文档库 最新最全的文档下载
当前位置:文档库 › 2001年考研数学一试题及完全解析(Word版)

2001年考研数学一试题及完全解析(Word版)

2001年考研数学一试题及完全解析(Word版)
2001年考研数学一试题及完全解析(Word版)

2001年全国硕士研究生入学统一考试

数学一试题

一、填空题(本题共5小题,每小题3分,满分15分.把答案填在题中横线上.) (1)设12(sin cos )x

y e

C x C x =+(12,C C 为任意常数)

为某二阶常系数线性齐次微分方程的通解,则该方程为_____________.

(2)设222z y x r ++=

,则div (grad r )

)

2,2,1(-=_____________.

(3)交换二次积分的积分次序:

?

?

--01

12

),(y dx y x f dy =_____________.

(4)设矩阵A 满足2

40A A E +-=,其中E 为单位矩阵,则1

()A E --=_____________. (5)设随机变量X 的方差是2,则根据切比雪夫不等式有估计

≤≥-}2)({X E X P

_____________.

二、选择题(本题共5小题,每小题3分,满分15分.)

(1)设函数)(x f 在定义域内可导,)(x f y =则)

(x f y '=的图形为

(2)设),(y x f 在点(0,0)附近有定义,且1)0,0(,3)0,0(='='y x f f ,则

(A )

(0,0)|3z d dx dy =+.

(B ) 曲面),(y x f z =在(0,0,(0,0))f 处的法向量为{3,1,1}.

(C ) 曲线??

?==0

)

,(y y x f z 在(0,0,(0,0))f 处的切向量为{1,0,3}.

(D ) 曲线?

??==0)

,(y y x f z 在(0,0,(0,0))f 处的切向量为{3,0,1}.

(3)设0)0(=f ,则)(x f 在x =0处可导的充要条件为

(A ) 2

01

lim (1cosh)h f h →-存在.

(B ) 01

lim

(1)h h f e h →-存在. (C ) 201

lim (sinh)h f h h

→-存在.

(D ) 01

lim [(2)()]h f h f h h

→-存在.

(4)设11114

001

1110000,,111100001

11

10

00

0A B ?????????

???==????????????

则A 与B (A ) 合同且相似. (B ) 合同但不相似. (C ) 不合同但相似.

(D ) 不合同且不相似.

(5)将一枚硬币重复掷n 次,以X 和Y 分别表示正面向上和反面向上的次数, 则X 和Y 的相关系数等于

(A )-1.

(B ) 0.

(C )

1

2

. (D ) 1.

三、(本题满分6分)

求dx e e x

x

?2arctan .

四、(本题满分6分)

设函数),(y x f z =在点(1,1)处可微,且(1,1)1f =,

(1,1)|2f x ?=?,(1,1)|3f

y

?=?,()(,x f x ?= (,))f x x .求

1

3

)(=x x dx

d ?.

五、(本题满分8分)

设)(x f =2

10,arctan ,0,1,x x x x x +?≠?=?

将)(x f 展开成x 的幂级数,并求级数∑∞=--12

41)1(n n

n 的和.

六、(本题满分7分) 计算dz y x dy x z dx z y I L

)3()2()(222222-+-+-=?

,其中L 是平面2=++z y x 与柱

1=+y x 的交线,从Z 轴正向看去,L 为逆时针方向.

七、(本题满分7分)

设)(x f 在(1,1)-内具有二阶连续导数且0)(≠''x f ,试证:

(1)对于(1,1)-内的任一0x ≠,存在惟一的)1,0()(∈x θ,使)(x f =)0(f +))((x x f x θ'成立; (2)0

1

lim ()2

x x θ→=

.

八、(本题满分8分)

设有一高度为()h t (t 为时间)的雪堆在融化过程,其侧面满足方程)

()

(2)(22t h y x t h z +-=(设

长度单位为厘米,时间单位为小时),已知体积减少的速率与侧面积成正比(比例系数为0.9),问高度为130(厘米)的雪堆全部融化需多少小时?

九、(本题满分6分)

设s ααα,,,21 为线性方程组0Ax =的一个基础解系,1

1122t t βαα=+,21223,t t βαα=+ ,

121s s t t βαα=+,其中21,t t 为实常数.试问21,t t 满足什么条件时,s βββ,,,21 也为0Ax =的一个

基础解系.

十、(本题满分8分)

已知3阶矩阵A 与三维向量x ,使得向量组2

,,x Ax A x 线性无关,且满足x A Ax x A 2

3

23-=.

(1)记P =(x A Ax x 2

,,),求3阶矩阵B ,使1-=PBP A ;

(2)计算行列式E A +.

十一、(本题满分7分)

设某班车起点站上客人数X 服从参数为λ(0λ>)的泊松分布,每位乘客在中途下车的概率为

p (01p <<),且中途下车与否相互独立.以Y 表示在中途下车的人数,求:

(1)在发车时有n 个乘客的条件下,中途有m 人下车的概率; (2)二维随机变量(,)X Y 的概率分布.

十二、(本题满分7分) 设总体X 服从正态分布

2(,)N μσ(0σ>),从该总体中抽取简单随机样本

12,X X , ,2n X (2n ≥),其样本均值为∑==n

i i X n X 2121,求统计量∑=+-+=n

i i n i X X X Y 1

2)2(的数学期望()E Y .

2001年考研数学一试题答案与解析

一、填空题

(1)【分析】 由通解的形式可知特征方程的两个根是12

,1r r i =±,从而得知特征方程为

22

121212()()()220r r r r r r r r rr r r --=-++=-+=.

由此,所求微分方程为'''220y y y -+=.

(2)【分析】 先求grad r .

grad r=,,,,r r r x y z x y z r r r ???????

=?

???????

???. 再求 div grad r=

()()()x y z

x r y r z r

???++???

=2222223333

11132

()()()x y z x y z r r r r r r r r r

++-+-+-=-=.

于是

div grad r|(1,2,2)-=

(1,2,2)22|3

r -=.

(3)【分析】 这个二次积分不是二重积分的累次积分,因为10y -≤≤时

12y -≤.由此看出二次积分02

1

1(,)y

dy f x y dx --??

是二重积分的一个累次

积分,它与原式只差一个符号.先把此累次积分表为

02

1

1(,)(,)y

D

dy f x y dx f x y dxdy --=?

?

??.

由累次积分的内外层积分限可确定积分区域D :

10,12y y x -≤≤-≤≤.

见图.现可交换积分次序

原式=02

20

211

11

11

(,)(,)(,)x

y

x

dy f x y dx dx f x y dy dx f x y dy -----=-=?

?

??

??

.

(4)【分析】 矩阵A 的元素没有给出,因此用伴随矩阵、用初等行变换求逆的路均堵塞.应当考虑用定义法.

因为

2()(2)240A E A E E A A E -+-=+-=,

()(2)2A E A E E -+=,即 2()2

A E

A E E +-?

=. 按定义知

11

()(2)2

A E A E --=

+.

