文档库 最新最全的文档下载
当前位置:文档库 › JD3-立式光学计

JD3-立式光学计

JD3-立式光学计
JD3-立式光学计

立式光学计的基本参数与典型测量方法

一、基本参数

二、典型测量方法

立式光学计工作台调水平

放上一块3等量块,测量量块的前中后、左中右相对于工作台前后方向,左右方向,每个方向3个点的差值不超过1/4格。

2.1圆柱直径测量

1.选择刃形测帽,用3等量块作基准校准一次刃形测帽的平行度(三点位置之差不超过0.3μm)。

一般将刃形测帽前后安放,然后调节水平方向工作台旋扭,使两刃形测帽对齐,然后用3等量块前中后测量,调节前后旋钮,使差值最小即可。

注:使用刃形测帽时,都需要在测量前用3等量块或标准圆柱对其平行度进行校准,不过在整个测量过程中校准一次即可。

2.根据被检圆柱的尺寸,选择相应尺寸的3等量块放在工作台上,调零。

3. 放上圆柱取中心位置,再自身转90°,测两点,再计算两点的平均值,所得圆柱直径结果为:量块标称值+量块修正值+两点平均值。

2.2圆柱的圆度测量

1.选择与圆柱直径相同尺寸的3等量块作基准,调零。

2.放上圆柱取中心位置,再自身转90°,取两点之间的差值为圆度值。

2.3圆柱的圆柱度测量

对一个被检圆柱的左中右三个位置进行至少两个点的测量,然后圆柱度=最大值—最小值

2.4圆球测量

2.5量块比较法测量与计算方法

各种测量方法

各种测量方法 各种测量方法 一、轴径 在单件小批生产中,中低精度轴径的实际尺寸通常用卡尺、千分尺、专用量表等普通计量器具进行检测;在大批量生产中,多用光滑极限量规判断轴的实际尺寸和形状误差是否合格;;高精度的轴径常用机械式测微仪、电动式测微仪或光学仪器进行比较测量,用立式光学计测量轴径是最常用的测量方法。 、孔径单件小批生产通常用卡尺、内径千分尺、内径规、内径摇表、内测卡规等普通量具、通用量仪;大批量生产多用光滑极限量规;高精度深孔和精密孔等的测量常用内径百分表(千分表)或卧式测长仪(也叫万能测长仪)测量,用小孔内视镜、反射内视镜等检测小孔径,用电子深度卡尺测量细孔(细孔专用)。

三、长度、厚度长度尺寸一般用卡尺、千分尺、专用量表、测长仪、比测仪、高度仪、 气动量仪等;厚度尺寸一般用塞尺、间隙片结合卡尺、千分尺、高度 尺、量规;壁厚尺寸可使用超声波测厚仪或壁厚千分尺来检测管类、薄壁件 等的厚度,用膜厚计、涂层测厚计检测刀片或其他零件涂镀层的厚度;用偏 心检查器检测偏心距值,用半径规检测圆弧角半径值, 用螺距规检测螺距尺寸值,用孔距卡尺测量孔距尺寸。 四、表面粗糙度 借助放大镜、比较显微镜等用表面粗糙度比较样块直接进行比较;用 光切显微镜(又称为双管显微镜测量用车、铣、刨等加工方法完成的金属平 面或外圆表面;用干涉显微镜(如双光束干涉显微镜、多光束干涉显微镜) 测量表面粗糙度要求高的表面;用电动轮廓仪可直接显示Ra0.025?6.3卩m 的值;用某些塑性材料做成块状印模贴在大型笨重零件和难以用仪器直接测 量或样板比较的表面(如深孔、盲孔、凹槽、内螺纹等)零件表面上,将零 件表面轮廓印制印模上,然后对印模进行测量,得出粗糙度参数值(测得印 模的表面粗糙度参数值比零件实际参数值要小,因此糙度测量结果需要凭经 验进行修正);用 激光测微仪激光结合图谱法和激光光能法测量RaO.01?0.32卩m的 表面粗糙度。 五、角度 1.相对测量:用角度量块直接检测精度高的工件;用直角尺检验直角;用多

(完整版)光学仪器基本原理习题及答案

第四章 光学仪器基本原理 1.眼睛的构造简单地可用一折射球面来表示,其曲率半径为5.55mm ,内部为折射率等于4/3的液体,外部是空气,其折射率近似地等于1。试计算眼球的两个焦距。用右眼观察月球时月球对眼的张角为1°,问视网膜上月球的像有多大? 解;眼球物方焦距;当s ’=∞时,f=﹣5.55/﹙4/3﹣1﹚=﹣16.65㎜=﹣1.665㎝ 眼球的象方焦距:f '=s '=mm 2.2213455.534 =-? 当u=1°时,由折射定律n 1sinu 1=n 2sinu 2 U 1=1°n 1=1,n 2=4∕3 像高l '=f 'tanu 2=f 'sinu 2=f '×3∕4 sin1o =22.2×3∕4×0.01746=0.29mm 2.把人眼的晶状体看成距视网膜2㎝的一个简单透镜。有人能看清距离在100㎝到300㎝ 间的物体。试问:⑴此人看清远点和近点时,眼睛透镜的焦距是多少?⑵为看清25㎝远的物体,需配戴怎样的眼镜? 解:人眼s '=2cm. S 1=100cm.s 2=300cm 近点时透镜焦距'f =21002 100+?=1.961cm 远点时透镜焦距f '=23002 300+? =1.987cm 当s =﹣25cm 时s '=﹣100cm ﹦﹣1m 34125.0100.1111=+-=---=-'= Φs s D 300=度 3.一照相机对准远物时,底片距物镜18㎝,当镜头拉至最大长度时,底片与物镜相距20 ㎝,求目的物在镜前的最近距离? 解:.18.0m f =' m s 20.0=' 照相机成像公式: f s s '=-'1 11 556.020.01 18.01111-=+-='+'-=s f s m s 8.1-= 目的物在镜前的最近距离为m 8.1

