文档库 最新最全的文档下载
当前位置:文档库 › 最新2019年高考理数复习: 不等式的性质及一元二次不等式

最新2019年高考理数复习: 不等式的性质及一元二次不等式

课时达标检测(三十一) 不等式的性质及一元二次不等式

[小题对点练——点点落实]

对点练(一) 不等式的性质

1.(2018·安徽合肥质检)下列三个不等式:①x +1x ≥2(x ≠0);②c a b >c >0);③a +m b +m >a b

(a ,b ,m >0且a

A .3

B .2

C .1

D .0

解析:选B 当x <0时,①不成立;由a >b >c >0得1a <1b ,所以c a

a +m

b +m -a b =m (b -a )b (b +m ),由a ,b ,m >0且a

>0恒成立,故③恒成立,所以选B. 2.若a >b >0,c

A .ac >bd

B .ac

C .ad

D .ad >bc

解析:选B 根据c -d >0,由于a >b >0,故-ac >-bd ,ac

3.已知实数a ,b 满足关系a 2=b 2-b +1,则下列结论正确的是( )

A .若a <1,b <12

,则a >b B .若a <1,b <12

,则a 1,b >12

,则a >b D .若a >1,b >12

,则a

,对于A ,取a =-1,b =0,a >b 不成立;对于B ,取a =578,b =18

,a b 不成立;对于D ,若a >1,则b 2-b >0,又b >12

,得b >1,1-b <0,所以a 2=b 2-b +1

4.若0

,2ab ,a 2+b 2中最大的数为( ) A .a

B .12

C .2ab

D .a 2+b 2

解析:选D 因为0(a +b )22=12

,2ab =2a (1-a )=-2????a -122+12<12,所以a ,12

,2ab ,a 2+b 2中最大的数为a 2+b 2. 5.(2018·山西康杰中学月考)设a >b >1,则下列不等式成立的是( )

A .a ln b >b ln a

B .a ln b

C .a e b

D .a e b >b e a

解析:选C 观察A ,B 两项,实际上是在比较ln b b 和ln a a 的大小,引入函数y =ln x x

,x >1.则y ′=1-ln x x 2,可见函数y =ln x x 在(1,e)上单调递增,在(e ,+∞)上单调递减.函数y =ln x x

在(1,+∞)上不单调,所以函数在x =a 和x =b 处的函数值无法比较大小.对于C ,D 两项,引入函数f (x )=e x x ,x >1,则f ′(x )=x e x -e x x 2=(x -1)e x x 2

>0,所以函数f (x )=e x x 在(1,+∞)上单调递增,又因为a >b >1,所以f (a )>f (b ),即e a a >e b b ,所以a e b

6.已知函数f (x )=ax +b,0

解析:设2a -b =mf (1)+nf (-1)=(m -n )·a +(m +n )b ,则?????

m -n =2,m +n =-1,解得m =12,n =-32,∴2a -b =12f (1)-32f (-1),∵0

f (-1)<32,则-32<2a -b <52

. 答案:???

?-32,52 7.若a >b >0,给出以下几个不等式:

①b a

;②lg a +b 2b +1a ;④a -b >a -b . 其中正确的是________.(请填写所有正确的序号)

解析:因为a >b >0,所以b +5a +5-b a =5(a -b )a (a +5)

>0,①正确;lg a +lg b 2=lg ab

>0,所以③正确;(b +a -b )2=a +2b (a -b )>a ,所以④不正确.

答案:①③

对点练(二) 一元二次不等式

二元二次方程组-解法-例题

二元二次方程的解法 二次方程组的基本思想和方法 方程组的基本思想是“转化”,这种转化包含“消元”和“降次”将二元转化为一元是消元,将二次转化为一次是降次,这是转化的基本方法。因法和技巧是解二元二次方程组的关键。 型是由一个二元二次方程和一个二元一次方程组成的方程组;“二·二”型是由两个二元二次方程组成的方程组。 程组的解法 元法(即代入法) 二·一”型方程组的一般方法,具体步骤是: 次方程中的一个未知数用另一个未知数的代数式表示; 数式代入二元二次方程,得到一个一元二次方程; 元二次方程,求得一个未知数的值; 的这个未知数的值代入二元一次方程,求得另一个未知数的值;如果代入二元二次方程求另一个未知数,就会出现“增解”的问题; 个未知数的值和相应的另一个未知数的值分别组在一起,就是原方程组的解。 与系数的关系 二元二次方程组中形如的方程组,可以根据一元二次方程根与系数的关系,把x、y看做一根,解这个方程,求得的z1和z2的值,就是x、y的值。当x1=z1时,y1=z2;当x2=z2时,y2=z1,所以原方程组的解是两组“对称解”。注意 二·一”型方程组的一种特殊方法,它适用于解“和积形式”的方程组。 比较常用的解法。除此之外,还有加减消元法、分解降次法、换元法等,解题时要注意分析方程的结构特征,灵活选用恰当的方法。 解一元二次方程、分式方程和无理方程的知识都可以运用于解“二·一”型方程组。(2)要防止漏解和增解的错误。