(5)【分析】 根据切比雪夫不等式

2

()

{()}D x P X E X εε

-≥≤,

于是

2

()1

{()2}22

D x P X

E X -≥≤

=.

二、选择题

(1)【分析】 当0x <时,()f x 单调增'()0f x ?

≥,(A ),(C )不对;

当0x >时,()f x :增——减——增'()f x ?:正——负——正,(B )不对,(D )对.

应选(D ).

(2)【分析】 我们逐一分析.

关于(A ),涉及可微与可偏导的关系.由(,)f x y 在(0,0)存在两个偏导数?(,)f x y 在(0,0)处可微.因此(A )不一定成立.

关于(B )只能假设(,)f x y 在(0,0)存在偏导数

(0,0)(0,0)

,

f f x y

????,不保证曲面(,)z f x y =在 (0,0,(0,0))f 存在切平面.若存在时,法向量n=(0,0)(0,0)

1f f x y ????±-=±??????

,,{3,1,-1}与{3,1,1}不

共线,因而(B )不成立.

关于(C ),该曲线的参数方程为,

0,(,0),x t y z f t =??

=??=?

它在点(0,0,(0,0))f 处的切向量为

'0{',0,

(,0)}|{1,0,(0,0)}{1,0,3}t x d

t f t f dt

===. 因此,(C )成立.

(3)【分析】 当(0)0f =时,'

0()(0)lim

x f x f x →=?00()()

lim lim x x f x f x x x

→+→-?=?.

关于(A ):220001(1cos )1cos 1()

lim (1cos )lim 1cos lim 1cos 2h h t f h h f t f h t h h h h t

→→→+---=?=--,

由此可知

201

lim (1cos )h f h h

→-? ? '(0)f + ?. 若()f x 在0x =可导?(A )成立,反之若(A )成立?'(0)f + ??'(0)f ?.如()||f x x =满

足(A ),但'(0)f 不?.

关于(D ):若()f x 在0x =可导,?

''001(2)()lim [(2)()]lim[2]2(0)(0)2h h f h f h f h f h f f h h h

→→-=-=-. ?(D )成立.反之(D )成立0

lim((2)())0h f h f h →?-=?()f x 在0x =连续,?()f x 在0x =可

导.如21,0

()0,0x x f x x +≠?=?

=? 

满足(D ),但()f x 在0x =处不连续,因而

'(0)f 也不?.

再看(C ):

2220001sin (sin )sin ()lim

(sin )lim lim sin h h h h h f h h h h f t f h h h h h h h t

→→→----=?=?-(当它们都?时).

注意,易求得20sin lim

0h h h h →-=.因而,若'

(0)f ??(C )成立.反之若(C )成立?0()lim t f t t →(即 '(0)f ?).因为只要()f t t

有界,任有(C )成立,如()||f x x =满足(C ),但'

(0)f 不?. 因此,只能选(B ).

(4)【分析】 由

43||40E A λλλ-=-=,知矩阵A 的特征值是4,0,0,0.又因A 是实对称矩阵,A

必能相似对角化,所以A 与对角矩阵B 相似.

作为实对称矩阵,当A B 时,知A 与B 有相同的特征值,从而二次型T

x Ax 与

T x Bx 有相同的

正负惯性指数,因此A 与B 合同.

所以本题应当选(A ).

注意,实对称矩阵合同时,它们不一定相似,但相似时一定合同.例如

1002A ??=????与1003B ??

=????

, 它们的特征值不同,故A 与B 不相似,但它们的正惯性指数均为2,负惯性指数均为0.所以A 与B 合同.

(5)【分析】 解本题的关键是明确X 和Y 的关系:X Y n +=,即Y n X =-,在此基础上利用性质:相关系数XY ρ的绝对值等于1的充要条件是随机变量X 与Y 之间存在线性关系,即Y aX b =+(其中,a b 是常数),且当0a >时,1XY ρ=;当0a <时,1XY ρ=-,由此便知1XY ρ=-,应选(A ).

事实上,(,)(,)Cov X Y Cov X n X DX =-=-,()DY D n X DX =-=,由此由相关系数的定

义式有

1

XY ρ=

=

=-.

三、【解】

原式=222211arctan ()[arctan ]22(1)

x x x x x

x x de e d e e e e e ---=--+??

=2221(arctan )21x x x x

x x

de de e e e e ---++??

=21(arctan arctan )2

x

x x x e e e e C ---

+++.

四、【解】 先求(1)(1,(1,1))(1,1)1f f f ?===.

求 3

2''1()|3(1)(1)3(1)x d x dx

????===,归结为求'(1)?.由复合函数求导法

'''12()(,(,))(,(,))(,)d

x f x f x x f x f x x f x x dx

?=+,

'''''1212(1)(1,1)(1,1)[(1,1)(1,1)]f f f f ?=++.

注意

'1(1,1)(1,1)2f f x ?=

=?,'2(1,1)

(1,1)3f f y

?==?. 因此

'(1)23(23)17

?=++=,

3

1()|31751x d x dx

?==?=.

五、【分析与求解】 关键是将arctan x 展成幂级数,然后约去因子x ,再乘上2

1x +并化简即可.

直接将arctan x 展开办不到,但'

(arctan )x 易展开,即

'

22

1

(arctan )(1),||11n n n x x x x ∞

===-<+∑, ①

积分得 '

221

00

00(1)arctan (arctan )(1)21

n x

x n

n

n n n x t dt t dt x n ∞

+==-==-=+∑∑??,[1,1]x ∈-. ②

因为右端积分在1x =±时均收敛,又arctan x 在1x =±连续,所以展开式在收敛区间端点

1x =±成立.

现将②式两边同乘以2

1x x

+得

2222

22000

1(1)(1)(1)arctan (1)212121n n n n n n n n n x x x x x x x n n n +∞

∞∞===+---=+=++++∑∑∑

=12200

(1)(1)2121n n n n

n n x x n n -∞

∞==--++-∑∑

=21

11

1(1)(

)2121

n n n x n n ∞

=+

--+-∑

22

1

(1)2114n n

n x n ∞

=-=+-∑ ,

[1,1]x ∈-,0x ≠

上式右端当0x =时取值为1,于是

22

1(1)2()1,[1,1]14n n

n f x x x n

=-=+∈--∑. 上式中令1x =2

1(1)111

[(1)1](21)1422442n n f n

ππ∞

=-?=-=?-=--∑.

六、【解】

用斯托克斯公式来计算.记S 为平面2x y z ++=上L 所

为围部分.由L 的定向,按右手法则S 取上侧,S 的单位法向量

(cos ,cos ,cos )n αβγ== .

于是由斯托克斯公式得

22

22

22

cos cos cos 23S

I dS x y z y z z x x y αβ

γ???=???---??

=

[(24(26(22S

y z z x x y dS --+--+--??

=(423)(2)(6)S S

x y z dS x y z x y dS ++++=+-????利用. 于是

==

按第一类曲面积分化为二重积分得

(62(6)D D

I x y x y dxdy =+-=-+-??, 其中D 围S 在xy 平面上的投影区域||||1x y +≤(图).由D 关于,x y 轴的对称性及被积函数的奇偶性得

()0D

x y dxdy -=??

