文档库 最新最全的文档下载
当前位置:文档库 › 实验_RLC串联谐振

实验_RLC串联谐振

实验_RLC串联谐振
实验_RLC串联谐振

实验六 RLC 串联谐振电路的研究

一、实验目的:

1.观察串联谐振现象,加深对谐振条件和特点的理解。

2.掌握RLC 串联电路谐振频率o f 的测定方法,绘制RLC 串联电路的谐振曲线。

3.熟悉信号发生器、万用表和双踪示波器的使用。

二、实验仪器:

信号发生器,示波器,万用表;电阻:10Ω×1,330Ω×1;电容:1uF ×1;电感:10mH ×1;导线若干。

三、实验原理:

1.串联谐振的频率和品质因数

RLC 串联电路如图1所示,电路的等效阻抗为

)1

(C

L j R Z ωω-+=,可看出其阻抗和电源频率有关。当

01=-C

L ωω时,电路中电压与电流同相,电路发生谐振。谐

振频率为:

LC o 1=

ω或LC

f o π21

=; 定义特征阻抗为C

L o o ωωρ1

==,特征阻抗与电阻之比称为电路的品质因数Q ,显然:

C

L

R R

L

R

Q 10=

=

=

ωρ

2.串联谐振的特点

在LC

f f o π21=

=处,即谐振曲线尖峰所在的频率点,有C L X X =,电路呈纯阻性,

电路阻抗的模为最小。当输入电压i U 为定值时,电路中的电流达到最大值,该电流与输入电压同相位,且只与电阻的大小有关,即R

U I I =

=0。 谐振时电感电压和电容电压大小相等,相位相反,电抗电压为零,即R U U =,

QU U U C L ==,Q 为电路的品质因数。

3.串联谐振的频率特性曲线

I +

-

U C

L R

+-

o U

图1

RLC 串联电路的电流是频率的函数,即

2

0020

2

2)(

1)1(ω

ωωωωω-+=-

+==

Q I C

L R U Z

U I

如图2所示该曲线称为谐振曲线。将上式两边同除以0I 做归一化处理,可得通用频率特性:

2

0020

)(

11ω

ωωω-+=Q I I

与之相对应的曲线为通用频率特性曲线,其形状只与品质因数Q 有关,如图3所示。通用谐振曲线的形状越尖锐,表明电路的选择性越好。

定义谐振曲线幅度下降至峰值的0.707倍时对应的频率为截止频率1C f 和2C f ,通频带宽度

Q

f f f f c c 0

12=

-=? 可知通频带宽度与品质因数成反比。

4.品质因数Q 的测量方法

方法一是根据公式0

0U U U U Q C

L =

=

测定,L U 与C U 分别为谐振时电容器C 和电感线圈L 上的电压;另一方法是通过测量谐振曲线的通频带宽度Q f f f f c c 012=-=?,再根据1

20

c c f f f Q -=求

出Q 值。Q 值越大,曲线越尖锐,通频带越窄,电路的选择性越好。

四、实验内容与步骤:

1.按图4组成实验电路。在输入端加入一个有效值为2V

的正弦交流信号i U (用万用表交流电压档监测),同时用示波器监视输入信号i U 和电阻R 两端的电压R U 的波形。调节信号发生器的输出信号频率,直至使i

U 和 R U

的相位相同,

图3

图4

图2

此时信号发生器上显示的频率即为谐振频率0f 。此时测量电阻及电容两端电压,根据

i

C

C U U U U Q =

=

0求品质因数Q ,将上述数据均记录在表1中。 2. 根据Q

f

f f f c c 012=-=?求出通频带宽度,并确定上、下截止频率1C f 和2C f 的值,调

整信号发生器输出信号频率分别为1C f 和2C f ,同时注意调整信号源输出电压V U i 2=保持不变。分别测量当频率为1C f 和2C f 时的电阻及电容两端电压,记录在表1中。 3.在0f 、1C f 和2C f 两侧均匀取若干频率81~f f ,在保持信号源输出电压V U i 2=保持不变的情况下,对这8个测量点逐点测出电阻及电容两端电压,记录在表1中。

表1(U i =2v ,C=1uF ,L=10mH ,R=10Ω,)

频率

(kHz )

1f

2f

1C f

3f

4f

0f

5f

6f

1C f

7f

8f

)(V U R

)(V U C

谐振频率:f 0= 通频带:fc 2-fc 1= 品质因数 Q =

4.改变电阻使Ω=330R ,重复以上步骤,将测量数据记录在表2中

表2(U i =2v ,C=1uF ,L=10mH ,R=330Ω,)

频率

(kHz )

1f

2f

1C f

3f

4f

0f

5f

6f

1C f

7f

8f

)(V U R

)(V U C

谐振频率:f 0= 通频带:fc 2-fc 1=

品质因数 Q =

五、实验注意事项

1.当信号源输出信号频率改变时,其输出信号的大小也会随之改变。因此在每次变换频率测试前,应调整信号输出幅度(用万用表交流电压档监视输出幅度),使其有效值i U 维持在2V 。

2. 实验中,由于电感中有一定的电阻分量L R ,如图5所示。所以谐振时电阻R 上的电压R U 小于输入电压i U 。测量前应首先用万用表的欧姆档测量电感器的直流电阻L R 大小,检验谐振时

电阻R 上的电压R U 是否满足:

i L

R U R R R

U +=

如果误差较大,则需重新测量谐振频率。

六、实验报告

1. 根据测量数据,绘出不同Q 值时R U 的两谐振曲线,计算出通频带与Q 值,并说明不同R 值时对电路通频带与品质因数的影响。

2. 比较谐振时输出电压U R 与输入电压U i 是否相等?试分析原因。

3. 对实验测量结果进行分析,解释产生误差的原因。

4. 通过本次实验,总结、归纳串联谐振电路的特性。

图5

串联谐振实验报告

实验报告 一、实验名称 串联谐振电路 二、实验原理 1、电路图如图所示,改变电路参数L,C或电源频率时,都可能使电路发生谐振。 该电路的阻抗是电源角频率的函数: 2、谐振曲线 电路中的电压与电流随频率变化的特性为频率特性,随频率变化的曲线就是频率曲线。如下图:

图中可以看出:Q值愈大,曲线尖峰值愈陡,其选择性越好,但通频带越窄。 只有当Q>时,Uc和Ul曲线才出现最大值,否则Uc将单调下降趋于0,Ul将单调上升趋于Us。 三、实验方法 测量电路谐振频率 1、将电路连接如实验原理中的电路图,将电源由函数信号发生器产生,将电阻两端接入示波器中,调节信号源的频率由大到小,观察示波器上的电阻电压的大小,当电阻电压值变为最大值时所对应的频率值则为电路的谐振频率。 2、用Multism仿真连接串联谐振电路,连接在电阻两端的XBP所显示的波特图,观察电阻两端电压增益最大时所对应的频率,则所对应的频率为电路发生谐振是的谐振频率。四、实验步骤 电路板上: 连接原理图的电路,给电源接上函数发生器,调节为五伏的方波,频率从调到,间隔,设置29个点,将电阻两端连入示波器,观察示波器上电阻的阻值并记录数据 接着将同样电容与电感的两端接入示波器,观察同样频率下对应的电容与电感的电压值,同样记录实验数据 将实验数据整理并绘制折线图,观察不同电源角频率电路响应的谐振曲线,对比实验原理中的图并作分析

Multism仿真: 电路仿真连接如下的图 将XFG调节为,占空比为30%,脉冲幅度为5V的方波电压信号 观察XBP输出的波特图: 可知:该电路图的谐振频率约为 将仿真图中的电阻与电容互换位置,显示电容的波特图: 可知:在频率小于谐振频率时Uc出现最大

rlc串联电路频率特性实验报告

竭诚为您提供优质文档/双击可除rlc串联电路频率特性实验报告 篇一:RLc串联电路的幅频特性与谐振现象实验报告 _-_4(1) 《电路原理》 实验报告 实验时间:20XX/5/17 一、实验名称RLc串联电路的幅频特性与谐振现象二、实验目的 1.测定R、L、c串联谐振电路的频率特性曲线。 2.观察串联谐振现象,了解电路参数对谐振特性的影响。1.R、L、c串联电路(图4-1)的阻抗是电源频率的函数,即: Z?R?j(?L? 1 )?Zej??c 三、实验原理 当?L?

1 时,电路呈现电阻性,us一定时,电流达最大,这种现象称为串?c 联谐振,谐振时的频率称为谐振频率,也称电路的固有频率。 即 ?0? 1Lc 或f0? 12?Lc R无关。 图4-1 2.电路处于谐振状态时的特征: ①复阻抗Z达最小,电路呈现电阻性,电流与输入电压同相。 ②电感电压与电容电压数值相等,相位相反。此时电感电压(或电容电压)为电源电压的Q倍,Q称为品质因数,即Q? uLuc?0L11 ????ususR?0cRR L c

在L和c为定值时,Q值仅由回路电阻R的大小来决定。 ③在激励电压有效值不变时,回路中的电流达最大值,即: I?I0? us R 3.串联谐振电路的频率特性: ①回路的电流与电源角频率的关系称为电流的幅频特性,表明其关系的图 形称为串联谐振曲线。电流与角频率的关系为: I(?)? us 1?? R2??L?? ?c?? 2 ? us ???0? ?R?Q2?????? ?0? 2 ?

I0 ???0? ?1?Q2?????? ?0? 2 当L、c一定时,改变回路的电阻R值,即可得到不同Q 值下的电流的幅频 特性曲线(图4-2) 图4-2 有时为了方便,常以 ?I 为横坐标,为纵坐标画电流的幅频特性曲线(这称?0I0 I 下降越厉害,电路的选择性就越好。I0 为通用幅频特性),图4-3画出了不同Q值下的通用幅频特性曲线。回路的品质因数Q越大,在一定的频率偏移下,为了衡量谐振电路对不同频率的选择能力引进通频带概念,把通用幅频特性的幅值从峰值1下降到0.707时所对应的上、下频率之间的宽度称为通频带(以bw表示)即:bw? ?2?1 ??0?0

大学物理实验报告系列之RLC电路的谐振

【实验名称】 RLC 电路的谐振 【实验目的】 1、研究和测量RLC 串、并联电路的幅频特性; 2、掌握幅频特性的测量方法; 3、进一步理解回路Q 值的物理意义。 【实验仪器】 音频信号发生器、交流毫伏表、标准电阻箱、标准电感、标准电容箱。 【实验原理】 一、RLC 串联电路 1.回路中的电流与频率的关系(幅频特性) RLC 交流回路中阻抗Z 的大小为: () 2 2 '1??? ? ? -++= ωωC L R R Z (32-1) ???? ? ??????? +-=R R C L arctg '1ωω? (32-3) 回路中电流I 为: )1()'(2ω ωC L R R U Z U I - ++== (32-4) 当01 =- ω ωC L 时, = 0,电流I 最大。 令即振频率并称为谐振角频率与谐的角频率与频率分别表示与,,000=?ωf : LC f LC πω21100= = (32-5) 如果取横坐标为ω,纵坐标为I ,可得图32-2所示电流频率特性曲线。 2.串联谐振电路的品质因数Q C R R L Q 2)'(+= (32-7) QU U U C L == (32-8) Q 称为串联谐振电路的品质因数。当Q >>1时,U L 和U C 都远大于信号源输出电 压,这种现象称为LRC 串联电路的电压谐振。 Q 的第一个意义是:电压谐振时,纯电感和理想电容器两端电压均为信号源电 压的Q 倍。 1 20 1 20f f f Q -= -= ωωω (32-12) 显然(f 2-f 1)越小,曲线就越尖锐。 Q 的第二个意义是:它标志曲线尖锐程度,即电路对频率的选择性,称 f (= f 0 / Q )为通频带宽度。 3.Q 值的测量法

串联谐振电路实验报告

实验名称:串联谐振电路 一、实验目的 1、加深对串联谐振电路条件及特性的理解。 2、掌握谐振频率的测量方法。 3、理解电路品质因数Q和通频带的物理意义及其测量方法。 4、测定RLC串联谐振电路的频率特性曲线。 5、深刻理解和掌握串联谐振的意义及作用。 6、掌握电路板的焊接技术及信号发生器、交流毫伏表等仪表的使用方法。 7、掌握Multisim软件中的Function Generator、Voltmeter、Bode Plotter等仪表的使用 方法以及AC Analysis等SPICE的仿真分析方法。 8、掌握Origin软件的使用方法。 二、实验设备及器材 1、计算机一台。 2、通用电路板一块。 3、低频信号发生器一台。 4、双踪示波器一台。 5、交流毫伏表一只。 6、万用表一只。 7、可变电阻一只。 8、电阻、电感、电容若干(电阻100Ω,电感10mH、4.7mH,电容100nF)。 三、实验内容 1、Multisim仿真 1)、创建图示电路图 2)、分别用Multisim软件(AC仿真、波特表、交流电压表均可)测量串联谐振

