文档库 最新最全的文档下载
当前位置:文档库 › 出入相补原理

出入相补原理

出入相补原理
出入相补原理

出入相补原理

人教版小学数学五年级上册第96页“你知道吗?”谈到了我国古代数学家刘徽所首创的“出入相补原理”,并且给出了两个实例。教参在前面“三角形的面积”和“梯形的面积”的教学建议中,对此已经有所涉及,因此,这部分教学内容究竟是分散提前,还是保持原状,要根据学生的基础情况灵活处理。

出入相补原理是把一个陌生的或者复杂的图形,经过分割、移补,变成熟悉的简单的图形,由于在分割、移补的过程中,变化的只是图形的形状、位置和组成方式,图形的面积并没有改变,所以,最后得到的图形的面积仍然与原来图形的面积相等,而后者可以用已知的方法比较方便地计算出来,这就是出入相补原理的本质特征。出入相补原理蕴含了转化的思想方法,是一种典型的重要的数学思考。

出入相补原理在我国数学的发展史上产生过重大影响。以勾股定理的证明为例,三国时期吴国的赵爽在出入相补原理的基础上,创造了“演段算法”,利用“弦图”证明了勾股定理。到了清代,华蘅芳更是把“演段算法”发展到极致,利用22幅“青朱出入图”对勾股定理进行了别开生面的证明,令人对这种具有中国特色的“演段算法”刮目相看。

用出入相补原理解决求平面图形面积的问题,可以活跃学生的思路,提高思维的灵活性,使学生在潜移默化中掌握转化的思想方法。为了加强这方面的教育,可以借此机会设计更多的问题供学生思考。如,

1、怎样用与课本上不同的方法,把一个平行四边形变成长方形?

2、怎样把一个三角形变成平行四边形?

3、怎样把一个梯形变成长方形?

过去在多边形面积的传统教学中,往往过分侧重于让学生牢记公式进行计算,使数学仅仅停留在工具的层面上,而不大重视数学的基础作用和数学对思维方法的要求,至于数学的文化属性更是无从体现。随着时代的进步和教育教学改革的发展,人们越来越认识到这种状况必须改变。多边形面积的教学,为教学思想的转变和升华提供了一个大好机会,一定不要错过。

评论这张

转发至微博

逐点比较插补原理的实现

目录 1设计任务及要求 (1) 2方案比较及认证 (2) 3设计原理 (4) 3.1硬件原理 (4) 3.2硬件原理 (5) 4软件系统 (9) 4.1软件思想 (9) 4.2流程图 (9) 4.3源程序 (9) 5调试记录及结果分析 (10) 5.1界面设置 (10) 5.2调试记录 (10) 5.3结果分析 (11) 6心得体会 (13) 7 参考资料 (14) 附录 (15)

1设计任务及要求 设计一个计算机控制步进电机系统,该系统利用PC 机的并口输出控制信号,其信号驱动后控制X 、Y 两个方向的三相步进电机转动,利用逐点比较法插补绘制出如下曲线。 课程设计的主要任务: 1.设计硬件系统,画出电路原理框图; 2.定义步进电机转动的控制字; 3.推导出用逐点比较法插补绘制出下面曲线的算法; 4.编写算法控制程序,参数由键盘输入,显示器同时显示曲线; 5. 撰写设计说明书。课程设计说明书应包括:设计任务及要求;方案比较及认证;系统滤波原理、硬件原理,电路图,采用器件的功能说明;软件思想,流程,源程序;调试记录及结果分析;参考资料;附录:芯片资料,程序清单;总结。 X Y O

2方案比较及认证 本次课程设计内容为设计一个计算机控制步进电机系统,该系统利用PC 机的并口输出控制信号,其信号驱动后控制X 、Y 两个方向的三相步进电机转动,利用逐点比较法插补绘制出第一象限逆圆弧。数字程序控制主要应用于机床的自动控制,如用于铣床、车床、加工中心、以及线切割等的自动控制中。 采用数字程序控制的机床叫数控机床,它能加工形状复杂的零件、加工精度高、生产效率高、便于改变加工零件品种等优点,是实现机床自动化的一个重要发展方向。本次课程设计采用逐点比较法插补原理以及作为数字程序控制系统输出装置的步进电机控制技术进行第一象限圆弧插补。第一象限圆弧如图2-1所示。 图2-1 第一象限逆圆弧 针对以上设计要求,采用步进电机插补原理进行逐步逼近插补。 硬件方面,步进电机是机电控制中一种常用的执行机构,它的用途是将电脉冲转化为角位移,通俗地说:当步进驱动器接收到一个脉冲信号,它就驱动步进电机按设定的方向转动一个固定的角度(及步进角)。通过控制脉冲个数即可以控制角位移量,从而达到准确定位的目的;同时通过控制脉冲频率来控制电机转动的速度和加速度,从而达到调速的目的。 逐点比较法是以阶梯折线来逼近直线或圆弧等曲线,它与规定的加工直线或圆弧之间的最大误差为一个脉冲当量,因此只要把脉冲当量(每走一步的距离即步长)取得足够小,就可以达到精度的要求。以下为课程设计要求插补的第一象限逆圆弧。图3-3为第一象限逆圆弧。 X Y O

