文档库 最新最全的文档下载
当前位置:文档库 › 数学建模典型例题

数学建模典型例题

数学建模典型例题
数学建模典型例题

一、人体重变化

某人的食量是10467焦/天,最基本新陈代谢要自动消耗其中的5038焦/天。每天的体育运动消耗热量大约是69焦/(千克?天)乘以他的体重(千克)。假设以脂肪形式贮存的热量100% 地有效,而1千克脂肪含热量41868焦。试研究此人体重随时间变化的规律。

一、问题分析

人体重W(t)随时间t变化是由于消耗量和吸收量的差值所引起的,假设人体重随时间的变化是连续变化过程,因此可以通过研究在△t时间内体重W的变化值列出微分方程。

二、模型假设

1、以脂肪形式贮存的热量100%有效

2、当补充能量多于消耗能量时,多余能量以脂肪形式贮存

3、假设体重的变化是一个连续函数

4、初始体重为W0

三、模型建立

假设在△t时间内:

体重的变化量为W(t+△t)-W(t);

身体一天内的热量的剩余为(10467-5038-69*W(t))

将其乘以△t即为一小段时间内剩下的热量;

转换成微分方程为:d[W(t+△t)-W(t)]=(10467-5038-69*W(t))dt;

四、模型求解

d(5429-69W)/(5429-69W)=-69dt/41686

W(0)=W0

解得:

5429-69W=(5429-69W0)e(-69t/41686)

即:

W(t)=5429/69-(5429-69W0)/5429e(-69t/41686)

当t趋于无穷时,w=81;

二、投资策略模型

一、问题重述

一家公司要投资一个车队并尝试着决定保留汽车时间的最佳方案。5年后,它将卖出所有剩余汽车并让一家外围公司提供运输。在策划下一个5年计划时,这家公司评估在年i 的开始买进汽车并在年j的开始卖出汽车,将有净成本a ij(购入价减去折旧加上运营和维修成本)ij

请寻找什么时间买进和卖出汽车的最便宜的策略。

二、问题分析

本问题是寻找成本最低的投资策略,可视为寻找最短路径问题。因此可利用图论法分析,用Dijkstra算法找出最短路径,即为最低成本的投资策略。

三、条件假设

除购入价折旧以及运营和维护成本外无其他费用;

四、模型建立

5

11 7 三 6

4

16

6 13 8 四

一9

12 8 11

20

10

运用Dijikstra算法

1 2 3 4 5 6 0 4 6 9 12 20 6 9 12 20

9 12 20 12 20

20 可发现,在第二次运算后,数据再无变化,可见最小路径已经出现

即在第一年买进200辆,在第三年全部卖出,第三年再买进200第六年全部卖出。

三、飞机与防空炮的最优策略

一、问题重述:

红方攻击蓝方一目标,红方有2架飞机,蓝方有四门防空炮,红方只要有一架飞机突破蓝方的防卫则红方胜。其中共有四个区域,红方可以其中任意一个接近目标,蓝方可以任意布置防空炮,但一门炮只能防守一个区域,其射中概率为1。那么双方各采取什么策略?

二、问题分析

该问题显然是红方与蓝方的博弈问题,因此可以用博弈论模型来分析本问题。

1、对策参与者为两方(红蓝两方)

2、红军有两种行动方案,即两架飞机一起行动、两架飞机分开行动。蓝军有三种防御方案,即四个区域非别布置防空炮(记为1-1-1-1)、一个区域布置两架一个没有另外两个分别布置一个(记为2-1-1-0)、两个区域分别布置两架飞机另外两个没有(记为2-2-0-0)。显然是不需要在某个区域布置3个防空炮的。

三、问题假设:

(1)红蓝双方均不知道对方的策略。

(2)蓝方可以在一个区域内布置3,4门大炮,但是大炮数量大于飞机的数量,而一门大炮已经可以击落一架飞机,因而这种方案不可取。

(3)红方有两种方案,一是让两架飞机分别通过两个区域去攻击目标,另一种是让两架飞机通过同一区域去攻击目标。

(4)假设蓝方四门大炮以及红方的两架飞机均派上用场,且双方必须同时作出决策。

四、模型建立

由此可得赢得矩阵蓝方为A,红方为B

A= 1 0

0.75 0.50

0.50 0.83

B= 0 0.25 0.5

1 0.5 0.17

没有鞍点,故用混合策略模型解决本问题

设蓝方采取行动i 的概率为 xi(i=1,2,3),红方采取行动j 的概率为y j(j=1,2),则蓝方与红方策略集分别为:

S1={x=(x1,x2,x3)0< xi<1,∑xi=1},S2={y=(y1,y2)0< yi<1,∑yi=1}。

五、模型求解

下列线性规划问题的解就是蓝军的最优混合策略x* Max v1

0*x 1+0.25*x 2+0.5*x 3 >v1 x 1+0.5*x 2+0.17*x 3 >v1 x 1+x 2+x 3 =1 xi<=1

下列线性规划问题的解就是红军的最优混合策略y* Min v2 y 2

0.25*y 1+0.5*y 2

四、雷达计量保障人员分配

开展雷达装备计量保障工作中,合理分配计量保障人员是提高计量保障效能的关键。所谓合理分配是指将计量保障人员根据其专业特长、技术能力分配到不同的工作岗位上,并且使得所有人员能够发挥出最大的军事效益。

现某雷达团共部署12种型号共16部雷达,部署情况及计量保障任务分区情况如表所示:

说明:1.保障任务分区域进行保障;

2.B 、H 、L 型雷达分为两个保障任务,分别为B 1、B 2、H 1、H 2、L 1、

L2,其它雷达为一个保障任务;

3.同一区域多部相同雷达等同于一部雷达的保障任务;

4.不同区域的相同雷达看作不同保障任务;

5.每个保障人员只能保障一个任务;

6.每个保障任务只由一个保障人员完成。

雷达的重要性由其性能和所担负的作战任务共同决定,即使同一型号的雷达在不同区域其重要性也可能不同。各雷达的重要性如下表所示(表中下标表示雷达所在保障区域):

该雷达团修理所现在有10名待分配计量保障人员,他们针对不同保障任务的计量保障能力量化指标如下表所示:

问题:如何给该团三个营分配计量保障人员,使他们发挥最大军事效益?一、问题分析:

该问题是人员指派问题,目的是得到最大效益。根据保障能力测试与雷达重要性定义出效益矩阵,用0—1整数规划方法来求解,

得到最大效益矩阵。

二、模型假设

1.保障任务分区域进行保障;

2.B 、H 、L 型雷达分为两个保障任务,分别为B 1、B 2、H 1、H 2、L 1、L 2,其它雷达为一个保障任务;

3.同一区域多部相同雷达等同于一部雷达的保障任务; 4.不同区域的相同雷达看作不同保障任务; 5.每个保障人员只能保障一个任务; 6.每个保障任务只由一个保障人员完成。

三、模型建立

根据题目列出保障人员能力量化指标矩阵:

??

