环保型能源发电,利用太阳能、风能、潮汐能、地热能等新能源发电,是解决一次能源危机(煤、石油、天然气等石化类能源日趋匮乏)的重要途径,它们是可再生的绿色能源。 二、电力电子器件发展趋势 纵观几十年的发展历史,半导体器件起到了推动电子技术发展的作用,晶闸管等电力半导体器件扮演了电力电子发展中的主要角色。电力电子技术的创新与电力电子器件制造工艺,己成为世界各国工业自动化控制和机电一体化领域竞争最激烈的阵地,各发达国家均在这一领域注入极大的人力,物力和财力,使之进入高科技行业,就电力电子技术的理论研究言,目前日本、美国及法国、荷兰、丹麦等西欧国家可以说是齐头并进,在这些国家各种先进的电力电子功率量不断开发完善,促进电力电子技术向着高频化迈进,实现用电设备的高效节能,为真正实现工控设备的小型化,轻量化,智能化奠定了重要的技术基础,也为21世纪电力电子技术的不断拓展创新描绘了广阔的前景。 1.全球范围内石油储量、煤储量逐渐在减少,生态平衡也严重受到破坏,环境污染越来越严重,现在世界各国普遍关注新能源的应用..新能源发电中的电力电子技术应用特点如下:一次能源供给随机性大,风能、太阳能都随天气情况而有很大变化;并网发电要求高,电网侧要求输入电能波动小,电能质量高等。 2.电力牵引(electric traction)是利用电能为动力的一种轨道运输牵引动力形式。电力机车或动车的牵引电动机将电能转换为机械能,驱动铁路列车、电动车组和城市轨道交通电动车辆组运行。因此,在以后的发展中,要不断应用先进的技术来扼杀电力牵引的缺点,达到尽量完美。 3.智能电网,就是电网的智能化,它是建立在集成的高速双向通信网络的基础上,通过先进的传感和测量技术、控制方法以及先进的决策支持系统技术的应用,实现电网的可靠、经济、高效、环境友好和使用安全的目标。智能电网技术正蓬勃发展,太阳能和风能发电是智能电网的分布式发电组成部分。从更高的层面来讲,现今的电网变得比以往更大、更安全及更高能效,但其智能化程度仍然偏低,故智能电网是当今的重要发展趋势。 我国开发研制电力电子器件的综合技术能力与国外发达国家相比,仍有较大的差距,要发展和创新我国电力电子技术,并形成产业化规模,就必须走有中国特色的产学创新之路,即牢牢坚持和掌握产、学、研相结合的方法走共同发展之路。从跟踪国外先进技术,逐步走上自主创新,从交叉学科的相互渗透中创新,从器件开发选择及电路结构变换上创新,这对电力技术创新是尤其实用的。目前世界上许多大公司已开发出IPM智能化功率模块,日本三菱、东芝及美国的国际整流器公司已有成熟的产品推出。国产电力半导体器件研发生产能力还落后于世界电力电子器件的发展水平,在新世纪国际电力电子崛起之时,中国电力半导体器件的落后状态将会影响中国经济的发展,国产电力半导体器件产业任重而道远。从发展前景看,以电力半导体器件及“变频技术”为核心的电力电子行业,在国家政策的强持下将会走向更加辉煌的明天。 电力电子技术的应用及其发展 刘云霞 (北方机电工业学校河北张家口075000) 摘要:随着科技的不断发展和人们要求的不断提高,电力电子技术的应用越来越广泛。电力电子技术作为信息产业和传统产业之间的桥梁,它将在国民经济中占有很重要的作用。本为主要从电气节能、新能源发电、电力牵引以及智能电网这几个领域对电力电子技术的应用进行分析。 关键词:电力电子;技术;应用及其发展 刘云霞:电力电子技术的应用及其发展 114 ··

电力电子技术的发展与应用

电力电子技术的发展与应用作为电气自动化的学生,我们有必要对专业课程电力电子技术做个全面的了解。我们先对电力电子的定义做了解,再对电子电力技术的发展做大致介绍,最后综述电力电子技术的应用。 电力电子技术,是使用电力电子器件对电能进行变换和控制的电子技术。电力电子技术包括电力电子器件、电力电子设备和系统及其控制三个方面,涉及电力电子器件,电力电子设备和系统,电力电子技术在各个行业的应用。与以信息处理为主的信息电子技术不同,电力电子技术主要用于功率(电力)变换,所变换“电力”功率的范围小到数瓦(W),大到数百兆瓦(MW)甚至吉瓦(GW)。 电力电子技术分为电力电子器件制造技术和变流技术,电力电子技术是建立在电子学、电工原理和自动控制三大学科上的新兴学科。因它本身是大功率的电技术,又大多是为应用强电的工业服务的,故常将它归属于电工类。电力电子技术的内容主要包括电力电子器件、电力电子电路和电力电子装置及其系统。电力电子器件以半导体为基本材料,最常用的材料为单晶硅;它的理论基础为半导体物理学;它的工艺技术为半导体器件工艺。近代新型电力电子器件中大量应用了