常见色谱仪的色谱分离原理

常见色谱仪的色谱分离原理 高效液相色谱法按分离机制的不同分为液固吸附色谱法、液液分配色谱法(正相与反相)、离子交换色谱法、离子对色谱法及分子排阻色谱法。 1.液固色谱法:使用固体吸附剂,被分离组分在色谱柱上分离原理是根据固定相对组分吸附力大小不同而分离。分离过程是一个吸附-解吸附的平衡过程。常用的吸附剂为硅胶或氧化铝,粒度5~10μm。适用于分离分子量200~1000的组分,大多数用于非离子型化合物,离子型化合物易产生拖尾。常用于分离同分异构体。 2.液液色谱法:使用将特定的液态物质涂于担体表面,或化学键合于担体表面而形成的固定相,分离原理是根据被分离的组分在流动相和固定相中溶解度不同而分离。分离过程是一个分配平衡过程。 涂布式固定相应具有良好的惰性;流动相必须预先用固定相饱和,以减少固定相从担体表面流失;温度的变化和不同批号流动相的区别常引起柱子的变化;另外在流动相中存在的固定相也使样品的分离和收集复杂化。由于涂布式固定相很难避免固定液流失,现在已很少采用。现在多采用的是化学键合固定相,如C18、 C8、氨基柱、氰基柱和苯基柱。 液液色谱法按固定相和流动相的极性不同可分为正相色谱法(NPC)和反相色谱法(RPC)。 正相色谱法:采用极性固定相(如聚乙二醇、氨基与腈基键合相);流动相为相对非极性的疏水性溶剂(烷烃类如正已烷、环已烷),常加入乙醇、异丙醇、四氢呋喃、三氯甲烷等以调节组分的保留时间。常用于分离中等极性和极性较强的化合物(如酚类、胺类、羰基类及氨基酸类等)。 反相色谱法:一般用非极性固定相(如C18、C8);流动相为水或缓冲液,常加入甲醇、乙腈、异丙醇、丙酮、四氢呋喃等与水互溶的有机溶剂以调节保留时间。适用于分离非极性和极性较弱的化合物。RPC在现代液相色谱中应用最为广泛,据统计,它占整个HPLC应用的80%左右。 随着柱填料的快速发展,反相色谱法的应用范围逐渐扩大,现已应用于某些无机样品或易解离样品的分析。为控制样品在分析过程的解离,常用缓冲液控制流动相的pH值。但需要注意的是,C18和C8使用的pH值通常为2.5~7.5(2~8),太高的pH

教学设计原理与方法

教学设计原理与方法 一、教学设计概述 1、教学设计的定义是什么?谈谈你是如何理解的。 对教学结果作出评价的一种计划过程与操作程序。 确定并解决教学问题,实现教学最优化的现代教学技术。 (教学设计不再是简单的设计之后加以实施的问题,而是一个在学—教的具体境脉中、在互动中发展演化的过程。) 教学设计属于教育科学领域的方法论学科,是教学论的重要组成部分。 教学设计的基本原理与方法适用于不同类型和层次的教学系统的设计,具有很强的实践性、操作性。 2、教学设计的理论基础是什么? a)系统科学理论 b)学习理论 c)教学理论 d)教育传播理论 3、教学设计的内容包括哪些? 1、分析教学目标 2、确定教学策略 3、进行教学评价 4、教学设计应用在哪些领域?试举例说明。 (一)教学类型(过程)的设计 1、多媒体组合课堂教学 2、基于局域网的网络教学 3、广播电视远程教学 4、基于Internet的远程教学 (二)教学资源的设计 1、电视教材 2、多媒体(网络)课件 3、专题学习网站 4、网络课程 5、专业资源库 二、学习者特征与教学目标分析 1、学习者特征分析的内涵是什么?教学中通常需要分析学习者的哪些特征?(学生的认知结构和认知发展水平、学习者的起点能力分析、学习风格、自我效能感、学习动机) 教学中通常需要分析学习者的: 一、认知发展特征分析 二、起点能力分析 三、学习风格分析 四、学习动机分析 五、学习自我效能感分析 2、教学目标分类的代表性理论有哪些?

(一)布卢姆等的教学目标分类理论 1、认知领域 2、动作技能领域 3、情感领域 (二)加涅的学习结果分类理论 (三)国内对教学目标的研究 3、教学目标分析方法有哪些?举例说明如何表述教学目标? 依据知识点的内容属性确定具体的教学目标,采用教学内容与教学目标二维层次模型 行为目标的ABCD表述方法 A即Audience,意指“学习者”,要求有明确的学习者,他们是目标表述句中的主语。 B即Behavior,意为“行为”,要求说明通过学习后,学习者应能做什么,是目标表述句中的谓语和宾语。 C即Conditions,意为“条件”,要求说明上述行为在什么条件下产生,是目标表述句中的状语。 D即Degree,意为“程度”,要求明确上述行为的标准。 三、学习环境设计 1、学习环境的内涵是什么? 谈谈你是如何理解的 /场所说 /工具说 /条件说 广义的学习环境,是指一切影响学习的环境条件和各种因素。 狭义的学习环境,是指在正规课程中影响课堂学习的各种情况和条件。(专指课堂学习环境) 全面认识学习环境概念,需要结合学习环境的空间和时间两个存在形式来考察,学习环境既是一种静态的系统结构,也是一种动态的发展过程。 2、建构主义学习环境的基本构成要素是什么?举例说明。 3、试述学习环境的设计方法。 ——真实情境 ——问题情境 ——模拟真实情境 四、学习资源设计 1、学习资源的主要类型有哪些?

色谱法的分类及其原理

色谱法的分类及其原理 (一)按两相状态 气相色谱法:1、气固色谱法 2、气液色谱法 液相色谱法:1、液固色谱法 2、液液色谱法 (二)按固定相的几何形式 1、柱色谱法(column chromatography) :柱色谱法是将固定相装在一金属或玻璃柱中或是将固定相附着在毛细管内壁上做成色谱柱,试样从柱头到柱尾沿一个方向移动而进行分离的色谱法 2、纸色谱法(paper chromatography):纸色谱法是利用滤纸作固定液的载体,把试样点在滤纸上,然后用溶剂展开,各组分在滤纸的不同位置以斑点形式显现,根据滤纸上斑点位置及大小进行定性和定量分析。 3、薄层色谱法(thin-layer chromatography, TLC) :薄层色谱法是将适当粒度的吸附剂作为固定相涂布在平板上形成薄层,然后用与纸色谱法类似的方法操作以达到分离目的。 (三)按分离原理 按色谱法分离所依据的物理或物理化学性质的不同,又可将其分为:

1、吸附色谱法:利用吸附剂表面对不同组分物理吸附性能的差别而使之分离的色谱法称为吸附色谱法。适于分离不同种类的化合物(例如,分离醇类与芳香烃)。 2、分配色谱法:利用固定液对不同组分分配性能的差别而使之分离的色谱法称为分配色谱法。 3、离子交换色谱法:利用离子交换原理和液相色谱技术的结合来测定溶液中阳离子和阴离子的一种分离分析方法,利用被分离组分与固定相之间发生离子交换的能力差异来实现分离。离子交换色谱主要是用来分离离子或可离解的化合物。它不仅广泛地应用于无机离子的分离,而且广泛地应用于有机和生物物质,如氨基酸、核酸、蛋白质等的分离。 4、尺寸排阻色谱法:是按分子大小顺序进行分离的一种色谱方法,体积大的分子不能渗透到凝胶孔穴中去而被排阻,较早的淋洗出来;中等体积的分子部分渗透;小分子可完全渗透入内,最后洗出色谱柱。这样,样品分子基本按其分子大小先后排阻,从柱中流出。被广泛应用于大分子分级,即用来分析大分子物质相对分子质量的分布。 5、亲和色谱法:相互间具有高度特异亲和性的二种物质之一作为固定相,利用与固定相不同程度的亲和性,使成分与杂质分离的色谱法。例如利用酶与基质(或抑制剂)、抗原与抗体,激素与受体、外源凝集素与多糖类及核酸的碱基对等之间的专一的相互作用,使相互作用物质之一方与不溶性担体形成共价结合化合物,

插补原理

插补原理:在实际加工中,被加工工件的轮廓形状千差万别,严格说来,为了满足几何尺寸精度的要求,刀具中心轨迹应该准确地依照工件的轮廓形状来生成,对于简单的曲线数控系统可以比较容易实现,但对于较复杂的形状,若直接生成会使算法变得很复杂,计算机的工作量也相应地大大增加,因此,实际应用中,常采用一小段直线或圆弧去进行拟合就可满足精度要求(也有需要抛物线和高次曲线拟合的情况),这种拟合方法就是“插补”,实质上插补就是数据密化的过程。插补的任务是根据进给速度的要求,在轮廓起点和终点之间计算出若干个中间点的坐标值,每个中间点计算所需时间直接影响系统的控制速度,而插补中间点坐标值的计算精度又影响到数控系统的控制精度,因此,插补算法是整个数控系统控制的核心。插补算法经过几十年的发展,不断成熟,种类很多。一般说来,从产生的数学模型来分,主要有直线插补、二次曲线插补等;从插补计算输出的数值形式来分,主要有脉冲增量插补(也称为基准脉冲插补)和数据采样插补[26]。脉冲增量插补和数据采样插补都有个自的特点,本文根据应用场合的不同分别开发出了脉冲增量插补和数据采样插补。 1数字积分插补是脉冲增量插补的一种。下面将首先阐述一下脉冲增量插补的工作原理。2.脉冲增量插补是行程标量插补,每次插补结束产生一个行程增量,以脉冲的方式输出。这种插补算法主要应用在开环数控系统中,在插补计算过程中不断向各坐标轴发出互相协调的进给脉冲,驱动电机运动。一个脉冲所产生的坐标轴移动量叫做脉冲当量。脉冲当量是脉冲分配的基本单位,按机床设计的加工精度选定,普通精度的机床一般取脉冲当量为:0.01mm,较精密的机床取1或0.5 。采用脉冲增量插补算法的数控系统,其坐标轴进给速度主要受插补程序运行时间的限制,一般为1~3m/min。脉冲增量插补主要有逐点比较法、数据积分插补法等。逐点比较法最初称为区域判别法,或代数运算法,或醉步式近似法。这种方法的原理是:计算机在控制加工过程中,能逐点地计算和判别加工偏差,以控制坐标进给,按规定图形加工出所需要的工件,用步进电机或电液脉冲马达拖动机床,其进给方式是步进式的,插补器控制机床。逐点比较法既可以实现直线插补也可以实现圆弧等插补,它的特点是运算直观,插补误差小于一个脉冲当量,输出脉冲均匀,速度变化小,调节方便,因此在两个坐标开环的CNC系统中应用比较普遍。但这种方法不能实现多轴联动,其应用范围受到了很大限制。对于圆弧插补,各个象限的积分器结构基本上相同,但是控制各坐标轴的进给方向和被积函数值的修改方向却不同,由于各个象限的控制差异,所以圆弧插补一般需要按象限来分成若干个模块进行插补计算,程序里可以用圆弧半径作为基值,同时给各轴的余数赋比基值小的数(如R/2等),这样可以避免当一个轴被积函数较小而另一个轴被积函数较大进,由于被积函数较小的轴的位置变化较慢而引起的误差。4.2 时间分割插补是数据采样插补的一种。下面将首先阐述数据采样插补的工作原理。2.1 数据采样插补是根据用户程序的进给速度,将给定轮廓曲线分割为每一插补周期的进给段,即轮廓步长。每一个插补周期执行一次插补运算,计算出下一个插补点坐标,从而计算出下一个周期各个坐标的进给量,进而得出下一插补点的指令位置。与基准脉冲插补法不同的是,计算出来的不是进给脉冲而是用二进制表示的进给量,也就是在下一插补周期中,轮廓曲线上的进给段在各坐标轴上的分矢大小,计算机定时对坐标的实际位置进行采样,采样数据与指令位置进行比较,得出位置误差,再根据位置误差对伺服系统进行控制,达到消除误差使实际位置跟随指令位置的目的。数据采样法的插补周期可以等于采样周期也可以是采样周期的整数倍;对于直线插补,动点在一个周期内运动的

《教学设计原理与方法》课程复习提纲-

《教学设计原理与方法》复习提纲 (20XX年6月) | 一、教学设计概述 1、教学设计的定义是什么 教学设计是应用系统方法分析研究教学的问题和需求,确定解决它们的教学策略、教学方法和教学步骤,并对教学结果作出评价的一种计划过程与操作程序。 2、教学设计的理论基础是什么 系统科学理论、学习理论、教学理论、教育传播理论 3、教学设计的内容包括哪些 1、分析教学目标 2、确定教学策略 3、进行教学评价 4、教学设计应用在哪些领域试举例说明。 ? 教学类型(过程)的设计教学资源的设计 1、多媒体组合课堂教学 1、多媒体(网络)课件 2、基于局域网的网络教学 2、专题学习网站 3、广播电视远程教学3、网络课程 4、基于Internet的远程教学 4、专业资源库 二、教学目标与教学内容分析 1、教学目标的定义是什么 教学目标是对学习者通过教学后应该表现出来的可见行为的具体明确的表述,是教学设计和课程设计的基础,是学习者在教学活动实施中应达到的学习结果。 | 2、教学目标分类的代表性理论有哪些