?

??

?

??

?

??

?

???

?????????????????=007.09.03.08.04.002.05.03.06.08.08.06.08

.03.07

.02.06.07.03.07.03.04.06.07.08.07.05.06.03.05.05.07.04.02.02.01.02.02.0001.02.02.02.06.01.006.04.02.08.05.03.03.06.03.0003.03.04.03.002.0004.09.05.02.01.08.08.08.08.06.08.08.008.06.07.08.06.08.005.07.03.03.03.03.07.07.05.03.003.06.03.07.06.07.08.05.02.02.07.02.02.05.08.06.02.002.05.005.05.0007.05.04.03.04.04.004.07.04.06.04.000000

9.005.05.05.05.05.005.05.05.05.05.05.0005.005.09.08.07.0006.04.04.03.09.07.06.07.08.04.07.003

.08.0A 根据题目,设保障任务的重要性向量)

,...,,(21i b b b B =,bi 表示第i 个任务的重要

性。列出保障任务重要性向量:

[]

7.07.06.08.09.07.06.09.09.07.08.07.07.07.08.09.09.08.0=B 我们用二者的乘积表示效益矩阵:T *=B A R 。

我们设元素rij 表示第i 个人完成j 件事的效益,Xij 表示第i 个人去保障第j 件任务,如果是,其值为1,否则为0。

利用这一个矩阵和0-1规划,我们就可以列出方程:

数学建模典型例题

一、人体重变化 某人的食量是10467焦/天,最基本新陈代谢要自动消耗其中的5038焦/天。每天的体育运动消耗热量大约是69焦/(千克?天)乘以他的体重(千克)。假设以脂肪形式贮存的热量100% 地有效,而1千克脂肪含热量41868焦。试研究此人体重随时间变化的规律。 一、问题分析 人体重W(t)随时间t变化是由于消耗量和吸收量的差值所引起的,假设人体重随时间的变化是连续变化过程,因此可以通过研究在△t时间内体重W的变化值列出微分方程。 二、模型假设 1、以脂肪形式贮存的热量100%有效 2、当补充能量多于消耗能量时,多余能量以脂肪形式贮存 3、假设体重的变化是一个连续函数 4、初始体重为W0 三、模型建立 假设在△t时间内: 体重的变化量为W(t+△t)-W(t); 身体一天内的热量的剩余为(10467-5038-69*W(t)) 将其乘以△t即为一小段时间内剩下的热量; 转换成微分方程为:d[W(t+△t)-W(t)]=(10467-5038-69*W(t))dt; 四、模型求解 d(5429-69W)/(5429-69W)=-69dt/41686 W(0)=W0 解得: 5429-69W=(5429-69W0)e(-69t/41686) 即: W(t)=5429/69-(5429-69W0)/5429e(-69t/41686) 当t趋于无穷时,w=81; 二、投资策略模型 一、问题重述 一家公司要投资一个车队并尝试着决定保留汽车时间的最佳方案。5年后,它将卖出所有剩余汽车并让一家外围公司提供运输。在策划下一个5年计划时,这家公司评估在年i 的开始买进汽车并在年j的开始卖出汽车,将有净成本a ij(购入价减去折旧加上运营和维修成本)ij

数学建模典型例题(二)

6 小行星的轨道模型 问题 一天文学家要确定一颗小行星绕太阳运行的轨道,他在轨道平面内建立以太阳为原点的直角坐标系,在两坐标轴上取天文测量单位(一天文单位为地球到太阳的平均距离:1.4959787×1011m ).在5个不同的时间对小行星作了5次观察,测得轨道上5个点的坐标数据如表6.1. 表6.1 坐标数据 由Kepler (开普勒)第一定律知,小行星轨道为一椭圆.现需要建立椭圆的方程以供研究(注:椭圆的一般方程可表示为 012225423221=+++++y a x a y a xy a x a . 问题分析与建立模型 天文学家确定小行星运动的轨道时,他的依据是轨道上五个点的坐标数据: (x 1, y 1), (x 2, y 2), (x 3, y 3), (x 4, y 4), (x 5, y 5). 由Kepler 第一定律知,小行星轨道为一椭圆.而椭圆属于二次曲线,二次曲线的一般方程为012225423221=+++++y a x a y a xy a x a .为了确定方程中的五个待定 系数,将五个点的坐标分别代入上面的方程,得 ???? ?????-=++++-=++++-=++++-=++++-=++++.122212221222122212225554253552251454424344224 135342 3333223125242 232222211514213112211y a x a y a y x a x a , y a x a y a y x a x a ,y a x a y a y x a x a ,y a x a y a y x a x a ,y a x a y a y x a x a 这是一个包含五个未知数的线性方程组,写成矩阵

数学建模常用的十种解题方法

数学建模常用的十种解题方法 摘要 当需要从定量的角度分析和研究一个实际问题时,人们就要在深入调查研究、了解对象信息、作出简化假设、分析内在规律等工作的基础上,用数学的符号和语言,把它表述为数学式子,也就是数学模型,然后用通过计算得到的模型结果来解释实际问题,并接受实际的检验。这个建立数学模型的全过程就称为数学建模。数学建模的十种常用方法有蒙特卡罗算法;数据拟合、参数估计、插值等数据处理算法;解决线性规划、整数规划、多元规划、二次规划等规划类问题的数学规划算法;图论算法;动态规划、回溯搜索、分治算法、分支定界等计算机算法;最优化理论的三大非经典算法:模拟退火法、神经网络、遗传算法;网格算法和穷举法;一些连续离散化方法;数值分析算法;图象处理算法。 关键词:数学建模;蒙特卡罗算法;数据处理算法;数学规划算法;图论算法 一、蒙特卡罗算法 蒙特卡罗算法又称随机性模拟算法,是通过计算机仿真来解决问题的算法,同时可以通过模拟可以来检验自己模型的正确性,是比赛时必用的方法。在工程、通讯、金融等技术问题中, 实验数据很难获取, 或实验数据的获取需耗费很多的人力、物力, 对此, 用计算机随机模拟就是最简单、经济、实用的方法; 此外, 对一些复杂的计算问题, 如非线性议程组求解、最优化、积分微分方程及一些偏微分方程的解⑿, 蒙特卡罗方法也是非常有效的。 一般情况下, 蒙特卜罗算法在二重积分中用均匀随机数计算积分比较简单, 但精度不太理想。通过方差分析, 论证了利用有利随机数, 可以使积分计算的精度达到最优。本文给出算例, 并用MA TA LA B 实现。 1蒙特卡罗计算重积分的最简算法-------均匀随机数法 二重积分的蒙特卡罗方法(均匀随机数) 实际计算中常常要遇到如()dxdy y x f D ??,的二重积分, 也常常发现许多时候被积函数的原函数很难求出, 或者原函数根本就不是初等函数, 对于这样的重积分, 可以设计一种蒙特卡罗的方法计算。 定理 1 )1( 设式()y x f ,区域 D 上的有界函数, 用均匀随机数计算()??D dxdy y x f ,的方法: (l) 取一个包含D 的矩形区域Ω,a ≦x ≦b, c ≦y ≦d , 其面积A =(b 一a) (d 一c) ; ()j i y x ,,i=1,…,n 在Ω上的均匀分布随机数列,不妨设()j i y x ,, j=1,…k 为落在D 中的k 个随机数, 则n 充分大时, 有