?

21224D

I dxdy =-=-=-??.

七、【证明】 (1)由拉格朗日中值定理,(1,1)x ?∈-,0,(0,1)x θ≠?∈,使

'()(0)()f x f xf x θ=+

(θ与x 有关);又由''()f x 连续而''()0f x ≠,''()f x 在(1,1)-不变号,'()f x 在(1,1)-严格单

调,θ唯一. (2)对'()f x θ使用''(0)f 的定义.由题(1)中的式子先解出'()f x θ,则有

'()(0)

()f x f f x x

θ-=

.

再改写成

''

'

()(0)(0)

()(0)f x f xf f x f x θ---=.

'''2

()(0)()(0)(0)

f x f f x f xf x x

θθθ---?=, 解出θ,令0x →取极限得

''

'

'

'

2''0001(0)

()(0)(0)()(0)1

2lim lim /lim (0)2

x x x f f x f xf f x f x x f θθθ→→→---===.

八、【解】 (1)设t 时刻雪堆的体积为()V t ,侧面积为()S t .t 时刻雪堆形状如图所示

先求()S t 与()V t .

侧面方程是22222

2()()()((,):)()2

xy x y h t z h t x y D x y h t +=-∈+≤.

?

44,()()z x z y

x h t y h t ??=-=-??. ?

()xy

xy

D D S t dxdy ==??.

作极坐标变换:cos ,sin x r y r θθ==,则

:02,0()xy D r t θπ≤≤≤≤

.

?

2(003()2

22

2

1()()

2113[()16]().()48

12

t t S t d h t h t r h t h t πθππ==

?+=

?

用先二后一的积分顺序求三重积分

()

()

()h t D x V t dz dxdy =?

??,

其中222()

():()()()

x y D z h t z t h t +≤-,即2221[()()]2x y h t h t z +≤-.

?

()

23330

1()[()()][()()]()2

224

h t V t h t h t z dz h t h t h t π

π

π

=-=

-=?

. (2)按题意列出微分方程与初始条件.

体积减少的速度是dV dt -

,它与侧面积成正比(比例系数0.9),即

0.9dV

S dt

=- 将()V t 与()S t 的表达式代入得

22

133()0.9()412

dh h t h t dt ππ=-,即

13

10

dh dt =-. ①

(0)130h =.

(3)解①得13

()10

h t t C =-+. 由②得130C =,即13

()13010

h t t =-

+. 令()0h t =,得100t =.因此,高度为130厘米的雪堆全部融化所需时间为100小时.

九、【解】

由于(1,2)i i s β= 是12,,s ααα 线性组合,又12,,s ααα 是0Ax =的解,所以根

据齐次线性方程组解的性质知(1,2)i i s β= 均为0Ax =的解. 从12,,s ααα 是0Ax =的基础解系,知()s n r A =-. 下面来分析12,,s βββ 线性无关的条件.设11220s s k k k βββ++= ,即

11212112222133211()()()()0s s s s t k t k t k t k t k t k t k t k αααα-++++++++= .

由于 12,,s ααα 线性无关,因此有

112211222132110,0,0,0.

s s s t k t k t k t k t k t k t k t k -+=??+=??

+=???+=??

(*)

因为系数行列式

12211211221

000000

000(1)000s s s t t t t t t t t t t +=+-

,

所以当11

2(1)0s

s s

t t ++-≠时,方程组(*)只有零解120s k k k ==== .

从而12,,s βββ 线性无关.

十、【解】 (1)由于AP PB = ,即

22322(,,)(,,)(,,32)A x Ax A x Ax A x A x Ax A x Ax A x ==-

2000(,,)103012x Ax A x ??

??=??

??-??

,

所以000103012B ??

??=????-??

.

(2)由(1)知A B ,那么A E B E ++ ,从而

100

||||1134011

A E

B E +=+==--.

十一、【解】 (1){|}(1),0,0,1,2,m m

n m n P Y

m X n C p p m n n -===-≤≤= .

(2){,}P X n Y m ==={}{|}P X n P Y m X n ===

=

(1),0,0,1,2,.!

n

m m

n m n e C p p m n n n λλ--?-≤≤=

十二、【解】 易见随机变量11()n X X ++,22()n X X ++,2,()n n X X + 相互独立都服从正态分布

2(2,2)N μσ.因此可以将它们看作是取自总体2(2,2)N μσ的一个容量为n 的简单随机样本.其样

本均值为

21111()2n n

i n i i i i X X X X n n +==+==∑∑, 样本方差为

2

111(2)11

n i n i

i X X X Y n n +=+-=--∑. 因样本方差是总体方差的无偏估计,故21

(

)21

E Y n σ=-,即2()2(1)E Y n σ=-.

考研数学模拟测试题及答案解析数三

2017考研数学模拟测试题完整版及答案解析(数三) 一、 选择题:1~8小题,每小题4分,共32分。在每小题给出的四个选项中,只有 一项符合题目要求,把所选项前的字母填在题后的括号中。 (1)()f x 是在(0,)+∞内单调增加的连续函数,对任何0b a >>,记()b a M xf x dx =?, 01 [()()]2b a N b f x dx a f x dx =+??,则必有( ) (A )M N ≥;(B )M N ≤;(C )M N =;(D )2M N =; (2)设函数()f x 在(,)-∞+∞内连续,在(,0)(0,)-∞+∞U 内可导,函数()y y x =的图像为 则其导数的图像为( ) (A) (B)

(C) (D) (3)设有下列命题: ①若2121 ()n n n u u ∞-=+∑收敛,则1 n n u ∞=∑收敛; ②若1 n n u ∞=∑收敛,则10001 n n u ∞ +=∑收敛; ③若1 lim 1n n n u u +→∞>,则1n n u ∞=∑发散; ④若1()n n n u v ∞=+∑收敛,则1n n u ∞=∑,1n n v ∞ =∑收敛 正确的是( ) (A )①②(B )②③(C )③④(D )①④ (4)设22 0ln(1)() lim 2x x ax bx x →+-+=,则( ) (A )51,2a b ==-;(B )0,2a b ==-;(C )50,2 a b ==-;(D )1,2a b ==- (5)设A 是n 阶矩阵,齐次线性方程组(I )0Ax =有非零解,则非齐次线性方程组(II ) T A x b =,对任何12(,,)T n b b b b =L (A )不可能有唯一解; (B )必有无穷多解; (C )无解; (D )可能有唯一解,也可能有无穷多解 (6)设,A B 均是n 阶可逆矩阵,则行列式1020 T A B -?? -? ??? 的值为 (A )1 (2)n A B --; (B )2T A B -; (C )12A B --; (D )1 2(2)n A B -- (7)总体~(2,4)X N ,12,,,n X X X L 为来自X 的样本,X 为样本均值,则( ) (A )22 11()~(1)1n i i X X n n χ=---∑; (B )221 1(2)~(1)1n i i X n n χ=---∑; (C )22 12()~()2n i i X n χ=-∑; (D )221 ()~()2n i i X X n χ=-∑; (8)设随机变量,X Y 相互独立且均服从正态分布2(,)N μσ,若概率1 ()2 P aX bY μ-<=则( ) (A )11,22a b ==;(B )11,22a b ==-;(C )11,22a b =-=;(D )11 ,22 a b =-=-; 二、填空题:9~14小题,每小题4分,共24分。把答案填在题中的横线上。

