文档库 最新最全的文档下载
当前位置:文档库 › TL431PC817的配合问题

TL431PC817的配合问题

TL431PC817的配合问题
TL431PC817的配合问题

关于TL431,PC817的配合问题

李升元

2004-01-15

在TOP 及3842等单端反激电路中的反馈电路很多都采用TL431,PC817作为参考、隔离、取样。现以TOPSwicth典型应用电路来说明TL431,PC817的配合问题。其电路如图1所示。

对于图1的电路,就是要确定R1、R3、R5及R6的值。设输出电压Vo,辅助绕组整流输出电压为12V。该电路利用输出电压与TL431构成的基准电压比较,通过光电耦合器PC817二极管-三极管的电流变化去控制TOP管的C极,从而改变PWM宽度,达到稳定输出电压的目的。因为被控对象是TOP管,因此首先要搞清TOP管的控制特性。从TOPSwicth的技术手册可知流入控制脚C的电流Ic与占空比D成反比关系。如图2所示。可以看出,

Ic

Dmin

Dmax

占空比D (%)

控制脚电流Ic(mA)

图2 TOPSwitch占空比与控制电流的关系

Ic 的电流应在2-6mA 之间,PWM 会线性变化,因此PC817三极管的电流Ice 也应在这个范围变化。而Ice 是受二极管电流If 控制的,我们通过PC817的Vce 与If 的关系曲线(如图3所示)可以正确确定PC817二极管正向电流If 。从图3可以看出,当PC817二极管正向电流If 在3mA 左右时,三极管的集射电流Ice 在4mA 左右变化,而且集射电压Vce 在很宽

510

15

正向电流If(mA)

12345V c e (

V

图3 PC817集射电压Vce与正

向电流If的关系

的范围内线性变化。符合TOP 管的控制要求。因此可以确定选PC817二极管正向电流If 为3mA 。再看TL431的要求。从TL431的技术参数知,Vka 在2.5V -37V 变化时,Ika 可以在从1mA 到100mA 以内很大范围里变化,一般选20mA 即可,既可以稳定工作,又能提供一部分死负载。不过对于TOP 器件因为死负载很小,只选3-5mA 左右就可以了。

确定了上面几个关系后,那几个电阻的值就好确定了。根据TL431的性能,R5、R6、Vo 、Vr 有固定的关系:Vo=(1+ R5/R6) Vr

式中,Vo 为输出电压,Vr 为参考电压,Vr =2.50V ,先取R6一个值,例如

R6=10k,根据Vo的值就可以算出R5了。

再来确定R1和R3。由前所述,PC817的If取3mA,先取R1的值为470Ω,则其上的压降为Vr1=If* R1,由PC817技术手册知,其二极管的正向压降Vf典型值为1.2V,则可以确定R3上的压降Vr3=Vr1+Vf,又知流过R3的电流Ir3=Ika-If,因此R3的值可以计算出来: R3= Vr3/ Ir3= (Vr1+Vf)/( Ika-If)

根据以上计算可以知道TL431的阴极电压值Vka,Vka=Vo’-Vr3,式中Vo’取值比Vo大0.1-0.2V即可。

举一个例子,Vo=15V,取R6=10k,R5=(Vo/Vr-1)R6=(12/2.5-1)*10=50K;取R1=470Ω,If=3mA,Vr1=If* R1=0.003*470=1.41V;Vr3=Vr1+Vf=1.41+1.2=2.61V;

取Ika =20mA,Ir3=Ika-If=20-3=17,R3= Vr3/ Ir3=2.61/17=153Ω;

TL431的阴极电压值Vka,Vka=Vo’-Vr3=15.2-2.61=12.59V

结果:R1=470Ω、R3=150Ω、R5=10KΩ、R6=50KΩ

混凝土配合比设计步骤分析报告

普通混凝土的配合比设计 普通混凝土的配合比是指混凝土的各组成材料数量之间的质量比例关系。确定比例关系的过程叫配合比设计。普通混凝土配合比,应根据原材料性能及对混凝土的技术要求进行计算,并经试验室试配、调整后确定。普通混凝土的组成材料主要包括水泥、粗集料、细集料和水,随着混凝土技术的发展,外加剂和掺和料的应用日益普遍,因此,其掺量也是配合比设计时需选定的。 混凝土配合比常用的表示方法有两种;一种以1m3混凝土中各项材料的质量表示,混凝土中的水泥、水、粗集料、细集料的实际用量按顺序表达,如水泥300Kg、水182 Kg、砂680 Kg、石子1310 Kg;另一种表示方法是以水泥、水、砂、石之间的相对质量比及水灰比表达,如前例可表示为1:2.26:4.37,W/C=0.61,我国目前采用的量质量比。 一、混凝土配合比设计的基本要求 配合比设计的任务,就是根据原材料的技术性能及施工条件,确定出能满足工程所要求的技术经济指标的各项组成材料的用量。其基本要; (1)达到混凝土结构设计要求的强度等级。 (2)满足混凝土施工所要求的和易性要求。 (3)满足工程所处环境和使用条件对混凝土耐久性的要求。 (4)符合经济原则,节约水泥,降低成本。 二、混凝土配合比设计的步骤 混凝土的配合比设计是一个计算、试配、调整的复杂过程,大致可分为初步计算配合比、基准配合比、实验室配合比、施工配合比设计4个设计阶段。首先按照已选择的原材料性能及对混凝土的技术要求进行初步计算,得出“初步计算配合比”。基准配合比是在初步计算配合比的基础上,通过试配、检测、进行工作性的调整、修正得到;实验室配合比是通过对水灰比的微量调整,在满足设计强度的前提下,进一步调整配合比以确定水泥用量最小的方案;而施工配合绋考虑砂、石的实际含水率对配合比的影响,对配合比做最后的修正,是实际应用的配合比,配合比设计的过程是逐一满足混凝土的强度、工作性、耐久性、节约水泥等要求的过程。 三、混凝土配合比设计的基本资料 在进行混凝土的配合比设计前,需确定和了解的基本资料。即设计的前提条件,主要有以下几个方面; (1)混凝土设计强度等级和强度的标准差。 (2)材料的基本情况;包括水泥品种、强度等级、实际强度、密度;砂的种类、表观密度、细度模数、含水率;石子种类、表观密度、含水率;是否掺外加剂,外加剂种类。 (3)混凝土的工作性要求,如坍落度指标。 (4)与耐久性有关的环境条件;如冻融状况、地下水情况等。 (5)工程特点及施工工艺;如构件几何尺寸、钢筋的疏密、浇筑振捣的方法等。 四、混凝土配合比设计中的三个基本参数的确定 混凝土的配合比设计,实质上就是确定单位体积混凝土拌和物中水、水泥。粗集料(石子)、细集料(砂)这4项组成材料之间的三个参数。即水和水泥之间的比例——水灰比;砂和石子间的比例——砂率;骨料与水泥浆之间的比例——单位用水量。在配合比设计中能正确确定这三个基本参数,就能使混凝土满足配合比设计的4项基本要求。