电路的谐振曲线、谐振频率、-3dB带宽。 UR谐振曲线 谐振频率7.3kHz -3dB带宽32.318kHz 3)、电阻R1=1K时,用Multisim软件仿真串联谐振电路的谐振曲线,观测R对Q R增大导致Q减小。 4)、利用谐振特点设计选频网络,在串联谐振电路上输入频率为3.5kHz、占空比为30%、脉冲幅度为5V的方波电压信号,测试输入输出(电阻上电压)的频谱。 输入信号

输出信号 2、 测量元件值,计算电路谐振频率和品质因数Q 的理论值。 R1=98Ω RL=34.2Ω L1=4.2mH C1=95.1nF C L R R L U U U U Q S C S L 1 )()(000==== ωωω=1.59 3、 在电路板上焊接基本串联谐振电路,信号电压有效值设置为1V 。 4、 用两种不同的方法测量电路的f0值。 UR 读数最大法:f0=7.7kHz 时,UR 有最大值 X-Y 模式下测量:f0=7.55kHz. 5、 测试电路板上串联谐振电路的谐振曲线、谐振频率、-3dB 。 7、

交流谐振电路-实验报告

University of Science and Technology of China 96 Jinzhai Road, Hefei Anhui 230026,The People ’s Republic of China 交流谐振电路 李方勇 PB05210284 0510 第29组2号(周五下午) 实验题目 交流谐振电路 实验目的 研究RLC 串联电路的交流谐振现象,学习测量谐振曲线的方法,学习并掌握电路品质因素Q 的测量 方法及其物理意义。 实验仪器 电阻箱,电容器,电感,低频信号发生器以及双踪示波器。 实验原理 1. RLC 交流电路 由交流电源S ,电阻R ,电容C 和电感L 等组成 交流电物理量的三角函数表述和复数表述 ()() φ?φ?+=+=t j Ee t E e cos 式中的e 可以是电动势、电压、电流、阻抗等交流电物理量,?为圆频率,φ 为初始相角。电阻R 、电容C 和电感串联电路 电路中的电流与电阻两端的电压是同相位的,但超前于电容C 两端的电压2π ,落后于电感两端的电压2π 。 电阻阻抗的复数表达式为 R Z R = 模R Z =

电容阻抗的复数表达式为 C j e C Z j C? ? π1 1 2= =- 模C Z C? 1 = 电感阻抗的复数表达式为 L j Le Z j L ? ? π = =2 模 L Z L ? = 电路总阻抗为三者的矢量和。由图,电容阻抗与电路总阻抗方向相反,如果满足 L c ? ? = 1 , 则电路总阻抗为R,达到最小值。这时电流最大,形成所谓“电流谐振”。调节交流电源(函数发生器)的频率,用示波器观察电阻上的电压,当它达到最大时的频率即为谐振频率。电路如下图。 电路参数–电动势电压,电流,功率,频率 元件参数–电阻,电容,电感 实验内容 1.观测RLC串联谐振电路的特性 (1)按照上图连接线路,注意保持信号源的电压峰峰值不变,蒋Vi和Vr接入双踪示波器的CH1和CH2(注意共地) (2)测量I-f曲线,计算Q值 (3)对测得的实验数据,作如下分析处理: 1)作谐振曲线I-f,由曲线测出通频带宽 2)由公式计算除fo的理论值,并与测得的值进行比较,求出相对误差。

谐振电路实验报告

rlc串联谐振电路的实验研究 一、摘要: 从rlc 串联谐振电路的方程分析出发,推导了电路在谐振状态下的谐振频率、品质因 数和输入阻抗,并且基于multisim仿真软件创建rlc 串联谐振电路,利用其虚拟仪表和 仿真分析,分别用测量及仿真分析的方法验证它的理论根据。其结果表明了仿真与理论分析 的一致性,为仿真分析在电子电路设计中的运用提供了一种可行的研究方法。 二、关键词:rlc;串联;谐振电路;三、引言 谐振现象是正弦稳态电路的一种特定的工作状态。通常,谐振电路由电容、电感和电阻 组成,按照其原件的连接形式可分为串联谐振电路、并联谐振电路和耦合谐振电路等。 由于谐振电路具有良好的选择性,在通信与电子技术中得到了广泛的应用。比如,串联 谐振时电感电压或电容电压大于激励电压的现象,在无线电通信技术领域获得了有效的应用, 例如当无线电广播或电视接收机调谐在某个频率或频带上时,就可使该频率或频带内的信号 特别增强,而把其他频率或频带内的信号滤去,这种性能即称为谐振电路的选择性。所以研 究串联谐振有重要的意义。 在含有电感l 、电容c 和电阻r 的串联谐振电路中,需要研究在不同频率正弦激励下 响应随频率变化的情况,即频率特性。multisim 仿真软件可以实现原理图的捕获、电路分 析、电路仿真、仿真仪器测试等方面的应用,其数量众多的元件数据库、标准化仿真仪器、 直观界面、简洁明了的操作、强大的分析测试、可信的测试结果都为众多的电子工程设计人 员提供了一种可靠的分析方法,同时也缩短了产品的研发时间。 四、正文 (1)实验目的: 1.加深对串联谐振电路条件及特性的理解。 2.掌握谐振频率的测量方法。 3.理解电路品质因数的物理意义和其测定方法。 4.测定rlc串联谐振电路的频率特性曲线。 (2)实验原理: rlc串联电路如图所示,改变电路参数l、c或电源频率时,都可能使电路发生谐振。 该电路的阻抗是电源角频率ω的函数:z=r+j(ωl-1/ωc) 当ωl-1/ωc=0时,电路中的电流与激励电压同相,电路处于谐振状态。谐振角频率ω 0 =1/lc ,谐振频率f0=1/2π lc 。 谐振频率仅与原件l、c的数值有关,而与电阻r和激励电源的角频率ω无关,当ω< ω0时,电路呈容性,阻抗角φ<0;当ω>ω0时,电路呈感性,阻抗角φ>0。 1、电路处于谐振状态时的特性。 (1)、回路阻抗z0=r,| z0|为最小值,整个回路相当于一个纯电阻电路。(2)、回路 电流i0的数值最大,i0=us/r。(3)、电阻上的电压ur的数值最大,ur =us。 (4)、电感上的电压ul与电容上的电压uc数值相等,相位相差180°,ul=uc=qus。 2、电路的品质因数q 电路发生谐振时,电感上的电压(或电容上的电压)与激励电压之比称为电路的品质因 数q,即: q=ul(ω0)/ us= uc(ω0)/ us=ω0l/r=1/r*l/c (3)谐振曲线。 电路中电压与电流随频率变化的特性称频率特性,它们随频率变化的曲线称频率特性曲 线,也称谐振曲线。 在us、r、l、c固定的条件下,有