2019年考研数学模拟试题(含标准答案)

2019最新考研数学模拟试题(含答案) 学校:__________ 考号:__________ 一、解答题 1. 有一等腰梯形闸门,它的两条底边各长10m 和6m ,高为20m ,较长的底边与水面相齐,计算闸门的一侧所受的水压力. 解:如图20,建立坐标系,直线AB 的方程为 y =-x 10 +5. 压力元素为 d F =x ·2y d x =2x ??? ?-x 10+5d x 所求压力为 F =??0202x ????-x 10+5d x =? ???5x 2-115x 3200 =1467(吨) =14388(KN) 2.证明本章关于梯度的基本性质(1)~(5). 证明:略 3.一点沿对数螺线e a r ?=运动,它的极径以角速度ω旋转,试求极径变化率. 解: d d d e e .d d d a a r r a a t t ???ωω?=?=??= 4.一点沿曲线2cos r a ?=运动,它的极径以角速度ω旋转,求这动点的横坐标与纵坐标的变化率. 解: 22cos 2cos sin sin 2x a y a a ???? ?=?==? d d d 22cos (sin )2sin 2,d d d d d d 2 cos 22cos .d d d x x a a t t y y a a t t ???ωω????ωω??=?=??-?=-=?=?= (20)

5.椭圆22 169400x y +=上哪些点的纵坐标减少的速率与它的横坐标增加的速率相同? 解:方程22169400x y +=两边同时对t 求导,得 d d 32180d d x y x y t t ? +?= 由d d d d x y t t -=. 得 161832,9y x y x == 代入椭圆方程得:29x =,163,.3x y =±=± 即所求点为1616,3,3,33????-- ? ???? ?. 6.设总收入和总成本分别由以下两式给出: 2()50.003,()300 1.1R q q q C q q =-=+ 其中q 为产量,0≤q ≤1000,求:(1)边际成本;(2)获得最大利润时的产量;(3)怎样的生产量能使盈亏平衡? 解:(1) 边际成本为: ()(300 1.1) 1.1.C q q ''=+= (2) 利润函数为 2()()() 3.90.003300() 3.90.006L q R q C q q q L q q =-=--'=- 令()0L q '=,得650q = 即为获得最大利润时的产量. (3) 盈亏平衡时: R (q )=C (q ) 即 3.9q -0.003q 2-300=0 q 2-1300q +100000=0 解得q =1218(舍去),q =82. 7.已知函数()f x 在[a ,b ]上连续,在(a ,b )内可导,且()()0f a f b ==,试证:在(a ,b )内至少有一点ξ,使得 ()()0, (,)f f a b ξξξ'+=∈. 证明:令()()e ,x F x f x =?()F x 在[a ,b ]上连续,在(a ,b )内可导,且()()0F a F b ==,由罗尔定理知,(,)a b ξ?∈,使得()0 F ξ'= ,即()e ()e f f ξξξξ'+=,即()()0, (,).f f a b ξξξ'+=∈ 8.求下列曲线的拐点: 23(1) ,3;x t y t t ==+

考研数学一历年真题(2002-2011)版)

2002数学(一)试卷 一、填空题(本题共5小题,每小题3分,满分15分.把答案填在题中横线上) (1) ? ∞+e x x dx 2ln = _____________. (2)已知2e 610y xy x ++-=,则(0)y ''=_____________. (3)02='+''y y y 满足初始条件1 (0)1,(0)2 y y '== 的特解是_____________. (4)已知实二次型3231212 32221321444)(),,(x x x x x x x x x a x x x f +++++=经正交变换可化为标准型216y f =,则 a =_____________. (5)设随机变量),(~2σμN X ,且二次方程042=++X y y 无实根的概率为0.5,则μ=_____________. 二、选择题(每小题3分.) (1)考虑二元函数),(y x f 的四条性质: ①),(y x f 在点),(00y x 处连续, ②),(y x f 在点),(00y x 处的一阶偏导数连续, ③),(y x f 在点),(00y x 处可微, ④),(y x f 在点),(00y x 处的一阶偏导数存在. 则有: (A)②?③?① (B)③?②?① (C)③?④?① (D)③?①?④ (2)设0≠n u ,且1lim =∞→n n u n ,则级数)11 ()1(11+++ -∑n n n u u 为 (A)发散 (B)绝对收敛 (C)条件收敛 (D)收敛性不能判定. (3)设函数)(x f 在+ R 上有界且可导,则 (A)当0)(lim =+∞ →x f x 时,必有0)(lim ='+∞ →x f x (B)当)(lim x f x '+∞ →存在时,必有0)(lim ='+∞ →x f x (C) 当0)(lim 0=+ →x f x 时,必有0)(lim 0='+ →x f x (D) 当)(lim 0x f x '+ →存在时,必有0)(lim 0='+ →x f x . (4)设有三张不同平面,其方程为i i i i d z c y b x a =++(3,2,1=i )它们所组成的线性方程组的系数矩阵与增广矩阵的秩都为2,则这三张平面可能的位置关系为 (5)设X 和Y 是相互独立的连续型随机变量,它们的密度函数分别为)(x f X 和)(y f Y ,分布函数分别为)(x F X 和 )(y F Y ,则 (A))(x f X +)(y f Y 必为密度函数 (B) )(x f X )(y f Y 必为密度函数

2009考研数学三真题及答案解析

2009年全国硕士研究生入学统一考试 数学三试题 一、选择题:1~8小题,每小题4分,共32分,下列每小题给出的四个选项中,只有一个选项是符合题目要求的,请把所选项前的字母填在答题纸指定位置上. (1)函数3 ()sin x x f x x π-=的可去间断点的个数为 (A)1. (B)2. (C)3. (D)无穷多个. (2)当0x →时,()sin f x x ax =-与2 ()ln(1)g x x bx =-是等价无穷小,则 (A)1a =,16b =-. (B )1a =,16b =. (C)1a =-,16b =-. (D )1a =-,1 6 b =. (3)使不等式1sin ln x t dt x t >?成立的x 的范围是 (A)(0,1). (B)(1, )2π . (C)(,)2 π π. (D)(,)π+∞. (4)设函数()y f x =在区间[]1,3-上的图形为 则函数()()0 x F x f t dt = ?的图形为 (A) (B)