互换性实验指导书

互换性与测量技术实验指导书 测控技术教研室 机械与汽车工程学院

实验一尺寸误差测量 一、实验目的 1.了解立式光学计的测量原理。 2.熟悉用立式光学计测量外径的方法。 3.加深理解计量器具与测量方法的常用术语。 二、实验容 1.用立式光学计测量赛规。 2.根据测量结果,按国家标准GBl957—81《光滑极限量规》查出被测塞规的尺寸公差和形状公差,作出适用性结沦。 三、测量原理及计量器具说明 投影立式光学计用于长度测量,其测量方法属于接触测量,一般用相对测量法测量轴的尺寸。光学计比较仪是一种精密度较高、结构简单的常用光学仪器,除主要用于轴类零件的精密测量外,还用来检定5等(3、4级)量块。本仪器采用光学投影读数方法,它操作方便、工作效率较高。同时本仪器的投影屏采用腊屏新技术,并在其腊屏前设置一块读数放大镜,对提高刻线的成像质量及整个视场获得较匀称的主观亮度有一定的效果。 (一)仪器结构: 仪器结构如图1-1所示,投影光学计管是由上端壳体12及下端测量管17二部分组成的,上端壳体12装有隔热片、分线板、反射棱镜、投影物镜、直角棱镜、反射镜、投影屏及放大镜等光学零件,在壳体的右侧上装有调节零位的微动螺钉4,转动微动螺钉4可使分划板得到一个微小的移动而使投影屏上的刻线迅速对准零位。 测量管17插入仪器主体横臂7,其外径为φ28d,在测量管17装有准直物镜,平面反射镜及光学杠杆放大系统的测量杆,测帽9装在测量杆上,测量杆上下移动时,测量杆上端的钢珠顶起平面反射镜,致使平面反射镜座以杠杆板上的另二颗钢珠为摆动轴,而倾斜一个φ角,其平面反射镜与测量杆是由二个抗拉弹簧牵制,对测定量块或量规有一定的压力。 测量杆下端露在测量管17外,以备套上各种带有硬质合金头的测帽。测量杆的上下升降是借助于测帽提升器9的杠杆作用,立式提升器9上有一个滚花螺钉,可以调节其上升距离,达到方便地使被测工件推入测帽下端,并靠两个抗拉弹簧的拉力使测头与被测工件良好接触。 (二)仪器规格 Ⅰ投影光学计管的主要规格:

实验一 用立式光学计测量塞规

实验一用立式光学计测量塞规 一.实验目的 1.了解立式光学计的测量原理。 2.熟悉用立式光学计测量外径的方法。 3.加深理解计量器具与测量方法的常用术语。 二.实验内容 1.用立式光学计测量塞规。 2.根据测量结果,按国家标准GB1957——81《光滑极限量规》查出被测塞规的尺寸公差和形状公差,作出适用性结论。 三.测量原理及计量器具说明 立式光学计是一种精度较高而结构简单的常用光学量仪。用量块作为长度基准,按比较测量法来测量各种工件的外尺寸。 图1为立式光学计外形图。 图1 它由底座1、立柱5、支臂3、直角光管6和工作台11等几部分组成。光学计是利用光学杠杆放大原理进行测量的仪器,其光学系统如图2(b)所示。照明光线经反射镜1照射到刻度尺8上,再经直角棱镜2、物镜3,照射到反射镜4上。由于刻度尺8位于物镜3的焦平面上,故从刻度尺8上发出的光线经物镜3后成为平行光束。若反射镜4与物镜3之间相互平行,则反射光线折回到焦平面,刻度尺象7与刻度尺8对称。若被测尺寸变动使测杆推动反射镜4绕支点转动某一角度a(图2(a)),则反射光线相对于入射光线偏转2a角度,从而使刻度尺象7产生位移t(图2(c)),它代表被测尺寸的为动 量。物镜至刻度尺8之间的距离为物镜焦距f,设b为测杆中心至反射镜支点间的距离,s为测杆5移动的距离,则仪器的放大比K为:

α αbtg ftg s t K 2== 当a 很小时,tg2a=2a, tga=a, 因此:K= b f 2 光学计的目镜放大倍数为12,f=200mm,b=5mm, 故仪器 的总放大倍数n 为: n=12K= 5 200 212212 ?? =b f =960 由此说明,当测杆移动0.001mm 时,在目镜中可见到0.96mm 的位移量。 图2 四、测量步骤 1、测头的选择:测头有球形、平面形和刀口形三种,根据被测零件表面的几何形状来选择,使测 头与被测表面尽量满足点接触。所以,测量平面或圆柱表工作时,先用球形测头。测量球面工作时,选用平面形测头。测量小于10mm 的圆柱面工件时,选用刀口形测头。 2、按被测塞规的基本尺寸组合量块。 3、调整仪器零位 (1)参看图1,先好量块组后,将下测量面置于工作台11的中央,并使测头10对准上测量面中央。 (2)粗调节:松开支臂紧固螺钉4,转动调节螺母2,使支臂3缓慢下降,直到测头与量块,并能在视场中看到刻度尺象时,将螺钉4锁紧。 (3)细调节:松开紧固螺钉8,转动调节螺母2,使支臂3缓慢下降,直到测头与量块上测量面轻微接触,并能在视场中看到刻度尺象时,将螺钉4锁紧。 (4)细调节:松开紧固螺钉8,转动调节凸轮7,直至在目镜中观察到刻度尺象与μ指示接近为止(图3a )。然后拧紧螺钉8。

实验1 用立式光学计测量轴

仲恺农业工程学院实验报告 用立式光学计测量轴 张旺海机械132 学号201310824237 1.实验目的 1、立式光学计的工作原理及使用方法。 2、熟悉轴的直径及其形状误差的测量方法。 3、学会基本的测量误差处理方法。 2.设备与器材 立式光学计1台、被测轴和相同尺寸量块各1组。 3.实验原理与方案 立式光学计主要用于作长度比较测量。要先用量块将标尺和指针调到零位,被测尺寸对量块的偏差可从仪器标尺上读得。并可对某轴的固定部位进行多次重复测量,计算测量误差。 立式光学计主要组成见外形图1-3。由底座1、立柱2、支臂3、直角光管4和工作台11等几部分组成。 立式光学计的光学系统图1-4所示。光 线由进光反射镜6进入光学计管中,由通光 棱镜7将光线转折90度,照亮了分划板4 上的刻度尺9。刻度尺上有±100格的刻线, 此处刻线作为目标,位于物镜2的焦平面上。 由刻度尺9发出的光线经棱镜3后转折90 度,透过物镜2成为平行光线,射向平面反 射镜,平行光线被反射回来,重新透过物镜 2,再经棱镜3汇聚于分划板4的另一半上, 此处有一指示线8。当测量杆5上下移动时, 图1-3 立式光学计外形图