数学建模典型例题

一、人体重变化 某人得食量就是10467焦/天,最基本新陈代谢要自动消耗其中得5038焦/天。每天得体育运动消耗热量大约就是69焦/(千克?天)乘以她得体重(千克)。假设以脂肪形式贮存得热量100% 地有效,而1千克脂肪含热量41868焦。试研究此人体重随时间变化得规律. 一、问题分析 人体重W(t)随时间t变化就是由于消耗量与吸收量得差值所引起得,假设人体重随时间得变化就是连续变化过程,因此可以通过研究在△t时间内体重W得变化值列出微分方程。 二、模型假设 1、以脂肪形式贮存得热量100%有效 2、当补充能量多于消耗能量时,多余能量以脂肪形式贮存 3、假设体重得变化就是一个连续函数 4、初始体重为W0 三、模型建立 假设在△t时间内: 体重得变化量为W(t+△t)—W(t); 身体一天内得热量得剩余为(10467—5038-69*W(t)) 将其乘以△t即为一小段时间内剩下得热量; 转换成微分方程为:d[W(t+△t)-W(t)]=(10467—5038-69*W(t))dt; 四、模型求解 d(5429—69W)/(5429-69W)=-69dt/41686 W(0)=W0 解得: 5429-69W=(5429-69W0)e(-69t/41686) 即:

W(t)=5429/69—(5429-69W0)/5429e(-69t/41686) 当t趋于无穷时,w=81; 二、投资策略模型 一、问题重述 一家公司要投资一个车队并尝试着决定保留汽车时间得最佳方案。5年后,它将卖出所有剩余汽车并让一家外围公司提供运输。在策划下一个5年计划时,这家公司评估在年i得开始买进汽车并在年j得开始卖出汽车,将有净成本aij(购入价减去折旧加上运营与维修成本).以千元计数aij得由下面得表给出: 请寻找什么时间买进与卖出汽车得最便宜得策略。 二、问题分析 本问题就是寻找成本最低得投资策略,可视为寻找最短路径问题.因此可利用图论法分析,用Dijkstra算法找出最短路径,即为最低成本得投资策略。 三、条件假设 除购入价折旧以及运营与维护成本外无其她费用; 四、模型建立 二 5 11 7 三6 4

2003全国大学生数学建模竞赛B题优秀论文(出题人亲作)

2003高教社杯全国大学生数学建模竞赛 B 题参考答案 注意:以下答案是命题人给出的,仅供参考。各评阅组应根据对题目的理解及学生的解答,自主地进行评阅。 问题分析: 本题目与典型的运输问题明显有以下不同: 1. 运输矿石与岩石两种物资; 2. 产量大于销量的不平衡运输; 3. 在品位约束下矿石要搭配运输; 4. 产地、销地均有单位时间的流量限制; 5. 运输车辆每次都是满载,154吨/车次; 6. 铲位数多于铲车数意味着最优的选择不多于7个产地; 7. 最后求出各条路线上的派出车辆数及安排。 运输问题对应着线性规划,以上第1、2、3、4条可通过变量设计、调整约束条件实现; 第5条使其变为整数线性规划;第6条用线性模型实现的一种办法,是从1207 10 C 个整数规划中取最优的即得到最佳物流;对第7条由最佳物流算出各条路线上的最少派出车辆数(整数),再给出具体安排即完成全部计算。 对于这个实际问题,要求快速算法,计算含50个变量的整数规划比较困难。另外,这是一个二层规划,第二层是组合优化,如果求最优解计算量较大,现成的各种算法都无能为力。于是问题变为找一个寻求近优解的近似解法,例如可用启发式方法求解。 调用120次整数规划可用三种方法避免:(1)先不考虑电铲数量约束运行整数线性规划,再对解中运量最少的几个铲位进行筛选;(2)在整数线性规划的铲车约束中调用sign 函数来实现;(3)增加10个0-1变量来标志各个铲位是否有产量。 这是一个多目标规划,第一问的目标有两层:第一层是总运量(吨公里)最小,第二层是出动卡车数最少,从而实现运输成本最小。第二问的目标有:岩石产量最大;矿石产量最大;运量最小,三者的重要性应按此序。 合理的假设主要有: 1. 卡车在一个班次中不应发生等待或熄火后再启动的情况; 2. 在铲位或卸点处因两条路线(及以上)造成的冲突时,只要平均时间能完成任务即 可,不进行排时讨论; 3. 空载与重载的速度都是28km/h ,耗油相差却很大,因此总运量只考虑重载运量; 4. 卡车可提前退出系统。 符号:x ij ~ 从i 号铲位到j 号卸点的石料运量 单位 吨; c ij ~ 从i 号铲位到j 号卸点的距离 公里; T ij ~ 从i 号铲位到j 号卸点路线上运行一个周期平均所需时间 分; A ij ~ 从i 号铲位到j 号卸点最多能同时运行的卡车数 辆; B ij ~ 从i 号铲位到j 号卸点路线上一辆车最多可以运行的次数 次; p i ~ i 号铲位的矿石铁含量。 % p =(30,28,29,32,31,33,32,31,33,31) q j ~ j 号卸点任务需求 吨 q =(1.2,1.3,1.3,1.9,1.3)*10000