(C) (D) (5)设,A B 均为2阶矩阵,* ,A B * 分别为,A B 的伴随矩阵,若||2,||3A B ==,则分块矩 阵O A B O ?? ???的伴随矩阵为 (A)**32O B A O ?? ???. (B)** 23O B A O ?? ???. (C)**32O A B O ?? ??? . (D)** 23O A B O ?? ??? . (6)设,A P 均为3阶矩阵,T P 为P 的转置矩阵,且100010002T P AP ?? ?= ? ??? , 若1231223(,,),(,,)P Q ααααααα==+,则T Q AQ 为 (A)210110002?? ? ? ???. (B)110120002?? ? ? ???. (C)200010002?? ? ? ??? . (D)100020002?? ? ? ??? . (7)设事件A 与事件B 互不相容,则 (A)()0P AB =. (B)()()()P AB P A P B =. (C)()1()P A P B =-. (D)()1P A B ?=. (8)设随机变量X 与Y 相互独立,且X 服从标准正态分布(0,1)N ,Y 的概率分布为 1{0}{1}2 P Y P Y ==== ,记()z F Z 为随机变量Z XY =的分布函数,则函数()z F Z

2009考研数学一真题及解析

2009年全国硕士研究生入学统一考试数学一试题 一、选择题:1~8 小题,每小题4分,共32分. (1) 当0x →时,()sin f x x ax =-与()()2ln 1g x x bx =-是等价无穷小,则 ( ) (A) 11,6a b ==- . (B) 1 1,6a b ==. (C) 11,6a b =-=-. (D) 1 1,6 a b =-=. (2) 如图,正方形(){} ,1,1x y x y ≤≤被其对角线划分 为四个区域()1,2,3,4k D k =,cos k k D I y xdxdy = ??, 则{}14 max k k I ≤≤= ( ) (A) 1I . (B) 2I . (C) 3I . (D) 4I . (3) 设函数()y f x =在区间[]1,3-上的图形为 则函数()()0 x F x f t dt = ?的图形为 ( ) (A) (B) -1 -1 1 1 x y 1D 2D 3D 4D

(C) (D) (4) 设有两个数列{}{},n n a b ,若lim 0n n a →∞ =,则 ( ) (A) 当 1n n b ∞ =∑收敛时, 1n n n a b ∞ =∑收敛. (B) 当 1n n b ∞ =∑发散时, 1n n n a b ∞ =∑发散. (C) 当 1 n n b ∞ =∑收敛时, 221 n n n a b ∞ =∑收敛. (D) 当 1 n n b ∞ =∑发散时, 22 1 n n n a b ∞ =∑发散. (5) 设123,,ααα是3维向量空间3 R 的一组基,则由基12311 , ,23 ααα到基 122331,,αααααα+++的过渡矩阵为 ( ) (A) 101220033?? ? ? ??? . (B) 120023103?? ? ? ??? . (C) 1 112461 112461112 4 6??- ? ? ? - ? ? ?- ??? . (D) 1112221 114441116 6 6??- ? ? ?- ? ? ?- ??? . (6) 设,A B 均为2阶矩阵,* * ,A B 分别为,A B 的伴随矩阵,若2,3A B ==,则分块矩阵 O A B O ?? ??? 的伴随矩阵为 ( ) (A) **32O B A O ?? ???. (B) ** 23O B A O ?? ???. (C) **32O A B O ?? ???. (D) ** 23O A B O ?? ??? .

考研数学二模拟题(新)

考研数学二模拟题 一、选择题:1~8小题,每小题4分,共32分。在每小题给出的四个选项中,只有一项符合 题目要求,把所选项前的字母填在题后的括号中。 (1)当0x →时,设2 arctan x α=,11(0)a x a β=(+)-≠,2 arcsin x tdt γ=? ,把三个无 穷小按阶的高低由低到高排列起来,正确的顺序是( ) (A ),,αβγ;(B ),,βγα;(C ),,βαγ;(D ),,γβα; (2)设函数()f x 在(,)-∞+∞内连续,在(,0) (0,)-∞+∞内可导,函数()y y x =的图像为 则其导数的图像为( ) (A) (B)

(C) (D) (3)若()f x 是奇函数,()x ?是偶函数,则[()]f x ?( ) (A )必是奇函数 (B )必是偶函数 (C )是非奇非偶函数 (D )可能是奇函数也可能是偶函数 (4)设220ln(1)() lim 2x x ax bx x →+-+=,则( ) (A )51,2a b ==- ;(B )0,2a b ==-;(C )5 0,2 a b ==-;(D )1,2a b ==- (5)下列说法中正确的是( ) (A )无界函数与无穷大的乘积必为无穷大; (B )无界函数与无穷小的乘积必为无穷小; (C )有界函数与无穷大之和必为无穷大; (D )无界函数与无界函数的乘积必无解; (6)设线性无关的函数123,,y y y 都是二阶线性非齐次方程()()()y p x y q x y f x '''++=的解, 123,,C C C 为任意常数,则该方程的通解是( ) (A )112333C y C y C y ++; (B )1123123()C y C y C C y +++; (C )1123123(1)C y C y C C y +---;(D )1123123(1)C y C y C C y ++--; (7)设A 是n 阶矩阵,齐次线性方程组(I )0Ax =有非零解,则非齐次线性方程组(II )T A x b =,对任何12(,, )T n b b b b = (A )不可能有唯一解; (B )必有无穷多解; (C )无解; (D )可能有唯一解,也可能有无穷多解

2011年考研数学二真题答案解析

2011年考研数学二真题答案解析 2011年考研已经结束,以下是 2011年考研数学二真题答案解析,希望对考生有所帮助 2(111考研数学真题解析——数学二 = XC I €Jk +C J r->)故选( (5)鲁案:(X ) 【解答】 “姻?3铁广他3 占=釜=/V )€ V) X=^|= /f (x)g(y) C i 篇二《/他 3 在(0.0)点 4 = /r (0)g(0) B =?f 伽g “ C= AC-B^ >0 M ^>0=> r (0)<0 g*(0) > 0 故选 A ⑹答案:2 【解存】 x e (0,―) A $m x 0 $ h ?n xdx < $ In cs x

考研数学三模拟题

考研数学三模拟题 一、选择题:1~8小题,每小题4分,共32分。在每小题给出的四个选项中,只有一项符合 题目要求,把所选项前的字母填在题后的括号中。 (1)()f x 是在(0,)+∞内单调增加的连续函数,对任何0b a >>,记()b a M xf x dx =?, 01[()()]2b a N b f x dx a f x dx =+??(中间的加号改成减号),则必有( ) (A )M N ≥;(B )M N ≤;(C )M N =;(D )2M N =; (2)设函数()f x 在(,)-∞+∞内连续,在(,0)(0,)-∞+∞U 内可导,函数()y y x =的图像为 则其导数的图像为( ) (A) (B)