程组的解法 中只有一个可分解为两个二元一次方程的方程时,可将分解得到的两个二元一次方程分别与原方程组中的另一个二元二次方程组成两个“二型方程组,所得的解都是原方程组的解。 中两个二元二次方程都可以分解为两个二元一次方程时,将第一个二元二次方程分解所得到的每一个二元一次方程与第二个二元二次方程组成新的方程组,可得到四个二元一次方程组,解这四个二元一次方程组,所得的解都是原方程的解。 方程组最多有两个解,“二·二”型方程组最多有四个解,解方程组时,即不要漏解,也不要增解。 析:例1.解方程组 观察这个方程组,不难发现,此方程组除可用代入法解外,还可用根与系数的关系,通过构造一个以x, y为根的一元二次方程来求解。 1)得y=8-x..............(3) 把(3)代入(2),整理得x2-8x+12=0. 解得x1=2, x2=6. (3),得y1=6. 把x2=6代入(3),得y2=2. 所以原方程组的解是。

高中数学不等式讲义

6.1不等式的概念和性质 〖考纲要求〗掌握不等式的性质及其证明,能正确使用这些概念解决一些简单问题. 〖复习建议〗不等式的性质是解、证不等式的基础,对于这些性质,关键是正确理解和熟练运用, 要弄清每一个条件和结论,学会对不等式进行条件的放宽和加强。 〖双基回顾〗常见的性质有8条: 1、反身性(也叫对称性):a >b ?b <a 2、传递性:a >b ,b >c ?a >c 3、平移性:a >b ?a +c >b +c 4、伸缩性:???>>0c b a ?ac >bc ;???<>0 c b a ?ac <bc 5、乘方性:a >b ≥0?a n >b n (n ∈N ,n ≥2)6、开方性:a >b ≥0?n a >n b (n ∈N ,n ≥2) 7、叠加性:a >b ,c >d ?a +c >b +d 8、叠乘性:a >b ≥0,c >d ≥0?a ·c >b ·d 一、知识点训练: 1、b a b a 11???成立的充要条件为 2、用“>”“<”“=”填空: (1)a

(完整版)一元二次不等式的经典例题及详解

一元二次不等式专题练习 例1 解不等式:(1)01522 3>--x x x ;(2)0)2()5)(4(3 2 <-++x x x . 例2 解下列分式不等式: (1) 2 2 123+-≤-x x (2) 1 2 731 422<+-+-x x x x 例3 解不等式242+<-x x 例4 解不等式 04125 622<-++-x x x x . 例5 解不等式x x x x x <-+-+2 2232 2. 例6 设R m ∈,解关于x 的不等式03222<-+mx x m . 例7 解关于x 的不等式)0(122>->-a x a ax . 例8 解不等式331042<--x x . 例9 解关于x 的不等式0)(322>++-a x a a x . 例10 已知不等式02 >++c bx ax 的解集是 {})0(><<αβαx x .求不等式 02>++a bx cx 的解集. 例11 若不等式 1 12 2+--<++-x x b x x x a x 的解为)1()31 (∞+-∞,,Y ,求a 、b 的值. 例12不等式022<-+bx ax 的解集为{}21<<-x x ,求a 与b 的值. 例13解关于x 的不等式01)1(2<++-x a ax . 例14 解不等式x x x ->--81032.

例1解:(1)原不等式可化为 0)3)(52(>-+x x x 把方程0)3)(52(=-+x x x 的三个根3 ,2 5 ,0321 =-==x x x 顺次标上数轴.然后从右上开始画线顺次经过三个根,其解集如下图的阴影部分. ∴原不等式解集为? ?????><<-3025x x x 或 (2)原不等式等价于 ?? ?>-<-≠????>-+≠+?>-++2450)2)(4(0 50 )2()5)(4(32x x x x x x x x x 或 ∴原不等式解集为{} 2455>-<<--

(完整)高中数学一元二次不等式练习题

一元二次不等式及其解法 1.形如)0)(0(02≠<>++a c bx ax 其中或的不等式称为关于x 的一元二次不等式. 2.一元二次不等式20(0)ax bx c a ++>>与相应的函数2(0)y ax bx c a =++>、相应的方程20(0)ax bx c a ++=>判别式ac b 42-=? 0>? 0=? 0a )的图象 ()002>=++a c bx ax 的解集)0(02>>++a c bx ax 的解集)0(02><++a c bx ax 1、把二次项的系数变为正的。(如果是负,那么在不等式两边都乘以-1,把系数变为正) 2、解对应的一元二次方程。(先看能否因式分解,若不能,再看△,然后求根) 3、求解一元二次不等式。(根据一元二次方程的根及不等式的方向) 不等式的解法---穿根法 一.方法:先因式分解,再使用穿根法. 注意:因式分解后,整理成每个因式中未知数的系数为正. 使用方法:①在数轴上标出化简后各因式的根,使等号成立的根,标为实点,等号不成立的根要标虚点. ②自右向左自上而下穿线,遇偶次重根不穿透,遇奇次重根要穿透(叫奇穿偶不穿). ③数轴上方曲线对应区域使“>”成立, 下方曲线对应区域使“<”成立. 例1:解不等式 (1) (x+4)(x+5)2(2-x)3 <0 x 2-4x+1 3x 2-7x+2 ≤1 解: (1) 原不等式等价于(x+4)(x+5)2(x-2)3>0 根据穿根法如图 不等式解集为{x ∣x>2或x<-4且x ≠5}. (2) 变形为 (2x-1)(x-1) (3x-1)(x-2) ≥0 根据穿根法如图 不等式解集为 {x |x< 1 3 或 1 2 ≤x ≤1或x>2}. 2 -4 -5 2 2 1 1 3 1