数学建模知识竞赛题库

数学建模知识竞赛题库 1.请问计算机中的二进制源于我国古代的哪部经典? D A.《墨经》 B.《诗经》 C.《周书》 D.《周易》 2.世界上面积最大的高原是?D A.青藏高原 B.帕米尔高原 C.黄土高原 D.巴西高原 3.我国海洋国土面积约有多少万平方公里? B A.200 B.300 C.280 D.340 4.世界上面值最高的邮票是匈牙利五百亿彭哥,它的图案是B A.猫 B.飞鸽 C.海鸥 D.鹰 5. 龙虾是我们的一种美食、你知道它体内的血是什么颜色的吗?B A.红色 B.蓝色 C.灰色 D.绿色 6.MATLAB使用三维向量[R G B]来表示一种颜色,则黑色为(D ) A. [1 0 1] B. [1 1 1] C. [0 0 1] D. [0 0 0] 7.秦始皇之后,有几个朝代对长城进行了修葺? A A.7个 B.8个 C.9个 D.10个 8.中国历史上历时最长的朝代是?A A.周朝 B.汉朝 C.唐朝 D.宋朝 9我国第一个获得世界冠军的是谁?C A 吴传玉 B 郑凤荣 C 荣国团 D 陈镜开 10.我国最早在奥运会上获得金牌的是哪位运动员?B A.李宁 B.许海峰 C.高凤莲 D.吴佳怩

11.围棋共有多少个棋子?B A.360 B.361 C.362 D.365 12下列属于物理模型的是:A A水箱中的舰艇 B分子结构图 C火箭模型 D电路图 13名言:生命在于运动是谁说的?C A.车尔尼夫斯基 B.普希金 C.伏尔泰 D.契诃夫 14.饱食后不宜剧烈运动是因为B A.会得阑尾炎 B.有障消化 C.导致神经衰弱 D.呕吐 15、MATLAB软件中,把二维矩阵按一维方式寻址时的寻址访问是按(B)优先的。 A.行 B.列 C.对角线 D.左上角16红军长征中,哪次战役最突出反应毛泽东的军事思想和指挥才?A A.四渡赤水B.抢渡大渡河C.飞夺泸定桥D.直罗镇战役 17色盲患者最普遍的不易分辨的颜色是什么?A A.红绿 B.蓝绿 C.红蓝 D.绿蓝 18下列哪种症状是没有理由遗传的? A.精神分裂症 B.近视 C.糖尿病 D.口吃 19下面哪个变量是正无穷大变量?(A )

全国数学建模大赛题目

2010高教社杯全国大学生数学建模竞赛题目 A题储油罐的变位识别与罐容表标定 通常加油站都有若干个储存燃油的地下储油罐,并且一般都有与之配套的“油位计量管理系统”,采用流量计和油位计来测量进/出油量与罐内油位高度等数据,通过预先标定的罐容表(即罐内油位高度与储油量的对应关系)进行实时计算,以得到罐内油位高度和储油量的变化情况。 许多储油罐在使用一段时间后,由于地基变形等原因,使罐体的位置会发生纵向倾斜和横向偏转等变化(以下称为变位),从而导致罐容表发生改变。按照有关规定,需要定期对罐容表进行重新标定。图1是一种典型的储油罐尺寸及形状示意图,其主体为圆柱体,两端为球冠体。图2是其罐体纵向倾斜变位的示意图,图3是罐体横向偏转变位的截面示意图。 请你们用数学建模方法研究解决储油罐的变位识别与罐容表标定的问题。 (1)为了掌握罐体变位后对罐容表的影响,利用如图4的小椭圆型储油罐(两端平头的椭圆柱体),分别对罐体无变位和倾斜角为α=4.10的纵向变位两种情况做了实验,实验数据如附件1所示。请建立数学模型研究罐体变位后对罐容表的影响,并给出罐体变位后油位高度间隔为1cm的罐容表标定值。 (2)对于图1所示的实际储油罐,试建立罐体变位后标定罐容表的数学模型,即罐内储油量与油位高度及变位参数(纵向倾斜角度α和横向偏转角度β)之间的一般关系。请利用罐体变位后在进/出油过程中的实际检测数据(附件2),根据你们所建立的数学模型确定变位参数,并给出罐体变位后油位高度间隔为10cm的罐容表标定值。进一步利用附件2中的实际检测数据来分析检验你们模型的正确性与方法的可靠性。 附件1:小椭圆储油罐的实验数据 附件2:实际储油罐的检测数据 地平线油位探针

数学建模优化问题经典练习

1、高压容器公司制造小、中、大三种尺寸的金属容器,所用资源为金属板、劳 万元,可使用的金属板有500t,劳动力有300人/月,机器有100台/月,此外,不管每种容器制造的数量是多少,都要支付一笔固定的费用:小号为100万元,中号为150万元,大号为200万元,现在要制定一个生产计划,使获得的利润为最大, max=4*x1+5*x2+6*x3-100*y1-150*y2-200*y3; 2*x1+4*x2+8*x3<=500; 2*x1+3*x2+4*x3<=300; 1*x1+2*x2+3*x3<=100; @bin(y1); @bin(y2); @bin(y3); y1+y2+y3>=1; Global optimal solution found. Objective value: 300.0000 Extended solver steps: 0 Total solver iterations: 0 Variable Value Reduced Cost X1 100.0000 0.000000 X2 0.000000 3.000000 X3 0.000000 6.000000 Y1 1.000000 100.0000 Y2 0.000000 150.0000 Y3 0.000000 200.0000 Row Slack or Surplus Dual Price 1 300.0000 1.000000 2 300.0000 0.000000 3 100.0000 0.000000 4 0.000000 4.000000 5 0.000000 0.000000

数学模型经典例题

一、把椅子往地面一放,通常只有三只脚着地,放不稳,然而只需稍挪动几次,就可以使四只脚同时着地放稳了,就四脚连线成长方形的情形建模并加以说明。(15分) 解:一、模型假设: 1. 椅子四只脚一样长,椅脚与地面的接触可以看作一个点,四脚连线呈长方形。 2. 地面高度是连续变化的,沿任何方向都不会出现间断,地面可以看成一张光滑曲面。 3. 地面是相对平坦的,使椅子在任何位置至少有三只脚同时着地。 (3分) 二、建立模型: 以初始位置的中位线为坐标轴建立直角坐标系,用θ表示椅子绕中心O 旋转的角度,椅子的位置可以用θ确定: ()f θ记为A 、B 两点与地面的距离之和 ()g θ记为C 、D 两点与地面的距离之和 由假设3可得,()f θ、()g θ中至少有一个为0。 由假设2知()f θ、()g θ是θ的连续函数。 (3分) 问题归结为: 已知()f θ和()g θ是θ的连续函数,对任意θ, ()()0f g θθ=,且设()()00,00g f =>。证明存在0θ, 使得()()000f g θθ== (3分) 三、模型求解: 令()()()h f θθθ=-g 若()()000f g =,结论成立 若()()000f g 、不同时为,不妨设()()00,00g f =>,椅子旋转()180π或后,AB 与CD 互换,即()()0,0g f ππ>=,则()(0)0,0h h π><。 (3分) 由f g 和的连续性知h 也是连续函数。根据连续函数的基本性质,必存在 ()000θθπ<<使000()0,()()h f g θθθ==即。 最后,因为00()()0f g θθ=,所以00()()0f g θθ==。 (3分) 图 5