各等级混凝土常用配合比

常规C10、C15、C20、C25、C30混凝土配合比 混凝土按强度分成若干强度等级,混凝土的强度等级是按立方体抗压强度标准值fcu,k划分的。立方体抗压强度标准值是立方抗压强度总体分布中的一个值,强度低于该值得百分率不超过5%,即有95%的保证率。混凝土的强度分为C7.5、C10、C15、C20、C25、C30、C35、C40、C45、C50、C55、C60等十二个等级。 混凝土配合比是指混凝土中各组成材料(水泥、水、砂、石)之间的比例关系。有两种表示方法:一种是以1立方米混凝土中各种材料用量,如水泥300千克,水180千克,砂690千克,石子1260千克;另一种是用单位质量的水泥与各种材料用量的比值及混凝土的水灰比来表示,例如前例可写成:C:S:G=1:2.3:4.2,W/C=0.6。 常用等级 C20 水:175kg水泥:343kg 砂:621kg 石子:1261kg 配合比为:0.51:1:1.81:3.68 C25 水:175kg水泥:398kg 砂:566kg 石子:1261kg 配合比为:0.44:1:1.42:3.17 C30 水:175kg水泥:461kg 砂:512kg 石子:1252kg 配合比为:0.38:1:1.11:2.72 . . 普通混凝土配合比参考: 水泥 品种混凝土等级配比(单位)Kng 塌落度mm 抗压强度N/mm2 水泥砂石水7天28天 P.C32.5 C20 300 734 1236 195 35 21.0 29.0 1 2.45 4.12 0.65 C25 320 768 1153 208 45 19.6 32.1 1 2.40 3.60 0.65 C30 370 721 1127 207 45 29.5 35.2 1 1.95 3.05 0.56 C35 430 642 1094 172 44 32.8 44.1 1 1.49 2.54 0.40 C40 480 572 1111 202 50 34.6 50.7 1 1.19 2.31 0.42 P.O 32.5 C20 295 707 1203 195 30 20.2 29.1 1 2.40 4.08 0.66 C25 316 719 1173 192 50 22.1 32.4 1 2.28 3.71 0.61 C30 366 665 1182 187 50 27.9 37.6 1 1.82 3.23 0.51 C35 429 637 1184 200 60 30.***6.2 1 1.48 2.76 0.47 C40 478 *** 1128 210 60 29.4 51.0 1 1.33 2.36 0.44 P.O 32.5R C25 321 749 1173 193 50 26.6 39.1 1 2.33 3.65 0.60 C30 360 725 1134 198 60 29.4 44.3 1 2.01 3.15 0.55 C35 431 643 1096 190 50 39.0 51.3 1 1.49 2.54 0.44 C40 480 572 1111 202 40 39.3 51.0 1 1.19 2.31 0.42

普通混凝土配合比设计方法及例题

普通混凝土配合比设计方法[1] 一、基本要求 1.普通混凝土要兼顾性能与经济成本,最主要的是要控制每立方米胶凝材料用量及水泥用量,走低水胶比、大掺合料用量、高砂率的设计路线; 2.普通塑性混凝土配合比设计时,主要参数参考下表 ; ②普通混凝土掺合料不宜使用多孔、含碳量、含泥量、泥块含量超标的掺合料; ③确保外加剂与水泥及掺合料相容性良好,其中重点关注缓凝剂、膨胀剂等与水泥及掺合料的相容性,相容性不良的外加剂,不得用于配制混凝土; 3 设计普通混凝土配合比时,应用excel编计算公式,计算过程中通过调整参数以符合表1给出的范围。

2 术语、符号 2.1 术语 2.1.1普通混凝土ordinary concrete 干表观密度为2000~2800kg/m3的水泥混凝土。 2.1.2 干硬性混凝土stiff concrete 拌合物坍落度小于10mm且须用维勃时间(s)表示其稠度的混凝土。 2.1.3塑性混凝土plastic concrete 拌合物坍落度为10mm~90mm的混凝土。 2.1.4流动性混凝土pasty concrete 拌合物坍落度为100mm~150mm的混凝土。 2.1.5大流动性混凝土flowing concrete 拌合物坍落度不小于160mm的混凝土。 2.1.6抗渗混凝土impermeable concrete 抗渗等级不低于P6的混凝土。 2.1.7抗冻混凝土frost-resistant concrete 抗冻等级不低于F50的混凝土。 2.1.8高强混凝土high-strength concrete 强度等级不小于C60的混凝土。 2.1.9泵送混凝土pumped concrete 可在施工现场通过压力泵及输送管道进行浇筑的混凝土。 2.1.10大体积混凝土mass concrete 体积较大的、可能由胶凝材料水化热引起的温度应力导致有害裂缝的结构混凝土。 2.1.11 胶凝材料binder 混凝土中水泥和矿物掺合料的总称。 2.1.12 胶凝材料用量binder content 混凝土中水泥用量和矿物掺合料用量之和。 2.1.13 水胶比water-binder ratio 混凝土中用水量与胶凝材料用量的质量比。 2.1.14 矿物掺合料掺量percentage of mineral admixture 矿物掺合料用量占胶凝材料用量的质量百分比。 2.1.15 外加剂掺量percentage of chemical admixture 外加剂用量相对于胶凝材料用量的质量百分比。