如何解一元二次不等式

如何解一元二次不等式,例如:x?2+2x+3≥0. 请大家写出解题过程和思路 解:对于高中“解一元二次不等式”这一块, 通常有以下两种解决办法: ①运用“分类讨论”解题思想; ②运用“数形结合”解题思想。 以下分别详细探讨。 例1、解不等式x2 -- 2x -- 8 ≥ 0。 解法①:原不等式可化为: (x -- 4) (x + 2) ≥ 0。 两部分的乘积大于等于零, 等价于以下两个不等式组: (1)x -- 4 ≥ 0 或(2)x -- 4 ≤ 0 x + 2 ≥ 0 x + 2 ≤ 0 解不等式组(1)得:x ≥ 4(因为x ≥ 4 一定满足x ≥ -- 2,此为“同大取大”) 解不等式组(2)得:x ≤ -- 2(因为x ≤ --2 一定满足x ≤ 4,此为“同小取小”) ∴不等式x2 -- 2x -- 8 ≥ 0的解为:x ≥ 4 或x ≤ -- 2。 其解集为:( -- ∞,-- 2 ] ∪[ 4,+ ∞)。 解法②:原不等式可化为: [ (x2 -- 2x + 1) -- 1 ] -- 8 ≥ 0。 ∴(x -- 1)2 ≥ 9 ∴x -- 1 ≥ 3 或x -- 1 ≤ -- 3 ∴x ≥ 4 或x ≤ -- 2。 ∴原不等式的解集为:( -- ∞,-- 2 ] ∪[ 4,+ ∞)。 解法③:如果不等式的左边不便于因式分解、不便于配方,

那就用一元二次方程的求根公式进行左边因式分解, 如本题,用求根公式求得方程x2 -- 2x -- 8 = 0 的两根为x1 = 4,x2 = -- 2,则原不等式可化为:(x -- 4) (x + 2) ≥ 0。下同解法①。 体会:以上三种解法,都是死板板地去解; 至于“分类讨论”法,有时虽麻烦,但清晰明了。 下面看“数形结合”法。 解法④:在平面直角坐标系内,函数f(x) = x2 -- 2x -- 8 的图像 开口向上、与x 轴的两交点分别为(-- 2,0) 和(4,0), 显然,当自变量的取值范围为x ≥ 4 或x ≤ -- 2 时, 图像在x 轴的上方; 当自变量的取值范围为-- 2 ≤ x ≤ 4 时,图像在x 轴的下方。 ∴当x ≥ 4 或x ≤ -- 2 时,x2 -- 2x -- 8 ≥ 0, 即:不等式x2 -- 2x -- 8 ≥ 0的解为:x ≥ 4 或x ≤ -- 2。 顺便说一下,当-- 2 ≤ x ≤ 4 时,图像在x 轴的下方,即:x2 -- 2x -- 8 ≤ 0,∴不等式x2 -- 2x -- 8 ≤ 0 的解为:-- 2 ≤ x ≤ 4 。其解集为:[ -- 2,4 ]。 领悟:对于ax2 + bx + c >0 型的二次不等式,其解为“大于大根或小于小根”; 对于ax2 + bx + c <0 型的二次不等式,其解为“大于小根且小于大根”。例2、解不等式x2 + 2x + 3 >0。 在实数范围内左边无法进行因式分解。 配方得:(x + 1)2 + 2 >0。 无论x 取任何实数,(x + 1)2 + 2 均大于零。 ∴该不等式的解集为x ∈R。 用“数形结合”考虑, ∵方程x2 + 2x + 3 = 0的根的判别式△<0, ∴函数f(x) = x2 + 2x + 3 的图像与x 轴无交点且开口向上。 即:无论自变量x取任意实数时,图像恒位于x 轴的上方。 ∴不等式x2 + 2x + 3 >0的解集为x ∈R。

高中数学-不等式的基本性质(一)练习

高中数学-不等式的基本性质(一)练习 课后导练 基础达标 1若-1<α<β<1,则下列各式中成立的是( ) A.-2<α-β<0 B.-2<α-β<-1 C.-1<α-β<0 D.-1<α-β<1 解析:∵-1<α<β<1,∴-1<α<1,-1<β<1. ∴-1<-β<1.∴-2<α-β<2.又α-β<0, ∴-2<α-β<0. 答案:A 2“a+b>2c ”成立的一个充分条件是( ) A.a>c,或b>c B.a>c 且bc 且b>c D.a>c,或bc 且b>c ,∴a+b>c+c,即a+b>2c. 答案:C 3若x>1>y,下列不等式中不成立的是( ) A.x-1>1-y B.x-1>y-1 C.x-y>1-y D.1-x>y-x 解析:∵x>1>y, ∴x+(-1)>y+(-1),即B 正确; x+(-y)>1+(-y),即C 正确; 1+(-x)>y+(-x),即D 正确. 故选A. 答案:A 4若m<0,n>0,且m+n<0,则下列不等式中成立的是( ) A.-n0,m+n<0, ∴m<-n<0,-m>n,即n<-m. ∴m<-n0,m,n 互为倒数,易得m<10,∴4ac<0.∴b 2-4ac>0. 答案:b 2-4ac>0 7下列命题中真命题的个数为( )