微电子学的技术。电力电子电路吸收了电子学的理论基础,根据器件的特点和电能转换的要求,又开发出许多电能转换电路。 电力电子技术的发展史:一般认为,电力电子技术的诞生是以1957年美国通用电气公司研制出第一个晶闸管为标志的。 晶闸管出现前的时期可称为电力电子技术的史前期或黎明期。1904年出现了电子管,它能在真空中对电子流进行控制,并应用于通信和无线电,从而开启了电子技术用于电力领域的先河。20世纪30年代到50年代,水银整流器广泛用于电化学工业、电气铁道直流变电所以及轧钢用直流电动机的传动,甚至用于直流输电。1947年美国著名的贝尔实验室发明了晶体管,引发了电子技术的一场革命。 晶闸管时代,晶闸管由于其优越的电气性能和控制性能,使之很快就取代了水银整流器和旋转变流机组,并且其应用范围也迅速扩大。电力电子技术的概念和基础就是由于晶闸管及晶闸管变流技术的发展而确立的。晶闸管是通过对门极的控制能够使其导通而不能使其关断的器件,属于半控型器件。对晶闸管电路的控制方式主要是相位控制方式,简称相控方式。晶闸管的关断通常依靠电网电压等外部条件来实现。这就使得晶闸管的应用受到了很大的局限。

电力电子技术期末复习考卷综合

一、填空题: 1、电力电子技术的两个分支是电力电子器件制造技术和 变流技术 。 2、举例说明一个电力电子技术的应用实例 变频器、 调光台灯等 。 3、电力电子承担电能的变换或控制任务,主要为①交流变直流(AC —DC )、②直流变交流(DC —AC )、③直流变直流(DC —DC )、④交流变交流(AC —AC )四种。 4、为了减小电力电子器件本身的损耗提高效率,电力电子器件一般都工作在 开关状态,但是其自身的功率损耗(开通损耗、关断损耗)通常任远大于信息电子器件,在其工作是一般都需要安装 散热器 。 5、电力电子技术的一个重要特征是为避免功率损耗过大,电力电子器件总是工作在开关状态,其损耗包括 三个方面:通态损耗、断态损耗和 开关损耗 。 6、通常取晶闸管的断态重复峰值电压UDRM 和反向重复峰值电压URRM 中较 小 标值作为该器件的额电电压。选用时,额定电压要留有一定的裕量,一般取额定电压为正常工作时晶闸管所承受峰值电压的2~3倍。 7、只有当阳极电流小于 维持 电流时,晶闸管才会由导通转为截止。导通:正向电压、触发电流 (移相触发方式) 8、半控桥整流带大电感负载不加续流二极管电路中,电路可能会出现 失控 现象,为了避免单相桥式 半控整流电路的失控,可以在加入 续流二极管 来防止失控。 9、整流电路中,变压器的漏抗会产生换相重叠角,使整流输出的直流电压平均值 降低 。 10、从晶闸管开始承受正向阳极电压起到施加触发脉冲止的电角度称为 触发角 。 ☆从晶闸管导通到关断称为导通角。 ☆单相全控带电阻性负载触发角为180度 ☆三相全控带阻感性负载触发角为90度 11、单相全波可控整流电路中,晶闸管承受的最大反向电压为 2√2U1 。(电源相电压为U1) 三相半波可控整流电路中,晶闸管承受的最大反向电压为 。(电源相电压为U 2) 12、四种换流方式分别为 器件换流 、电网换流 、 负载换流 、 强迫换流 。 13、强迫换流需要设置附加的换流电路,给与欲关断的晶闸管强迫施加反压或反电流而关断。 14、直流—直流变流电路,包括 直接直流变流电路 电路和 间接直流变流电路 。(是否有交流环节) 15、直流斩波电路只能实现直流 电压大小 或者极性反转的作用。 ☆6种斩波电路:电压大小变换:降压斩波电路(buck 变换器)、升压斩波电路、 Cuk 斩波电路、Sepic 斩波电路、Zeta 斩波电路 升压斩波电路输出电压的计算公式 U= 1E β=1- ɑ 。 降压斩波电路输出电压计算公式: U=ɑE ɑ=占空比,E=电源电压 ☆直流斩波电路的三种控制方式是PWM 、 频率调制型 、 混合型 。 16、交流电力控制电路包括 交流调压电路 ,即在没半个周波内通过对晶闸管开通相位的控制,调节输出电压有效值的电路, 调功电路 即以交流电的周期为单位控制晶闸管的通断,改变通态周期数和断态周期数的比,调节输出功率平均值的电路, 交流电力电子开关即控制串入电路中晶闸管根据需要接通或断开的电路。