(C) (D) (3)设有下列命题: ①若 21 21 ()n n n u u ∞ -=+∑收敛,则1 n n u ∞=∑收敛; ②若1 n n u ∞=∑收敛,则10001 n n u ∞ +=∑收敛; ③若1 lim 1n n n u u +→∞>,则1n n u ∞=∑发散; ④若1()n n n u v ∞=+∑收敛,则1n n u ∞=∑,1n n v ∞ =∑收敛 正确的是( ) (A )①②(B )②③(C )③④(D )①④ (4)设220ln(1)() lim 2x x ax bx x →+-+=,则( ) (A )51,2a b ==- ;(B )0,2a b ==-;(C )5 0,2 a b ==-;(D )1,2a b ==- (5)设A 是n 阶矩阵,齐次线性方程组(I )0Ax =有非零解,则非齐次线性方程组(II )T A x b =, 对任何12(,,)T n b b b b =L (A )不可能有唯一解; (B )必有无穷多解; (C )无解; (D )可能有唯一解,也可能有无穷多解 (6)设,A B 均是n 阶可逆矩阵,则行列式1020 T A B -?? -? ??? 的值为 (A )1 (2)n A B --; (B )2T A B -; ( C )12A B --; ( D )1 2(2)n A B -- (7)总体~(2,4)X N ,12,,,n X X X L 为来自X 的样本,X 为样本均值,则( )

考研数学模拟测试题完整版及答案解析数一

考研数学模拟测试题完 整版及答案解析数一 SANY标准化小组 #QS8QHH-HHGX8Q8-GNHHJ8-HHMHGN#

2017考研数学模拟测试题完整版及答案解析(数一) 一、选择题(本题共8小题,每小题4分,满分32分,每小题给出的四个选项中,只有一项符合题目要求,把所选项前的字母填在题后的括号内) (1)当0x →时,下面4个无穷小量中阶数最高的是 ( ) 23545x x x ++ (C) 3 3 ln(1)ln(1)x x +-- (D) 1cos 0 x -? 【答案】(D ) 【解析】(A )项:当0x → 2 2x = (B )项:显然当0x →时,235 2454x x x x ++ (C )项:当0x →时,3333 33333 122ln(1)ln(1)ln ln 12111x x x x x x x x x ??++--==+ ?---?? (D )项: 1cos 3 110 0001(1cos )2lim lim lim k k k x x x x x x x x kx kx ---→→→→-?=== ? 所以,13k -=,即4k =时1cos 0 lim k x x -→?存在,所以4 1cos 0 8 x -? (2)下列命题中正确的是 ( ) (A) 若函数()f x 在[],a b 上可积,则()f x 必有原函数 (B)若函数()f x 在(,)a b 上连续,则()b a f x dx ?必存在 (C)若函数()f x 在[],a b 上可积,则()()x a x f x dx Φ=?在[],a b 上必连续

2011年考研数学试题及参考答案(数学一)

2011年考研数学试题(数学一) 一、选择题 1、 曲线()()()()4 3 2 4321----=x x x x y 的拐点是( ) (A )(1,0) (B )(2,0) (C )(3,0) (D )(4,0) 【答案】C 【考点分析】本题考查拐点的判断。直接利用判断拐点的必要条件和第二充分条件即可。 【解析】由()()()()4 3 2 4321----=x x x x y 可知1,2,3,4分别是 ()()()()234 12340y x x x x =----=的一、二、三、四重根,故由导数与原函数之间的 关系可知(1)0y '≠,(2)(3)(4)0y y y '''=== (2)0y ''≠,(3)(4)0y y ''''==,(3)0,(4)0y y ''''''≠=,故(3,0)是一拐点。 2、 设数列{}n a 单调减少,0lim =∞ →n n a ,()∑=== n k k n n a S 1 2,1 无界,则幂级数 ()1 1n n n a x ∞ =-∑的收敛域为( ) (A ) (-1,1] (B ) [-1,1) (C ) [0,2) (D ) (0,2] 【答案】C 【考点分析】本题考查幂级数的收敛域。主要涉及到收敛半径的计算和常数项级数收敛性的一些结论,综合性较强。 【解析】()∑=== n k k n n a S 12,1 无界,说明幂级数()1 1n n n a x ∞ =-∑的收敛半径1R ≤; {}n a 单调减少,0lim =∞ →n n a ,说明级数()1 1n n n a ∞ =-∑收敛,可知幂级数()1 1n n n a x ∞ =-∑的收敛 半径1R ≥。 因此,幂级数 ()1 1n n n a x ∞ =-∑的收敛半径1R =,收敛区间为()0,2。又由于0x =时幂级数 收敛,2x =时幂级数发散。可知收敛域为[)0,2。 3、 设 函数)(x f 具有二阶连续导数,且0)(>x f ,0)0(='f ,则函数)(ln )(y f x f z =

考研高数模拟试题

模拟测试题(七) 考生注意:(1)本试卷共三大题,23小题,满分150分. (2)本试卷考试时间为180分钟. 一、选择题(本题共8小题,每题4分,共32分) (1)函数sin y x x =+及其表示的曲线 ( ). (A ) 没有极值点,有无限个拐点 ; (B ) 有无限个极值点和无限个拐点 ; (C ) 有无限个极值点,没有拐点 ; (D ) 既无极值点,也无拐点 . (2) 设222 22(0(,)0,0x y x y f x y x y ?++≠?=??+=? 则在(0,0)点处, (,)f x y ( ). (A ) 连续但二偏导数不都存在 ; (B ) 二阶偏导数存在但不连续; (C ) 连续且二偏导数存在但不可微 ; (D ) 可微 . (3)(一、三)设级数 n n a ∞ =∑收敛,则下列三个级数① 2 1 ,n n a ∞ =∑②41 ,n n a ∞ =∑③61 n n a ∞ =∑中( ) (A ) ①、②、③均收敛 ; (B ) 仅②、③收敛 ; (C ) 仅③收敛 ; (D ) ①、②、③均未必收敛 . (3)(二) 设21,0 ()||,(),,0 x x f x x g x x x -≥?==?

2019年考研数学试题(数学一)错误修正共17页

2011年考研数学试题(数学一) 一、选择题 1、 曲线()()()() 4 3 2 4321----=x x x x y 的拐点是( ) (A )(1,0) (B )(2,0) (C )(3,0) (D )(4,0) 【答案】C 【考点分析】本题考查拐点的判断。直接利用判断拐点的必要条件和第二充分条件即可。 【解析】由()()()()4324321----=x x x x y 可知1,2,3,4分别是 ()()()()2 3 4 12340y x x x x =----=的一、二、三、四重根,故由导数与原函 数之间的关系可知(1)0y '≠,(2)(3)(4)0y y y '''=== (2)0y ''≠,(3)(4)0y y ''''==,(3)0,(4)0y y ''''''≠=,故(3,0)是一拐点。 2、 设数列{}n a 单调减少,0lim =∞ →n n a ,()∑=== n k k n n a S 1 2,1ΛΛ无界,则幂级数 ()1 1n n n a x ∞ =-∑的收敛域为( ) (A ) (-1,1] (B ) [-1,1) (C ) [0,2) (D )(0,2] 【答案】C 【考点分析】本题考查幂级数的收敛域。主要涉及到收敛半径的计算和常数项级数收敛性的一些结论,综合性较强。 【解析】()∑===n k k n n a S 12,1ΛΛ无界,说明幂级数()1 1n n n a x ∞ =-∑的收敛半径 1R ≤; {}n a 单调减少,0lim =∞ →n n a , 说明级数()1 1n n n a ∞ =-∑收敛,可知幂级数()1 1n n n a x ∞ =-∑的收敛半径1R ≥。 因此,幂级数()1 1n n n a x ∞ =-∑的收敛半径1R =,收敛区间为()0,2。又由于0 x =