自密实混凝土配合比设计方案

自密实混凝土配合比设计方案 一.工程概况 二.设计依据 CECS 203-2006自密实混凝土应用技术规程 JGJT 283-2012 自密实混凝土应用技术规程 三.配合比设计 1.自密实砼性能要求: 自密实性能:二级强度等级:C40 (1)根据自密实性能等级选取单位体积粗骨料体积用量Vg=0.32m3=320L,则质量为 M g=ρg×V g=2.707?320=866.24kg (2)确定单位体积用水量V W、水粉比W/P和粉体体积V P 考虑到掺入粉煤灰配制C40等级的自密实砼,而且粗细骨料粒形级配良好,砂石表面比较粗糙,选择单位体积用水量175.0L和水粉比0.80(后根据砂率进行微调至0.814)。 V P=V W÷W P =175÷0.814=215L 粉体单位体积用量为0.215m3介于推荐值0.16~0.23m3。 浆体量为0.2150+0.1750=0.390m3介于推荐值0.32~0.40m3。 (3)确定含气量 根据经验以及所使用外加剂的性能设定自密实砼的含气量为1.5%,即15L。(4)计算单位体积细骨料量 因为细骨料中含有2%的粉体,所以根据下式可计算的出细骨料体积用量为281L,质量为731.837kg。 V g+V P+V W+V a+1?2%V S=1000L M s=ρs×V s=2.608?281=731.837kg (5)计算单位体积胶凝材料体积用量V ce

因为未使用惰性掺合料,所以可由下式计算 V ce=V P?2%V S=215?2%×281=209L (6)粉煤灰掺量30%(胶凝材料的质量比例)进行计算 M B×30% ρf + M B×70% ρc =V ce 即: M B×30% 2.3+ M B×70% 3.1 =209 得: M B=587.770kg,M C=M B×70%=411.739kg,M f=176.131kg V c=M C ρC =132.72L,V f= M f ρf =76.67L 水胶比W/B=0.298。 强度计算得到的水胶比如下: f cu,0=f cu,k +1.645σ=40+1.645×5.0=48.23Mpa f b=γf f ce=0.70×56=39.2Mpa W = σS×f b cu,0s b b = 0.53×39.2 =0.396>0.298 强度条件满足,固取自密实自密实性能计算所得水胶比W/B=0.298 (7)聚羧酸系高性能减水剂的用量取为胶凝材料质量的1.5%。

常规C20,C25,C30混凝土配合比计算书

常规C20、C25、C30混凝土配合比 混凝土配合比是指混凝土中各组成材料之间的比例关系。混凝土配合比通常用每立方米混凝土中各种材料的质量来表示,或以各种材料用料量的比例表示(水泥的质量为1)。 设计混凝土配合比的基本要求: 1、满足混凝土设计的强度等级。 2、满足施工要求的混凝土和易性。 3、满足混凝土使用要求的耐久性。 4、满足上述条件下做到节约水泥和降低混凝土成本。 从表面上看,混凝土配合比计算只是水泥、砂子、石子、水这四种组成材料的用量。实质上是根据组成材料的情况,确定满足上述四项基本要求的三大参数:水灰比、单位用水量和砂率。 混凝土按强度分成若干强度等级,混凝土的强度等级是按立方体抗压强度标准值fcu,k 划分的。立方体抗压强度标准值是立方抗压强度总体分布中的一个值,强度低于该值得百分率不超过5%,即有95%的保证率。混凝土的强度分为C7.5、C10、C15、C20、C25、C30、C35、C40、C45、C50、C55、C60等十二个等级。 混凝土配合比是指混凝土中各组成材料(水泥、水、砂、石)之间的比例关系。有两种表示方法:一种是以1立方米混凝土中各种材料用量,如水泥300千克,水180千克,砂690千克,石子1260千克;另一种是用单位质量的水泥与各种材料用量的比值及混凝土的水灰比来表示,例如前例可写成:C:S:G=1:2.3:4.2,W/C=0.6。 1常用等级: C20 水:175kg水泥:343kg 砂:621kg 石子:1261kg

配合比为:0.51:1:1.81:3.68 C25 水:175kg水泥:398kg 砂:566kg 石子:1261kg 配合比为:0.44:1:1.42:3.17 C30 水:175kg水泥:461kg 砂:512kg 石子:1252kg 配合比为:0.38:1:1.11:2.72 2 混凝土强度及其标准值符号的改变 在以标号表达混凝土强度分级的原有体系中,混凝土立方体抗压强度用“R”来表达。 根据有关标准规定,建筑材料强度统一由符号“f”表达。混凝土立方体抗压强度为“fcu”。其中,“cu”是立方体的意思。而立方体抗压强度标准值以“fcu,k”表达,其中“k”是标准值的意思,例如混凝土强度等级为C20时,fcu,k=20N/mm2(MPa),即立方体28d抗压强度标准值为20MPa。 水工建筑物大体积混凝土普遍采用90d或180d龄期,故在C符号后加龄期下角标,如C9015,C9020指90d龄期抗压强度标准值为15MPa、20MPa的水工混凝土强度等级,C18015则表示为180d龄期抗压强度标准值为15MPa。 3 计量单位的变化 过去我国采用公制计量单位,混凝土强度的单位为kgf/cm2。现按国务院已公布的有关法令,推行以国际单位制为基础的法定计量单位制,在该单位体系中,力的基本单位是N(牛顿),因此,强度的基本单位为1 N/m2,也可写作1Pa。标号改为强度等级后,混凝土强度计量单位改以国际单位制表达。由于N/m2(Pa),数值太小,一般以 1N/mm2=106N/m2(MPa)作为混凝土强度的实际使用的计量单位,读作“牛顿每平方毫米”或“兆帕”。