3、教学目标分析方法有哪些教学目标的表述方法有哪些试举例说明。 教学目标的分析方法: (1)分析教学内容 (2)分解目标层次 (3)表述教学目标教学目标的表述方法: ` (一)行为目标的ABCD表述法 对象(audition)、行为(behavior)、条件(conditions)、标准(degree) Ex:(“给予20个要填写形容词的未完成的句子,学生能在15分钟内分别写出形容词以完成句子”) (二)内部过程与外显行为相结合的表述法(三)表现性目标的表述法 4、教学内容可以分为哪几类 事实、概念、技能、原理、问题解决 5、教学内容分析方法有哪些教学内容分析的关键在什么地方 归类分析法图解分析法层级分析法信息加工分析法 教学内容分析的关键: "

非线性控制理论和方法

非线性控制理论和方法 姓名:引言 人类认识客观世界和改造世界的历史进程,总是由低级到高级,由简单到复杂,由表及里的纵深发展过程。在控制领域方面也是一样,最先研究的控制系统都是线性的。例如,瓦特蒸汽机调节器、液面高度的调节等。这是由于受到人类对自然现象认识的客观水平和解决实际问题的能力的限制,因为对线性系统的物理描述和数学求解是比较容易实现的事情,而且已经形成了一套完善的线性理论和分析研究方法。但是,现实生活中,大多数的系统都是非线性的。非线性特性千差万别,目前还没一套可行的通用方法,而且每种方法只能针对某一类问题有效,不能普遍适用。所以,可以这么说,我们对非线性控制系统的认识和处理,基本上还是处于初级阶段。另外,从我们对控制系统的精度要求来看,用线性系统理论来处理目前绝大多数工程技术问题,在一定范围内都可以得到满意的结果。因此,一个真实系统的非线性因素常常被我们所忽略了,或者被用各种线性关系所代替了。这就是线性系统理论发展迅速并趋于完善,而非线性系统理论长期得不到重视和发展的主要原因。控制理论的发展目前面临着一系列严重的挑战, 其中最明显的挑战来自大范围运动的非线性复杂系统, 同时, 现代非线性科学所揭示的分叉、混沌、奇异吸引子等, 无法用线性系统理论来解释, 呼唤着非线性控制理论和应用的突破。 1.传统的非线性研究方法及其局限性 传统的非线性研究是以死区、饱和、间隙、摩擦和继电特性等基本的、特殊的非线性因素为研究对象的, 主要方法是相平面法和描述函数法。相平面法是Poincare于1885年首先提出的一种求解常微分方程的图解方法。通过在相平面上绘制相轨迹, 可以求出微分方程在任何初始条件下的解。它是时域分析法在相空间的推广应用, 但仅适用于一、二阶系统。描述函数法是 P. J.Daniel于1940

CNC装置的插补原理

CNC装置的插补原理 一、插补的概念 为了加工零件的轮廓,在加工过程中,需要保证刀具相对工件时刻运动的位置是在零件轮廓的轨迹上,这就需要知道不同时刻刀具相对工件运动的位置坐标,以便实现位置控制。而在零件加工程序中仅提供了描述轮廓线形所必须的参数:直线—出发点和终点坐标;圆弧—出发点、终点坐标以及顺圆或逆圆。这就需要在加工(运动)过程中,实时地根据给定轮廓线形和给定进给速度要求计算出不同时刻刀具相对工件的位置,即出发点和终点之间的若干个中间点。这就是插补的概念。 插补定义:插补就是根据给定进给速度给定轮廓线形的要求,在轮廓已知点之间,确定一些中间点的方法,称为插补方法或插补原理。 每种线形的插补方法,有可以有不同的计算方法来实现,那么,具体实现插补原理的计算方法称为插补算法。 插补算法的优劣直接影响CNC系统的性能指标。 二、评价插补算法的指标 1、稳定性指标 插补运算是一种迭代运算,即由上一次计算结果求得本次的计算结果:Xi=Xi-1+Δi。作为数值计算,每次计算会存在计算误差和舍进误差。 计算误差:指由于采用近似计算而产生的误差; 舍进误差:指计算结果圆整时所产生的误差。 对于某一算法,误差可能不随迭代次数的增加而积累,而另一算法误差可能随迭代的次数增加而积累,那么,一种算法对计算误差和舍进误差有没有积累效应,就是算法的稳定性。 为了确保轮廓加工精度,插补算法必须是稳定的。插补算法稳定的充分必要条件是,在插补计算过程中,其舍进误差和计算误差不随迭代次数的增加而积累。 2、插补精度指标 插补精度指插补轮廓与给定轮廓的符合程度,可用插补误差来评价。 插补误差包括:逼近误差δa、计算误差δc、圆整误差δr。 逼近误差和计算误差与插补算法密切相关。 要求:插补误差(轨迹误差)不大于系统的最小运动指令或脉冲当量。 3、合成速度的均匀性指标 合成速度的均匀性是指插补运算输出的各轴进给量,经运动合成的实际速度与给定的进给速度的符合程度,由速度不均匀系数描述:

教学设计原理加涅完整笔记

教学设计原理 R.M.加涅 相关书籍: 《学习的条件和教学论》R.M.加涅 《学习心理学:一种面向教学的观点》P.M.德里斯科尔 《学习与教学》R.E.梅耶 《教学设计原理》R.M.加涅 《学习、教学与评估的分类学:布卢姆教育目标分类的修订》布卢姆 《系统化教学设计》W.迪克 《教学设计》P.L.史密斯 一教学系统导论 1 教学设计导论 教学设计的主体内容:教师用来使学生参与到学习活动中去的完整的活动范围,如: ?如何将学生进行分组,以有助于学生学习和交流 ?什么时候练习与反馈最有效 ?技能知识学习的前置知识有哪些 掌握教学设计原理的目的: 按照一定的理论,对教学设计过程进行设计,促进学生参与到学习事件和活动中去,使教学更有效。 1.1 教学设计的基本假设 没有哪一种教学设计模型是最佳的,基本假设: ?教学设计是帮助学习过程,而不是教学过程(目的是达到教学效果) ?学习效果受多种因素的影响(毅力、时间、教学质量、学生能力、原有知识、学习能力等) ?教学设计模型可运用到多种教学场景下(学生个体、小组、大组),原理保持不变 ?利用学习者对教学设计进行检验,反复设计与验证,使教学趋于完善 ?教学设计本身是一个过程,包含相关子过程(原子过程是:将学生置于学习过程中的预习、评价、 反馈等) ?不同的学习目标需要不同的教学形式 1.2 学习原理 学习情境 人在清醒的时刻,都在观察和处理信息,一些信息被记忆,一些被摒弃。 是什么让人记忆: ?学习者内部(来源于学习者,想获知) ?学习者外部(提供一个事件,包括学习内容、目的、方法等环境) ?学习者、学习发生的情境、学习的内容、学习过程等存在着相互作用 教学原则 从学习原理中,指导教学设计的一些原则: ?接近:教学环境与学习目的相接近 教学情境的设计接近学习的目的,或学习预期。教学设计以达到教学目标为纲,而不应以方便学习或教学为目的。如,学习目的是“在没有帮助的情况下,装配一支枪”,教学中要尽量避免给学生图纸。 ?重复:教学环境与学习者的反应需要重复,以使学习得到进步 重复的教学环境和学习者反应,只是一种练习形式,而非基本条件,也不是必须的。

控制理论与控制工程概述

学科介绍 该学科为交叉学科,不同的大学该学科均有不同的侧重点: 控制理论与控制工程学科是以工程系统为主要对象,以数学方法和计算机技术为主要工具,研究各种控制策略及控制系统的理论、方法和技术。控制理论是学科的重要基础和核心内容,控制工程是学科的背景动力和发展目标。本学科的智能控制方向主要包括模糊控制、专家系统、神经元网络、遗传算法等方面的研究,特别强调的是上述方法的交叉及其在工业过程控制方面的应用。故障诊断方向主要研究当控制系统一旦发生故障时,仍能保证闭环系统稳定,且满足规定的性能指标。利用获得的实时数据对生产过程进行在线监测及故障诊断,根据系统的运行状态制定相应的控制策略,使系统工作在最佳状态。鲁棒控制方向主要研究被控对象参数变化后,控制系统仍能稳定可靠的工作,并在某种意义下保证系统的最优性。信号处理方向主要研究控制系统中的信号处理问题,包括非线性系统的鲁棒滤波器的设计,自适应滤波器、噪声抵消器、小波分析等。 控制理论与控制工程是研究运动系统的行为、受控后的运动状态以及达到预期动静态性能的一门综合性学科。在理论方面,利用各种数学工具描述系统的动静态特性,以建模、预测、优化决策及控制为主要研究内容。在应用方面,将理论上的研究成果与计算机技术、网络技术和现代检测技术相结合,形成各种新型的控制器或控制系统。研究内容涵盖从基础理论到工程设计与实现技术的多个层次,应用遍及从工业生产过程到航空航天系统以及社会经济系统等极其广泛的领域。 研究方向 复杂系统控制理论与应用:采用结构分散化方法研究复杂系统的建模与控制问题,以结构分散化模型为基础,研究新的系统辨识理论和新的控制方法。 智能控制理论研究与应用:在对模糊控制、神经网络、专家系统和遗传算法等理论进行分析和研究的基础上,重点研究多种智能方法综合应用的集成智能控制算法。 计算机控制系统:针对不同的生产过程和控制对象,研究采用DCS、PLC、工业控制计算机等控制设备,构成低成本、高性能、多功能的计算机控制系统。 网络控制理论及其应用:通过对网络拓扑结构及网络环境下先进控制理论与方法的研究,充分利用网络资源,实现从决策到控制的全过程优化。 开设学校

教学设计原理 加涅 完整笔记

教学设计原理 R.M.加涅

相关书籍: 《学习的条件和教学论》R.M.加涅 《学习心理学:一种面向教学的观点》P.M.德里斯科尔 《学习与教学》R.E.梅耶 《教学设计原理》R.M.加涅 《学习、教学与评估的分类学:布卢姆教育目标分类的修订》布卢姆《系统化教学设计》W.迪克 《教学设计》P.L.史密斯

一教学系统导论 1 教学设计导论 教学设计的主体内容:教师用来使学生参与到学习活动中去的完整的活动范围,如: ?如何将学生进行分组,以有助于学生学习和交流 ?什么时候练习与反馈最有效 ?技能知识学习的前置知识有哪些 掌握教学设计原理的目的: 按照一定的理论,对教学设计过程进行设计,促进学生参与到学习事件和活动中去,使教学更有效。 1.1 教学设计的基本假设 没有哪一种教学设计模型是最佳的,基本假设: ?教学设计是帮助学习过程,而不是教学过程(目的是达到教学效果) ?学习效果受多种因素的影响(毅力、时间、教学质量、学生能力、原有知识、学习能力等) ?教学设计模型可运用到多种教学场景下(学生个体、小组、大组),原理保持不变 ?利用学习者对教学设计进行检验,反复设计与验证,使教学趋于完善 ?教学设计本身是一个过程,包含相关子过程(原子过程是:将学生置于学习过程中的预习、评价、 反馈等) ?不同的学习目标需要不同的教学形式 1.2 学习原理 学习情境 人在清醒的时刻,都在观察和处理信息,一些信息被记忆,一些被摒弃。 是什么让人记忆: ?学习者内部(来源于学习者,想获知) ?学习者外部(提供一个事件,包括学习内容、目的、方法等环境)