一元二次不等式及其解法(高考题)

一元二次不等式及其解法 链接高考 1.(2016浙江杭州中学期中,★☆☆)下列不等式中,与不等式<2解集相同的是() A.(x+8)(x2+2x+3)<2 B.(x+8)<2(x2+2x+3) C.< D.> 2.(2015天津南开中学月考,★☆☆)不等式≥2的解集是() A. B. C.∪(1,3] D.∪(1,3] 3.(2013江西,6,5分,★☆☆)下列选项中,使不等式x<0的解集是________. 6.(2015课标Ⅱ,1,5分,★★☆)已知集合A={-2,-1,0,1,2},B={x|(x-1)(x+2)<0},则A∩B=() A.{-1,0} B.{0,1} C.{-1,0,1} D.{0,1,2} 7.(2015山东,1,5分,★★☆)已知集合A={x|x2-4x+3<0},B={x|2

(?R P)∩Q=() A.[0,1) B.(0,2] C.(1,2) D.[1,2] 9.(2014课标Ⅰ,11,5分,★★☆)已知集合A={x|x2-2x-3≥0},B={x|-2≤x<2},则 A∩B=() A.[-2,-1] B.[-1,2) C.[-1,1] D.[1,2) 10.(2016河北石家庄一中期中,★★☆)若不等式x2+2x+2>|a-2|对于一切实数x 均成立,则实数a的取值范围是________. 11.(2012福建,15,4分,★★☆)已知关于x的不等式x2-ax+2a>0在R上恒成立,则实数a的取值范围是________. 12.(2015辽宁大连期末,★★☆)已知f(x)=ax2+x-a. (1)若函数f(x)有最大值,求实数a的值; (2)若不等式f(x)>-2x2-3x+1-2a对一切实数x恒成立,求实数a的取值范围. 三年模拟 1.(2016四川雅安中学月考,★☆☆)不等式-x2+3x+4<0的解集为() A.{x|-14或x<-1} C.{x|x>1或x<-4} D.{x|-40的解集是() A.{x|-11} D.{x|x<1且x≠-1} 4.(2016福建师大附中模块考试,★★☆)若关于x的方程x2+(m-1)x+m2-2=0的

2015高考数学一轮题组训练:7-2一元二次不等式及其解法

第2讲 一元二次不等式及其解法 基础巩固题组 (建议用时:40分钟) 一、填空题 1.(2014·长春调研)已知集合P ={x |x 2-x -2≤0},Q ={x |log 2(x -1)≤1},则(?R P )∩Q =________. 解析 依题意,得P ={x |-1≤x ≤2},Q ={x |1<x ≤3},则(?R P )∩Q =(2,3]. 答案 (2,3] 2.(2014·沈阳质检)不等式x 2+ax +4<0的解集不是空集,则实数a 的取值范围是________. 解析 不等式x 2+ax +4<0的解集不是空集,只需Δ=a 2-16>0,∴a <-4或a >4. 答案 (-∞,-4)∪(4,+∞) 3.(2013·南通二模)已知f (x )=????? x 2 ,x ≥0,-x 2+3x ,x <0, 则不等式f (x )2,因此x <0. 综上,f (x )

高中数学不等式知识点总结

弹性学制数学讲义 不等式(4课时) ★知识梳理 1、不等式的基本性质 ①(对称性)a b b a >?> ②(传递性),a b b c a c >>?> ③(可加性)a b a c b c >?+>+ (同向可加性)d b c a d c b a +>+?>>, (异向可减性)d b c a d c b a ->-?<>, ④(可积性)bc ac c b a >?>>0, bc ac c b a 0, ⑤(同向正数可乘性)0,0a b c d ac bd >>>>?> (异向正数可除性)0,0a b a b c d c d >>< ⑥(平方法则) 0(,1)n n a b a b n N n >>?>∈>且 ⑦(开方法则)0(,1)n n a b a b n N n >>?>∈>且 ⑧(倒数法则) b a b a b a b a 110;110>?<<> 2、几个重要不等式 ①()222a b ab a b R +≥∈,,(当且仅当a b =时取""=号). 变形公式:22 .2a b ab +≤ ②(基本不等式) 2a b ab +≥ ()a b R +∈,,(当且仅当a b =时取到等号). 变形公式: 2a b a b +≥ 2 .2a b ab +??≤ ??? 用基本不等式求最值时(积定和最小,和定积最大),要注意满足三个条件“一正、二定、

三相等”. ③(三个正数的算术—几何平均不等式) 33a b c abc ++≥()a b c R +∈、、(当且仅当a b c ==时取到等号). ④()222a b c ab bc ca a b R ++≥++∈, (当且仅当a b c ==时取到等号). ⑤ 3333(0,0,0)a b c abc a b c ++≥>>> (当且仅当a b c ==时取到等号). ⑥0,2b a ab a b >+≥若则(当仅当a=b 时取等号) 0,2b a ab a b <+≤-若则(当仅当a=b 时取等号) ⑦b a n b n a m a m b a b <++<<++<1,(其中000)a b m n >>>>,, 规律:小于1同加则变大,大于1同加则变小. ⑧220;a x a x a x a x a >>?>?<->当时,或 22. x a x a a x a