高强混凝土配合比设计方法及例题

高强(C60)混凝土配合比设计方法[1] 基本特点: 1)每立方米混凝土胶凝材料质量480±20kg; 2)水泥用量不低于42.5级,每立方米水泥质量不超过400kg; 3)砂率0.38~0.40,砂率尽量选小些,以降低粘度; 4)使用掺合料取代部分水泥,宜矿渣(10%~20%)与粉煤灰(10%~15%)复掺; 5)优先选用聚羧酸减水剂,并复配有相容性良好缓凝剂与消泡剂; 6)粗骨料粒径不应大于31.5mm,如果强度等级大于C60,其最大粒径不应大于25mm;7)粗骨料的针片状含量不宜大于5.0%; 8)粗骨料的含泥量不应大于0.5%,泥块含量不宜大于0.2%; 9)细骨料的细度模数宜大于2.6; 10)细骨料含泥量不应大于2.0%,泥块含量不应大于0.5%。

3 基本规定 3.0.1混凝土配合比设计应满足混凝土配制强度、拌合物性能、力学性能和耐久性能的设计要求。混凝土拌合物性能、力学性能和耐久性能的试验方法应分别符合现行国家标准《普通混凝土拌合物性能试验方法标准》GB/T50080、《普通混凝土力学性能试验方法标准》GB/T50081和《普通混凝土长期性能和耐久性能试验方法标准》GB/T50082的规定。3.0.2 混凝土配合比设计应采用工程实际使用的原材料,并应满足国家现行标准的有关要求;配合比设计应以干燥状态骨料为基准,细骨料含水率应小于0.5%,粗骨料含水率应小于0.2%。 3.0.3 混凝土的最大水胶比应符合《混凝土结构设计规范》GB50010的规定。 3.0.4 混凝土的最小胶凝材料用量应符合表3.0.4的规定,配制C15及其以下强度等级的混凝土,可不受表3.0.4的限制。 表3.0.4 混凝土的最小胶凝材料用量 3.0.5矿物掺合料在混凝土中的掺量应通过试验确定。钢筋混凝土中矿物掺合料最大掺量宜符合表3.0.5-1的规定;预应力钢筋混凝土中矿物掺合料最大掺量宜符合表3.0.5-2的规定。 表3.0.5-1钢筋混凝土中矿物掺合料最大掺量 注:①采用硅酸盐水泥和普通硅酸盐水泥之外的通用硅酸盐水泥时,混凝土中水泥混合材和矿物掺合料用量之和应不大于按普通硅酸盐水泥用量20%计算混合材和矿物掺合料用量之和; ②对基础大体积混凝土,粉煤灰、粒化高炉矿渣粉和复合掺合料的最大掺量可增加5%; ③复合掺合料中各组分的掺量不宜超过任一组分单掺时的最大掺量。

公差与配合的标注

3、公差与配合的标注 (l)在装配图中的标注 国家标准规定,在装配图上标注公差与配合时,配合代号一般用相结合的孔与轴的公差带代号组合表示,即在基本尺寸的后面将代号写成分数的形式,分子为孔的公差带代号。分母为轴的公差带代号。孔和轴的公差带代号分别由基本偏差代号与公差等级两部件组成。 也可以注写成Φ50H7/K6和Φ50F8/h7的形式。 当配合代号的分子中出现基孔制代号H,而分母中同时出现基轴制代号h 时,则称为基准件相互配合,如Φ50H7/K6,它既可以视为基孔制,也可视为基轴制,是一种最小间隙为零的间隙配合。如分子分母均无基准件代号,则属于某一孔公差带与某一轴公差带组成的配合.在装配图中公差号配合的标注见图8. (2)零件图中尺寸公差的标注 在零件图中尺寸公差的标注形式有三种:

l)在基本尺寸后面只标注公差带代号。公差带代号应注写在基本尺寸的右边,如图9 所示,这种标注形式适合于大批量生产的零件。 2)在基本尺寸后面标注极限偏差、表示极限偏差的数字要比基本尺寸的数字小一号,如图9.b所示,偏差值一般要注写三位有效数字,上偏差注写在基本尺寸的右上力;下偏差应与基本尺寸注写在同一底线上。若其中有一个偏差值为零时,要以占位,并与上偏差或下偏差小数点前的个位数字对齐。如果上下偏差数值相同。符号相反,则应首先在基本尺寸的右边注上“士”号,再填写偏差数字,其高度与基本尺寸数字相同,如图10所示.这种标注形式适合于单件或小批量生产的零件。 3)在基本尺寸的后面同时标注公差带代号和极限偏差数值,此时极限偏差数值应加括号,如图9c所示。 如有侵权请联系告知删除,感谢你们的配合! 如有侵权请联系告知删除,感谢你们的配合!

钢纤维混凝土配合比

C50钢纤维混凝土配合比 1,设计依据及参考文献 《普通混凝土配合比设计规程》JGJ55-2000(J64-2000) 《公路桥涵施工技术规范》JTJ041-2000 《国内公路招标文件范本》之第二卷技术规范(1) 《混凝土配合比设计计算手册》——刘长俊主编,辽宁科学技术出版社 2,确定钢纤维掺量: 选定纤维掺入率P=1.5%, T0=(78.67*P)kg=78.67*1.5=118kg; 3,确定水灰比 取W/C=0.45 (水灰比一般控制在0.40-0.53); 4,确定用水量: 取W=215kg(用水量一般控制在180-220kg),施工中采用掺用UNF-2A型高效减水剂,掺量为水泥用量的1%,减水率达10%,但考虑钢纤维混凝土的和易性较差,且施工中容易结团,故在试配中不考虑其减水效果,在试拌过程中观察其坍落度及施工性能。 5,计算水泥用量: C O=W O/(W/C)=215/0.45=478kg; 6,确定砂率: 取S P=65%(从强度和稠度方面考虑,砂率在60%-70%之间); 7,计算砂石用量: 设a=2 V S+G=1000L-[(W O/ρw+C O/ρc+T O/ρt+10L*a)] =1000L-[(215/(1/L)+478/(3.1/L)+118/(7.85/L)+10L*2)] =1000L-404L=596Lkg; S O = V S+G * S P * ρs=596 * 0.65 * 2.67 = 1034kg; G O = V S+G * (1-S P)*ρs = 596*0.35*2.67kg/L=557kg;