?学习者、学习发生的情境、学习的内容、学习过程等存在着相互作用 教学原则 从学习原理中,指导教学设计的一些原则: ?接近:教学环境与学习目的相接近 教学情境的设计接近学习的目的,或学习预期。教学设计以达到教学目标为纲,而不应以方便学习或教学为目的。如,学习目的是“在没有帮助的情况下,装配一支枪”,教学中要尽量避免给学生图纸。 ?重复:教学环境与学习者的反应需要重复,以使学习得到进步 重复的教学环境和学习者反应,只是一种练习形式,而非基本条件,也不是必须的。 ?强化:使学习变得有期望,以便学习者能“自我激励” 学习过程中,如果能让学习者看到预期的结果,并相信能达到,将使学习得到强化。预期的结果可以分为两种 ?短期,如学习习得了,就有奖励等 ?长期,如社会期望、人生追求、家庭厚望等 ?合作协商:学生与其他学生或知识丰富的人一起学习,以确认信息的意义,即合作学习环境可以 促进学习 ?广泛认知:学生广泛的获取相关惰性知识(初步接触,并不注重应用,在需要时能回忆起来,并 通过进一步学习掌握的知识),是教学环境设计的一部分 ?组织活动:通过参加活动来促进学习发生 要明确学习是活动的结果和目的。

智能控制理论与方法

智能控制理论与方法 智能控制是自动控制发展的高级阶段,是人工智能、控制论、系统论、信息论、仿生学、神经生理学、进化计算和计算机等多种学科的高度综合与集成,是一门新兴的边缘交叉学科。它不仅包含了自动控制、人工智能、运筹学和信息论的内容,而且还从计算机科学、生物学、心理学等学科中汲取营养。什么又是智能控制理论呢? 智能控制的概念和原理是针对被控对象及其环境、控制目标或任务的复杂性和不确定性而提出来的。对“智能控制”这一术语没有确切的定义,但是也有前辈做过归纳总结的,例如,IEEE控制系统协会归纳为:只能控制系统必须具有模拟人类学习(Learning)和自适应(Adaptation)的能力。智能控制系统是智能机自动完成其目标的控制过程,由智能机参与生产过程自动控制的系统称为智能控制系统。定性的说,智能控制系统应具有学习、记忆和大范围的自适应和自组织能力;能够及时地适应不断变化的环境;能有效的处理各种信息,以减小不确定性;能够以安全和可靠地方式进行规划、生产和执行控制动作而达到预定的目的和良好的性能指标。 智能控制系统一般具有以知识表示的非数学广义模型和艺术学模型表示的混合控制过程。它适用于含有复杂性、不完全性、模糊性、不确定和不存在的已知算法的生产过程。它根据被控动态过程特征辨识,采用开闭环控制盒定性与定量控制相结合的多模态的控制方式。 智能控制器具有分层信息处理和决策机构。它实际上是对人神经

结构或专家决策机构的一种模仿。复杂的系统中,通常采用任务分块、控制分散方式。智能控制核心在高层控制,它对环境或过程进行组织、决策和规划,实现广义求解。要实现此任务需要采集符号信息处理、启发式程序设计、知识展示及自动推理和决策的相关技术。底层控制也属于智能控制系统不可缺少的一部分,一般采用常规控制。智能控制器也具有非线性。这是因为认得思维具有非线性,作为模仿人的思维进行决策的智能控制也具有非线性。由于智能控制器具有在线特征辨识、特征记忆和拟人特点,在整个控制过程中计算机在线获取信息和实时处理并给出控制决策,通过不断优化参数和寻找控制器的最佳结构方式,以获取整体最有控制性能。 模糊控制系统是智能控制的重要组成部分。模糊控制器是非线性控制器,许多传统的建模、分析和设计方法可以直接采用。任何的控制都有其数学理论和数学基础,模糊控制系统的数学基础是模糊集合、模糊规则和模糊推理。模糊集合就是指具有某个模糊概念所描述的属性的对象的全体,这一概念是美国加利福尼亚大学控制论专家L.A.扎德于 1965 年首先提出的。模糊集合这一概念的出现使得数学的思维和方法可以用于处理模糊性现象,从而构成了模糊集合论(中国通常称为模糊性数学)的基础。 模糊控制的核心就是利用模糊集合理论,把表达的人控制策略的自然语言转化为计算机能够承受的算法语言的控制算法,这种方法不仅能实现控制,而且能模拟人的思维方式,对一些无法构造的数学模 型的被控对象进行有效的控制。模糊控制与一般的自动控制的根本区

第五章运动控制插补原理及实现

运动控制插补原理及实现 数控系统加工的零件轮廓或运动轨迹一般由直线、圆弧组成,对于一些非圆曲线轮廓则用直线或圆弧去逼近。插补计算就是数控系统根据输入的基本数据,通过计算,将工件的轮廓或运动轨迹描述出来,边计算边根据计算结果向各坐标发出进给指令。 数控系统常用的插补计算方法有:逐点比较法、数字积分法、时间分割法、样条插补法等。逐点比较法,即每一步都要和给定轨迹上的坐标值进行比较,视该点在给定规矩的上方或下方,或在给定轨迹的里面或外面,从而决定下一步的进给方向,使之趋近给定轨迹。 直线插补原理 图3—1是逐点比较法直线插补程序框图。图中n是插补循环数,L是第n个插补循环中偏差函数的值,Xe,Y。是直线的终点坐标,m是完成直线插补加工刀具沿X,y轴应走的总步数。插补前,刀具位于直线的起点,即坐标原点,偏差为零,循环数也为零。 在每一个插补循环的开始,插补器先进入“等待”状态。插补时钟发出一个脉冲后,插补器结束等待状态,向下运动。这时每发一个脉冲,触发插补器进行一个插补循环。所以可用插补时钟控制插补速度,同时也可以控制刀具的进给速度。插补器结束“等待”状态后,先进行偏差判别。若偏差值大于等于零,刀具的进给方向应为+x,进给后偏差值成为Fm-ye;若偏差值小于零,刀具的进给方向应为+y,进给后的插补值为Fm+xe。。 进行了一个插补循环后,插补循环数n应增加l。 最终进行终点判别,若n