3.3一元二次不等式(组)与简单线性规划问题

3. 3.1二元一次不等式(组)与平面区域. 【教学目标】 1. 了解二元一次不等式(组)这一数学模型产生的实际背景。 2. 理解二元一次不等式的几何意义 3. 会判定或正确画出给定的二元不一次等式(组)所表示的点集合 【教学重难点】 教学重点:1. 理解二元一次不等式(组)的几何意义; 2. 掌握不等式(组)确定平面区域的 一般方法 教学难点:1 把实际问题抽象化,用二元一次不等式(组)表示平面区域。 2 掌握不等式(组)确定平面区域的一般方法 【教学过程】 一、 设置情境,引入新课 一家银行信贷部计划年初投入25000000元用于企业和个人贷款,希望这笔资金至少可以带来30000元的收益,其中从企业贷款中获益12%,从个人贷款中获益10%,那么信贷部如何分配资金呢? 问题1.那么信贷部如何分配资金呢? 问题2.用什么不等式模型来刻画它们呢? 二、合作探究,得出概念 (1)设用于企业资金贷款的资金为x 元,用于个人贷款的资金y 元,由于资金总数为25000000元,得到 25000000≤+y x ① 由于预计企业贷款创收12%,个人贷款创收10%,共创收30000元以上,所以 ()()30000%10%12≥+y x 即30000001012≥+y x 。 ② 最后考虑到用于企业贷款和个人贷款的资金数额都不能是负值,于是0,0≥≥y x ③ 将①②③合在一起,得到分配资金应该满足的条件:???? ???≥≥≥+≤+0 0300000101225000000y x y x y x 二元一次不等式组: 二元一次不等式(组)的解集的意义: (2)二元一次不等式(组)的几何意义 研究:二元一次不等式6<-y x 表示的图形 ①边界的概念 ②二元一次不等式(组)的几何意义,画法要求 ③判定方法(1)特殊点法(2)公式法 三、 典型例题 例题1画出不等式2x +y -6<0表示的平面区域。 解:先画直线2x +y -6=0(画成虚线)。 取原点(0,0),代入2x +y -6,∵2×0+0-6=-6<0,

高一数学一元二次不等式解法经典例题

例若<<,则不等式--<的解是1 0a 1(x a)(x )01 a [ ] A a x B x a .<< .<<1 1 a a C x a .>或<x a 1 1 选A x ≥3或x . ?? ?????a b = =-121 2 ,. 例4 解下列不等式 (1)(x -1)(3-x)<5-2x (2)x(x +11)≥3(x +1)2 (3)(2x +1)(x -3)>3(x 2+2) (4)3x 2-+--+-313 2 511 3 12 2x x x x x x >>()()

分析 将不等式适当化简变为ax 2+bx +c >0(<0)形式,然后根据“解公式”给出答案(过程请同学们自己完成). 答 (1){x|x <2或x >4} (2){x|1x }≤≤3 2 (3)? (4)R (5)R 说明:不能使用解公式的时候要先变形成标准形式. 例不等式+> 的解集为5 1x 1 ] x = 0} ] 解法一原不等式的同解不等式组为≠. x -?? 20 故排除A 、C 、D ,选B . 解法二≥化为=或-->即<≤ x 3 20x 3(x 3)(2x)02x 3--x 两边同减去2得0<x -2≤1.选B . 说明:注意“零”. 例不等式 <的解为<或>,则的值为7 1{x|x 1x 2}a ax x -1 [ ]

A a B a C a D a .< .> .= .=- 1212 1 21 2 分析可以先将不等式整理为 <,转化为 0()a x x -+-11 1 [(a -1)x +1](x -1)<0,根据其解集为{x|x <1或x >2} 可知-<,即<,且- =,∴=.a 10a 12a 1112 a - 答 选C . ≤0} 分析 先确定A 集合,然后根据一元二次不等式和二次函数图像关 系,结合,利用数形结合,建立关于的不等式.B A a ? 解 易得A ={x|1≤x ≤4} 设y =x 2-2ax +a +2(*) (1)B B A 0若=,则显然,由Δ<得??

2019-2020年高中数学 一元二次不等式组解法教案 新人教A版必修1

2019-2020年高中数学一元二次不等式组解法教案新人教A版必修1 一、学习目标 1.掌握一元二次不等式的解法步骤,能熟练地求出一元二次不等式的解集。 2.掌握一元二次不等式、一元二次方程和二次函数的联系。 二、例题 第一阶梯 例1什么是一元二次不等式的一般式? 【解】一元二次不等式的一般式是: ax2+bx+c(a>0)或ax2+bx+c<0(a>0) 【评注】 1.一元二次不等式的一般式中,严格要求a>0,这与一元二次方程、二次函数只要求a≠0不同。 2.任何一元二次不等式经过变形都可以化成两种“一般式”之一,当a1<0时,将不等式乘-1就化成了“a>0”。 例2、一元二次不等式、一元二次方程和二次函数的联系是什么? 【点拨】用函数的观点来回答。 【解】 二次不等式、二次方程和二次函数的联系是:设二次函数y=ax2+bx+c (a≠0)的图象是抛物线L,则不等式ax2+bx+c>0,ax2+bx+c<0的解集分别是抛物线L在x轴上方,在x轴下方的点的横坐标x的集合;二次方程ax2+bx+c=0的根就是抛物线L与x轴的公共点的