减速路障间距设计 ;经典数学建模题目分析

组号:702 田宇;孙蕙雯;樊博 校园减速路障间距设计 摘要:减速路障的间距设计合理对于减速带作用的发挥具有重要的意义。本文利用查阅的相关资料,采用Lingo回归分析和最小二乘法,对汽车的加速时加速度和加速时的加速度进行了参数估计。根据题意进行数学建模,建立了汽车在一条具有多个减速带的公路上加速后减速匀速通过减速带的一维直线运动的模型。通过牛顿运动学公式进行了模型求解,最后得出了相邻减速带间的最佳距离。 关键词:减速带间距;一维直线运动模型;最小二乘法

一、问题的提出 1.1 问题的背景 校园、居民小区的道路中间,常常设置用于限制汽车速度的减速带(路障)。减速带使路面稍微拱起以达到车辆减速目的,设置在需要车辆减速慢行的路段和容易引发交通事故的路段,是用于减速机动车、非机动车行使速度的新型交通专用安全设置。减速带很大程度减少了各交通要道口的事故发生,是交通安全的新型专用设施。汽车在行驶中既安全又起到缓冲减速目的,提高交通道口的安全。随着校园车辆的逐渐增多,在校园中合理的设置减速带又成为一个很重要的实际问题。 减速带的使用效果在很大程度上取决于车辆的运行速度和减速带的放置间距间距。因此,为确保限速安全和驾驶人的舒适,合理设定道路的限速具有很重要的意义。 1.2 问题重述 校园道路需要设置路障以限制车速,如果车速不超过40km/h,应该相距多远? 二、问题的分析 2.1 模型预备知识 道路减速带的减速原理:道路减速带的减速是通过影响驾驶员的驾驶心理实现的。当车辆以较高速度进入道路减速带时,剧烈的振动会从轮胎经车身及座椅传递给驾驶员,使驾驶员产生强烈的生理刺激(包括振动刺激和视觉刺激)和心理刺激,从而促使驾驶员主动减速,使车辆以较低的速度通过道路减速带。 2.2问题的分析 1、汽车通过减速带时速度近于零,过减速带后加速。 2、车速达到40km/h时因为前面有下一个减速带而减速,至减速带处车速又近于零。 3、如此循环达到减速目的。

数学建模题目及其答案(疾病诊断)

数学建模疾病的诊断 现要你给出疾病诊断的一种方法。 胃癌患者容易被误诊为萎缩性胃炎患者或非胃病者。从胃癌患者中抽 取5人(编号为1-5),从萎缩性胃炎患者中抽取5人(编号为6-10),以及非胃病者 中抽取5人(编号为11-15),每人化验4项生化指标:血清铜蓝蛋白( X)、 1 蓝色反应( X)、尿吲哚乙酸(3X)、中性硫化物(4X)、测得数据如表1 2 所示: 表1. 从人体中化验出的生化指标

* 根据数据,试给出鉴别胃病的方法。 论文题目:胃病的诊断 摘要 在临床医学中,诊断试验是一种诊断疾病的重要方法。好的诊断试验方法将对临床诊断的正确性和疾病的治疗效果起重要影响。因此,对于不同疾病不断发现新的诊断试验方法是医学进步的重要标志。传统的诊断试验方法有生化检测、DNA检测和影像检测等方法。而本文则通过利用多元统计分析中的判别分析及SPSS软件的辅助较好地解决了临床医学中胃病鉴别的问题。在临床医学上,既提高了临床诊断的正确性,又对疾病的治疗效果起了重要效果,同时也减轻了病人的负担。 判别分析是在分类确定的条件下,根据某一研究对象的各种特征值判别其类型归属问题的一种多变量统计分析方法。 其基本原理是按照一定的判别准则,建立一个或多个判别函数,用研究对象的大量资料确定判别函数中的待定系数,并计算判别指标。 , 首先,由判别分析定义可知,只有当多个总体的特征具有显著的差异时,进行判别分析才有意义,且总体间差异越大,才会使误判率越小。因此在进行判别分析时,有必要对总体多元变量的均值进行是否不等的显著性检验。 其次,利用判别分析中的费歇判别和贝叶斯判别进行判别函数的建立。 最后,利用所建立的判别函数进行回判并测得其误判率,以及对其修正。 本文利用SPSS软件实现了对总体间给类变量的均值是否不等的显著性检验并根据样本建立了相应的费歇判别函数和贝叶斯判别函数,最后进行了回判并测得了误判率,从而获得了在临床诊断中模型,给临床上的诊断试验提供了新方法和新建议。 关键词:判别分析;判别函数;Fisher判别;Bayes判别 一问题的提出 在传统的胃病诊断中,胃癌患者容易被误诊为萎缩性胃炎患者或非胃病患者,为了

历年全国数学建模试题及其解法归纳

历年全国数学建模试题及解法归纳 赛题解法 93A非线性交调的频率设计拟合、规划 93B足球队排名图论、层次分析、整数规划94A逢山开路图论、插值、动态规划 94B锁具装箱问题图论、组合数学 95A飞行管理问题非线性规划、线性规划 95B天车与冶炼炉的作业调度动态规划、排队论、图论96A最优捕鱼策略微分方程、优化 96B节水洗衣机非线性规划 97A零件的参数设计非线性规划 97B截断切割的最优排列随机模拟、图论 98A一类投资组合问题多目标优化、非线性规划98B灾情巡视的最佳路线图论、组合优化 99A自动化车床管理随机优化、计算机模拟 99B钻井布局0-1规划、图论 00A DNA序列分类模式识别、Fisher判别、人工 神经网络 00B钢管订购和运输组合优化、运输问题 01A血管三维重建曲线拟合、曲面重建

赛题解法 01B 公交车调度问题多目标规划 02A车灯线光源的优化非线性规划 02B彩票问题单目标决策 03A SARS的传播微分方程、差分方程 03B 露天矿生产的车辆安排整数规划、运输问题 04A奥运会临时超市网点设计统计分析、数据处理、优化04B电力市场的输电阻塞管理数据拟合、优化 05A长江水质的评价和预测预测评价、数据处理 05B DVD在线租赁随机规划、整数规划 06A出版社书号问题整数规划、数据处理、优化06B Hiv病毒问题线性规划、回归分析 07A 人口问题微分方程、数据处理、优化07B 公交车问题多目标规划、动态规划、图 论、0-1规划 08A 照相机问题非线性方程组、优化 08B 大学学费问题数据收集和处理、统计分 析、回归分析 2009年A题制动器试验台的控制方法分析工程控制 2009年B题眼科病床的合理安排排队论,优化,仿真,综 合评价 2009年C题卫星监控几何问题,搜集数据