现代电力电子技术的发展(精)

现代电力电子技术的发展 浙江大学电气工程学院电气工程及其自动化992班马玥 (浙江杭州310027 E-mail: yeair@https://www.wendangku.net/doc/6817039991.html,学号:3991001053 摘要:本文简要回顾电力电子技术的发展,阐述了现代电力电子技术发展的趋势,论述了走向信息时代的电力电子技术和器件的创新、应用,将对我国工业尤其是信息产业领域形成巨大的生产力,从而推动国民经济高速、高效可持续发展。 关键词:现代电力电子技术;应用;发展趋势 The Development of Modern Power Electronics Technique Ma Yue Electrical Engineering College. Zhejiang University. Hangzhou 310027, China E-mail: yeair@https://www.wendangku.net/doc/6817039991.html, Abstract: This paper reviews the development of power electronics technique, as well as its current situation and anticipated trend of development. Keywords: modern power electronics technique, application, development trend. 1、概述 自本世纪五十年代未第一只晶闸管问世以来,电力电子技术开始登上现代电气传动技术舞台,以此为基础开发的可控硅整流装臵,是电气传动领域的一次革命,使电能的变换和控制从旋转变流机组和静止离子变流器进入由电力电子器件构成的变流器时代,这标志着电力电子的诞生。

电力系统通信技术复习提纲doc资料

《电力系统通信技术》复习提纲 第1章 绪论 一、电力系统通信网的特点P4 答:电力系统通信网的特点是高度的可靠性和实时性;用户分散、容量小、网络复杂。 二、电力调度数据网的组成:核心层,汇聚层,接入层P5 答:核心层由国调、6个网调、四川、三峡等9个节点组成; 汇聚层由除四川以外的29个省调节点组成; 接入层由各接入厂站及调度中心业务网组成。 三、电力系统通信技术的发展历程和主要特点P6 答:1、电力系统通信技术的发展历程有:(1)20世纪70年代的电力线载波;(2)80年代的模拟微波90年代的数字微波;(3)目前光纤通信。2、主要特点是光纤通信:具有抗电磁干扰能力强、传输容量大、频带宽、传输衰耗小等。 电力系统通信技术的发展趋势可概括为数字化、综合化、宽带化、智能化和个人化。电力系统通信技术大发展时代已经开始。 电力通信技术主要有以下八种 电力系统通信网主要由传输、交换、终端三大部分组成。其中传输与交换部分组成通信网络,传输部分为网络的线,交换设备为网络的节点。 1.电力线载波通信:利用高压输电线作为传输通路的载波通信方式,用于电力系统的调度通信、远动、保护、生产指挥、行政业务通信及各种信息传输。 2.光纤通信是以光波为载波,以光纤为传输媒介的一种通信方式。 3.微波通信是指利用微波(射频)作载波携带信息,通过无线电波空间进行中继(接力)的通信方式。常用微波通信的频率范围为1~40GHz 4.卫星通信——利用人造地球卫星作为中继站来转发无线电波,从而进行两个或多个地面站之间的通信。 5.移动通信——通信的双方中至少有一方是在移动中进行信息交换的通信方式。 6.现代交换方式有电路交换、分组交换、ATM 异步传送模式、帧中继和多协议标记交换(MPLS )技术。 7.现代通信网按功能划分可以分为传输网、支撑网。 8.接入网是由业务节点接口和用户网络接口之间的一系列传送实体(如线路设施和传输设施)组成的 第2章 通信基础知识 一、通信系统的主要性能指标 1.信息量的表征P13 答:离散消息xi 携带的信息量为: )(log ) (1 log )(i a i a i x P x P x I -== 2.模拟/数字通信系统分有效性和可靠性指标P14 (1)模拟通信系统的主要性能指标 有效性:模拟通信系统的有效性指标用传输频带衡量,不同调制方式需要的频带宽度(简称带宽B)也不同,信号的带宽B 越小,占用信道带宽越少,在给定信道时容纳的传输路数越多,有效性越好。 可靠性:模拟通信系统的可靠性指标用接收端的最终输出信号噪声功率比(简称信噪比S/N 或SNR —Signal Noise Ratio) 衡量,不同调制方式在同样信道信噪比下所得到的最终解调输出信噪比也不同,如调频系统的输出信噪比大于调幅系统,故可靠性比调幅系统好,但调频信号所需传输带宽高于调幅。 (2)数字通信系统的主要性能指标 有效性:数字通信系统的有效性指标用传输速率衡量,传输速率又分为码元传输速率和信息传输速率。 可靠性:数字通信系统的可靠性指标用差错概率衡量,差错概率又分为误码率和误信率。 3.传码率和传信率P14 传码率指单位时间能够传送的码元数,单位为波特(Baud ) 传信率指单位时间能够传送的平均信息量,单位为bit/s 传码率和传信率的关系: Rb=RB·log2M 比特/秒,RB =Rb/log2M 波特 二、信道容量与香农公式(现代通信的基础)P15-16 香农公式是现代通信的基础,实际通信系统在保持一定信道容量C 时,根据具体情况解决带宽B (有效性)与信噪比S/N (可靠性)的矛盾与统一。 信道容量C 指信道中无差错传输信息的最大速率,分为连续信道的信道容量和离散信道的信道容量。 对于连续信道的信道容量,著名香农公式 ??? ? ??+=+=B n S B N S B C 0221log )1(log 式中:S 为信号的功率(W );B 为信道带宽;S/N 为 信道信噪比;no 为噪声功率谱密度。 关于香农公式三要素。 (1)S/N ↑→C ↑,N →0,则C →∞;(2)B ↑→C ↑,但B 无限增加时,信道容量趋于定值 0/44.1lim n S C B ?=∞ →; (3)信道容量C 一定时,带宽B 与信噪比S/N 可以互换。 2.系统(信道)带宽和信号带宽的不同P20 系统(信道)带宽指系统的传输能力,信道容许的频率范围;而信号带宽指携带信息的信号的频率分布范围。