考研数学模拟模拟卷

全国硕士研究生入学统一考试数学( 三) 模拟试卷 一、选择题(1~8小题,每小题4分,共32分.) (1)已知当0→x 时,1)2 31(31 2 -+x 与 1cos -x 是 ( ) (A )等价无穷小 (B )低阶 无穷小 (C )高价无穷小 (D )同阶 但非等价无穷小 (2)设()f x 满足 ()(1cos )()()sin f x x f x xf x x '''+-+=,且 (0)2f =,0)0(='f 则( ) (A )0x =是函数()f x 的极小值点 (B )0x =是函数()f x 的极大值点 (C )存在0δ >,使得曲线()y f x =在点 (0,)δ内是凹的 (D )存在0δ >,使得曲线()y f x =在点 (0,)δ内是凸的 (3)设有两个数列 {}{},n n a b ,若lim 0n n a →∞ =,则正确的是 ( ) (A )当 1 n n b ∞ =∑收敛时, 1 n n n a b ∞ =∑收敛. (B )当 1 n n b ∞ =∑发散时, 1n n n a b ∞ =∑发散. (C )当 1 n n b ∞ =∑收敛时, 221 n n n a b ∞ =∑收敛. (D )当 1 n n b ∞ =∑发散时, 221 n n n a b ∞ =∑发散. (4)设22(,)xy z f x y e =-,其中(,)f u v 具有连续二阶偏导数,则z z y x x y ??+=?? ( ) (A )( ) v xy f e y x '+2 2 (B) v xy u f xye f xy '+'24 (C) ( ) u xy f e y x '+2 2 (D) v xy f xye '2 (5)设四阶方阵()1234,,,,A αααα=其中 12,αα线性无关,若1232αααβ+-=, 1234ααααβ+++=, 1234232ααααβ+++=,则Ax β=的通 解为( ) (A ) 123112213111012k k k ?????? ? ? ? ? ? ?++ ? ? ?- ? ? ??????? (B ) 12012123201112k k ?????? ? ? ? ? ? ?++ ? ? ?- ? ? ?-??????

2011考研数学一真题(3页打印版-附标准答案5页)

2011考研数学一真题试卷 一选择题 1.曲线222)4()3()2)(1(----=x x x x y 拐点 A(1,0) B(2,0) C (3,0) D(4,0) 2设数列{}n a 单调递减,∑=∞→?===n k k n n n n a S a 1,2,1(,0lim )无界,则幂级数∑=-n k n k x a 1)1(的收敛域 A (-1,1] B [-1,1) C[0,2) D (0,2] 3.设函数)(x f 具有二阶连续导数,且0)0(,0)(>'>f x f ,则函数)(ln )(y f x f z =在点(0,0)处取得极小值的一个充分条件 A 0)0(,1)0(>''>f f B 0)0(,1)0(<''>f f C 0)0(,1)0(>''

2009年考研数学试题答案与解析(数学一)

2009年考研数学试题答案与解析(数学一) 一、选择题:1~8小题,每小题4分,共32分. (1)当0x →时,()sin f x x ax =-与()()2ln 1g x x bx =-等价无穷小,则 (A)11,6a b ==-. (B)1 1,6a b ==. (C)11,6a b =-=-. (D)1 1,6 a b =-=. 【答案】 A. 【解析】2 ()sin ,()ln(1)f x x ax g x x bx =-=-为等价无穷小,则 222200000()sin sin 1cos sin lim lim lim lim lim ()ln(1)()36x x x x x f x x ax x ax a ax a ax g x x bx x bx bx bx →→→→→---==-?---洛洛230sin lim 166x a ax a b b ax a →==-=-? 36a b ∴=- 故排除(B)、(C). 另外2 01cos lim 3x a ax bx →--存在,蕴含了1cos 0a ax -→()0x →故 1.a =排除(D). 所以本题选(A ). (2)如图,正方形 (){},1,1x y x y ≤≤被其对角线划分为 四个区域()1,2,3,4k D k =,cos k k D I y xdxdy = ??,则{}14 max k k I ≤≤= (A)1I . (B)2I . (C)3I . (D)4I . 【答案】 A. 【解析】本题利用二重积分区域的对称性及被积函数的奇偶性. 24,D D 两区域关于x 轴对称,而(,)cos (,)f x y y x f x y -=-=-,即被积函数是关于y 的 奇函数,所以240I I ==; 13,D D 两区域关于y 轴对称,而(,)cos()cos (,)f x y y x y x f x y -=-==,即被积函数是 关于x 的偶函数,所以{}1(,),012 cos 0x y y x x I y xdxdy ≥≤≤=>?? ; {} 3(,),012 cos 0x y y x x I y xdxdy ≤-≤≤=

[考研类试卷]考研数学一(高等数学)模拟试卷206.doc

[考研类试卷]考研数学一(高等数学)模拟试卷206 一、选择题 下列每题给出的四个选项中,只有一个选项符合题目要求。 1 设f(x)=x3+ax2+bx在x=1处有极小值一2,则( ). (A)a=1,b=2 (B)a=一1,b=一2 (C)a=0,b=一3 (D)a=0,b=3 2 设(x+y≠0)为某函数的全微分,则a为( ). (A)一1 (B)0 (C)1 (D)2 3 若正项级数( ). (A)发散 (B)条件收敛 (C)绝对收敛

(D)敛散性不确定 二、填空题 4 =________. 5 =_________. 6 =_________. 7 =_________. 8 ∫0+∞x5e-x2dx=________. 9 一平面经过点M1(2,1,3)及点M2(3,4,一1),且与平面3x—y+6z一6=0垂直,则该平面方程为________. 10 设y=y(x)满足(1+x2)y'=xy且y(0)=1,则y(x)=________. 三、解答题 解答应写出文字说明、证明过程或演算步骤。 11 求. 12 求.

13 讨论f(x)=在x=0处的可导性. 14 证明:当x>0时,. 15 求下列不定积分: 16 求. 17 求cos2xdx. 18 设f(x)在区间[a,b]上阶连续可导,证明:存在ξ∈(a,b),使得∫a b f(x)dx=(b- a)f''(ξ). 19 设z=. 20 设μ=x yz,求dμ.