横坐标。 【评注】 二次不等式、二次方程和二次函数的联系,通常称为“三个二次问题”,我们要深刻理解、牢牢掌握,并灵活地应用它。它是函数与方程思想的应用范例。应用这“三个二次”的关系,不但能直接得到“二次不等式的解集表”,而且还能解决“二次问题”的难题。 例3请你自己设计一张好用的“一元二次不等式的解集表”。 【解】一元二次不等式的解集表: 【评注】 1.不要死记书上的解集表,要抓住对应的二次方程的“根”来活记活用。 2.二次方程的解集求法属于“根序法”(数轴标根)。 例4、写出一元二次不等式的解法步骤。 【解】一元二次不等式的解法步骤是: 1.化为一般式ax2+bx+c>0 (a>0)或ax2+bx+c<0 (a>0)。这步可简记为“使a>0”。 2.计算△=b2-4ac,判别与求根:解对应的二次方程ax2+bx+c=0,判别根的三种情况,△≥0时求出根。

高三数学不等式的基本性质知识点

高三数学不等式的基本性质知识点编者按:高考前的第一轮复习正在火热进行中,同学们要利用这些复习的时间强化学习,查字典数学网为大家整理了高三数学不等式的基本性质,在高三数学第一轮复习时,给您最及时的帮助! 1.不等式的定义:a-b;;b, a-b=0a=b, a-b;;b. ① 其实质是运用实数运算来定义两个实数的大小关系。它是本章的基础,也是证明不等式与解不等式的主要依据。②可以结合函数单调性的证明这个熟悉的知识背景,来认识作差法比大小的理论基础是不等式的性质。 作差后,为判断差的符号,需要分解因式,以便使用实数运算的符号法则。 2.不等式的性质: ① 不等式的性质可分为不等式基本性质和不等式运算性质两部分。 不等式基本性质有: (1) a;;a (对称性) (2) ab, b;;c (传递性) (3) aba+cb+c (cR) (4) c0时,abacbc c0时,abacbc. 运算性质有:

(1) ab, cda+cb+d. (2) a;0, c;0acbd. (3) a;0anbn (nN, n1)。 (4) a;0(nN, n1)。 应注意,上述性质中,条件与结论的逻辑关系有两种:和即推出关系和等价关系。一般地,证明不等式就是从条件出发施行一系列的推出变换。解不等式就是施行一系列的等价变换。因此,要正确理解和应用不等式性质。 ② 关于不等式的性质的考察,主要有以下三类问题: (1)根据给定的不等式条件,利用不等式的性质,判断不等式能否成立。 (2)利用不等式的性质及实数的性质,函数性质,判断实数值的大小。 (3)利用不等式的性质,判断不等式变换中条件与结论间的充分或必要关系。 总结:查字典数学网整理的高三数学不等式的基本性质知识点帮助同学们复习以前没有学会的数学知识点,请大家认真阅读上面的文章,也祝愿大家都能愉快学习,愉快成长!

高一数学一元二次不等式解法练习题及

高一数学一元二次不等式解法练习题及答案 例若<<,则不等式--<的解是1 0a 1(x a)(x )01 a [ ] A a x B x a .<< .<<11 a a C x a D x x a .>或<.<或>x a a 1 1 分析比较与的大小后写出答案. a 1 a 解∵<<,∴<,解应当在“两根之间”,得<<. 选. 0a 1a a x A 11 a a 例有意义,则的取值范围是 .2 x x 2--x 6 分析 求算术根,被开方数必须是非负数. 解 据题意有,x 2-x -6≥0,即(x -3)(x +2)≥0,解在“两根之外”,所以x ≥3或x ≤-2. 例3 若ax 2+bx -1<0的解集为{x|-1<x <2},则a =________,b =________. 分析 根据一元二次不等式的解公式可知,-1和2是方程ax 2+bx -1=0的两个根,考虑韦达定理. 解 根据题意,-1,2应为方程ax 2+bx -1=0的两根,则由韦达定理知 -=-+=-=-=-?? ?????b a a ()()1211122×得

a b ==-1212 ,. 例4 解下列不等式 (1)(x -1)(3-x)<5-2x (2)x(x +11)≥3(x +1)2 (3)(2x +1)(x -3)>3(x 2+2) (4)3x 2-+- -+-3132 511 3 122x x x x x x >>()() 分析 将不等式适当化简变为ax 2+bx +c >0(<0)形式,然后根据“解公式”给出答案(过程请同学们自己完成). 答 (1){x|x <2或x >4} (2){x|1x }≤≤3 2 (3)? (4)R (5)R 说明:不能使用解公式的时候要先变形成标准形式. 例不等式+> 的解集为5 1x 1 1-x [ ] A .{x|x >0} B .{x|x ≥1} C .{x|x >1} D .{x|x >1 或x =0} 分析 直接去分母需要考虑分母的符号,所以通常是采用移项后通分. 解不等式化为+->, 通分得>,即>, 1x 0001 111 22 ----x x x x x ∵x 2>0,∴x -1>0,即x >1.选C . 说明:本题也可以通过对分母的符号进行讨论求解.