RLC串联谐振电路的实验报告

RLC串联谐振电路的实验报告 (1)实验目的: 1.加深对串联谐振电路条件及特性的理解。 2.掌握谐振频率的测量方法。 3.测定RLC串联谐振电路的频率特性曲线。 (2)实验原理: RLC串联电路如图所示,改变电路参数L、C或电源频率时,都可能使电路发生谐振。该电路的阻抗是电源角频率ω的函数:Z=R+j(ωL-1/ωC)当ωL-1/ωC=0时,电路中的电流与激励电压同相,电路处于谐振状态。谐振角频率ω0 =1/LC,谐振频率f =1/2πLC。谐振频率仅与原件L、C的数值有关,而与电阻R 和激励电源的角频率ω无关,当ω<ω 0时,电路呈容性,阻抗角φ<0;当ω>ω 时,电路呈感性,阻抗角φ>0。 1、电路处于谐振状态时的特性。 (1)、回路阻抗Z 0=R,| Z |为最小值,整个回路相当于一个纯电阻电路。 (2)、回路电流I 0的数值最大,I =U S /R。 (3)、电阻上的电压U R 的数值最大,U R =U S 。 (4)、电感上的电压U L 与电容上的电压U C 数值相等,相位相差180°,U L =U C =QU S 。 2、电路的品质因数Q 电路发生谐振时,电感上的电压(或电容上的电压)与激励电压之比称为电路的品质因数Q,即: Q=U L (ω )/ U S = U C (ω )/ U S =ω L/R=1/R* (3)谐振曲线。 电路中电压与电流随频率变化的特性称频率特性,它们随频率变化的曲线称频率特性曲线,也称谐振曲线。 在U S 、R、L、C固定的条件下,有

I=U S / U R =RI=RU S / U C =I/ωC=U S /ωC U L =ωLI=ωLU S / 改变电源角频率ω,可得到响应电压随电源角频率ω变化的谐振曲线,回路 电流与电阻电压成正比。从图中可以看到,U R 的最大值在谐振角频率ω 处,此 时,U L =U C =QU S 。U C 的最大值在ω<ω 处,U L 的最大值在ω>ω 处。 图表示经过归一化处理后不同Q值时的电流频率特性曲线。从图中(Q 11/2时,U C 和U L 曲线才出现最大值,否则U C 将单调下降趋于0,U L 将单调上升趋于U S 。 仿真RLC电路响应的谐振曲线的测量 五、结论

串联谐振电路实验报告

串联谐振电路 学号: 1028401083 姓名:赵静怡 一、实验目的 1、加深对串联谐振电路条件及特性的理解 2、掌握谐振频率的测量方法 3、理解电路品质因数Q和通频带的物理意义及其测量方法 4、测量RLC串联谐振电路的频率特性曲线 5、深刻理解和掌握串联谐振的意义及作用 6、掌握电路板的焊接技术以及信号发生器、交流毫伏表等仪表 的使用 7、掌握Multisim软件中的Functionn Generator 、 Voltmeter 、Bode Plotter等仪表的使用以AC Analysis 等SPICE仿真分析方法 8、用Origin绘图软件绘图 二、实验原理 RLC串联电路如图2.6.1所示,改变电路参数L、C或电源频率时,都可以是电路发生谐振。 2.6.1 RLC谐振串联电路

1、谐振频率:f 0=LC π21 ,谐振频率仅与元件L 、C 的数值有关,而与电阻R 和激励电源的角频率w 无关 2、电路的品质因素Q 和通频带B 电路发生谐振是,电感上的电压(或电容上的电压)与激励电压之比称为电路的品质因素Q ,即C L R Q 1 = 定义回路电流下降到峰值在0.707时所对应的频率为截止频率,介于两截止频率间的频率范围为通带,即Q fo B = 3、谐振曲线 电路中电压与电流随频率变化的特性称频率特性,他们随频率变化的曲线称频率特性曲线,也称谐振曲线 4、实验仪器: (1) 计算机 (2) 通路电路板一块 (3) 低频信号发生器一台 (4) 交流毫伏表一台 (5) 双踪示波器一台 (6) 万用表一只 (7) 可变电阻 (8) 电阻、电感、电容若干(电阻100Ω,电感10mH 、4.7 mH ,电容100nF )

串联谐振电路实验报告

串联谐振电路实验报告 课程安排分为八院和非八院的,由于八院同学部分课程内容安排在了前导课,所以电路分析基础实验课程正式内容中不再重复讲授。 非八院的实验内容安排如下(相关顺序可能会根据教学安排适当调整): 1、常用测量仪器的使用(一) 2、元器件的识别与测量 3、常用测量仪器的使用(二) 4、直流电路测量 5、动态电路测量 6、正弦电路测量 7、RLC串联电路测量

8、RLC并联电路测量 9、考试 八院的实验内容安排如下(相关顺序可能会根据教学安排适当调整): 1、元器件识别及其特性测试点电压法测量二极管的特性曲线 2、直流电路测量 3、一阶动态电路 4、外特性测量法测量信号源内阻及二阶RLC串联电路的阶跃响应测量 5、正弦电路 6、电感、电容大小的测量 7、RLC串联谐振电路设计

8、RLC并联谐振电路设计 9、考试 二、成绩评定 1、课程为独立设课,成绩由总评成绩决定。 总评成绩=平时成绩*40%+考试成绩*60% 平时成绩:预习情况、听课态度、做实验的速度、测量数据的准确性、实验报告的撰写。 2、闭卷考试,当场检查电路接线,仪器使用,波形测量,计算相关参数、作图回答问题,时间一小时。 3、无补考,总评不及格需重修。 三、预习要求 1、课前按照实验报告模板要求做好预习,回答预习问题,未按要求

预习者不准进入实验室做实验。 2、课前在面包板上搭建好电路,未搭建好电路者不准进入实验室做实验。(此要求针对八院同学,其他院系同学应在课前来实验室用实验箱预搭建电路。) 3、课前用实验报告纸画好数据表格(记录原始数据用) 4、有条件的同学可以在预习时候用仿真软件完成电路仿真。 四、实验报告要求 1、实验报告第一页写清楚自己的学号、姓名、座位号、课号、专业。