推动平面反射镜1产生摆动,于是刻度尺9的像相对于指示线产生了移动,移动量可通过目镜10进行读数。 4.实验步骤、方法与注意事项 根据被测零件表面的几何形状来选择测量头,使测量头与被测表面尽量满足点接触。测量头有:球形、平面和刀口形三种。测量平面或圆柱面零件时选用球形测头。测量球面零件时选用平面形测头。测量小圆柱面工件时选用刀口形测头。 4.1 按被测零件的基本尺寸组合量块和选择测量头。 4.2 仪器调零位:如图1-3,将组合好量块组的下测量面置于工作台11中央,并使测量头12对准上测量面中央。粗调:松开支臂紧固螺钉8,转动调节螺母7,使支臂3缓慢下降,直至到测量头与量块上测量面轻微接触,并在视场中看到刻度尺象,将螺钉8锁紧。细调:松开紧固螺钉10,转动调节轮9,直至在目镜中观察到刻度尺象与指示线接近为止,然后拧紧螺钉10。微调:转动刻度尺微调螺钉13见图1-4。使刻度尺的零线影象与指示线重合后,用手指压下测头提升杠杆5不少于三次,使零位稳定,调零结束。 4.3 将测头抬起取下量块,放入被测量件,按实验规定的部位测量,并将测量的结果填入实验报告中。 图1-4立式光学计光学系统图

各种测量方法

各种测量方法 一、轴径 在单件小批生产中,中低精度轴径的实际尺寸通常用卡尺、千分尺、专用量表等普通计量器具进行检测;在大批量生产中,多用光滑极限量规判断轴的实际尺寸和形状误差是否合格;;高精度的轴径常用机械式测微仪、电动式测微仪或光学仪器进行比较测量,用立式光学计测量轴径是最常用的测量方法。 二、孔径 单件小批生产通常用卡尺、内径千分尺、内径规、内径摇表、内测卡规等普通量具、通用量仪;大批量生产多用光滑极限量规;高精度深孔和精密孔等的测量常用内径百分表(千分表)或卧式测长仪(也叫万能测长仪)测量,用小孔内视镜、反射内视镜等检测小孔径,用电子深度卡尺测量细孔(细孔专用)。 三、长度、厚度 长度尺寸一般用卡尺、千分尺、专用量表、测长仪、比测仪、高度仪、气动量仪等;厚度尺寸一般用塞尺、间隙片结合卡尺、千分尺、高度尺、量规;壁厚尺寸可使用超声波测厚仪或壁厚千分尺来检测管类、薄壁件等的厚度,用膜厚计、涂层测厚计检测刀片或其他零件涂镀层的厚度;用偏心检查器检测偏心距值,用半径规检测圆弧角半径值,

用螺距规检测螺距尺寸值,用孔距卡尺测量孔距尺寸。 四、表面粗糙度 借助放大镜、比较显微镜等用表面粗糙度比较样块直接进行比较;用光切显微镜(又称为双管显微镜测量用车、铣、刨等加工方法完成的金属平面或外圆表面;用干涉显微镜(如双光束干涉显微镜、多光束干涉显微镜)测量表面粗糙度要求高的表面;用电动轮廓仪可直接显示Ra0.025~6.3μm 的值;用某些塑性材料做成块状印模贴在大型笨重零件和难以用仪器直接测量或样板比较的表面(如深孔、盲孔、凹槽、内螺纹等)零件表面上,将零件表面轮廓印制印模上,然后对印模进行测量,得出粗糙度参数值(测得印模的表面粗糙度参数值比零件实际参数值要小,因此糙度测量结果需要凭经验进行修正);用激光测微仪激光结合图谱法和激光光能法测量Ra0.01~0.32μm的表面粗糙度。 五、角度 1.相对测量:用角度量块直接检测精度高的工件;用直角尺检验直角;用多面棱体测量分度盘精密齿轮、涡轮等的分度误差。 2.直接测量:用角度仪、电子角度规测量角度量块、多面棱体、棱镜等具有反射面的工作角度;用光学分度头测量工件的圆周分度或;用样板、角尺、万能角度尺直接测量精度要求不高的角度零件。3.间接测量:常用的测量器具有正弦规、滚柱和钢球等,也可使用三坐标测量机。 4.小角度测量:测量器具有水平仪、自准直仪、激光小角度测量仪

光学显微镜的发展历史

光学显微镜的发展历史、现状与趋势 杨拓拓 (苏州大学现代光学技术研究所,江苏苏州215000) 1基本原理 显微镜成像原理及视角放大率 显微镜由物镜和目镜组成。物体AB 在物镜前焦面稍前处,经物镜成放大、倒立的实像A'B',它位于目镜前焦面或稍后处,经目镜成放大的虚像,该像位于无穷远或明视距离处。 图1-1显微镜系统光路图 牛顿放大率公式: f f x x ''= 'x 是像点到像方焦点的距离,x 是物点到物方焦点的距离。 根据牛顿放大率公式可得物镜的垂轴放大率为 '1'1'11--f f x ?== β 目镜的视觉放大率为: '22250 f =Γ 组合系统的放大率为 '1f

'2'121250f f ? -=Γ=Γβ 显微镜系统的像方焦距 ?-=/'2'1'f f f '250 f = Γ 显微镜系统成倒像轴向放大率 '2'1'2'1/f f x x =β 若物点A 沿光轴移动很小的距离,则通过显微镜系统的像点'2A 将移动很大的距离,且移动 方向相同。 显微系统的角放大率 '2'1'2'1/x x f f =γ 即入射于物镜为大孔径光束,而由目镜射出为小孔径光束。 显微镜的孔径光阑 单组低倍显微物镜,镜框是孔径光阑。 复杂物镜一般以最后一组透镜的镜框作为孔径光阑。 对于测量显微镜,孔阑在物镜的象方焦面上,构成物方远心光路。 显微镜的视场光阑和视场 在显微物镜的象平面上设置了视场光阑来限制视场。由于显微物镜的视场很小,而且要求象面上有均匀的照度,故不设渐晕光阑。 显微镜是小视场大孔径成像,为获得大孔径并保证轴上点成像质量,显微镜线视场不超过物镜的1/20,线视场要求: 1'120202β?=≤f y