高教社杯全国大学生数学建模竞赛题目A题

2017年高教社杯全国大学生数学建模竞赛题目 (请先阅读“全国大学生数学建模竞赛论文格式规范”) A题CT系统参数标定及成像 CT(Computed Tomography)可以在不破坏样品的情况下,利用样品对射线能量的吸收特性对生物组织和工程材料的样品进行断层成像,由此获取样品内部的结构信息。一种典型的二维CT系统如图1所示,平行入射的X射线垂直于探测器平面,每个探测器单元看成一个接收点,且等距排列。X射线的发射器和探测器相对位置固定不变,整个发射-接收系统绕某固定的旋转中心逆时针旋转180次。对每一个X射线方向,在具有512个等距单元的探测器上测量经位置固定不动的二维待检测介质吸收衰减后的射线能量,并经过增益等处理后得到180组接收信息。 CT系统安装时往往存在误差,从而影响成像质量,因此需要对安装好的CT系统进行参数标定,即借助于已知结构的样品(称为模板)标定CT系统的参数,并据此对未知结构的样品进行成像。 请建立相应的数学模型和算法,解决以下问题: (1) 在正方形托盘上放置两个均匀固体介质组成的标定模板,模板的几何信息如图2所示,相应的数据文件见附件1,其中每一点的数值反映了该点的吸收强度,这里称为“吸收率”。对应于该模板的接收信息见附件2。请根据这一模板及其接收信息,确定CT系统旋转中心在正方形托盘中的位置、探测器单元之间的距离以及该CT系统使用的X射线的180个方向。 (2) 附件3是利用上述CT系统得到的某未知介质的接收信息。利用(1)中得到的标定参数,确定该未知介质在正方形托盘中的位置、几何形状和吸收率等信息。另外,请具体给出图3所给的10个位置处的吸收率,相应的数据文件见附件4。 (3) 附件5是利用上述CT系统得到的另一个未知介质的接收信息。利用(1)中得到的标定参数,给出该未知介质的相关信息。另外,请具体给出图3所给的10个位置处的吸收率。 (4) 分析(1)中参数标定的精度和稳定性。在此基础上自行设计新模板、建立对应的标定模型,以改进标定精度和稳定性,并说明理由。 (1)-(4)中的所有数值结果均保留4位小数。同时提供(2)和(3)重建得到的介质吸收率的数据文件(大小为256×256,格式同附件1,文件名分别为和)

高中常见数学模型案例

高中常见数学模型案例 中华人民共和国教育部2003年4月制定的普通高中《数学课程标准》中明确指出:“数学探究、数学建模、数学文化是贯穿于整个高中数学课程的重要内容”,“数学建模是数学学习的一种新的方式,它为学生提供了自主学习的空间,有助于学生体验数学在解决问题中的价值和作用,体验数学与日常生活和其他学科的联系,体验综合运用知识和方法解决实际问题的过程,增强应用意识;有助于激发学生学习数学的兴趣,发展学生的创新意识和实践能力。”教材中常见模型有如下几种: 一、函数模型 用函数的观点解决实际问题是中学数学中最重要的、最常用的方法。函数模型与方法在处理实际问题中的广泛运用,两个变量或几个变量,凡能找到它们之间的联系,并用数学形式表示出来,建立起一个函数关系(数学模型),然后运用函数的有关知识去解决实际问题,这些都属于函数模型的范畴。 1、正比例、反比例函数问题 例1:某商人购货,进价已按原价a 扣去25%,他希望对货物订一新价,以便按新价让利销售后仍可获得售价25%的纯利,则此商人经营者中货物的件数x 与按新价让利总额y 之间的函数关系是___________。 分析:欲求货物数x 与按新价让利总额y 之间的函数关系式,关键是要弄清原价、进价、新价之间的关系。 若设新价为b ,则售价为b (1-20%),因为原价为a ,所以进价为a (1-25%) 解:依题意,有25.0)2.01()25.01()2.01(?-=---b a b 化简得a b 45=,所以x a bx y ??==2.0452.0,即+∈=N x x a y ,4 2、一次函数问题 例2:某人开汽车以60km/h 的速度从A 地到150km 远处的B 地,在B 地停留1h 后,再以50km/h 的速度返回A 地,把汽车离开A 地的路x (km )表示为时间t (h )的函数,并画出函数的图像。 分析:根据路程=速度×时间,可得出路程x 和时间t 得函数关系式x (t );同样,可列出v(t)的关系式。要注意v(t)是一个矢量,从B 地返回时速度为负值,重点应注意如何画这两个函数的图像,要知道这两个函数所反映的变化关系是不一样的。 解:汽车离开A 地的距离x km 与时间t h 之间的关系式是:?? ???∈--∈∈=]5.6,5.3(),5.3(50150]5.3,5.2(,150]5.2,0[,60t t t t t x ,图略。 速度vkm/h 与时间t h 的函数关系式是:?? ???∈-∈∈=)5.6,5.3[,50)5.3,5.2[,0)5.2,0[,60t t t v ,图略。 3、二次函数问题 例3:有L 米长的钢材,要做成如图所示的窗架,上半部分为半圆,下半部分为六个全等小矩形组成的矩形,试问小矩形的长、宽比为多少时,窗所通过的光线最多,并具体标出窗框面积的最大值。

数学建模经典例题

A题机组组合问题 当前的科学技术还不能有效地存储电力,所以电力生产和消费在任何时刻都要相等,否则就会威胁电力系统安全运行。又由于发电机组的物理特性限制,发电机组不能够随心所欲地发出需要的电力。为了能够实时平衡变化剧烈的电力负荷,电力部门往往需要根据预测的未来电力负荷安排发电机组起停计划,在满足电力系统安全运行条件下,追求发电成本最小。 在没有电力负荷损耗以及一个小时之内的电力负荷和发电机出力均不变的前提下,假定所有发电机组的发电成本都是由3部分组成,它们是启动成本(Startup Cost),空载成本(No load cost)和增量成本(Incremental Cost)。需要考虑的约束有: 1.负荷平衡约束:任何小时,电力负荷之和必须等于发电机发电出力之和。 2.系统备用约束:处于运行状态的发电机的最大发电能力减去其出力称为该发电机的备用容量,处于停运状态的发电机的备用容量为0。任何小时,发电机的备用容量之和必须大于系统备用要求。 3.输电线路传输容量约束:线路传输的电能必须在它的传输容量范围内。 4.发电机组出力范围约束:处于运行状态的发电机组的发电出力必须小于其最大发电能力(Pmax, MW)。 5.机组增出力约束(Ramp Up, MW/h):发电机组在增加发电出力时,不能太快,有一个增加出力的速度上限,在一定时间内(通常是10分钟,为简单起见,本题取1个小时)不能超过额定范围。 6.机组降出力约束(Ramp Down, MW/h):与机组增出力约束类似,发电机组在减少发电出力时也有一个减少出力的速度上限。 问题1:3母线系统 有一个3母线系统,其中有2台机组、1个负荷和3条输电线路,已知4个小时的负荷和系统备用要求。请求出这4个小时的最优机组组合计划。最终结果应该包括总成本、各小时各机组的状态、各小时各机组的发电出力和各小时各机组提供的备用。所有数据请见下面图及表格,“3BusData”目录中还有包含了本题所有表格数据的5个xml文件。