电力电子实训心得体会

电力电子技术实验总结 随着大功率半导体开关器件的发明和变流电路的进步和发展,产生了利用这类器件和电路实现电能变换与控制的技术——电力电子技术。电力电子技术横跨电力、电子和控制三个领域,是现代电子技术的基础之一,是弱电子对强电力实现控制的桥梁和纽带,已被广泛应用于工农业生产、国防、交通、能源和人民生活的各个领域,有着极其广阔的应用前景,成为电气工程中的基础电子技术。 本学期实验课程共进行了四个实验。包括单结晶体管触发电路实验,单相半波整流电路实验,三相半波有源逆变电路实验,单相交流调压电路实验. 单结晶体管触发电路实验 实验目的 (1)熟悉单结晶体管触发电路的工作原理及电路中各元件的作用。 (2)掌握单结晶体管触发电路的基本调试步骤。 实验线路及原理单结晶体管触发电路利用单结晶体管(又称双基极二极管)的负阻特性和rc充放电特性,可组成频率可调的自激振荡电路。v6为单结晶体管,其常用型号有 bt33和bt35两种,由等效电阻v5和c1组成rc充电回路,由c1-v6-脉冲变压器原边组成电容放电回路,调节rp1电位器即可改变c1充电回路中的等效电阻,即改变电路的充电时间。由同步变压器副边输出60v的交流同步电压,经vd1半波整流,再由稳压管v1、v2 进行削波,从而得到梯形波电压,其过零点与电源电压的过零点同步,梯形波通过r7及等效可变电阻v5向电容c1充电,当充电电压达到单结晶体管的峰值电压up时,v6导通,电容通过脉冲变压器原边迅速放电,同时脉冲变压器副边输出触发脉冲;同时由于放电时间常数很小,c1两端的电压很快下降到单结晶体管的谷点电压uv,使得v6重新关断,c1再次被充电,周而复始,就会在电容c1两端呈现锯齿波形,在每次v6导通的时刻,均在脉冲变压器副边输出触发脉冲;在一个梯形波周期内,v6可能导通、关断多次,但对晶闸管而言只有第一个输出脉冲起作用。电容c1的充电时间常数由等效电阻等决定,调节rp1电位器改变c1的充电时间,控制第一个有效触发脉冲的出现时刻,从而实现移相控制。 实验内容 (1)单结晶体管触发电路的调试。 (2)单结晶体管触发电路各点电压波形的观察。 单相半波整流电路实验 实验目的 1、熟悉强电实验的操作规程; 2、进一步了解晶闸管的工作原理; 3、掌握单相半波可控整流电路的工作原理。 4、了解不同负载下单相半波可控整流电路的工作情况。 实验原理 1、晶闸管的工作原理晶闸管的双晶体管模型和内部结构如下:晶闸管在正常工作时,承受反向电压时,不论门极是否有触发电流,晶闸管都不会导通。当承受正向电压时,仅在门极有触发电流的情况下晶闸管才能开通。晶闸管一旦导通,门极就失去控制作用。要使晶闸管关断,只能使晶闸管的电流降 到接近于零的某一数值一下。 2.单相半波可控整流电路(电阻性负载) 2.1电路结构若用晶闸管t替代单相半波整流电路中的二极管d,就可以得到单相半波可控整流电路的主电路。变压器副边电压u2为50hz正弦波,负载 rl为电阻性负载。 三相半波有源逆变电路实验 实验目的 1、掌握三相半波有源逆变电路的工作原理,验证可控整流电路在有源逆变时的工作条件,并比较与整流工作时的区别。