实验报告 R、L、C串联谐振电路的研究

实验报告 祝金华 PB15050984 实验题目:R 、L 、C 串联谐振电路的研究 实验目的: 1. 学习用实验方法绘制R 、L 、C 串联电路的幅频特性曲线。 2. 加深理解电路发生谐振的条件、特点,掌握电路品质因数(电路Q 值)的物理意义及其测定方法。 实验原理 1. 在图1所示的R 、L 、C 串联电路中,当正弦交流信号源U i 的频率 f 改变时,电路中的感抗、容抗随之而变,电路中的电流也随f 而变。 取电阻R 上的电压U O 作为响应,当输入电压U i 的幅值维持不变时, 在不同频率的信号激励下,测出U O 之值,然后以f 为横坐标,以U O 为纵坐标,绘出光滑的曲线,此即为幅频特性曲线,亦称谐振曲线,如图2所示。 2. 在f =fo = LC 21处,即幅频特性曲线尖峰所在的频率点称为谐振频率。此时X L =Xc ,电路呈纯阻性,电路阻抗的模为最小。在输入电压U i 为定值时,电路中的电流达到最大值,且与输入电压U i 同相位。从理论上讲,此时 U i =U R =U O ,U L =U c =QU i ,式中的Q 称为电路的品质因数。 3. 电路品质因数Q 值的两种测量方法 一是根据公式Q = o C U U 测定,U c 为谐振时电容器C 上的电压(电感上的电压无法测量,故不考虑Q= o L U U 测定) 。另一方法是通过测量谐振曲线的通频带宽度△f =f2-f1,再根据Q U m ax 02 U max 0U 0 102 L C R o i 图 1

= 1 2f f f O -求出Q 值。式中f o 为谐振频率,f 2和f 1是失谐时, 亦即输出电压的幅度下降到最 大值的2/1 (=0.707)倍时的上、下频率点。Q 值越大,曲线越尖锐,通频带越窄,电路的选择性越好。 在恒压源供电时,电路的品质因数、选择性与通频带只决定于电路本身的参数,而与信号源无关。 预习思考题 1. 根据实验线路板给出的元件参数值,估算电路的谐振频率。 L=30mH fo =LC π21=1/(2×π6 31001.01030--???)=9188.81Hz 2. 改变电路的哪些参数可以使电路发生谐振,电路中R 的数值是否影响谐振频率值? 改变频率f,电感L ,电容C 可以使电路发生谐振,电路中R 的数值不会影响谐振频率值。 3. 如何判别电路是否发生谐振?测试谐振点的方案有哪些? 判断:电容与电感的电压相等时,电路此时发生谐振;U i 与U 0相位相同时此时发生谐振;U i 与U 0大小相等时电路发生谐振。 测量:理论计算,f=1/(2π√LC ); 仪表测量此时电流频率。 4. 电路发生串联谐振时,为什么输入电压不能太大, 如果信号源给出3V 的电压,电路谐振时,用交流毫伏表测U L 和U C ,应该选择用多大的量限? 输入电压过大,L 、C 器件两端的电压远高于信号源电压;应该选用最大量程 。 4. 要提高R 、L 、C 串联电路的品质因数,电路参数应如何改变? 减小R,增大L ,同时等比例缩小C 。 5. 本实验在谐振时,对应的U L 与U C 是否相等?如有差异,原因何在? U L ,U C 大小相等,方向相反,因为在谐振点L,C 的阻抗相等,二者阻抗方向相反。 实验设备 低频函数信号发生器,交流毫伏表,双踪示波器,频率计,谐振电路实验电路板 实验内容 1. 利用HE-15实验箱上的“R 、L 、C 串联谐振电路”,按图3组成监视、测量电路。选C 1=0.01μF 。用交流毫伏表测电压, 用示波器监视信号源输出。令信号源输出电压U i =3V ,并

串联谐振电路实验报告

实验三 串联谐振电路 学号: 1117426021 姓名: 黄跃 一、 实验目的 1、 加深对串联谐振电路条件及特性的理解 2、 掌握谐振频率的测量方法 3、 理解电路品质因数Q 和通频带的物理意义及其测量方法 4、 测量RLC 串联谐振电路的频率特性曲线 5、 深刻理解和掌握串联谐振的意义及作用 6、 掌握电路板的焊接技术以及信号发生器、交流毫伏表等仪表的使用 7、 掌握Multisim 软件中的Functionn Generator 、Voltmeter 、Bode Plotter 等仪表的使用以AC Analysis 等SPICE 仿真分析方法 8、 用Origin 绘图软件绘图 二、 实验原理 RLC 串联电路如图2.6.1所示,改变电路参数L 、C 或电源频率时,都可以是电路发生谐振。 2.6.1 RLC 谐振串联电路 1、谐振频率:f 0=LC π21 ,谐振频率仅与元件L 、C 的数值有关,而与电阻R 和激励电源的角频率w 无关 2、电路的品质因素Q 和通频带B 电路发生谐振是,电感上的电压(或电容上的电压)与激励电压之比称为电路的品质因素Q ,即C L R Q 1 = 定义回路电流下降到峰值在0.707时所对应的频率为截止频率,介于两截止频率间的频率范围为通带,即Q fo B = 3、谐振曲线 电路中电压与电流随频率变化的特性称频率特性,他们随频率变化的曲线称频率特性曲线,也称谐振曲线 4、实验仪器: (1) 计算机 (2) 通路电路板一块

(3)低频信号发生器一台 (4)交流毫伏表一台 (5)双踪示波器一台 (6)万用表一只 (7)可变电阻 (8)电阻、电感、电容若干(电阻100Ω,电感10mH、4.7 mH,电容100nF) 三、实验内容 1.Multisim仿真 (1)创建电路:从元器件库中选择可变电阻、电容、电感创建如图2.6.2电路. 2.6.2Multisim串联谐振 (2)当电阻R= 100,200,300欧时,用Multisim软件仿真串联谐振电路的谐振曲线,在同一张图中画出谐振曲线,说明R对Q值、带宽的影响。 2.6.3不同Q值值电流的频率特性曲线 (蓝线为300Ω,红线为200Ω,绿线为100Ω)

串联谐振电路实验的心得体会

串联谐振电路实验的心得体会 篇一:实验九串联谐振电路实验 实验九 串联谐振电路实验 一、实验目的 1.测量RLC串联电路的谐振曲线,通过实验进一步掌握串联谐振的条件和特点。 2.研究电路参数对谐振特性的影响。 二、原理 1.RLC串联电路在图9-1所示的,RLC串联电路中,若取电阻R两端的电压为输出电压,则该电路输出电压与输入电压之比为: U2R ??U1R?j(?L?1) ?C ?L tg?1 R 1 图9-1 图9-2