实验一 用立式光学计测量塞规

实验一 用立式光学计测量塞规 一、实验目的 1. 了解立式光学计的测量原理。 2. 熟悉用立式光学计测量外径的方法。 3. 加深理解计量器具与测量方法的常用术语。 二、实验内容 1. 用立式光学计测量塞规。 2. 根据测量结果,按国家标准GB1957—81《光滑极限量规》查出被测塞规的尺寸公差和形状公差,作出适用性结论。 三、测量原理及计量器具说明 立式光学计是一种精度较高而结构简单的常用光学量仪。用量块作为长度基准,按比较测量法来测量各种工件的外尺寸。 图1为立时光学计的外形图。它由底座1、立柱5、支臂3、直角光管6和工作台11等几部分组成。光学计是利用光学杠杆放大原理进行测量的仪器,其光学系统如图2b 所示。照明光线经反射镜1照射到刻度尺8上,再经直角棱镜2、物镜3,照射到反射镜4上。由于刻度尺8位于物镜3的焦平面上,故从刻度尺8上发出的光线经物镜3后成为一平行光束,若反射镜4与物镜3之间相互平行,则反射光线折回到 焦平面,刻度尺象7与刻度尺8对称。若被测尺寸变动 使测杆5推动反射镜4饶支点转动某一角度α(图2a ), 则反射光线相对于入射光线偏转2α角度,从而使刻度 尺象7产生位移t (图2c ),它代表被测尺寸的变动量。 物镜至刻度尺8间的距离为物镜焦距f ,设b 为测杆中 心至反射镜支点间的距离,s 为测杆移动的距离,则仪 器的放大比K 为: α αbtg ftg s t K 2== 当α很小时,αα22≈tg ,αα≈tg ,因此: b f K 2= 图 1 光学计的目镜放大倍数为12,mm f 200=,mm b 5=,故仪器的总放大倍数n 为: 9605 20021221212=??===b f K n 由此说明,当测杆移动0.001mm 时,在目镜中可见到0.96mm 的位移量。 四、测量步骤 1. 测头的选择:测头有球形、平面形和刀口形三种,根据被测零件表面的几何形状来选择,使测头与被测表面尽量满足点接触。所以,测量平面或圆柱面工件时,选用球形测头。测量球面工件时,选用平面形测头。测量小于10mm 的圆柱面工件时,选用刀口形测头。

典型光学仪器的基本原理

1、光学仪器在国民生产和生活中各个领域广泛应用,绝大多数光学仪器可归纳为望远镜系统、显微镜系统和照明系统三类。 2、人眼构造:人眼本身就相当于一个摄影系统,外表大体呈球形,直径约为25mm,由角膜、瞳孔、房水、睫状体、晶状体和玻璃体等组成的屈光系统相当于成像系统的镜头,起聚焦成像作用。眼睛内的视网膜和大脑的使神经中枢等相当于成像系统的感光底片和控制系统,能够接收外界信号并成像。 3、视度调节:眼睛通过睫状肌的伸缩本能地改变水晶体光焦度的大小以实现对任意距离的物体自动调焦的过程称作眼睛的视度调节。 4、视觉调节:人眼除了随着物体距离的改变而调节晶状体曲率外,还可以在不同的明暗条件下工作,人眼能感受非常大范围的光亮度变化,即眼睛对不同的亮度条件下具有适应的调节能力,这种能力称为眼睛的视觉调节。 5、放大镜定义:放大镜(英文名称:magnifier):用来观察物体细节的简单目视光学器件,是焦距比眼的明视距离小得多的会聚透镜。物体在人眼视网膜上所成像的大小正比于物对眼所张的角(视角)。 6、视角愈大,像也愈大,愈能分辨物的细节。移近物体可增大视角,但受到眼睛调焦能力的限制。使用放大镜,令其紧靠眼睛,并把物放在它的焦点以内,成一正立虚像。放大镜的作用是放大视角。 7、显微镜:显微镜是由一个透镜或几个透镜的组合构成的一种光学仪器,是人类进入原子时代的标志。主要用于放大微小物体成为人的肉眼所能看到的仪器。显微镜分光学显微镜和电子显微镜:光学显微

镜是在1590年由荷兰的詹森父子所首创。现在的光学显微镜可把物体放大1600倍,分辨的最小极限达0.1微米,国内显微镜机械筒长度一般是160mm。 8、光学显微镜由目镜,物镜,粗准焦螺旋,细准焦螺旋,压片夹,通光孔,遮光器,转换器,反光镜,载物台,镜臂,镜筒,镜座,聚光器,光阑组成。 9、显微镜以显微原理进行分类可分为光学显微镜与电子显微镜。 10、光学显微镜:通常皆由光学部分、照明部分和机械部分组成。无

JDG-S1型数字显示式立式光学计

JDG-S1型数字显示式立式光学计 一. 仪器概述. JDG-S1型数字显示式立式光学计是一种精密测微仪。利用光栅传感器将被测工件尺寸变化转换成电信号,经处理后数字显示出测量结果。其技术参数为: 测量范围:≤180mm 示值范围:≤±0.1mm 显示分辨率:0.1um 测量力:(2±0.2)N 示值变动性:±0.1um 图1.JDG-S1型数字显示式立式光学计 二.仪器结构与原理 由光源1发出的光经聚光镜2照亮位于准直物镜焦面上的标尺光栅3,经立方棱镜6反射,并经过准直物镜7以平行光出射,投射至平面反射镜8上。由平面反射镜8反射的光束又重新进入准直物镜7、立方棱镜6,经立方棱镜6分光面透射,将光栅刻线成像在指示光栅5上,并在指示光栅5上形成光闸莫尔条纹。当测杆有微小位移时,光栅刻线的像将沿另一光栅表面移动,莫尔条纹光强产生周期性变化,光电元件4接受该光强变化,经过光电转换、前置放大、细分、辨相、可逆计数和数字显示等单元,最后在显示窗口上显示测量值。 1—光源 2—聚光镜 3—标尺光栅 4—光电传感器 5-指示光栅 6-立方棱镜 7-准直物镜 8-平面反射镜 9—测杆 光线流程图如2所示:

图2.仪器结构及光线流程图 三.主要模块及其原理介绍 (1).光栅 在该仪器中有一对光栅3-标尺光栅,5-指示光栅。他们和细分电路共同决定了仪器的分辨力。栅柵距d=0.025mm,当光电信号实现一个周期变化,柵距移动一个单位,而此时杆位移对应为S=d/k=0.025/31.25mm=0.8um。如果电路实现8倍细分对应的分辨力为0.8um/8=0.1um。 (2).光学杠杆 当测杆有微小位移时,光栅刻线的像将沿另一光栅表面移动,莫尔条纹光强产生周期性变化,光电元件4接受该光强变化。在这个过程中,光学杠杆实际上起着一个转换放大作用。 原理图如图3:

《互换性与技术测量》课程实验指导书1解析

互换性与技术测量 实验指导书 机械设计制造及其自动化教研室编 2011.09 目录

实验1 用立式光学计测量塞规 (2) 实验2用内径百分表测量内径 (4) 实验3 直线度误差的测量 (7) 实验4 平行度与垂直度误差的测量 (11) 实验5 表面粗糙度的测量 (14) 实验6 工具显微镜长度、角度测量 (18) 实验1 用立式光学计测量塞规 一、实验目的 1、了解立式光学计的测量原理;

2、熟悉立式光学计测量外径的方法; 3、加深理解计量器具与测量方法的常用术语。 二、实验内容 1、用立式光学计测量塞规; 2、由国家标准GB/T 1957—1981《光滑极限量规》查出被测塞规的尺寸公差和形状公差,与测量结果进行比较,判断其适用性。 三、计量器具及测量原理 立式光学计是一种精度较高而结构简单的常用光学测量仪。其所用长度基准为量块,按比较测量法测量各种工件的外尺寸。 图1为立式光学计外形图。它由底座1、立柱5、支臂3、直角光管6和工作台11等几部分组成。光学计是利用光学杠杆放大原理进行测量的仪器,其光学系统如图2b 所示。照明光线经反射镜l照射到刻度尺8上,再经直角棱镜2、物镜3,照射到反射镜4上。由于刻度尺8位于物镜3的焦平面上,故从刻度尺8上发出的光线经物镜3后成为平行光束。若反射镜4与物镜3之间相互平行,则反射光线折回到焦平面,刻度尺的像7与刻度尺8对称。若被测尺寸变动使测杆5推动反射镜4绕支点转动某一角度α(图2a),则反射光线相对于入射光线偏转2α角度,从而使刻度尺像7产生位移t(图2c),它代表被测尺寸的变动量。物镜至刻度尺8间的距离为物镜焦距f,设b为测杆中心至反射镜支点间的距离,s为测杆5移动的距离,则仪器的放大比K为 当a很小时,,因此 光学计的目镜放大倍数为12,f=200mm,b=5mm,故仪器的总放大倍数n为 由此说明,当测杆移动0.001mm时,在目镜中可见到0.96mm的位移量。

光学显微镜的原理及构造

光学显微镜的原理及构造显微镜是人类认识物质微观世界的重要工具,是现代科学研究工作不可缺少的仪器之一。显微镜自1666年问世以来已有300多年的历史了,其间随着科学技术不断发展,显微镜的品种不断增加,结构和性能逐步得到完善和提高。 根据不同的使用用途,光学显微镜可分为普通光学显微镜、暗视野显微镜、相差显微镜、荧光显微镜、倒置显微镜、体视显微镜、偏光显微镜等10多种。目前,世界上许多国家都可以生产光学显微镜,牌名、种类繁杂,其中德国、日本等国制造的显微镜品质、数量占优势,但价格昂贵。 对于现代的光学显微镜,包括各种简单的常规检验用显微镜、万能研究以及万能照相显微镜等,首先要认识其构造及各部件的功能,同时要掌握正确的调试、使用和保养方法,才能在实际应用中面对各种要求时以不同的显微镜检方法,充分发挥显微镜应有的功能,提高常规检验工作效率. 光学显微镜的原理和构造 随着科学技术的发展,显微镜检方法由最传统的明视野、暗视野发展出了相差法、偏光方法;荧光方法也由透射光激发进展为落射光激发,使荧光效率大为提高;微分干涉相衬方法基于偏光方法,而巧妙地利用了微分干涉棱镜,使之能应用于医学与生物学的样品,又能应用于金相样品的分析与检验。 下面以德国ZEISS公司生产的Axioplan万能研究用显微镜,简单介绍万能显微镜的基本组成部件。 1. 显微镜主机体(stand) 显微镜的主机体设计成金字塔形,而底座的截面呈T字形,使显微镜的整体相当稳固。显微镜的光学部件和机构调节部件、光源的灯室、显微照相装置、电源变压稳压器等,都可安装在主机体上或主机体内。 2. 显微镜的底座(base) 底座和主机体通常组成一个稳固的整体。底座内通常装有透射光照明光路系统(聚光、集光和反光)部件,光源的滤光片组,粗/微调焦机构,光源的视场光阑也安装在底座上。 3. 透射光光源(tranilluminator) 透射光光源由灯室(lamp housing)、灯座(lamp socket)、卤素灯(halogen lamp)、集光与聚光系统(lamp collector and lamp condenser)及其调整装置组成。 4. 透射光光源与反射光光源的转换开关(toggle switch) 这是新一代AXIO系列显微镜特有的装置,透射光和反射光可通用。当具有透/反两用的配置时,利用这一转换开关能方便而又迅速的使透射光 和反射光互相转换。在纯透射光的配置中,这一开关就改为电源开关。

立式光学计

立式光学计 光学计有立式、卧式之分,两者所用的光学计管完全相同。卧式光学计除能测量外尺寸外,还能测量内尺寸 立式光学计分为刻线读数、数显两种,利用光学杠杆原理提高精度。 测量范围-100μm~+100μm,分度值为1μm,精度为±0.5μm。 立式光学计主要用于微差比较测量,是使工件与量块相比较测量它们之间的微差尺寸 它的原理之所在就在这个光管里,首先由下往上说,测帽、测杆、反光镜、物镜、棱镜、通光棱镜、标准尺。 反光镜有三个支点支撑,其中两个支点为固定点,另一个支点就是测杆。测杆的上下移动带着反光镜上下偏转,当杠杆往下走时,反光镜向下偏,这时目镜中的像越模糊;反之则越清晰。 当光源进入打到标准尺上将标准尺的像偷狗棱镜、物镜打到反光镜上,这时再由反光镜按原来的线路将标准尺的像反射到目镜中,进行观察。 (由光源1 聚光镜2滤光片3隔热玻璃5 仪器投影箱4 刻度尺6(刻度尺6