8,初步配合比: C O:S O:G O:T O:W O:W外= 478 : 1034 : 557 : 118 : 215 : 4.78 kg/m3 = 1: 2.16 : 1.17 : 0.25: 0.45 : 1% 9、混凝土配合比的试配、调整与确定: 试拌材料用量为: 水泥:砂:碎石:钢纤维:水:减水剂 = 11: 23.76: 12.87:2.75:4.95:0.11 kg; 拌和后,坍落度为10mm,能符合设计要求。观察拌和物施工性能: 棍度:中;保水性:少量;含砂:多; 拌和物在拌和过程中比普通砼困难,较难搅拌,但经机械振捣易密实。 6、经强度检测(数据见试表),28天抗压符合试配强度要求,故确定该配合比为基准配合比,即: 水泥: 砂: 碎石: 钢纤维: 水: 减水剂 = 11 : 23.76 : 12.87 : 2.75 : 4.95 : 0.11 kg = 1 : 2.16 : 1.17 : 0.25 : 0.45 : 1% = 478 : 1034 : 557 : 118 : 215 : 4.78kg/m3

沥青混凝土配合比设计过程

热拌沥青混合料配合比设计方法 1.矿质混合料组成设计 (1)根据道路等级、路面结构层位及结构层厚度等方面要求,按照上述方法,选择适用的沥青混合料类型,并按照表8-22和表8-23(现行规范)或8-24和表8-25(新规范稿)的内容确定相应矿料级配范围,经技术经济论证后确定。 (2)矿质混合料配合比计算 1)组成材料的原始数据测定 按照规定方法对实际工程使用的材料进行取样,测试粗集料、细集料及矿粉的密度,并进行筛分试验,测定各种规格集料的粒径组成。 2)确定各档集料的用量比例 根据各档集料的筛分结果,采用计算法或图解法,确定各规格集料的用量比例,求得矿质混合料的合成级配。矿质混合料的合成级配曲线必须符合设计级配范围的要求,不得有过多的犬牙交错。当经过反复调整仍有两个以上的筛孔超出设计级配范围时,必须对原材料进行调整或更换原材料重新设计。 通常情况下,合成级配曲线宜尽量接近设计级配中限,尤其应使0.075mm、2.36mm、4.75mm等筛孔的通过量尽量接近设计级配范围的中限。对于交通量大、轴载重的道路,合成级配可以考虑偏向级配范围的下限,而对于中小交通量或人行道路等,合成级配宜偏向级配范围的上限。

2.沥青混合料马歇尔试验 沥青混合料马歇尔试验的主要目的是确定最佳沥青用量(以OAC表示)。沥青用量可以通过各种理论公式计算得到,但由于实际材料性质的差异,计算得到的最佳沥青用量,仍然要通过试验进行修正,所以采用马歇尔试验是沥青混合料配合比设计的基本方法。 (1)制备试样 1)马歇尔试件制备过程是针对选定混合料类型,根据经验确定沥青大致用量或依据表4-10推荐的沥青用量范围,在该用量范围内制备一批沥青用量不同、且沥青用量等差变化的若干组(通常为五组)马歇尔试件,并要求每组试件数量不少于4个。 2)按已确定的矿质混合料级配类型,计算某个沥青用量条件下一个马歇尔试件或一组试件中各种规格集料的用量(实践中大多是一个标准马歇尔试件矿料总量1200g左右)。 3)确定一个或一组马歇尔试件的沥青用量(通常采用油石比),按要求将沥青和矿料拌制成沥青混合料,并按上节表8-7(现行规范要求)或表8-9(新规范要求)规定的击实次数和操作方法成型马歇尔试件。 (2)测定试件的物理力学指标 首先,测定沥青混合料试件的密度,并计算试件的理论最大密度、空隙率、沥青饱和度、矿料间隙率等参数。在测试沥青混合料密度时,应根据沥青混合料类型及密实程度选择测试方法。在工程中,吸水率小于0.5%的密实型沥青混合料试件应采用水中重法测定;较密实的沥青混合料试件应采用表干法测定;吸水

混凝土配合比试验设计方案

混凝土配合比试验设计方案

混凝土配合比设计试验报告 一、配合比设计理论依据 1、《民航机场场道工程施工技术要求》1996—10 2、《广州白云国际机场迁建工程——场道道面工程补充施工技术要求》 3、《水泥胶砂强度检测方法(ISO)法》GBT17671—1999 4、《公路集料试验规程》JTJ058—2000 5、《水泥混凝土路面施工及验收规范》GB97—87 6、《公路工程水泥混凝土试验规程》JTJ053—94 7、《普通混凝土配合比设计规程》JGJ55—2000 J64—2000 8、《硅酸盐水泥、普通硅酸盐水泥》GB175 9、《混凝土外加剂一等品规定指标》(GB8076-1997) 10、《混凝土外加剂应用技术规范》(GBJ119-88) 二、道面混凝土设计要求如下: 2.1、强度:28天抗折强度5.0Mpa; 2.2、和易性要求:维勃稠度20-40s,或塌落度小于10mm; 2.3、耐久性要求:水泥用量不少于300Kg/m3,也不宜大于330Kg/m3; 水灰比不宜大于0.44; 2.4、水泥混凝土所用原材料应符合《民航机场场道工程施工技术要求》1996—10中的有关要求外,尚应符合以下规定: 2.4.1水泥道面及道肩面层混凝土可采用标号为525的硅酸盐水泥。水泥中氧化镁含量不宜大于3%,碱含量不大于0.6%。水泥的其他质量应符合《硅酸盐水泥、普通硅酸盐水泥》GB175的有关规定。