数学建模典型例题

数学建模典型例题 某学校有三个系共200名学生,其中甲系100名,乙系60名,丙系40名.若学生代表会议设20各级席位,公平而又简单的席位分配方法是按学生人数的比例分配,显然甲乙丙三系分别应占有10,6,4个席位,现在丙系有6名学生转入甲乙两系,各系人数如表第二列所示,仍按比例(表中第三列)分配席位时出现了小数(表中第四列),在将取得整数的19席分配完毕后,三席同意剩下的1席参照所谓惯例分给比例中小数最大的系,于是三系分别占有10,6,4席(表中第5列) 因为有20个代表会议在表决的时候可能出现10:10的局面,会议决定下一届增加一席,他们按照上述方法重新分配席位,计算结果见表6,7列,显然这个结果对丙系太不公平了.因为总席位增加一席,而丙系却由4席减为3席. 按照比例并参照惯例的席位分配

系别学生学生人数 20个席 20个席位 21个席位 21个席位人数的比例(% 的分配的分配的分配的分配 比例分配参照惯例比例分配参照惯例 的席位的结果的席位的结果 甲 103 51.5 10.3 10 10.815 11 乙 63 31.5 6.3 6 6.615 7 丙 34 17.0 3.4 4 3.570 3 总和 200 100.0 20.0 20 21.000 21 要解决这个问题必须舍弃所谓惯例,找到衡量公平分配席位的指标,并由此建立新的分配分配方法

解答: Pī/Nī表示第ī个单位每个代表名额代表的人数 采用相对标准,引入相对不公平概念.如果P1/n1>P2/n2,则说明A方是吃亏的,或说对A方不公平. 对A的相对不公平度: rA(n1,n2)=(p1/n1-p2/n2)/(p2/n2)=(p1n2)/(p2n1)-1 对B的相对不公平度: rB(n1,n2)=(p2n1)/(p1n2)-1 情形1: P1/(n1+1)>p2/n2,表明即使A方再增加一个名额,仍然对A方不公

数学建模数据分析题

中国矿业大学数学建模常规赛竞赛 承诺书 我们仔细阅读了中国矿业大学数学建模常规赛论文格式规范和2016年中国矿业大学数学建模常规赛通知。我们完全明白,在竞赛开始后参赛队员不能以任何方式(包括电话、电子邮件、网上咨询等)与队外的任何人(包括指导教师)研究、讨论与赛题有关的问题。 我们知道,抄袭别人的成果是违反竞赛章程和参赛规则的,如果引用别人的成果或资料(包括网上资料),必须按照规定的参考文献的表述方式列出,并在正文引用处予以标注。在网上交流和下载他人的论文是严重违规违纪行为。 我们以中国矿业大学大学生名誉和诚信郑重承诺,严格遵守竞赛章程和参赛规则,以保证竞赛的公正、公平性。如有违反竞赛章程和参赛规则的行为,我们将受到严肃处理。 我们授权中国矿业大学数学建模协会,可将我们的论文以任何形式进行公开展示(包括进行网上公示,在书籍、期刊和其他媒体进行正式或非正式发表等)。 我们的参赛队号:25 参赛队员(打印并签名):1. 易阳俊 2. 令月霞 3. 刘景瑞 日期: 2016 年 10 月日 (请勿改动此页内容和格式。此承诺书打印签名后作为纸质论文的封面。以上内容请仔细核对,如填写错误,论文可能被取消评奖资格。)

中国矿业大学数学建模常规赛竞赛 编号专用页 评阅统一编号(数学建模协会填写):

题目:数据的分析问题 摘要 本文需要解决的问题是如何根据就诊人员体内7种元素含量来判别某人是否患有疾病G和确定哪些指标是影响人们患疾病G的主要因素。通过解读题目可知,此类问题为典型的分析判别问题。我们先对数据进行了预处理,剔除了有异常数据的样本,然后采用元素分布判别法、马氏距离判别法和Fisher判别法,应用Excel、SPSS和MATLAB等软件来对某人是否患病进行判别,并通过绘制7种元素含量的折线图等来确定患该疾病的主要因素,最后应用综合判别法对之前的结论进行了检验。 对于问题一,在对数据预处理之后,我们删除了序号为10这个高度异常数据样本,然后我们分别采用元素分布判别法、马氏距离判别法和Fisher判别法对49个已知病例进行判别。对于元素分布判别法,我们通过数据预处理知道7种元素含量分布均符合正态分布,然后我们确定了以均值为大致中心的元素正常含量范围,得出其判别准确度为96%;对于马氏距离判别法,通过编写MATLAB程序(见附录)来进行判别,得出其判别准确度为90%;对于Fisher判别法,通过SPSS软件来进行判别,得到线性判别函数,其判别准确度为96%; 针对问题二:我们运用问题一中建立的三个判别模型对25名就诊人员(见附录)的化验结果进行检验,判别结果如下表1: 行对分析,我们初步判定元素4与元素5是影响人们患疾病G的主要因素,然后用方法一的三种判别方法进行检验,其准确度在85%以上; 对于问题四,我们根据问题三得出的主要因素,分别用三种判别方法对25名就诊人员进行判别,再与问题二的判别结果进行对比,可知它们判断结果之间的差异性最高为24%。 对于问题五,由于三种判别法都有不足,所以我们采用了综合判别法,将三种判别方法的结果进行综合判断,最终我们通过主要因素进行判别的差异性下降到了12%,与问题一的判断结果的一致性达到了88%。 关键词:马氏距离判别,Fisher判别,综合判别,MATLAB,SPSS