上的刻划面在准直物镜8的焦平面上、刻划轴线与整个照明系统的光轴偏离2.5mm)被照亮的刻度尺经棱镜7和准直物镜8 后成平行光射向反射镜9,由9反射后再经物镜成像在刻划面上光轴的另一侧(为了利用影屏观察,在棱镜7 的右边,设计成一个的反射面,它使刻度尺的自准直像转向,在投影物镜10的物平面上成像)再经投影物镜放大及棱镜11、反射镜12的反射,把刻度尺像成在影屏13上,影屏上刻着固定的指标线,观察放大镜14把整个影屏再放大,从而提高了观察效果。) 介绍一下用立式光学计检定4等量块的使用方法: 1.首先选取两块标称值之差不大于100μm 的4等量块,并用120#汽油进行清洗,放到立式光学计的工作台上。 2.将其中一块量块放到工作台中心,打开臂架制动螺钉,旋转臂架升降用螺母,将测帽对准量块的中心与其之间留下一点缝隙,然后观看目镜,继续调节臂架升降用螺母,直到有标准尺像出现,尽量调到零位,锁紧臂架制动螺钉,打拨叉。 3.打开微调臂架制动螺钉,旋转微调臂架升降用螺母,观察目镜,继续调零,然后锁紧微调臂架制动螺钉打拨叉,若与零位差的不多,则调节目镜上的分划板旋钮,然后继续打拨叉,反复几次,直到指针不动,指到零位。 4抬起拨叉,将量块取出,换上另一量块,观察目镜,不断打拨叉,知道指针不再移动,读数。与两量块标称值差值作比较。 测帽的选择: 根据工件的形状,应选择与工件接触面尽量小的工作台和测帽。

光学显微镜的工作原理

光学显微镜的工作原理 显微镜就是一种精密的光学仪器,已有300多年的发展史。自从有了显微镜,人们瞧到了过去瞧不到的许多微小生物与构成生物的基本单元——细胞。目前,不仅有能放大千余倍的光学显微镜,而且有放大几十万倍的电子显微镜,使我们对生物体的生命活动规律有了更进一步的认识。在普通中学生物教学大纲中规定的实验中,大部分要通过显微镜来完成,因此,显微镜性能的好坏就是做好观察实验的关键。 一、显微镜的光学系统 显微镜的光学系统主要包括物镜、目镜、反光镜与聚光器四个部件。广义的说也包括照明光源、滤光器、盖玻片与载玻片等。 (一)、物镜 物镜就是决定显微镜性能的最重要部件,安装在物镜转换器上,接近被观察的物体,故叫做物镜或接物镜。 1、物镜的分类 物镜根据使用条件的不同可分为干燥物镜与浸液物镜;其中浸液物镜又可分为水浸物镜与油浸物镜(常用放大倍数为90—100倍)。 根据放大倍数的不同可分为低倍物镜(10倍以下)、中倍物镜(20倍左右)高倍物镜(40—65倍)。 根据像差矫正情况,分为消色差物镜(常用,能矫正光谱中两种色光的色差的物镜)与复色差物镜(能矫正光谱中三种色光的色差的物镜,价格贵,使用少)。 2、物镜的主要参数: 物镜主要参数包括:放大倍数、数值孔径与工作距离。 ①、放大倍数就是指眼睛瞧到像的大小与对应标本大小的比值。它指的就是长度的比值而不就是面积的比值。例:放大倍数为100×,指的就是长度就是1μm的标本,放大后像的长度就是100μm,要就是以面积计算,则放大了10,000倍。 显微镜的总放大倍数等于物镜与目镜放大倍数的乘积。 ②、数值孔径也叫镜口率,简写NA 或A,就是物镜与聚光器的主要参数,与显微镜的分辨力成正比。干燥物镜的数值孔径为0、05-0、95,油浸物镜(香柏油)的数值孔径为1、25。 ③、工作距离就是指当所观察的标本最清楚时物镜的前端透镜下面到标本的盖玻片上面的距离。物

用立式光学计测量轴的直径实验报告

实验用立式光学计测量轴的直径 一、实验目的 1.了解立式光学计的测量原理。 2.熟悉用立式光学计测量外径的方法。 3.加深理解计量器具与测量方法的常用术语。 4. 掌握零件的验收原则和验收方法。 二、实验设备 1.立式光学计 2.量块 三、实验原理及实验设备说明 1.立式光学计 立式光学计是一种精度较高而结构简单的常用光学机械式长度计量器具。用量块作为长度基准,按比较测量法来测量各种工件的外形尺寸。 型号为JD3的立式光学计基本技术参数如下: 测量范围:0-180mm;分度值:0.001mm;示值范围:±0.1mm;仪器最大不确定:0.00025 mm;测量最大不确定度:±(0.5+L/100)μm 图1-1为立式光学计外形结构图。 1.投影灯 2.投影灯固定螺钉 3.支柱 4.零位微动螺钉 5.立柱 6.支臂固定螺钉 7.支臂8微动偏心手轮 9立式测头提升器 10.工作台调整螺钉 11.工作台12.壳体 13.微动托圈 14.微动托圈固定螺钉 15.光管定位螺钉 16.测量管固定螺钉 17.直角光管 18.测帽 19.6V15W变压器 图1-1 立式光学计外形图 它主要是由带有特殊螺纹的立柱5、支臂7、直角光管17和工作台11等几部分组成。立式光学计是利用光学自准原理和机械的正切杠杆原理进行测量的仪器。其光学系统如图1-2a所示,由白炽灯泡1发出的光线经过聚光镜2和滤光片6,通过隔热片7照明分划板8的刻线面,再通过反射棱镜9后射向准直物镜12。由于分划板8的刻线面置于准直物镜12的焦平面上,所以成像光束通过准直物镜12后成为一束平行光入射于平面反射镜13上,根据自准直原理,分划板刻线的像被平面反光镜13反射后,再经准直物镜12被反射棱镜9反射成像在投影物镜4的物平面上,然后通过投影物镜4、直角棱镜3和反射镜5成像在投影屏