2.幅频特性 电路网络输出电压与输入电压的振幅比随ω变化的性质,称为该网络的幅频特性,如图9-2所示。 3.谐振条件二阶带通网络的幅频特性出现尖峰的频率f0称为中心频率或谐振频率。此时,电路的电抗为零,阻抗值最小,等于电路中的电阻,电路成为纯电阻性电路,串联电路中的电流达到最大值。 电流与输入电压同相位。我们把电路的这种工作状态称为串联谐振状态。电路达到谐振状态的条件是: 1 ?0L=或 ?0 ?0C4.通频带宽 改变角频率ω时,振幅比随之变化,当振幅比下降到最大值的1/角频率ω1、ω2叫做3分贝角频率,相应的频率两个f1和f2称为3分贝频率。两个角频率之 差称为该网络的通频带宽: R BW??2-?1= L RLC串联电路幅频特性可以用品质因数Q来描述: ??L1Q?0?0 BWR?0CR

三、实验仪器和器材 1.函数信号发生器 2.示波器 3.电阻 4.电感5.电容 6.实验电路板 7.短接线 8.导线 四、实验内容及步骤 1.连接实验电路 按图9-3所示连接电路。其中,电感L= 33mH,电容C=μF,电阻R分别取620Ω和Ω,图中r为电感线圈本身的电阻。 图9-3 2.测绘谐振曲线 测量结果填入表9-1中。 表9-1 R=620Ω的谐振特性 3.研究电路参数对谐振曲线的影响 将图9-3中电阻改为Ω,重复2中步骤,结果填入表9-2中。 表9-2 R=Ω的谐振特性 4.计算通频带宽BW和品质因数Q 将计算结果填入表9-3中。 表9-3 通频带宽BW和品质因数Q 五、思考题 1. 实验中怎么样判断电路已经处于谐振状态?

串联谐振电路实验报告

实验三:串联谐振电路 一、实验目的: 1.加深对串联谐振电路条件及特性的理解。 2.掌握谐振频率的测量方法。 3.理解电路品质因数及通频带的物理意义和其测定方法。 4.测定RLC 串联谐振电路的频率特性曲线。 二、实验原理: RLC 串联电路如图所示,改变电路参数L 、C 或电源频率时,都可能使电路发生谐振。 该电路的阻抗是电源角频率ω的函数: Z=R+j(ωL-1/ωC) 当ωL-1/ωC=0时,电路中的电流与激励电压同相,电路处于谐振状态。 谐振角频率ω0 =1/LC ,谐振频率f 0=1/2π LC 。 谐振频率仅与原件L 、C 的数值有关,而与电阻R 和激励电源的角频率ω无关,当ω<ω0时,电路呈容性,阻抗角φ<0;当ω>ω0时,电路呈感性,阻抗角φ>0。 1、电路处于谐振状态时的特性。 (1)、回路阻抗Z 0=R,| Z 0|为最小值,整个回路相当于一个纯电阻电路。 (2)、回路电流I 0的数值最大,I 0=U S /R 。 (3)、电阻上的电压U R 的数值最大,U R =U S 。 (4)、电感上的电压U L 与电容上的电压U C 数值相等,相位相差180°,U L =U C =QU S 。 2、电路的品质因数Q 和通频带B 。 电路发生谐振时,电感上的电压(或电容上的电压)与激励电压之比称为电路的品质因数Q ,即: Q=U L (ω0)/ U S = U C (ω0)/ U S =ω0L/R=1/R*C L / 回路电流下降到峰值的0.707时所对应的频率为截止频率,介于两截止频率间的频率范围为通频带,即: B=f 0 /Q 2、谐振曲线。 电路中电压与电流随频率变化的特性称频率特性,它们随频率变化的曲线称频率特性曲线,也称谐振曲线。 在U S 、R 、L 、C 固定的条件下,有 I=U S /22)C 1/-L (ωω+R U R =RI=RU S /22)C 1/-L (ωω+R U C =I/ωC=U S /ωC 22)C 1/-L (ωω+R

谐振电路实验报告

竭诚为您提供优质文档/双击可除 谐振电路实验报告 篇一:RLc串联谐振电路的实验报告 RLc串联谐振电路的实验研究 一、摘要: 从RLc串联谐振电路的方程分析出发,推导了电路在谐振状态下的谐振频率、品质因数和输入阻抗,并且基于multisim仿真软件创建RLc串联谐振电路,利用其虚拟仪表和仿真分析,分别用测量及仿真分析的方法验证它的理论根据。其结果表明了仿真与理论分析的一致性,为仿真分析在电子电路设计中的运用提供了一种可行的研究方法。 二、关键词:RLc;串联;谐振电路;三、引言 谐振现象是正弦稳态电路的一种特定的工作状态。通常,谐振电路由电容、电感和电阻组成,按照其原件的连接形式可分为串联谐振电路、并联谐振电路和耦合谐振电路等。 由于谐振电路具有良好的选择性,在通信与电子技术中得到了广泛的应用。比如,串联谐振时电感电压或电容电压大于激励电压的现象,在无线电通信技术领域获得了有效的

应用,例如当无线电广播或电视接收机调谐在某个频率或频带上时,就可使该频率或频带内的信号特别增强,而把其他频率或频带内的信号滤去,这种性能即称为谐振电路的选择性。所以研究串联谐振有重要的意义。 在含有电感L、电容c和电阻R的串联谐振电路中,需要研究在不同频率正弦激励(:谐振电路实验报告)下响应随频率变化的情况,即频率特性。multisim仿真软件可以实现原理图的捕获、电路分析、电路仿真、仿真仪器测试等方面的应用,其数量众多的元件数据库、标准化仿真仪器、直观界面、简洁明了的操作、强大的分析测试、可信的测试结果都为众多的电子工程设计人员提供了一种可靠的分析方法,同时也缩短了产品的研发时间。 四、正文 (1)实验目的: 1.加深对串联谐振电路条件及特性的理解。 2.掌握谐振频率的测量方法。 3.理解电路品质因数的物理意义和其测定方法。 4.测定RLc串联谐振电路的频率特性曲线。 (2)实验原理: RLc串联电路如图所示,改变电路参数L、c或电源频率时,都可能使电路发生谐振。 该电路的阻抗是电源角频率ω的函数:Z=R+j(ωL-1/ω