《教学设计原理与方法》考核方式

《教学设计原理与方法》考评方式与标准 一、考核的形式 本课程考核的形式主要有三种,分别是日常考查、项目实践评定与期末考试评定。 日常考查是一种伴随日常教学而进行的经常性检查和了解学生学习情况的方法。本课程采用的日常考查形式主要是习题作业。 项目实践评定是一种针对项目或任务的实践成果而进行考核评价的方法。本课程综合采用电子作品(e-work)和评价量规(rubric)对每一项目实践的成果加以评定。 ?电子作品是学习者根据所学的知识,针对某一主题独立完成任务并以成果的 形式如电子作品、解决方案、研究报告、网页等方式展示自己的学习所得。 ?评价量规是一个评分工具,它为一个作品或其他成果表现列出标准,并且从 优到差明确描述每个标准的水平。 期末考试是依据课程目标和内容,选择一系列有代表性的问题,按照一定的程序与方式,对学生所学知识的掌握程度及综合运用知识的能力进行测量与评价的方法。 二、考核的内容 针对不同的考核形式,相应地,有不同的考核内容。 日常考查的内容主要是各教学专题的习题作业,请参见习题作业。 项目实践评定的内容主要是三个电子作品,并依据三个评价量规进行评价(如表1所示)。 项目实践内容电子作品评价量规 项目实践1:网络教学资源 的设计选择某一个学科的某一个内容,基 于一定的教学策略与设计方法,参 照资源技术规范,设计与开发一个 网络教学资源。 参见“附录1:网络教学资源 评价量规” 项目实践2:教学过程(模 式)的设计依据已开发的学习资源,选择合适 的教学模式(策略)进行教学过程 设计,撰写一份教学设计方案。 参见“附录2:教学设计方案 评价量规” 项目实践3:教学(培训)绩效改进方案的设计结合具体的问题,运用以绩效为导 向的教学设计方法,设计一份教学 (培训)绩效改进方案。 参见“附录3:教学(培训) 绩效改进方案评价量规”

现代控制理论的产生、发展、内容、研究方法和应用经典控制理论与现代控制理论的差异

现代控制理论的产生、发展、内容、研究方法和应用经典控制理论与现代控制理论的差异 建立在状态空间法基础上的一种控制理论,是自动控制理论的一个主要组成部分。在现代控制理论中,对控制系统的分析和设计主要是通过对系统的状态变量的描述来进行的,基本的方法是时间域方法。现代控制理论比经典控制理论所能处理的控制问题要广泛得多,包括线性系统和非线性系统,定常系统和时变系统,单变量系统和多变量系统。它所采用的方法和算法也更适合于在数字计算机上进行。现代控制理论还为设计和构造具有指定的性能指标的最优控制系统提供了可能性。现代控制理论的名称是在1960年以后开始出现的,用以区别当时已经相当成熟并在后来被称为经典控制理论的那些方法。现代控制理论已在航空航天技术、军事技术、通信系统、生产过程等方面得到广泛的应用。现代控制理论的某些概念和方法,还被应用于人口控制、交通管理、生态系统、经济系统等的研究中。 现代控制理论是在20世纪50年代中期迅速兴起的空间技术的推动下发展起来的。空间技术的发展迫切要求建立新的控制原理,以解决诸如把宇宙火箭和人造卫星用最少燃料或最短时间准确地发射到预定轨道一类的控制问题。这类控制问题十分复杂,采用经典控制理论难以解决。1958年,苏联科学家Л.С.庞特里亚金提出了名为极大值原理的综合控制系统的新方法。在这之前,美国学者R.贝尔曼于1954年创立了动态规划,并在1956年应用于控制过程。他们的研究成果解决了空间技术中出现的复杂控制问题,并开拓了控制理论中最优控制理论这一新的领域。1960~1961年,美国学者R.E.卡尔曼和R.S.布什建立了卡尔曼-布什滤波理论,因而有可能有效地考虑控制问题中所存在的随机噪声的影响,把控制理论的研究范围扩大,包括了更为复杂的控制问题。几乎在同一时期内,贝尔曼、卡尔曼等人把状态空间法系统地引入控制理论中。状态空间法对揭示和认识控制系统的许多重要特性具有关键的作用。其中能控性和能观测性尤为重要,成为控制理论两个最基本的概念。到60年代初,一套以状态空间法、极大值原理、动态规划、卡尔曼-布什滤波为基础的分析和设计控制系统的新的原理和方法已经确立,这标志着现代控制理论的形成。 现代控制理论所包含的学科内容十分广泛,主要的方面有:线性系统理论、非线性系统理论、最优控制理论、随机控制理论和适应控制理论。 线性系统理论它是现代控制理论中最为基本和比较成熟的一个分支,着重于研究线性系统中状态的控制和观测问题,其基本的分析和综合方法是状态空间法。按所采用的数学工具,线性系统理论通常分成为三个学派:基于几何概念和方法的几何理论,代表人物是W.M.旺纳姆;基于抽象代数方法的代数理论,代表人物是R.E.卡尔曼;基于复变量方法的频域理论,代表人物是H.H.罗森布罗克。 非线性系统理论非线性系统的分析和综合理论尚不完善。研究领域主要还限于系统的运动稳定性、双线性系统的控制和观测问题、非线性反馈问题等。更一般的非线性系统理论还有待建立。从70年代中期以来,由微分几何理论得出的某些方法对分析某些类型的非线性系统提供了有力的理论工具。 最优控制理论最优控制理论是设计最优控制系统的理论基础,主要研究受控系统在指定性能指标实现最优时的控制规律及其综合方法。在最优控制理论中,用于综合最优控制系统的主要

