文档库 最新最全的文档下载
当前位置:文档库 › 一种测量光波波长的新方法

一种测量光波波长的新方法

一种测量光波波长的新方法
一种测量光波波长的新方法

余春明 司民真 王 祥 鲁秋应

(楚雄师范学院,云南 楚雄 675000)

【摘 要】文章把实验室所用的透射光栅当反射光栅在分光计上测量光波波长,可观察到清晰的光谱,计数方法新颖,测量结果准确。

【关键词】透射光栅;测量;光波波长 【中图分类号】O43 【文献标识码】A 【文章编号】1008-1151(2011)01-0060-01

(一)引言

在大学物理实验中,我们做过《用透射光栅测光波波波长》这一实验,光一部分透过此光栅发生衍射,一部分被此光栅反射衍射,研究的主要是透射衍射光。而此文是把此光栅当反射光栅用以测量光波波长,研究的是反射衍射光。下面对这种方法作报告。

(二)实验仪器

分光计、透射光栅(当反射光栅用)、汞灯。

(三)实验原理

1.表面结构

光栅是利用(多缝)衍射原理使光波发生色散的光学元件,它由大量的等宽、等距,相互平行的狭缝组成。如图1所示

图1 光栅表面结构

图2 光栅衍射反射部分光路图

2.光栅方程

当平行光以入射角0θ射到光栅上时,若衍射光与入射光在法线异侧,则由图2(a)可得,衍射角为θ的两相邻衍射光之间的光程差为

Δ=Bb -Ab =θθsin sin 0d d ? (1)

若衍射光与入射光在法线同侧,则由图2(b)可得,衍射角为θ的两相邻衍射光之间的光程差为

Δ=θθsin sin 0d d Ba Bb +=? (2)

根据光栅衍射理论,反射光栅产生主极强亮纹的位置满足

λk =Δ ),2,1,0(L ±±=k (3) 因此,反射光栅方程为

λθθk d =±)sin (sin 0 ),2,1,0(L ±±=k (4)

当入射光与衍射光在光栅法线同侧时,(4)式取“+”号,

当入射光与衍射光在光栅法线异侧时,(4)式取“-”号。

当用复色光照射时,除0级衍射光外,不同波长衍射光的主极强位置不同,这就是光栅的分光原理。

(四)实验步骤

1.调节分光计。

2.调节好分光计后,固定游标盘,使望远镜和刻度盘一起转动,测出望远镜正对平行光管时的角度1α 。

3.将望远镜转到靠近平行光管的一边,固定望远镜,并测出此时的角度2α。

4.计算出入射光与衍射光之间的夹角(下转第36页)

【收稿日期】2010-11-11

【作者简介】余春明,楚雄师范学院物理与电子科学系在读生。

误差分析:

1.输入频率47HZ,ADC 输入

2.5v 时,理想移相:10.64*0.5=5.32m

频漂修正后移相5.35m 未修正移相5.018m 误差0.56%

2.输入频率47HZ,ADC 输入 1.5v 时,理想移相:10.64*1.5/5=

3.192m

频漂修正后移相3.223m 未修正移相3.02m 误差0.97%

3.输入频率47HZ,ADC 输入

4.5v 时,理想移相:10.64*4.5/5=9.576m

频漂修正后移相9.612m 未修正移相9.009m 误差0.37%

可以看出,经过频率漂移模块修正后,移相精度比未修正时提高很多,满足设计要求。

(六)芯片测试结果

图8所示,为芯片版图,图中标注的部分就是频率漂移

消除模块的版图。

图8 移相芯片版图

通过测试引脚可以选择芯片内部频率漂移模块是否工作。

在两种情况下通过测试引脚将内部计数器读数读出,得到如下结果(表1):

本芯片中10bitADC 输出范围:3~1022,一共计数1020个。因此从上表可以知道,没有进行频漂补偿时,发生负频漂,会使移相模块移不满;发生正频漂时,会使移相溢出。通过频率补偿模块,计数效果很理想,完全满足设计要求。 表1 频率漂移补偿模块测试结果(HZ/个)