LRC电路谐振特性的研究实验报告

LRC电路谐振特性的研究实验报告 实验名称:_____LRC电路谐振特性的研究________ 姓名___ _ _ 学号_ _ 班级_ _ 实验日期_ 2013.11.14_ _ 温度___ 15℃___ 同组者________ (一)实验目的: 1.研究和测量LRC串、并联电路的幅频特性; 2.掌握幅频特性的测量方法; 3.进一步理解回路Q值的物理意义. (二)实验仪器: 低频信号发生器、交流毫伏表、电阻箱、电感线圈、标准电容箱、频率计、开关和导线 (三)实验原理: 在力学和电学实验中都观测过简谐振动和阻尼振动.在力学的扭摆实验中,在外加的按正弦变化的策动力作用下,不仅使振动得以维持,而且策动力的频率对振动状态有很大的影响.类似地,在电路中接入一电动势按正弦变化的电源,可经常地给电路补充能量以维持电振荡.在此实验中是研究电源的频率对电路中振荡的影响. 一、LRC串联电路 1.回路中的电流与频率的关系(幅频特性) 见图l(a)相(b),图中R’由两部分组成,一部分是电感线圈的电阻,另一部分是与电容串联的等效损耗电阻,mV l为交流毫伏表,可监视信号源的输出电压,mV2也为交流毫伏表,用来测量R两端的交流电压值,f为频率计.

LRC 交流回路中阻抗Z 的大小为 22 1||(')()Z R R Lw Cw =++- (1) 对此回路总电压U 与总电流I 的相位差?,下式成立: '1 'L C R R Lw U U Cw tg U U R R ?- -==++ (2) 或 1'Lw Cw arctg R R ?? ?-??=??+???? (3) 回路中电流I 为 2 1(')() U U I Z R R Lw Cw = = ++- (4) 当1 0Lw Cw -=时,0?=,电流I 最大。令0w 与0f 分别表示0?=的角频率与频率,并称为谐振角频率与谐振频率,即01w LC = 01 2f LC π= (5) 如果取横坐标为ω,纵坐标为I ,可得图2所示电流频率特性曲线. 2.串联谐振电路的品质因数Q 谐振时0?=,L C U U =,即纯电感两端的电压与理想电容器两端的电压相等,并且 000'' L L U U IL L U R R R R ωωω===++

串联谐振电路实验报告

实验三:串联谐振电路 学号: 姓名: 成绩: 一、实验原理及思路 RLC 串联电路如图所示,改变电路参数L 、C 或电源频率时,都可能使电路发生谐振。 u s 图7.1 RLC 谐振串联电路 该电路的阻抗是电源角频率ω的函数 )1 (C L j R Z ωω-+= (7-1) 当1 0L C ωω- =时,电路中的电流与激励电压同相,电路处于谐振状态。 谐振角频率LC 10= ω ,谐振频率0f =。 谐振频率仅与元件L C 、的数值有关,而与电阻R 和激励电源的角频率ω无关, 当0ωω<时,电路呈容性,阻抗角?<0;当0ωω>时,电路呈感性,阻抗角 ?>0。 1.电路处于谐振状态时的特性: (1) 回路阻抗R Z =0,0Z 为最小值,整个回路相当于一个纯电阻电路。 (2)回路电路I 0的数值最大,R U I s 0=

(3)电阻的电压U R 的数值最大,S R U U = (4)电感上的电压U L 与电容上的电压U C 数值相等,相位相差180o 。 S C L QU U U == 2.电路的品质因数Q 和通频带B 电路发生谐振时,电感上的电压(或电容上的电压)与激励电压之比称为电路的品质因数Q ,即 C L R R L U U U U Q S C S L 1)()(000==== ωωω (7-2) 定义回路电流下降到峰值的时所对应的频率为截止频率,介于两截止频率间的频率范围为通频带。 Q f B 0 = (7-3) 3.谐振曲线 电路中电压与电流随频率变化的特性称频率特性,它们随频率变化的曲线称频率特性曲线,也称谐振曲线。 在U R L C 、、、固定的条件下: 2 2)1(C L R U I ωω- += U C L R R RI U R 2 2)1(ωω- += = U C L R C I C U C 2 2)1(1 1ωωωω- +== U C L R L LI U L 2 2)1(ωωωω- += = 改变电源角频率ω,可得到图响应电压随电源角频率ω变化的谐振曲线,回路电流与电阻电压成正比。从图中可以看 图7.3 不同Q 值时电流的频率特性曲线 I /I

RLC串联谐振电路的实验报告

R L C串联谐振电路的实 验报告 The Standardization Office was revised on the afternoon of December 13, 2020

RLC串联谐振电路的实验报告(1)实验目的: 1.加深对串联谐振电路条件及特性的理解。 2.掌握谐振频率的测量方法。 3.测定RLC串联谐振电路的频率特性曲线。 (2)实验原理: RLC串联电路如图所示,改变电路参数L、C或电源频率时,都可能使电路发生谐振。该电路的阻抗是电源角频率ω的函数:Z=R+j(ωL-1/ωC)当ωL-1/ωC=0时,电路中的电流与激励电压同相,电路处于谐振状态。谐振角频率ω0 =1/LC,谐振频率f0=1/2πLC。谐振频率仅与原件L、C的数值有关,而与电阻R和激励电源的角频率ω无关,当ω<ω0时,电路呈容性,阻抗角φ<0;当ω>ω0时,电路呈感性,阻抗角φ>0。 1、电路处于谐振状态时的特性。 (1)、回路阻抗Z0=R,| Z0|为最小值,整个回路相当于一个纯电阻电路。 (2)、回路电流I0的数值最大,I0=U S/R。 (3)、电阻上的电压U R的数值最大,U R =U S。 (4)、电感上的电压U L与电容上的电压U C数值相等,相位相差180°,U L=U C=QU S。 2、电路的品质因数Q 电路发生谐振时,电感上的电压(或电容上的电压)与激励电压之比称为电路的品质因数Q,即: Q=U L(ω0)/ U S= U C(ω0)/ U S=ω0L/R=1/R* (3)谐振曲线。 电路中电压与电流随频率变化的特性称频率特性,它们随频率变化的曲线称频率特性曲线,也称谐振曲线。