方程与不等式之二元二次方程组知识点总复习附答案

方程与不等式之二元二次方程组知识点总复习附答案 一、选择题 1.解方程组: 222(1)20(2)x y x xy y -=??--=? 【答案】1212 14,12x x y y ==????=-=?? 【解析】 【分析】 先由②得x +y =0或x?2y =0,再把原方程组可变形为:20x y x y -=?? +=?或220 x y x y -=??-=?,然后解这两个方程组即可. 【详解】 222(1)20 (2)x y x xy y -=??--=?, 由②得:(x +y )(x?2y )=0, x +y =0或x?2y =0, 原方程组可变形为:20x y x y -=??+=?或220x y x y -=??-=? , 解得:1212 1412x x y y ==????=-=??,. 【点睛】 此题考查了高次方程,关键是通过把原方程分解,由高次方程转化成两个二元一次方程,用到的知识点是消元法解方程组. 2.解方程组: ⑴3{351x y x y -=+= ⑵3+10{2612 x y z x y z x y z -=+-=++= 【答案】(1)2 {1x y ==-;(2)3{45 x y z === 【解析】(1)先用代入消元法求出x 的值,再用代入消元法求出y 的值即可. (2)先利用加减消元法去z 得到关于x 、y 的两个方程,解这两个方程组成的方程组求出x 、y ,然后利用代入法求z ,从而得到原方程组的解.

(1)2 {1x y ==- ; (2) 3{45 x y z === “点睛”本题考查了解二元一次方程组、三元一次方程组:利用加减消元法或代入消元法把解三元一次方程组的问题转化为二元一次方程组的问题. 3.解方程组:2322441x y x xy y +=?-+=?? 【答案】2112115,175x x y y ?=?=????=??=?? 【解析】 分析:把方程组中的第二个方程变形为两个一元一次方程,与组中的第一个方程构成新方程组,求解即可. 详解:2322441x y x xy y +=?-+=?? ①② 由②得2 (2)1x y -=, 所以21x y -=③,21x y -=-④ 由①③、①④联立,得方程组: 2321x y x y +=?-=?? ,23 21x y x y +=?-=-?? 解方程组23 21x y x y +=?-=??得,{ 11x y == 解方程组2321x y x y +=?-=-??得,1575x y ?=????=?? . 所以原方程组的解为:11 11x y =?=??,221575x y ?=????=?? 点睛:本题考查了二元二次方程组的解法,解决本题亦可变形方程组中的①式,代入②式得一元二次方程求解. 4.解方程组

2.1.1 不等式的基本性质(含答案)

【课堂例题】 例1.利用性质1和性质2证明: (1)如果a b c +>,那么a c b >-; (2)如果,a b c d >>,那么a c b d +>+ 例2.利用性质3证明: 如果0,0a b c d >>>>,那么ac bd >. (选用)例3.利用不等式的性质证明: 如果0a b >>,那么110a b < <.

【知识再现】 1.不等式性质的基础: a b >? ;a b =? ;a b >,则 ; 性质2.(加法性质) 若a b >,则 ; 性质3.(乘法性质) 若,0a b c >>,则 ; 若,0a b c ><,则 . 3.几条比较有用的推论: 性质4.(同向可加性) 若,a b c d >>,则 ; 性质5.(正数同向可乘性) 若0,0a b c d >>>>,则 ; 性质6.(正数的倒数性质) 若0a b >>,则 ; 性质7.(正数的乘方性质) 若0a b >>,则 *()n N ∈; 性质8.(正数的开方性质) 若0a b >>,则 *(,1)n N n ∈>. 【基础训练】 1.请用不等号表示下列关系: (1)a 是非负实数, ; (2)实数a 小于3,但不小于2-, ; (3)a 和b 的差的绝对值大于2,且小于等于9, . 2.判断下列语句是否正确,并在相应的括号内填入“√”或“×”. (1)若a b >,则a b c c >;( ) (2)若ac bc <,则a b <;( ) (3)若a b <,则1 1 a b <; ( ) (4)若22ac bc >,则a b >;( ) (5)若a b >,则n n a b >;( ) (6)若0,0a b c d >>>>,则a b c d >;( ) 3.用“>”或“<”号填空: (1)若a b >,则a - b -; (2)若0,0a b >>,则b a 1b a +; (3)若,0a b c >>,则d ac + d bc +; (4)若,0a b c ><,则()c d a - ()c d b -; (5)若,,0a b d e c >><,则d ac - e b c -. 4.(1)如果a b >,那么下列不等式中必定成立的是( ) (A) 1 1 a b <; (B) 22a b >; (C)22ac bc >; (D)2211 a b c c >++. (2)如果0a b >>,那么下列不等式不一定成立的是( ) (A) 1 1 a b <; (B) 2ab b >; (C)22ac bc >; (D) 22a b >. 5.已知,x y R ∈,使1 1 ,x y x y >>同时成立的一组,x y 的值可以是 .