2.4.2砂宜采用细度模数为2.65~ 3.20的中粗河砂。砂的含泥量不得大于3%,含泥量超过规定时应冲洗。应委托有资格的试验单位,按《公路集料试验规程》JTJ058—2000中的岩相法对每种料源测定其碱活性,有碱活性的砂不得使用。 2.4.3碎石圆孔筛最大粒径为40mm。应委托有资格的试验单位,按《公路集料试验规程》JTJ058—2000中的岩相法对每种料源测定其碱活性,有碱活性的碎石不得使用。碎石应按圆孔筛5~20mm、20~40mm两级级配分别备料,两种碎石混合后的颗粒级配应符合下表要求: 项目技术要求 颗粒尺寸筛孔尺寸mm(圆孔筛)40 20 10 5 累积筛余(%)0~5 50~70 70~90 90~100 2.4.4水冲洗集料、拌和混凝土及混凝土养生可采用一般饮用水。使用河水、池水或其他水应符合下列要求:①水中不得含有影响水泥正常凝结和硬化的有害杂质,如油、糖、酸、碱、盐等;②硫酸盐含量(按SO2-1计)不超过2.7mg/cm3;③pH值大于4;含盐总量不得超过5mg/cm3。 2.4.5外加剂水泥混凝土中需要掺用外加剂时,必须根据工程要求,通过试验选定外加剂的种类和用量。外加剂的质量应符合《混凝土外加剂一等品规定指标》(GB8076-1997)的规定要求,其使用应符合《混凝土外加剂应用技术规范》(GBJ119-88)的规定要求。不得使用pH值大于8的碱性外加剂。施工过程中应严格控制外加剂剂量,现场有专人配制。 三、确定原材料 我们根据招标文件、投标书、与业主签订的施工合同及施工图纸的要求确定使用下列材料:

C混凝土配合比

C混凝土配合比 集团企业公司编码:(LL3698-KKI1269-TM2483-LUI12689-ITT289-

C30水:175kg水泥:461kg砂:512kg石子:1252kg 配合比为:0.38:1:1.11:2.72 . 普通混凝土配合比计算书 依据《普通混凝土配合比设计规程》(JGJ55-2000)(J64-2000)以及《建筑施工计算手册》。 一、混凝土配制强度计算 混凝土配制强度应按下式计算: fcu,0≥fcu,k+1.645σ 其中:σ——混凝土强度标准差(N/mm2)。取σ=5.00(N/mm2);fcu,0——混凝土配制强度(N/mm2); fcu,k——混凝土立方体抗压强度标准值(N/mm2),取fcu,k=20 (N/mm2); 经过计算得:fcu,0=20+1.645×5.00=28.23(N/mm2)。 二、水灰比计算 混凝土水灰比按下式计算: 其中: σa,σb——回归系数,由于粗骨料为碎石,根据规程查表取 σa=0.46,取σb=0.07; fce——水泥28d抗压强度实测值,取48.00(N/mm2);

经过计算得:W/C=0.46×48.00/(28.23+0.46×0.07×48.00)=0.74。 三、用水量计算 每立方米混凝土用水量的确定,应符合下列规定: 1.干硬性和朔性混凝土用水量的确定: 1)水灰比在0.40~0.80范围时,根据粗骨料的品种,粒径及施工要求的混凝土拌合物稠度,其用水量按下两表选取: 2)水灰比小于0.40的混凝土以及采用特殊成型工艺的混凝土用水量应通过试验确定。 2.流动性和大流动性混凝土的用水量宜按下列步骤计算: 1)按上表中坍落度90mm的用水量为基础,按坍落度每增大20mm用水量增加5kg,计算出未掺外加剂时的混凝土的用水量; 2)掺外加剂时的混凝土用水量可按下式计算: 其中:mwa——掺外加剂混凝土每立方米混凝土用水量(kg); mw0——未掺外加剂时的混凝土的用水量(kg); β——外加剂的减水率,取β=500%。 3)外加剂的减水率应经试验确定。 混凝土水灰比计算值mwa=0.57×(1-500)=0.703 由于混凝土水灰比计算值=0.57,所以用水量取表中值=195kg。 四、水泥用量计算 每立方米混凝土的水泥用量可按下式计算: 经过计算,得mco=185.25/0.703=263.51kg。 五.粗骨料和细骨料用量的计算

混凝土配合比设计的步骤

混凝土配合比设计的步骤 (1)初步配合比的计算 按照已选择的原材料性能及混凝土的技术要求进行初步计算,得出“初步配合比”; (2)基准配合比的确定 经过试验室试拌调整,得出“基准配合比”; (3)实验室配合比的确定 经过强度检验(如有抗渗、抗冻等其他性能要求,应当进行相应的检验),定出满足设计和施工要求并比较经济的“试验室配合比”(也叫设计配合比); (4)施工配合比 根据现场砂、石的实际含水率,对试验室配合比进行调整,求出“施工配合比”。 ㈠初步配合比的计算 1)确定配制强度 2)初步确定水灰比值(W/C ) 3)选择每1m3混凝土的用水量(W0) 4)计算混凝土的单位水泥用量(C0) 5)选取合理砂率Sp 6)计算1m3混凝土中砂、石骨料的用量 7)书写初步配合比 (1)确定配制强度(fcu,o) 配制强度按下式计算: σ 645.1..+=k cu v cu f f (2)初步确定水灰比(W/C) 采用碎石时: ,0.46( 0.07)cu v ce C f f W =- 采用卵石时: ,0.48( 0.33)cu v ce C f f W =- (3)选择单位用水量(mW0) ①干硬性和塑性混凝土用水量的确定 a. 水灰比在0.40~0.80范围时,根据粗骨料的品种、粒径及施工要求的混凝土拌合物稠度,其用水量可按表4-20(P104)选取。 b. 水灰比小于0.40的混凝土以及采用特殊成型工艺的混凝土用水量,应通过试验确定。 ②流动性和大流动性混凝土的用水量宜按下列步骤进行 a. 以表4-22中坍落度90mm 的用水量为基础,按坍落度每增大20mm 用水量增加5kg ,计算出未掺外加剂时的混凝土的用水量; b. 掺外加剂时的混凝土的用水量可按下式计算: (1) w wo m m αβ=-