输入信号频率 调整前计数 调整后计数

43 45 47 53 55 57 59 61 63

1164 1112 1064 944 910 878 848 820 793

1020 1020 1023 1022 1024 1023 1021 1024 1021

(七)结论

本文介绍了全数字移相触发芯片的工作原理,并分析了频率漂移误差的产生原因。提出了一种简单易行的减小频率漂移触发误差的数字电路,通过改变移相计数器的时钟,来补偿频率波动造成的误差。从芯片测试结果可以看出,经过频率漂移模块后,移相模块计数效果很好,提高了移相精度,同时扩大了芯片的应用范围。该全数字频漂补偿模块结构简单,并且对集成电路的工艺要求不高,易于集成。对芯片设计的成本(芯片面积、设计周期)有大幅度减少。本所研制的TMD687A 芯片,即采用了这种采用超前采样计数,通过闭环控制来进行频漂补偿的改进型全数字移相触发电路。该芯片应用范围广,精度高,性能领先,市场反应很好。

【参考文献】

[1] Pa ul R.Gray,analysis and Design Of Analog Integrated

Circuits-Fourth Edition,Wiley,New York,2001.

[2] 汤炜,林争辉.数字移相集成电路触发误差的分析和改进[J].

上海交通大学学报,2003.

[3] 冯晖,吴杰,韩志刚.一种数字控制的三相移相触发电路[J].

国外电子元器件,2008.

[4] 李宏,范湘军,岳耀怀.智能型单片全数字化集成晶闸管三

相触发器KC188的研制及应用[J].江苏机械制造与自动化,2000.1:32-36.

[5] Vankka J.Methods of mapping from phase to sine amplitude in direct

digital synthesis[J].IEEE Transactions on Ultrasonics,Ferroelectrics,and Frequency Control,1997, 44(2):526-534.

(上接第60页)

210180ααα??= (5)

5.将反射光栅置于载物台上(轨迹方向垂直放置),松开游标盘,利用自准直法测量出光栅与望远镜垂直时的角度0β。

6.转动游标盘改变光栅方向,即可在望远镜中出现不同颜色的光谱,测出待测线对准望远镜叉丝时对应的角度β。则

衍射角0ββθ?= (6) 入射角θαθ+=0 (7)

7.把计算出来的不同光谱所对应的衍射角和入射角带入(4),已知透射光栅的光栅常数d=3030nm(实验室测得)。即可求得汞光被分离出来的不同颜色的光的波长。

(五)数据记录及处理(表1)

表1

k 谱线 β(度) θ(度) θ0(度)λ测(nm) λ标(nm)误差(nm)2 黄2 138.637 -7.048 30.352579.65 579.07 0.58 2 黄1 138.573 -7.112 30.288576.51 576.96 -0.45 2 绿 137.732 -7.720 29.680546.64 546.07 0.57 2 紫 135.723 -9.962 27.438436.01 435.84 0.17 1 黄2 132.78 -12.905 24.495579.57 579.89 -0.32 1

黄1

132.755

-12.930

24.470

577.08

576.96

0.12

k 谱线β(度)θ(度)θ0(度) λ测(nm) λ标(nm)误差(nm)1绿 132.455-13.23024.170 547.17 546.07 1.10 1紫 131.335-14.35023.050 435.38

435.84

-0.46 0白 127.315-18.37018.250 -1紫 122.633-23.05214.348 435.57 435.84 -0.27 -1绿 121.520-24.16513.235 546.67 546.07 0.60 -1黄1121.220-24.46512.935 576.58 576.96 -0.38 -1黄2121.190-24.49512.905 579.57 579.07 0.50 -2黄1115.333-30.3527.048 576.56 576.96 -0.45 -2黄2115.335-30.3507.050 579.56 579.07 -0.49 -2绿 116.005-29.6807.720 546.64 546.07 0.57 -2

118.247

-27.438

9.962

436.01

435.84

0.17

(六)误差分析

本实验结果的误差在实验误差允许的范围内。其误差主要来源于仪器本身的精度,实验室所测得光栅常数,实验过程中的读数误差等方面。

(七)结束语

本实验所采用的新方法是可行的,可加深学生对光的干涉、衍射以及光栅分光作用的理解,可以拓展学生的思维,培养学生多角度考虑问题的方式和对真知的探索精神,是一篇很有借鉴价值的好文章。

【参考文献】

[1] 姚启钧.光学教程(4版)[M].北京:高等教育出版社,

2008:97-98.