光学显微镜成像原理

物体介于物镜的焦距和二倍焦距之间,成倒立放大的实相,据凸透镜成像规律,知实相在异侧二倍焦距之外。实相位于目镜焦点或者焦点之内,被再次放大,形成放大的虚像。而人的眼睛是可以看到虚像的(这个原理自然清楚)。要搞清显微镜的使用原理,就得对物理中的凸透镜成像有所理解。 { 只有当物体对人眼的张角不小于某一值时,肉眼才能区别其各个细部,该量称为目视分辨率ε。在最佳条件下,即物体的照度为50~70lx及其对比度较大时,可达到1'。为易于观测,一般将该量加大到2',并取此为平均目镜分辨率。物体视角的大小与该物体的长度尺寸和物体至眼睛的距离有关。有公式y=Lε 距离L不能取得很小,因为眼睛的调节能力有一定限度,尤其是眼睛在接近调节能力的极限范围工作时,会使视力极度疲劳。对于标准(正视)而言,最佳的视距规定为250mm(明视距离)。这意味着,在没有仪器的条件下,目视分辨率ε=2'的眼睛,能清楚地区分大小为0.15mm的物体细节。 在观测视角小于1'的物体时,必须使用放大仪器。放大镜和显微镜是用于观测放置在观测人员近处应予放大的物体的。 (一)放大镜的成像原理 表面为曲面的玻璃或其他透明材料制成的光学透镜可以使物体放大成像,光路图如图1所示。位于物方焦点F以内的物AB,其大小为y,它被放大镜成一大小为y'的虚像A'B'。 放大镜的放大率 Γ=250/f' 式中250--明视距离,单位为mm f'--放大镜焦距,单位为mm 该放大率是指在250mm的距离内用放大镜观察到的物体像的视角同没有放大镜观察到的物体视角的比值。 (二)显微镜的成像原理 显微镜和放大镜起着同样的作用,就是把近处的微小物体成一放大的像,以供人眼观察。只是显微镜比放大镜可以具有更高的放大率而已。 图2是物体被显微镜成像的原理图。图中为方便计,把物镜L1和目镜L2均以单块透镜表示。物体AB位于物镜前方,离开物镜的距离大于物镜的焦距,但小于两倍物镜焦距。所以,它经物镜以后,必然形成一个倒立的放大的实像A'B'。A'B'位于目镜的物方焦点F2上,或者在很靠近F2的位置上。再经目镜放大为虚像A''B''后供眼睛观察。虚像A''B''的位置取决于F2和A'B'之间的距离,可以在无限远处(当A'B'位于F2上时),也可以在观察者的明视距离处(当A'B'在图中焦点F2之右边时)。目镜的作用与放大镜一样。所不同的只是眼睛通过目镜所看到的不是物体本身,而是物体被物镜所成的已经放大了一次的像。 (三)显微镜的重要光学技术参数 在镜检时,人们总是希望能清晰而明亮的理想图象,这就需要显微镜的各项光学技术参数达到一定的标准,并且要求在使用时,必须根据镜检的目的和实际情况来协调各参数的关系。只有这样,才能充分发挥显微镜应有的性能,得到满意的镜检效果。

用立式光学计测量轴径实验报告

实验一用立式光学计测量轴径实验报告 仪器名称分度值 (μm) 示值范围 (mm) 测量范围 (mm) 器具的不确定 度(μm) 被测零件 名称 图样上给定的极限尺寸 (mm) 安全裕度 A (μm) 器具不确定度 的允许值 (μm) 最大最小 验收极限尺寸 (mm)基本尺寸 (mm) 最大最小 形位公差(μm) 素线直线度公差素线平行度公差 测 量 示 意 图 测量数据实际偏差 (μm)实际尺寸 (mm)测量位置Ⅰ—ⅠⅡ—ⅡⅢ—ⅢⅠ—ⅠⅡ—ⅡⅢ—Ⅲ 测量方向 A A' - B B' - A A-' B B-' 形位误差(μm) 素线直线度误差素线平行度误差合格性结论理由审阅

作图求直线度误差: 35 35 30 30 25 25 20 20 15 15 10 10 5 5 0 0 Ⅰ Ⅱ Ⅲ Ⅰ Ⅱ Ⅲ A A '- B B '- 35 35 30 30 25 25 20 20 15 15 10 10 5 5 0 0 Ⅰ Ⅱ Ⅲ Ⅰ Ⅱ Ⅲ A A -' B B -'

实验二用内径千分表测量孔径实验报告 仪器名称 分度值 (μm) 示值范围 (mm) 测量范围 (mm) 器具的不确定度 (μm) 被测零件名称 基本尺寸 (mm) 图样上给定的极限尺寸(mm) 器具不确定度的 允许值(μm) 最大最小 安全裕度 A (μm) 验收极限尺寸(mm) 最大最小 形位公差(μm) 圆度公差(μm) 测 量 示 意 图 测量数据实际偏差(μm) 实际尺寸(mm)测量位置Ⅰ—ⅠⅡ—ⅡⅢ—ⅢⅠ—ⅠⅡ—ⅡⅢ—Ⅲ 测量方向 A A' - B B' - 圆度误差f0=(μm) 合格性结论理由审阅

用立式光学计测量塞规

实验1—1 用立式光学计测量塞规 一. 实验目的 1. 了解立式光学计的测量原理。 2. 熟悉用立式光学计测量外径的方法。 3. 加深理解计量器具与测量方法的常用术语。 二. 实验内容 1. 用立式光学计测量塞规。 2. 根据测量结果,按国家标准GB1957——81《光滑极限量规》查出被测塞规的尺寸公差和形状公差,作出适用性结论。 三. 测量原理及计量器具说明 立式光学计是一种精度较高而结构简单的常用光学量仪。用量块作为长度基准,按比较测量法来测量各种工件的外尺寸。 图1为立式光学计外形图。 图1 它由底座1、立柱5、支臂3、直角光管6和工作台11等几部分组成。光学计是利用光学杠杆放大原理进行测量的仪器,其光学系统如图2(b )所示。照明光线经反射镜1照射到刻度尺8上,再经直角棱镜2、物镜3,照射到反射镜4上。由于刻度尺8位于物镜3的焦平面上,故从刻度尺8上发出的光线经物镜3后成为平行光束。若反射镜4与物镜3之间相互平行,则反射光线折回到焦平面,刻度尺象7与刻度尺8对称。若被测尺寸变动使测杆推动反射镜4绕支点转动某一角度a (图2(a )),则反射光线相对于入射光线偏转2a 角度,从而使刻度尺象7产生位移t (图2(c )),它代表被测尺寸的为动量。物镜至刻度尺8之间的距离为物镜焦距f ,设b 为测杆中心至反射镜支点间的距离,s 为测杆5移动的距离,则仪器的放大比K 为: α αbtg ftg s t K 2== 当a 很小时,tg2a=2a, tga=a,