混凝土配合比设计方法

混凝土配合比设计方法 一、设计出的混凝土配合比应满足的基本要求是: (1)满足施工对混凝土拌和物的和易性要求; (2)满足结构设计和质量规范对混凝土的强度等级要求; (3)满足工程所处环境对混凝土的抗渗性、抗冻性及其他耐久性要求; (4)在满足上述要求的前提下,尽量节省水泥,以满足经济性要求。 二、混凝土配合比设计的三个参数 组成混凝土的四种材料,即水泥、水、砂、石子。 混凝土的四种组成材料可由三个参数来控制。 1.水灰比水与水泥的比例称为水灰比。前面已讲,水灰比是影响混凝土和易性、强度和耐久性的主要因素,水灰比的大小是根据强度和耐久性确定,在满足强度和耐久性要求的前提下,选用较大水灰比,这有利于节约水泥。 2.砂率砂子占砂石总量的百分率称为砂率。砂率对混合料和易性影响较大,如选择不恰当,对混凝土强度和耐久性都有影响。应采用合理砂率。在保证和易性要求的条件下,取较小值,同样有利于节约水泥。 3.用水量用水量是指1m3混凝土拌合物中水的用量(kg/m3)。在水灰比确定后,混凝土中单位用水量也表示水泥浆与集料之间的比例关系。为节约水泥,单位用水量在满足流动性条件下,取较小值。 三、混凝土配合比设计的步骤 (一)设计的基本资料 1、混凝土的强度等级、施工管理水平,

2、对混凝土耐久性的要求, 3、原材料的品种及其物理力学性质 4、混凝土的部位、结构构造情况、施工条件等 (二)初步配合比的计算 1.确定混凝土的配制强度 fcu.o=fcu.k+1.645σ (规范规定的强度保证率P≥95%) 2.选择水灰比 (1)根据强度要求计算水灰比 根据混凝土的配制强度及水泥的实际强度,用经验公式计算水灰比: 式中A,B——回归系数,可通过试验测定,无试验资料时, 碎石混凝土A=0.48,B=0.52; 卵石混凝土A=0.50,B=0.61: fce——水泥的实际强度,MPa; 无水泥实际强度数据时,可按fce=γc·fce.k确定; fce.k——水泥强度等级的强度标准值; γc——水泥强度等级强度标准值的富裕系数,该值应按实际统计资料确定。 (2)查表4—7确定满足耐久性要求的混凝土的最大水灰比。 (3)选择以上两个水灰比中的小值作为初步水灰比。

碾压混凝土配合比设计试验

碾压混凝土实验室配合比设计试验 1 试验目的 测定碾压混凝土配合比设计试验所用原材料的物理力学性能指标,然后进行碾压混凝土实验室的配合比设计。 2 试验方案 本试验根据配合比设计所需的技术资料,首先对选定的材料进行物理力学性能指标的测定试验,再依据配合比设计规程及原则来进行配合比的设计,对于碾压混凝土,设计时主要考虑其三大参数的要求。本试验流程图如图2.1所示。

图2.1 试验流程图 3 试验方法 3.1 原材料的物理力学性能试验 本试验配合比设计所用的原材料主要有:水泥、粉煤灰、石灰、粗细集料、

水及外加剂等。 3.1.1水泥试验 水泥试验主要包括:水泥细度试验、水泥标准稠度用水量试验、水泥凝结时间试验、水泥体积安定性试验、水泥胶砂强度试验等。 水泥细度试验采用手工干筛法来检验水泥细度;水泥标准稠度用水量试验、水泥凝结时间试验及水泥体积安定性试验(雷氏夹法)按GB/T 1346-1989《水泥标准稠度用水量、凝结时间、安定性检验方法》,用沸煮法,对该水泥进行了安定性试验;水泥胶砂强度试验通过ISO法来测定水泥的强度等级。 通过试验,得到本试验所用水泥的物理性能见表1.1。 表1.1 水泥的物理性能表 水泥品种 初凝 (h:min) 终凝 (h:min) 安定性 (mm) 筛余量 (%) 标准稠 度(%) 抗压 (Mpa) 抗折 (Mpa) 3d 28d 3d 28d P.C32.5R 2.1 3.1.2 粉煤灰试验 根据《用于水泥和混凝土中的粉煤灰》GB1596—91以及国家标准GB175—1999,GB1344—1999,GB12958—1999中的规定,需对粉煤灰的细度、密度、凝结时间、体积安定性和强度及强度等级等主要技术性质经行测定。 通过试验,该粉煤灰的物理性能见表1.2。 表1.2 粉煤灰的物理性能表 粉煤灰等级 密度 (g/cm3) 堆积密度 (g/cm3) 细度 (%) 比表面积 (g/cm2) 需水量 (%) 28d抗压 强度比 (%) Ⅱ级 2.302 26 3.1.3集料试验 集料试验主要包括测定砂、石的近似密度试验、砂、石的堆积密度试验、砂、石的空隙率计算和砂、石的筛分析试验等。 通过试验,测得所用砂子、石子的物理性能见表1.3、表1.4。 表1.3 砂子的物理性能表

混凝土配合比计算计算书

混凝土配合比计算计算书 依据《普通混凝土配合比设计规程》(JGJ55-2000)(J64-2000)以及《建筑施工计算手册》。 一、混凝土配制强度计算: 混凝土配制强度应按下式计算: f cu,o≥ f cu,k+1.645σ 式中: σ----混凝土强度标准差(N/mm2).取σ = 6.00; f cu,0----混凝土配制强度(N/mm2); f cu,k----混凝土立方体抗压强度标准值(N/mm2),取f cu,k = 50.00; 经过计算得:f cu,0 = 50.00 + 1.645 × 6.00 = 59.87(N/mm2)。 二、水灰比计算: 混凝土水灰比按下式计算: W/C=αa×f ce/(f cu,0+αa×αb×f ce) 式中: αa,αb──回归系数,由于粗骨料为碎石,根据规程查表取αa = 0.46,αb = 0.07; f ce──水泥28d 抗压强度实测值(MPa),取59.33; 经过计算得:W/C=0.46 × 59.33/(59.87 + 0.46 × 0.07 × 59.33) = 0.44。 实际取水灰比:W/C=0.44. 三、用水量计算: 每立方米混凝土用水量的确定,应符合下列规定: 1 干硬性和塑性混凝土用水量的确定: 1) 水灰比在0.40~0.80范围时,根据粗骨料的品种,粒径及施工要求的混凝土拌合物稠度,其用水量按下表选取:

2) 水灰比小于0.40的混凝土以及采用特殊成型工艺的混凝土用水量应通过试验确定。 2 流动性和大流动性混凝土的用水量宜按下列步骤计算: 1) 按上表中坍落度90mm的用水量为基础,按坍落度每增大20mm用水量增加5kg,计算出未掺外加剂时的混凝土的用水量; 2) 掺外加剂时的混凝土用水量可按下式计算: m wa= m w0(1-β) 式中:m wa──掺外加剂混凝土每立方米混凝土用水量(kg); m w0──未掺外加剂时每立方米混凝土的用水量(kg); β──外加剂的减水率,取β=10.00%。 3) 外加剂的减水率应经试验确定。 由于混凝土水灰比计算值小于0.40,所以用水量取试验数据m w0=215.00kg。 m wa=215×(1-0.10)=193.50kg。 四、水泥用量计算: 掺粉煤灰混凝土的基准水泥用量可按下式计算: m c0= m w0/(W/C) 经过计算,得m c0=215.00/0.40 = 537.50(kg) 粉煤灰的取代率(βc),查<<建筑施工计算手册>>表10-31,取15.00%。 掺粉煤灰混凝土的水泥用量m c,按下式计算: m c= m co(1-βc) 经过计算,得m c=537.50 ×(1 - 15.00%)=456.88(kg)。 五、粉煤灰用量计算:

水泥混凝土配合比设计步骤

水泥混凝土配合比设计步骤 (1) 配制强度:f cu,k=25Mpa f cu,o= f cu,k+1.645* o=25+1.645*5=33.2Mpa (2) 初步确定水灰比:(用经验公式计算,各指标选取) W/C= a a*f ce/(f cu,0 + a a*a b*f ce) =(0.53*36.5) / (33.2+0.53*0.20*36.5) =0.52 (3) 选取单位体积水泥混凝土的用水量: 由水灰比为0.52,混凝土拌合物的坍落度为10-30mm,碎石最大粒径为31.5mm, 在满足混凝土施工要求的基础上选取混凝土的单位用水量为:m wo=175kg/m 3。(4) 计算1m3水泥混凝土水泥用量: 由W/C=0.52,m w0=185 (kg/m3),得m co=m wo/(W/C)=337(kg/m3) 查表符合耐久性要求的最小水泥用量为320kg/m 3,所以取按强度计算的单位水 泥用量m co=337 ( kg/m 3) (5) 选取合理砂率,计算粗细集料用量:最大粒径31.5mm,水灰比0.52,查表 取混凝土砂率B s =35%o (6) 计算一组(3块试件)水泥混凝土各材料用量 3水用量175kg/ m '水泥用量337kg/m 砂用量680 kg/m 碎石用量1263 kg/m

(7) 配合比确定: 个人认为,单位用水量可取180(kg/m3) ,为保证混凝土强度,水灰比取0.5,单 位水泥用量360(kg/m3) ,根据密度法计算配合比,假定表观密度为2400 (kg/m3 ),单位粗集料用量与单位细集料用量为未知量,可设方程求解 M c0+ M g0+ M s0+ M w0=2400 M s0/ (M s0+ M g0 )*100=35 解得M g0=1560(kg/m3) ,M s0=840 (kg/m3) 通过计算得到个人的配合比为:单位用水量:单位水泥用量:单位细集料用量:单位粗集料用量=180:360: 840:1560

我国尺寸公差与配合标准的发展历史

我国尺寸公差与配合标准的发展历史 1944年:国民党政府制定了“尺寸公差与配合”的国家标准,但实际使用的是日本、德国、美国标准. 1955年:参照苏联标准,第一机械工业部颁布“公差与配合”的部颁标准,此标准只是将苏联标准(OCT标准)付与了中文名词. 1959年:颁布了“公差与配合”的国家标准GB159~174 (简称“旧国标”)(精度等级偏低、配合种类偏少). 1979年:参照国际标准制定了“公差与配合”的国家标准GB1800~1804 —1979(简称“新国标”)取代GB159~174—1959. 1992~1996年上述新国标进行了部分修订,将《公差与配合》改为《极限与配合》, 用《极限与配合基础第一部分:词汇》(GB/T1800.1—1996)替代GB1800-1979中的《公差与配合的术语及定义》;用《一般公差线性尺寸的未注公差》(GB/T1804—1992)替代《未注公差尺寸的极限偏差》(GB1804—1979) 国家标准《极限与配合》中,公差与配合部分的标准主要包括: GB/T1800.1—1997《极限与配合基础第1部分:词汇》 GB/T1800.2—1998《极限与配合基础第2部分:公差、 偏差和配合的基本规定》 GB/T1800.3—1998《极限与配合基础第3部分:标准公 差和基本偏差数值表》 GB/T1800.4—1999《极限与配合标准公差等级和孔、 轴的极限偏差表》 GB/T1801—1999《极限与配合公差带和配合的选择》 GB/T1804—2000《一般公差未注公差的线性和角度尺 寸的公差》 2009年11月1日实施: GB/T1800.1—2009《极限与配合第1部分:公差、偏差 和配合的基础》 GB/T1800.2—2009《极限与配合第2部分:标准公差等 级和孔、轴极限偏差表》 GB/T1801—2009 《极限与配合公差带和配合的选择》 GB/T4249-2009 《公差原则》 GB/T16671-2009 《几何公差最大实体要求、最小实体 要求和可逆要求》 GB/T1182-2008 《几何公差形状、方向、位置和跳动 公差标准》 GB/T 1031-2009 《表面结构轮廓法表面粗糙度参 数及其数值》 GB/T 3177-2009 《光滑工件尺寸的检验》 GB/T 3505-2009 《表面结构轮廓法术语、定义 及表面结构参数》

相关文档
相关文档 最新文档