现代电力电子技术发展及其应用

现代电力电子技术发展及其应用 摘要:电力电子技术是研究采用电力电子器件实现对电能的控制和变换的科学,是介于电气工程三大主要领域——电力、电子和控制之间的交叉学科,在电力、工业、交通、航空航天等领域具有广泛的应用。电力电子技术的应用已经深入到工业生产和社会生活的各个方面,成为传统产业和高新技术领域不可缺少的关键技术,可以有效地节约能源。 一、引言 自上世纪五十年代末第一只晶闸管问世以来,电力电子技术开始登上现代电气控制技术舞台,标志着电力电子技术的诞生。究竟什么是电力电子技术呢?电力电子技术就是采用功率半导体器件对电能进行转换、控制和优化利用的技术,它广泛应用于电力、电气自动化及各种电源系统等工业生产和民用部门。它是介于电力、电子和控制三大领域之间的交叉学科。目前,电力电子技术的应用已遍及电力、汽车、现代通信、机械、石化、纺织、家用电器、灯光照明、冶金、铁路、医疗设备、航空、航海等领域。进入21世纪,随着新的理论、器件、技术的不断出现,特别是与微控制器技术的日益融合,电力电子技术的应用领域也必将不断地得以拓展,随之而来的必将是智能电力电子时代。 二、电力电子技术的发展 现代电力电子技术的发展方向,是从以低频技术处理问题为主的传统电力电子学,向以高频技术处理问题为主的现代电力电子学方向转变。电力电子技术起始于五十年代末六十年代初的硅整流器件,其发展先后经历了整流器时代、逆变器时代和变频器时代,并促进了电力电子技术在许多新领域的应用。八十年代末期和九十年代初期发展起来的、以功率MOSFET和IGBT为代表的、集高频、高压

和大电流于一身的功率半导体复合器件,表明传统电力电子技术已经进入现代电力电子时代。 1、整流器时代 大功率的工业用电由工频(50Hz)交流发电机提供,但是大约20%的电能是以直流形式消费的,其中最典型的是电解(有色金属和化工原料需要直流电解)、牵引(电气机车、电传动的内燃机车、地铁机车、城市无轨电车等)和直流传动(轧钢、造纸等)三大领域。大功率硅整流器能够高效率地把工频交流电转变为直流电,因此在六十年代和七十年代,大功率硅整流管和晶闸管的开发与应用得以很大发展。当时国内曾经掀起了-股各地大办硅整流器厂的热潮,目前全国大大小小的制造硅整流器的半导体厂家就是那时的产物。 2、逆变器时代 七十年代出现了世界范围的能源危机,交流电机变频惆速因节能效果显著而迅速发展。变频调速的关键技术是将直流电逆变为0~100Hz的交流电。在七十年代到八十年代,随着变频调速装置的普及,大功率逆变用的晶闸管、巨型功率晶体管(GTR)和门极可关断晶闸管(GT0)成为当时电力电子器件的主角。类似的应用还包括高压直流输出,静止式无功功率动态补偿等。这时的电力电子技术已经能够实现整流和逆变,但工作频率较低,仅局限在中低频范围内。 3、变频器时代 进入八十年代,大规模和超大规模集成电路技术的迅猛发展,为现代电力电子技术的发展奠定了基础。将集成电路技术的精细加工技术和高压大电流技术有机结合,出现了一批全新的全控型功率器件、首先是功率M0SFET的问世,导致了中小功率电源向高频化发展,而后绝缘门极双极晶体管(IGBT)的出现,又为大中型功率电源向高频发展带来机遇。MOSFET和IGBT的相继问世,是传统的电力电子向现代电力电子转化的标志。据统计,到1995年底,功率M0SFET和GTR在功率半导体器件市场上已达到平分秋色的地步,而用IGBT代替GTR在电力电子领域巳成定论。新型器件的发展不仅为交流电机变频调速提供了较高的频率,使其性能