因此:K= b f 2 光学计的目镜放大倍数为12,f=200mm,b=5mm, 故仪器 的总放大倍数n 为: n=12K= 5 200212212??=b f =960 由此说明,当测杆移动0.001mm 时,在目镜中可见到0.96mm 的位移量。 图2 四、测量步骤 1、测头的选择:测头有球形、平面形和刀口形三种,根据被测零件表面的几何形状来选择,使测头与被测表面尽量满足点接触。所以,测量平面或圆柱表工作时,先用球形测头。测量球面工作时,选用平面形测头。测量小于10mm 的圆柱面工件时,选用刀口形测头。 2、按被测塞规的基本尺寸组合量块。 3、调整仪器零位 (1)参看图1,先好量块组后,将下测量面置于工作台11的中央,并使测头10对准上测量面中央。 (2)粗调节:松开支臂紧固螺钉4,转动调节螺母2,使支臂3缓慢下降,直到测头与量块,并能在视场中看到刻度尺象时,将螺钉4锁紧。 (3)细调节:松开紧固螺钉8,转动调节螺母2,使支臂3缓慢下降,直到测头与量块上测量面轻微接触,并能在视场中看到刻度尺象时,将螺钉4锁紧。 (4)细调节:松开紧固螺钉8,转动调节凸轮7,直至在目镜中观察到刻度尺象与μ指示接近为止(图3a )。然后拧紧螺钉8。 (5)微调节:转动刻度尺微调螺钉6(图2b ),使刻度尺的零线影象与μ指示线重合(图3b ),然后压下测头提升杠杆9数次,使零位稳定。 (6)将测头抬起,取下量块。 4、测量塞规:按实验规定的部位(在三个横截面上的两个相互垂直的径向位置上)进行测量,把

立式光学计的测量不确定度分析

立式光学计的测量不确定度分析 减小字体增大字体作者:谢艳平许海燕来源:https://www.wendangku.net/doc/6817317973.html, 发布时间:2008-05-26 14:53:29 安徽省活塞厂谢艳平合肥工业大学许海燕 一、工作原理 立式光学计应用自准直原理和正切杠杆原理,将光学杠杆和正切杠杆机构结合在一起实现长度尺寸的测量。 二、测量装置的不确定度分析 在立式光学计上用标称值为6mm的四等量块作标准,对本厂专用标称尺寸为的活塞环槽塞规(工件工作部位材料为硬质合金)进行相对测量。测量温度为(20±0.5)℃。在立式光学计上作相对测量时,其标准不确定度主要来源于以下几方面。 1.示值误差的标准不确定度分量 由检定规程查得,立式光学计的示值误差为±0.25μm,在测量范围内误差的分布符合正态分布,覆盖因子k=3,其标准不确定度分量为 u1=0.25/3=0.083μm 2.标准量块极限误差的标准不确定度分量 四等量块的极限误差为 ΔL1=(0.2+2L)μm =(0.2+2×6×10-3)μm =0.0212μm 式中:L——量块的长度(L=6mm);ΔL1——量块的极限误差。 误差分布符合正态分布,覆盖因子k=3。 标准量块的标准不确定度分量为u2=0.212/3=0.071μm 3.定位误差的标准不确定度分量 在立式光学计上相对测量,由工作台工作平面定位,平面对测量轴线不垂直所产生的测量误差与被测件长度无直接关系,而仅决定于被测件和标准件的长度差。 δ位=±1/2a2ΔL2 式中:ΔL2——被测件与标准件的长度差(ΔL2=0.0344mm);a——工作台平面与仪器测量轴线的垂直度误差;δ位——定位误差。 对可调试工作台,影响工作台表面与测量轴线的不垂直的因素有以下三方面: (1)工作台的调整误差,用四等量块接触φ8平面测帽的一半时,在前、后、左、右四个位置允许示值差为0.3μm,相当于测帽平面与工作台平面的平行性误差,其值为

光学显微镜的工作原理

光学显微镜的工作原理 显微镜是一种精密的光学仪器,已有300多年的发展史。自从有了显微镜,人们看到了过去看不到的许多微小生物和构成生物的基本单元——细胞。目前,不仅有能放大千余倍的光学显微镜,而且有放大几十万倍的电子显微镜,使我们对生物体的生命活动规律有了更进一步的认识。在普通中学生物教学大纲中规定的实验中,大部分要通过显微镜来完成,因此,显微镜性能的好坏是做好观察实验的关键。 一、显微镜的光学系统 显微镜的光学系统主要包括物镜、目镜、反光镜和聚光器四个部件。广义的说也包括照明光源、滤光器、盖玻片和载玻片等。 (一)、物镜 物镜是决定显微镜性能的最重要部件,安装在物镜转换器上,接近被观察的物体,故叫做物镜或接物镜。 1、物镜的分类 物镜根据使用条件的不同可分为干燥物镜和浸液物镜;其中浸液物镜又可分为水浸物镜和油浸物镜(常用放大倍数为90—100倍)。 根据放大倍数的不同可分为低倍物镜(10倍以下)、中倍物镜(20倍左右)高倍物镜(40—65倍)。 根据像差矫正情况,分为消色差物镜(常用,能矫正光谱中两种色光的色差的物镜)和复色差物镜(能矫正光谱中三种色光的色差的物镜,价格贵,使用少)。 2、物镜的主要参数: 物镜主要参数包括:放大倍数、数值孔径和工作距离。 ①、放大倍数是指眼睛看到像的大小与对应标本大小的比值。它指的是长度的比值而不是面积的比值。例:放大倍数为100×,指的是长度是1μm的标本,放大后像的长度是100μm,要是以面积计算,则放大了10,000倍。 显微镜的总放大倍数等于物镜和目镜放大倍数的乘积。 ②、数值孔径也叫镜口率,简写NA 或A,是物镜和聚光器的主要参数,与显微镜的分辨力成正比。干燥物镜的数值孔径为0.05-0.95,油浸物镜(香柏油)的数值孔径为1.25。

相关文档