插补原理

插补 开放分类: 技术 数控技术 高新技术 数控装置根据输入的零件程序的信息,将程序段所描述的曲线的起点、终点之间的空间进行数据密化,从而形成要求的轮廓轨迹,这种“数据密化”机能就称为“插补”。 编辑摘要 插补 - 概述 系统的主要任务之一,是控制执行 机构按预定的轨迹运动。一般情况 是一致运动轨迹的起点坐标、终点坐标和轨迹的曲线方程,由数控系 统实施地算出各个中间点的坐标。 在数控机床中,刀具不能严格地按 照要求加工的曲线运动,只能用折 线轨迹逼近所要加工的曲线。 机床 数控系统依照一定方法确定刀具运 动轨迹的过程。也可以说,已知曲 线上的某些数据,按照某种算法计 算已知点之间的中间点的方法,也 称为“数据点的密化”。 数控装置根据输入的零件程序的信 息,将程序段所描述的曲线的起点、 终点之间的空间进行数据密化,从 而形成要求的轮廓轨迹,这种“数据密化”机能就称为“插补”。 插补 计算就是数控装置根据输入的基本 数据,通过计算,把工件轮廓的形状描述出来,边计算边根据计算结果向各坐标发出进给脉冲,对应每个脉冲,机 床在响应的坐标方向上移动一个脉冲当量的距离,从而将工件加工出所需要轮廓的形状。 插补 - 分类 1、直线插补 直线插补(Llne Interpolation )这是车床上常用的一种插补方式,在此方式中,两点间的插补沿着直线的点群来逼近,沿此直线控制刀具的运动。 一个零件的轮廓往往是多种多样的,有直线,有圆弧,也有可能是任意曲线,样条线等. 数控机床的刀具往往是不能以曲线的实际轮廓去走刀的,而是近似地以若干条很小的直线去走刀,走刀的方向一般是x 和y 方向. 插补方式有:直线插补,圆弧插补,抛物线插补,样条线插补等 所谓直线插补就是只能用于实际轮廓是直线的插补方式(如果不是直线,也可以用逼近的方式把曲线用一段段线段去逼近,从而每一段线段就可以用直线插补了).首先假设在实际轮廓起始点处沿x 方向走一小段(一个脉冲当量),发现终点在实际轮廓的下方,则下一条线段沿y 方向走一小段,此时如果线段终点还在实际轮廓下方,则继续沿y 方向走一小段,直到在实际轮廓上方以后,再向x 方向走一小段,依次循环类推.直到到达轮廓终点为止.这样,实际轮廓就由一段段的折线拼接而成,虽然是折线,但是如果我们每一段走刀线段都非常小(在精度允许范围内),那么此段折线和实际轮廓还是可以近似地看成相同的曲线的--------这就是直线插补. 2、圆弧插补 圆弧插补(Circula : Interpolation )这是一种插补方式,在此方式中,根据两端点间的插补数

什么是教学设计_总结完整版

《什么是教学设计》 总结精选(1): 什么是教学设计?包括哪些主要环节? 教学设计是主要依据教学理论、学习理论和传播理论,运用系统科学的方法,对教学目标、教学资料、教学媒体、教学策略、教学评价等教学要素和教学环节进行分析、计划并做出具体安排的过程。其主要环节包括:学习需要分析、学习资料分析、学习者分析、学习环境分析、确定学习目标、设计教学策略、选取教学媒体或资源和学习效果评价。 教学设计是主要依据教学理论、学习理论和传播理论,运用系统科学的方法,对教学目标、教学资料、教学媒体、教学策略、教学评价等教学要素和教学环节进行分析、计划并做出具体安排的过程。 主要环节包括:学习需要分析、学习资料分析、学习者分析、学习环境分析、确定学习目标、设计教学策略、选取教学媒体或资源和学习效果评价。 教学设计方案,资料包括学习资料特征分析、学习者特征分析、任务分析、教学目标、设计思路或意图、教学过程、课堂小结(含板书设计)、自主性教学评价(教学反思)、教学资源链接等。 1、评估需求确定教学目的:测量学习差距、确定完成教学后能够做什么? 2、教学资料分析:学习者学习之前的知识技能分析? 3、学习者分析:学习者个性特征和学习环境分析? 4、编写教学目标:具体陈述学习后能够做什么? 5、开发评价方案:你准备如何评价学生的学习 6、开发和选取教学材料:你设计各种教学资源和材料为教学做准备? 7、实施与评价:实施你的设计并进行多方面的评价? 8、修改:整理反馈资料和数据,进行修改教学设计 9、总结性评价:对学习者使用效果进行最终评价 教学设计的本质是建立在理论基础之上的一门应用性的教学技术,最早起源于美国。美国教育家杜威最先提出应发展一门连接学习理论和教育实践的桥梁科学,桥梁科学即为教学设计的原意。80年代初,由邬美娜、刘茂森等人引入我国教育技术领域,但那时的教学设计只是 原封不动的将教学设计从国外拿来,介绍给大家的观点和理论也是零星的、支离破碎的,根本谈不上体系,实践几乎没有。经过这些专家20年的努力,此刻教学设计在我国已经构成了一套完整的理论体系和个别成功的实践应用。 但是纵观我国教学设计的理论,我们看到的多数还是国外教学设计的印迹,由此导致教学设计的理论与我国的教学实践不适应,表现为:理论反映的是西方教育观念、学习理论、教学

库存控制理论及方法

库存控制理论及方法 一、ABC 分类管理法 二、定量订货法 三、定期订货法 四、MRP 、MRPII 、ERP 五、精益生产 一、固定订货量系统的运行机制 1.运行机制(连续检查控制系统): 每当库存余额降至订货点时, 就发出固定批量的订货。 2. 特点: 不变:Q R L 变化: T E 3. 固定订货量系统的关键点:Q R 1. 订货点的确定 在定量订货法中,发出订货时仓库里该品种保有的实际库存量叫做订货点。它是直接控制库存水平的关键。 (1)在需求量和订货提前期都确定的情况下,不需要设置安全库存,可直接求出订货点。公式如下: 订货点=订货提前期的平均需求量 =每个订货提前期的需求量 =每天需求量×订货提前期(天) =(全年需求量/360) ×订货提前期(天) (2)在需求和订货提前期都不确定的情况下,安全库存的设置是非常必要的。公式如下: 订货点= 订货提前期的平均需求量+安全库存 =(单位时间的平均需求量×最大订货提前期)+安全库存 2.订货批量的确定 订货批量就是一次订货的数量。它直接影响库存量的高低,同时也直接影响物资供应的满足程度。在定量订货中,对每一个具体的品种而言,每次订货批量都是相同的,通常是以经济批量作为订货批量。 二、经济订货批量EOQ EOQ (Economic order quantity )按照库存总费用最小的原则确定出的订货批量 假设条件: a.单位时间内的系统需求恒定 b.订货提前期L 不变 c.每次订货批量Q 一定 d.每批订货一次入库,入库过程在极短时间内完成 e.订货成本、单件存储成本和单价固定不变 f.不允许出现缺货现象 图1 固定订货量系统的库存变化示意图时间库存 量订货点R Reorder point ··t 1Q Q Q L t 2L t 3 L R 2R 3·R 1T 1T 2

相关文档