电力电子技术的应用

电力电子技术的应用 电力电子技术是利用电力电子器件对电能进行控制和转换的学科。它包括电力电子器件、变流电路和控制电路三部分,是电力、电子、控制三大电气工程技术领域之间的交叉学科。随着科学技术的发展,电力电子技术由于和现代控制理论、材料科学、电机工程、微电子技术等血多领域密切相关,已逐步发展成为一门多学科相互渗透的综合性技术学科。 电力电子技术是近几年迅速发展的一种高新技术,广泛应用于机电一体化、电机传动、航空航天等领域,现已成为各国竞相发展的一种高新技术。它不仅应用于一般工业,也广泛用于交通运输、电力系统、通信系统、计算机系统、新能源系统等,在照明、空调等家用电器及其他领域中也有着广泛的应用。以下分几个主要应用领域加以叙述。 一、一般工业 工业中大量应用各种交直流电动机。直流电动机有良好的调速性能,给其供电的可控整流电源或直流斩波电源都是电力电子装置。近年来,由于电力电子变频技术的迅速发展,使得交流电机的调速性能可与直流电机相媲美,交流调速技术大量应用并占据主导地位。大至数千kW的各种轧钢机,小到几百W的数控机床的伺服电机,以及矿山牵引等场合都广泛采用电力电子交直流调速技术。一些对调速性能要求不高的大型鼓风机等近年来也采用了变频装置,以达到节能的目的。还有些不调速的电机为了避免起动时的电流冲击而采用了软起动装置,这种软起动装置也是电力电子装置。电化学工业大量使用直流电源,电解铝、电解食盐水等都需要大容量整流电源。电镀装置也需要整流电源。电力电子技术还大量用于冶金工业中的高频或中频感应加热电源、淬火电源及直流电弧炉电源等场合。电力电子技术在一般工业中的应用最主要的就是电机调速传动和电源。电机调速传动又分工艺调速传动和节能调速传动两大类:工艺调速传动指工艺要求必须调速的传动,例如轧机,矿井卷扬,机床,造纸等以前用直流电动机驱动的机械的传动。节能调速指风机、泵等以前不调速,为节能而改用调速。 二、交通运输 电气化铁道中广泛采用电力电子技术。电气机车中的直流机车中采用整流装置,交流机车采用变频装置。直流斩波器也广泛用于铁道车辆。在未来的磁悬浮列车中,电力电子技术更是一项关键技术。除牵引电机传动外,车辆中的各种辅助电源也都离不开电力电子技术电动汽车的电机靠电力电子装置进行电力变换和驱动控制,其蓄电池的充电也离不开电力电子装置。一台高级汽车中需要许多控制电机,它们也要靠变频器和斩波器驱动并控制。飞机、船舶需要很多不同要求的电源,因此航空和航海都离不开电力电子技术。如果把电梯也算做交通运输,那么它也需要电力电子技术。以前的电梯大都采用直流调速系统,而近年来交流变频调速已成为主流。其典型代表就是在常导中低速磁悬浮列车中的应用,其中的电力电子设备都起着举足轻重的作用。 三、电力系统 电力电子技术在电力系统中有着非常广泛的应用。据估计,发达国家在用户最终使用的电能中,有60%以上的电能至少经过一次以上电力电子变流装置的处理。电力系统在通向现代化的进程中,电力电子技术是关键技术之一。可以毫不夸张地说,如果离开电力电子技术,电力系统的现代化就是不可想象的。直流输电在长距离、大容量输电时有很大的优势,其送电端的整流阀和受电端的逆变阀都采