人教课标版高中数学选修4-5:《不等式的基本性质》教案(1)-新版

1.1 课时1 不等式的基本性质 一、教学目标 (一)核心素养 在回顾和复习不等式的过程中,对不等式的基本性质进行系统地归纳整理,并对“不等式有哪些基本性质和如何研究这些基本性质”进行讨论,使学生掌握相应的思想方法,以提高学生对不等式基本性质的认识水平. (二)学习目标 1.理解用两个实数差的符号来规定两个实数大小的意义,建立不等式研究的基础. 2.掌握不等式的基本性质,并能加以证明. 3.会用不等式的基本性质判断不等关系和用比较法. (三)学习重点 应用不等式的基本性质推理判断命题的真假;代数证明. (四)学习难点 灵活应用不等式的基本性质. 二、教学设计 (一)课前设计 1.预习任务 (1)读一读:阅读教材第2页至第4页,填空: a b >? a b =? a b >?> ②a c b c a b +>+?> ③ac bc a b >?> ④33a b a b >?> ⑤22a b a b >?> ⑥,a b c d ac bd >>?> 2.预习自测 (1)当x ∈ ,代数式2(1)x +的值不大于1x +的值. 【知识点】作差比较法 【解题过程】2(1)(1)x x +-+=2(1)x x x x -=- 【思路点拨】熟悉作差比较法 【答案】[0,1]

(2)若c ∈R ,则22ac bc > a b > A.? B.? C.? D.≠ 【知识点】不等式的基本性质 【解题过程】由22ac bc >,得0c ≠,所以20c >;当,0a b c >=时,22ac bc =. 【思路点拨】掌握不等式的基本性质 【答案】A. (3)当实数,a b 满足怎样条件时,由a b >能推出 11a b ,所以当0ab >时,11a b <. 【思路点拨】掌握作差比较法 【答案】当0ab >时, 11a b <. (二)课堂设计 1.问题探究 探究一 结合实例,认识不等式 ●活动① 归纳提炼概念 人与人的年龄大小、高矮胖瘦,物与物的形状结构,事与事成因与结果的不同等等都表现出不等的关系,这表明现实世界中的量,不等是普遍的、绝对的,而相等则是局部的、相对的. 【设计意图】从生活实例到数学问题,从特殊到一般,体会概念的提炼、抽象过程. ●活动② 认识作差比较法 关于实数,a b 的大小关系,有以下基本事实: 如果a b >,那么a b -是正数;如果a b =,那么a b -等于零;如果a b <,那么a b -是负数.反过来也对. 这个基本事实可以表示为:0;0;0a b a b a b a b a b a b >?->=?-=

一元二次方程组教案

5.1.认识二元一次方程组 教学目标: 1.知识与技能:通过实例了解一元二次方程,一元二次方程组及其解的概念,会判断一组数是不是一个二元一次方程组的解。 2教学思考:通过对实际问题的分析,使学生进一步体会方程是刻画现实世界的有效数学模型。. 3解决问题:培养学生能够使用数学知识解决生活实际问题的能力,同时发展学生的观察、归纳、概括的能力。 4.情感态度与价值观:激发学生的求知欲,培养他们勇于探索的精神。 教学重难点: 重点:对二元一次方程,二元一次方程组及其解的理解。 难点:二元一次方程,二元一次方程组及其解的个数。 课时安排: 一课时 教学设计 教学准备 幻灯片 教学流程 (一)复习: 1.一元一次方程的定义. 例:下例哪些方程式一元一次方程? 2(1)35(2)16(3) 32(4)6(5) 3x x y x x xy x π=+==+==+ 注 : 一元:一个未知数 一次:含有未知数的项的次数都是1次 整式:分母中不含字母 2.方程的解:使方程两边相等的未知数的值叫做方程的解 例:x=5是方程3x+5=20的解吗?为什么? 3.方程2x+y=8是一元一次方程吗?若不是,那又什么呢? (二)新课讲授 1、老牛与小马 分析:审题 A :数量问题 B : 2= -小马老牛 C :设老牛驮了x 个包裹, 小马驮了 y 个包裹。 )(小马 老牛121-=+

想一想 2x y -= 12(1)x y +=- 上面所列方程各含有几个未知数? 2个未知数 含有未知数的项的次数是多少? 次数是1 二元一次方程定义:含有两个未知数,并且所含未知数的项的次数都是 1 的整式方程叫做二元一次方程. 判断点:1、未知数几个? 2个 判断点:2、含未知数项的次数是几次? 1次 判断点:3、整式 分母中不含未知数 练一练: 1.请判断下列各方程中,哪些是二元一次 方程,哪些不是?并说明理由. ()()()()21390; 232120; (3)20 1(4)315347; 62100. x y x y xy y x y a b x +-=-+=+=-=-=+= 2.如果方程12231m m n x y -+-=是二元一次方程,那么m =___________,n =______________ . 做一做 6,2x y ==适合方程 8x y +=吗?5,3x y ==呢? 4,4x y ==呢?你还能找到其他 x,y 的值适合方程8x y += 吗? 适合一个二元一次方程的一组未知数的值,叫做这个二元一次方程的一个解 例如: 6,2x y ==是方程8x y +=的一个解,记作6,2.x y =??=? 练一练: 1.在下列四组数值中,哪些是二元一次方程 31x y -=的解? (A ) 2,3.x y =??=? (B ) 4,1.x y =??=? (C )10,3.x y =??=? (D )5,2.x y =-??=-?

相关文档 最新文档