串联谐振电路实验报告

RLC串联谐振电路实验报告 RLC串联谐振电路实验研究,从RLC串联谐振电路的方程分析入手,对RLC串联谐振电路的谐振频率进行了分析,利用Multisim仿真软件建立了RLC串联谐振电路。推导了谐振条件下电路的品质因数和输入阻抗。通过测量和仿真分析验证了理论依据。仿真结果表明了仿真与理论分析的一致性,为仿真分析在电子电路设计中的应用提供了一种可行的研究方法。谐振现象是正弦稳态电路的一种特定的工作状态。一般来说,谐振电路是由电容、电感和电阻组成的。根据其元件的连接形式,可分为串联谐振电路、并联谐振电路和耦合谐振电路。谐振电路由于其良好的选择性,在通信和电子技术中得到了广泛的应用。例如,串联谐振时电感电压或电容电压大于激励电压的现象已被有效地应用于无线通信技术领域。例如,当无线电广播或电视接收器调谐到某个频率或频带时,该频率或频带中的信号可以增强,并且可以过滤掉其他频率或频带中的信号。这种性能称为电路的共振选择性。因此,对串联谐振的研究具有重要意义。在电感为L、电容为C、电阻为R的串联谐振电路中,有必要研究正弦激励在不同频率下的响应频率特性。Multisim仿真软件可以实现原理图采集、电路分析、电

路仿真、仿真仪器测试等应用。其庞大的组件库、标准化的仿真仪器、直观的界面、简单的操作、强大的分析测试能力和可靠的测试结果为众多电子工程设计人员提供了可靠的分析,缩短了产品开发的时间。1加深对串联谐振电路的条件和特性的了解。2掌握测量谐振频率的方法。4测量RLC串联谐振电路的频率特性曲线。RLC串联电路如图所示。当改变电路参数L、C或电源频率时,可能会发生电路谐振。当ωL-1/ωC=0时,电路中的电流与励磁电压同相,电路处于谐振状态。谐振角频率ω0=1/LC,谐振频率f0=1/2π与励磁电源的角频率ω无关。当ωω0时,电路是感性的。阻抗角φ(1),回路阻抗Z0=R,| Z0 |为最小值。整个电路相当于一个纯电阻电路。(2)回路电流I0最大,I0=US/R。(3)电阻上的电压ur值最大,ur=US。(4)电感器上的电压UL等于电容器上的电压Uc,相差180,UL=Uc=QUS。当电路处于谐振状态时,电感上的电压(或电容上的电压)与激励电压的比值称为电路的品质因数Q,即:Q=UL(ω0)/us=UC(ω0)/us=ω0l/r=1/r*L/C,电路中电压、电流随频率变化的特性称为频率及其变化有频率的曲线称为共振曲线。在一定的R、l、C条件下,UC=I/ωC=US/ωCR2+(ωl-1/ωC)2ul=ωLi=ωLUS/r2+(ωl-1/ω)改变电源角频率ω,得到响应电压随电源角

小信号谐振放大电路实验报告

小信号谐振放大电路实验报告 预习报告 一、实验目的 1.掌握小信号调谐放大器的工作原理; 2.掌握谐振放大器电压增益、通频带、选择性的定义、测试及计算方法等。 二、实验仪器 三、实验基本原理和相关知识 小信号调谐放大器广泛用作高频和中频放大器,特别是用在通信接收端的前端电路,其主要目的就是实现对高频小信号的放大。高频小信号放大器按频谱宽度分为窄带放大器和宽带放大器;按电路形式分为单级放大器和级联放大器;按照负载性质:谐振放大器和非谐振放大器。其中,谐振放大器的负载是采用具有放大、滤波和选频作用的谐振回路。非谐振放大器的负载由阻容放大器和各种滤波器组成,结构简单。 由于LC并联谐振回路的阻抗随着频率变化而变化,理论上可以分析得出:并联谐振在谐振频率处呈现纯阻,并达到最大值。即放大器在回路谐振频率上将具有最大的电压增益,若偏离谐振频率,输出增益则减小。总之,调谐放大器不仅具有对特定频率信号的放大作用,同时也起着滤波和选频的作用。

四、实验电路及方法步骤 图1实验原理图1图2 实验原理图2 实验步骤如下: 1.由高频信号发生器输出单频信号,调节信号振幅,使峰-峰值Vpp=50mV左右;2.将示波器探头连接在放大器的输出端,调节输入信号频率及示波器观察输出信号波形,先粗测、再细测谐振放大器谐振频率f0;调节中周铁芯观察电感值对谐振频率的影响; 3.测量电压增益A V0 在放大器对输入信号已经谐振的情况下,用示波器分别观测输入和输出信号的幅度大小,计算谐振时的电压增益A V0。 4.测量放大器通频带BW0.7

五、实验准备 (1)电路仿真如下: 仿真结果如下: 谐振频率下输入信号:输出信号:

实验19RLC串联谐振电路的研究

实验十九 R 、L 、C 串联谐振电路的研究 一、实验目的 1. 学习用实验方法绘制R 、L 、C 串联电路的幅频特性曲线。 2. 加深理解电路发生谐振的条件、特点,掌握电路品质因数(电路Q 值)的物理意义及其测定方法。 二、原理说明 1. 在图19-1所示的R 、L 、C 串联电路中,当正弦交流信号源U i 的频率 f 改变时,电路中的感抗、容抗随之而变,电路中的电流也随f 而变。 取电阻R 上的电压U O 作为响应,当输入电压U i 的幅值维持不变时, 在不同频率的信号激励下,测出U O 之值,然后以f 为横坐标,以U O /U i 为纵坐标(因U i 不变,故也可直接以U O 为纵坐标),绘出光滑的曲线,此即为幅频特性曲线,亦称谐振曲线,如图19-2所示。 图 19-2 2. 在f =fo = LC π 21处,即幅频特性曲线尖峰所在的频率点称为谐振频率。此时X L =Xc ,电路呈纯阻性,电路阻抗的模为最小。在输入电压U i 为定值时,电路中的电流达到最大值,且与输入电压U i 同相位。从理论上讲,此时 U i =U R =U O ,U L =U c =QU i ,式中的Q 称为电路的品质因数。 3. 电路品质因数Q 值的两种测量方法 一是根据公式Q = o C o L U U U U = 测定,U c 与U L 分别为谐振时电容器C 和电感线圈L 上 的电压;另一方法是通过测量谐振曲线的通频带宽度△f =f2-f1,再根据Q = 1 2f f f O -求出 Q 值。式中f o 为谐振频率,f 2和f 1是失谐时, 亦即输出电压的幅度下降到最大值的2/ 1 (= 0.707)倍时的上、下频率点。Q 值越大,曲线越尖锐,通频带越窄,电路的选择性越好。 在恒压源供电时,电路的品质因数、选择性与通频带只决定于电路本身的参数,而与信号源无关。 U 0 L 图 19-1

相关文档
相关文档 最新文档