21 求max{xy,1}dxdy,其中D={(x,y)|0≤x≤2,0≤y≤2}. 22 求dxdy,其中D:x2+y2≤π2. 23 计算xdydz+ydzdx+zdxdy,其中∑是z=x2+4y2(0≤z≤4)的上侧. 24 判断级数的敛散性,若收敛是绝对收敛还是条件收敛. 25 求微分方程xy'+(1一x)y=e2x(x>0)的满足=1的特解. 26 一半球形雪堆融化速度与半球的表面积成正比,比例系数为k>0,设融化过程 中形状不变,设半径为r0的雪堆融化3小时后体积为原来的,求全部融化需要的时间.

2015年考研数学一模拟练习题及答案

2015年考研数学一模拟练习题及答案(三) 一、选择题:1~8小题,每小题4分,共32分,下列每小题给出的四个选项中,只有一项符合题目要求的,请将所选项前的字母填在答题纸指定位置上. (1)设函数2 ()ln(3)x f x t dt = +? 则()f x '的零点个数( ) (A )0 (B )1 (C )2 (D )3 (2)设有两个数列{}{},n n a b ,若lim 0n n a →∞ =,则( ) (A )当 1n n b ∞ =∑收敛时, 1n n n a b ∞ =∑收敛. (B )当 1n n b ∞ =∑发散时, 1n n n a b ∞ =∑发散. (C )当 1 n n b ∞ =∑收敛时, 221 n n n a b ∞ =∑收敛. (D )当 1 n n b ∞ =∑发散时, 221 n n n a b ∞ =∑发散. (3)已知函数()y f x =对一切非零x 满足 02()3[()]x x xf x x f x e e --''+=-00()0(0),f x x '==/则( ) (A )0()f x 是()f x 的极大值 (B )0()f x 是()f x 的极小值 (C )00(,())x f x 是曲线()y f x =的拐点 (D )0()f x 是()f x 的极值,但00(,())x f x 也不是曲线()y f x =的拐点 (4)设在区间[a,b]上1()0,()0,()0(),b a f x f x f x S f x dx '''><>= ?,令 231 ()(),[()()](),2 S f b b a S f a f b b a =-=+-则 ( ) (A )123S S S << (B )213S S S << (C )312S S S << (D )231S S S << (5)设矩阵111111111A --?? ?=-- ? ?--??,100020000B ?? ? = ? ??? ,则A 于B ( ) (A ) 合同,且相似 (B )合同,但不相似 (C ) 不合同,但相似 (D )既不合同,也不相似 (6)设,A B 均为2阶矩阵,* * ,A B 分别为,A B 的伴随矩阵,若2,3A B ==,则分块

2011年全国硕士研究生入学统一考试数学一试题

n ∑a (x -1) ? ? ? ? 1 2 2 1 0 0 2011 年考研数学一试题 一、选择题:1~8 小题,每小题 4 分,共 32 分,下列每题给出的 四个选项中,只有一个选项符合题目要求,请将所选项前的字母填在答.题.纸. 指定位置上. (1) 曲线 y = (x -1)(x - 2)2 (x - 3)3(x - 4)4 的拐点是( ) (A) (1, 0) . (B) (2, 0) . (C) (3, 0) . (D) (4, 0) . (2) 设数列{a n } 单调减少, lim a n = 0 , S n = ∑a k (n = 1, 2, 无界,则幂级数 n →∞ k =1 ∞ n 的收敛域为( ) n =1 (A) (-1,1] . (B) [-1,1) . (C) [0, 2) . (D) (0, 2] . (3) 设函数 f (x ) 具 有 二 阶 连 续 导 数 , 且 f (x ) > 0 , f '(0) = 0 , 则 函 数 z = f (x ) l n f ( y ) 在点(0, 0) 处取得极小值的一个充分条件是( ) (A) f (0) > 1, f ''(0) > 0 . (B) f (0) > 1, f ''(0) < 0 . (C) f (0) < 1, f ''(0) > 0 . (D) f (0) < 1, f ''(0) < 0 . π π π (4) 设 I = ? 4 ln sin xdx , J = ? 4 ln cot xdx , K = ? 4 ln cos xdx ,则 I , J , K 的大 小关系是( ) (A) I < J < K . (B) I < K < J . (C) J < I < K . (D) K < J < I . (5) 设 A 为 3 阶矩阵,将 A 的第 2 列加到第 1 列得矩阵 B ,再交换 B 的第 2 行与第 3 ? 1 0 0 ? 行得单位矩阵,记 P = 1 1 0 ? , P ? 1 0 0 ? = 0 0 1 ? ,则 A = ( ) 1 ? 0 0 1 ? 2 ? 0 1 0 ? (A) P 1P 2 . (B) P -1 P . (C) P 2 P 1 . (D) P P -1 . (6) 设 A = (α ,α ,α ,α ) 是 4 阶矩阵, A * 为 A 的伴随矩阵,若(1, 0,1, 0)T 是方程组 1 2 3 4 ) n

考研数学二模拟题及答案

* 4.微分方程 y 2 y x e 2x 的特解 y 形式为() . * 2x * 2 x (A) y (ax b)e (B) y ax e (C) y * ax 2 e 2x (D) y * ( ax 2 bx)e 2 x 2016 年考研数学模拟试题(数学二) 参考答案 一、选择题(本题共 8 小题,每小题 4 分,满分 32 分,每小题给出的四个选项中,只有一 项符合题目要求,把所选项的字母填在题后的括号内) 1.设 x 是多项式 0 P( x) x 4 ax 3 bx 2 cx d 的最小实根,则() . (A ) P ( x 0 ) 0 ( B ) P ( x 0 ) 0 (C ) P ( x 0 ) 0 ( D ) P (x 0 ) 0 解 选择 A. 由于 lim P( x) x x 0 ,又 x 0 是多项式 P(x) 的最小实根,故 P (x 0 ) 0 . 2. 设 lim x a f ( x) 3 x f (a) a 1 则函数 f ( x) 在点 x a () . (A )取极大值( B )取极小值( C )可导( D )不可导 o o 解 选择 D. 由极限的保号性知,存在 U (a) ,当 x U (a) 时, f ( x) 3 x f (a) a 0 ,当 x a 时, f ( x) f (a) ,当 x a 时, f ( x) f (a) ,故 f ( x) 在点 x a 不取极值 . lim f ( x) f (a) a lim f ( x) f (a) a 1 x a x x a 3 x 3 ( x a) 2 ,所以 f ( x) 在点 x a 不可导 . 3.设 f ( x, y) 连续,且满足 f ( x, y) f ( x, y) ,则 f (x, y) dxdy () . x 2 y 2 1 (A ) 2 1 1 x 2 1 1 y 2 0 dx f ( x, y)dy ( B ) 2 0 dy 1 y 2 f ( x, y)dx 1 1 x 2 1 1 y 2 (C ) 2 dx 1 x 2 f ( x, y)dy ( D ) 2 dy f ( x, y)dx 解 选择 B. 由题设知 f ( x, y)dxdy 2 f ( x, y)dxdy 2 1 0 dy 1 y 2 1 y 2 f ( x, y)dx . x 2 y 2 1 x 2 y 2 1, y 0

相关文档
相关文档 最新文档