电力电子技术的主要应用领域

电力电子技术的主要应用领域 陈旻忞电气1321 (苏州科技学院天平学院江苏苏州215009) 摘要:电力电子技术在我国各行业现代化技术改造中可以发挥重大作用。随着科技技术的不断发展和人们要求的不断提高,电工电子技术的应用越来越广泛。本文主要从一般工业、电力系统、电气节能、新能源这几个领域对电力电子技术的应用进行分析。 关键词:电力电子;电机传动;电力系统;新能源;发电;节能 引言 电力系统是电力电子技术应用的一个重要领域。最早成功的是高压直流输电,1986年美国电力科学研究院提出了灵活交流输电的概念,相应出现了统一潮流控制器等多种设备。电力电子设备和系统逐步投入运行,大幅度提高了电力系统的稳定水平,产生巨大效益。在节能方面,通过变频器、节能灯、无功补偿装置、开关电源、逆变焊机等,产生了比较明显的节能效果。在一般工业中,电力电子主要用于电机调速传动和电源。在全球气候变化和世界石油、煤炭等化石能源日益紧缺的今天,低耗高效和寻找开发新能源是根本出路。电力电子是解决能源问题的关键技术,它对新能源的开发、转化、输送、储存和利用等各方面发挥着重要的作用。随着再生能源技术的发展,“分布式发电系统”将得到更大的发展空间。 1 一般工业 电力电子技术在一般工业上的应用繁多复杂,主要应用于电机调速传动和电源,也包含了在输电环节的应用。本文在一般工业方面对电机调速传动和电源做主要阐述。关于输电环节的应用,则归于下一节电力系统中做详细阐述。

1.1 电机调速传动 在一般工业中大量应用各种交直流电动机。直流电动机有良好的调速性能,给其供电的可控整流电源或直流斩波电源都是电力电子装置。在20世纪90年达中期以前,大多数调速系统都由采用晶闸管和双向晶闸管的变换器供电,最典型的是晶闸管——直流电机调速系统。在20世纪90年代中期以来,大功率IGBT 的应用,以及IGBT逆变技术的成熟和发展,迅速在相关功率等级的应用领域取代了晶闸管和双向进闸管[1]。近年来,由于电力电子变频技术的迅速发展,交流电机的调速性能也直追直流电机,交流调速技术大量应用并占据主导地位。 1.2 电源 随着工业设备的大容量化和高性能化,对电源质量有了更高的要求。电源质量改善装置对此将起到重要的作用。在电力电子技术的应用及各种电源系统中,开关电源技术处于核心地位。开关电源是利用现代电力电子技术,控制功率半导体器件开通和关断的时间见、比率,维持稳定输出电压的一种电源。与线性稳压电源相比,开关电源体积小、效率高、重量轻,在各种电子设备中得到广泛运用。高频、高可靠、低耗、低噪音、抗干扰和模块化是开关电源的发展趋势[2]。 2 电力系统 2.1 在发电环节中的应用 2.1.1 大型发电机的静止励磁控制 静止励磁采用晶闸管整流自并励方式,具有结构简单。可靠性高及造价低等优点,被世界各大电力系统广泛采用。由于省去了励磁机这个中间惯性环节,因而具有特有的快速性调节,给先进的控制规律提供了充分发挥作用并产生良好控制效果的有利条件[3]。

现代电力电子技术的发展、现状与未来展望综述上课讲义

现代电力电子技术的发展、现状与未来展 望综述

课程报告 现代电力电子技术的发展、现状与 未来展望综述 学院:电气工程学院 姓名: ********* 学号: 14********* 专业: ***************** 指导教师: *******老师 0 引言

电力电子技术就是使用电力半导体器件对电能进行变换和控制的技术,它是综合了电子技术、控制技术和电力技术而发展起来的应用性很强的新兴学科。随着经济技术水平的不断提高,电能的应用已经普及到社会生产和生活的方方面面,现代电力电子技术无论对传统工业的改造还是对高新技术产业的发展都有着至关重要的作用,它涉及的应用领域包括国民经济的各个工业部门。毫无疑问,电力电子技术将成为21世纪的重要关键技术之一。 1 电力电子技术的发展[1] 电力电子技术包含电力电子器件制造技术和变流技术两个分支,电力电子器件的制造技术是电力电子技术的基础。电力电子器件的发展对电力电子技术的发展起着决定性的作用,电力电子技术的发展史是以电力电子器件的发展史为纲的。 1.1半控型器件(第一代电力电子器件) 上世纪50年代,美国通用电气公司发明了世界上第一只硅晶闸管(SCR),标志着电力电子技术的诞生。此后,晶闸管得到了迅速发展,器件容量越来越大,性能得到不断提高,并产生了各种晶闸管派生器件,如快速晶闸管、逆导晶闸管、双向晶闸管、光控晶闸管等。但是,晶闸管作为半控型器件,只能通过门极控制器开通,不能控制其关断,要关断器件必须通过强迫换相电路,从而使整个装置体积增加,复杂程度提高,效率降低。另外,晶闸管为双极型器件,有少子存储效应,所以工作频率低,一般低于400 Hz。由于以上这些原因,使得晶闸管的应用受到很大限制。 1.2全控型器件(第二代电力电气器件) 随着半导体技术的不断突破及实际需求的发展,从上世纪70年代后期开始,以门极可关断晶闸管(GTO)、电力双极晶体管(BJT)和电力场效应晶体管(Power-MOSFET)为代表的全控型器件迅速发展。全控型器件的特点是,通过对门极(基极、栅极)的控制既可使其开通又可使其关断。此外,这些器件的开关速度普遍高于晶闸管,可用于开关频率较高的电路。这些优点使电力电子技术的面貌焕然一新,把电力电子技术推进到一个新的发展阶段。 1.3电力电子器件的新发展 为了解决MSOFET在高压下存在的导通电阻大的问题,RCA公司和GE公司于1982年开发出了绝缘栅双极晶体管(IGBT),并于1986年开始正式生产并逐渐系列化。IGBT是MOS?FET和BJT得复合,它把MOSFET驱动功率小、开关速度快的优点和BJT通态压降小、载流能力大的优点集于一身,性能十分优越,使之很快成为现代电力电子技术的主导器件。与IGBT 相对应,MOS 控制晶闸管(MCT)和集成门极换流晶闸管(IGCT)都是MOSFET和GTO的复合,它们都综合