数学建模例题及解析

。 例1差分方程——资金的时间价值 问题1:抵押贷款买房——从一则广告谈起 每家人家都希望有一套(甚至一栋)属于自己的住房,但又没有足够的资金一次买下,这就产生了贷款买房的问题。先看一下下面的广告(这是1991年1月1日某大城市晚报上登的一则广告),任何人看了这则广告都会产生许多疑问,且不谈广告中没有谈住房面积、设施等等,人们关心的是:如果一次付款买这栋房要多少钱呢?银行贷款的利息是多少呢?为什么每个月要付1200元呢?是怎样算出来的?因为人们都知道,若知道了房价(一次付款买房的价格),如果自己只能支付一部分款,那就要把其余的款项通过借贷方式来解决,只要知道利息,就应该可以算出五年还清每月要付多少钱才能按时还清贷款了,从而也就可以对是否要去买该广告中所说的房子作出决策了。现在我们来进行数学建模。由于本问题比较简单无需太多的抽象和简化。 a.明确变量、参数,显然下面的量是要考虑的: 需要借多少钱,用记; 月利率(贷款通常按复利计)用R记; 每月还多少钱用x记; 借期记为N个月。 b.建立变量之间的明确的数学关系。若用记第k个月时尚欠的款数,则一 个月后(加上利息后)欠款,不过我们又还了x元所以总的欠款为 k=0,1,2,3, 而一开始的借款为。所以我们的数学模型可表述如下 (1) c. (1)的求解。由

(2) 这就是之间的显式关系。 d.针对广告中的情形我们来看(1)和(2)中哪些量是已知的。N=5年=60个月, 已知;每月还款x=1200元,已知A。即一次性付款购买价减去70000元后剩下 的要另外去借的款,并没有告诉你,此外银行贷款利率R也没告诉你,这造成了我们决策的困难。然而,由(2)可知60个月后还清,即,从而得 (3) A和x之间的关系式,如果我们已经知道银行(3)表示N=60,x=1200给定时0 A。例如,若R =0.01,则由(3)可算得的贷款利息R,就可以算出0 53946元。如果该房地产公司说一次性付款的房价大于70000十53946= 123946元的话,你就应自己去银行借款。事实上,利用图形计算器或 Mathematica这样的 数学软件可把(3)的图形画出来,从而可以进行估算决策。以下我们进一步考虑 下面两个问题。 注1问题1标题中“抵押贷款”的意思无非是银行伯你借了钱不还,因而要你用 某种不动产(包括房子的产权)作抵押,即万一你还不出钱了,就没收你的不动产。 例题1某高校一对年青夫妇为买房要用银行贷款60000元,月利率0.01,贷款 期25年=300月,这对夫妇希望知道每月要还多少钱,25年就可还清。假设这 对夫妇每月可有节余900元,是否可以去买房呢?

数学建模与数学仿真题目(2013)

数学建模与数学仿真题目(2013) 由2-3人自由组队,对于以下问题任选其一,完成如下工作: ●建立问题的数学模型; ●建模模型的求解算法与程序; ●自选参数进行仿真计算; ●提交建模论文,包括题目、摘要、国内外研究现状、基本假设、理论建模、数值 仿真计算及相关图表,并附有相应的计算程序。 每个题目选做的小组不超过2个,先选先得。各组在课程结束2周以内提交建模论文,并由任课老师在课程结束2周的周末统一组织汇报答辩。 一、竹竿平衡问题 在杂技表演中,经常会看到杂技演员头顶一根竹竿、在竹竿之上再放一根竹竿,通过不断移动脚步来保持两根竹竿竖直平衡。试建立该系统的模型,并通过控制最下层对象的移动来实现上面两个对象的动态平衡。 二、走钢丝问题 杂技演员表演走钢丝时,经常伸开双臂或者双手拿一根长杆来保持平衡。试建立跟系统的模型,并模拟杂技演员的平衡控制过程。 三、蹦床运动员的着床制动 蹦床运动员在表演过程中可以尽情表演大幅度的起落动作,而在表演结束时却又可以一次降落就实现平稳着床,不会再发生双脚跳离蹦床的现象。试通过建模分析研究蹦床运动员表演结束时的着床过程。 四、人口发展与计划生育国策 对于中国自70年代以来施行的计划生育政策进行建模,预测中国人口数量的发展趋势和老龄化趋势,并对中国计划生育政策的调整提出建议。 五、交通枢纽信号灯设计 淄博市南京路与人民路交叉路口为十字路口,根据道路的实际宽度及车流、人流情况,设计交通信号灯的控制规则;当路口车流状况发生改变时,各信号灯的时间应该如何调整。

六、森林救火问题 森林失火后,要确定派出消防队员的数量:队员多,森林损失小,救援费用大;队员少,森林损失大,救援费用小。要求将着火区域内的火全部扑灭,因为抢救出来的林木还具有部分价值。综合考虑损失费和救援费,确定队员数量。 七、动物过河问题 现有大老虎、小老虎、大狮子、小狮子、大豹子、小豹子三家一起过河,河面上只有一条船,六个动物中只有小狮子和小豹子不会划船;当没有家长监护时,小动物就会被其他的大动物吃掉。试设计一种安全的渡河方案。 八、自卸车举升油缸的最大推力 矿用自卸车采用的自卸机构主要有单级油缸、多级油缸和杆系组合式三种方式,其中杆系组合式由于其成本低、安装空间灵活而得到广泛应用。常用的杆系组合式主要有前推连杆组合式、后推连杆组合式、前推杠杆组合式和后推杠杆组合式四种结构。试选一种结构,计算需要的油缸最大推力。 九、智能小车的最速行驶 全国大学生“飞思卡尔”杯智能汽车竞赛是韩国汉阳大学汽车控制实验室在飞思卡尔半导体公司资助下举办的以HCS12单片机为核心的大学生课外科技竞赛。组委会提供一个标准的四轮转向、四轮驱动的汽车模型,参赛队伍要制作一个能够自主识别路径的智能车,在专门设计的跑道上自动识别道路行驶,最快跑完全程而没有冲出跑道并且技术报告评分较高为获胜者。试建立汽车行驶的动力学模型,考虑汽车的附着条件、加速、制动效能,在任意给定的宽度一定、轨迹光滑路面上,建立汽车的行驶控制策略。不必拘泥于“飞思卡尔”比赛指定的路面辨识模式,大家可以在你的控制模型中添加任意合理的传感器。 十、房价调控 近几年来,我国各大城市的房价出现了普遍持续上涨、高居不下的情况。房价的上涨使生活成本大幅增加,导致许多中低收入人群买房难。因此如何有效地抑制房地产价格上扬,是一个备受关注的社会问题。现在请你就以下几个方面的问题进行讨论: ●建立一个城市房价的数学模型,通过这个模型对房价的形成、演化机理进行深入细致 的分析; ●通过分析找出影响房价的主要因素; ●给出抑制房地产价格的政策建议; ●对你的建议可能产生的效果进行科学预测和评价。

相关文档