电力电子技术的发展及应用

龙源期刊网 https://www.wendangku.net/doc/6817039991.html, 电力电子技术的发展及应用 作者:法官 来源:《科技风》2016年第08期 摘要:电力电子技术又被人们称之为功率电子技术,主要指的是利用电力电子器件对电 能的转换和控制的技术。现代的电力电子技术是一门以电子学和电力学为基础的交叉学科,它实现强电和弱电的相互结合,一方面它是电子学在高电流大电压等强电领域的应用,另一方面它又是电工学在低电压低电流等弱点领域的结合。通过电力电子技术的使用能够有效地影响电能的获取、传输、变换和利用的每个环节。 关键词:电力电子技术;功率电子技术;能源 在我国的国民经济建设过程中电力的产生以及使用占据着很大的战略地位,电力电子技术的出现也就相应的成为了控制整个电力获取、传输、变换和使用的每个环节。随着电力使用的提高,以及全球能源危机的出现以及严峻的环境问题,电力电子技术因其独有的特点展现出了不可替代的重要作用。 1 电力电子技术的发展 随着上世纪五十年代末,世界上第一支晶闸管的问世以来,电力电气技术就开始在世界的现代电气传输技术上大放异彩。由于晶闸管的问世,使得可控流硅整装置的开发提上了日程。随着可控流硅整装置的成功开发,电能的变换和控制从传统的旋转变流机组和静止离子变流器进入了由电力电子器件控制的变流时代。所以总的来看电力电子技术的发展经过了晶闸管整流时代、电力电子的逆变时代、现代电力电子变频器时代这三个重要的阶段。 1)晶闸管整流时代。上世纪五十年代末以前,经济发展所需要使用的大功率用电主要是由工频交流发电机来提供的。但是,由于当时技术的不发达,所产生的交流电在使用的过程中总有大约20%的电能以直流的形式来进行使用的。这20%的直流电使用的领域主要包括:电解、牵引、直流传动等领域。但是,随着晶闸管的成功研制,以及可控流硅整装置的成功开发,使得由工频发电机产生的交流电能够被直接转化为直流电。可控流硅整装置的大规模使用极大的促进了一些以使用直流电为基础的产业快速发展。2)电力电子技术的逆变时代。随着自关断器件在上世纪70年代末的成功研制以及大范围的应用,电力电子技术成功的从晶闸管整流时代进入到了电力电子技术的逆变时代。由于上世纪70年代以后爆发世界范围内的能源危机,为了解决能源危机带来的一些经济发展问题,交流电机变频调速因节能效果显著而被迅速的关注并得到了迅猛的发展。将直流电变成0~100Hz的交流电是整个变频调速技术的关键技术所在。在大功率逆变过程中所使用的晶闸管以及巨型功率晶体管(GTR)和门极可关断晶闸管(GT0)快速的成为当时电力电子技术市场上的器件主要角色。虽然能够实现直流电和交流电的相互转换,但是这种转换依旧只是存在于低频的工作范围之内,即所用的工作频率较低。3)现代电力电子变频器时代。随着大规模和超大规模集成电路的快速发展,为新的电力

相关文档
相关文档 最新文档