实验21 衍射光栅的特性与光波波长的测量

实验4.11 衍射光栅的特性与光波波长的测量 衍射光栅由大量等宽、等间距、平行排列的狭缝构成。实际使用的光栅可以用刻划、复制或全息照相的方法制作。衍射光栅一般可以分为两类:用透射光工作的透射光栅和用反射光工作的反射光栅。本实验使用的是透射光栅。 根据多缝衍射的原理,复色光通过衍射光栅后会形成按波长顺序排列的谱线,称为光栅光谱,所以光栅和棱镜一样是一种重要的分光光学元件。在精确测量波长和对物质进行光谱分析中普遍使用的单色仪、摄谱仪就常用衍射光栅构成色散系统。 本实验要求:理解光栅衍射的原理,研究衍射光栅的特性;掌握用衍射光栅精确测量波长的原理和方法;进一步熟悉分光计的工作原理和分光计的调节、使用方法。 【实验原理】 1.光栅常数和光栅方程 图4.11—1 衍射光栅 衍射光栅由数目极多,平行排列且宽度、间距都相等的狭缝构成,用于可见光区的光栅每毫米缝数可达几百到上千条。设缝宽为a,相邻狭缝间不透光部分的宽度为b,则缝间距d = a + b就称为光栅常数(图4.11—1),这是光栅的重要参数。 根据夫琅和费衍射理论,波长 的平行光束垂直投射到光栅平面上时,光波将在每条狭缝处发生衍射,各缝的衍射光在叠加处又会产生干涉,干涉结果决定于光程差。因为光栅各狭缝间距相等,所以相邻狭缝沿θ方向衍射光束的光程差都是 d sinθ(图4.11—1)。θ是衍射光束与光栅法线的夹角,称为衍射角。 在光栅后面置一会聚透镜,使透镜光轴平行于光栅法线(图4.11—2),透镜将会使图4.11—2所示平面上衍射角为θ的光都会聚在焦平面上的P点,由多光束干涉原理,在θ满足下式时将产生干涉主极大,户点为亮点:

用透射光栅测量光波波长及角色散率(有实验数据)

实验七 用透射光栅测量光波波长及角色散率 一、 目的: 1 加深对光的衍射理论及光栅分光原理的理解; 2 掌握用透射关光栅测定光波波长、光栅常数及角色散率的方法。 3 测量光波波长。 二、 仪器及用具 分光计、透射光栅、汞灯。 三、 原理 1光栅衍射及光波波长的测定 由夫琅和费衍射理论,当波长为λ的单色光垂直入射至光栅上,满足光栅方程 λθk d =s i n ( ,3,2,1,0=k ) (1) 时,θ方向的光加强,其余方向的光几乎完全抵消。式中d 为光栅常数,θ为衍 射角。若已知λ,则可求d ;若已知d ,则可求λ。 2 光栅的角色散率 光栅在θ方向的角色散率为 θ λθsin d k D =??= (2) 测出d 及θ,可求出该方向的角色散率D 。 四、实验内容 1 仪器调节 分光计的调节,见实验三。载物台调水平后,使光栅平面与入射光垂直。 2 测光波波长、光栅常数、角色散率 以汞灯的绿谱线 A 75460?为已知,取1=k ,测该谱线左、右衍射光的角位置1T 、2T ,则衍射角212 1 T T -=θ,由(1)式可求光栅常数。 a) 绿光 ''014818±= θ 由(1)和(2)式可分别求得光栅常数和角色散率分别为

m d 510)002.0645.1(-?±= 1410)02.088.1(-?±=cm D b)紫光 ' _ 4115 =θ, '02=?- -θ, ''024115+= θ 由(1)和(2)式分别求得 A 4454360?±?=λ 1410)02.094.1(-?±=cm D b) 黄光 ''041121±= θ A )8.50.5774 (±=λ 1410)03.068.1(-?±=cm D

用分光计测光栅常数和光波的波长

衍射光栅是一种高分辨率的光学色散元件,它广泛应用于光谱分析.随着现代技术的发展,它在计量、无线电、天文、光通信、光信息处理等许多领域中都有重要的应用. 【实验目的】 1.观察光栅的衍射现象,研究光栅衍射的特点. 2.测定光栅常数和汞黄光的波长. 3.通过对光栅常数和波长的测量,了解光栅的分光作用,并加深对光的波动性的认识. 【实验仪器与用具】 分光计1台,光栅1个,低压汞灯1个. 【实验原理】 普通平面光栅是在一块玻璃片上用刻线机刻画出一组很密的等距的平行线构成的.光波射向光栅,刻痕部分不透光,只能从刻痕间的透明狭缝过.因此,可以把光栅看成一系列密集、均匀而又平行排列的狭缝. 图15—1光栅衍射图 光照射到光栅上,通过每个狭缝的光都发生衍射,而衍射光通过透镜后便互相干涉.因此,本实验光栅的衍射条纹应看做是衍射与干涉的总效果.

下面我们来分析平行光垂直射到光栅上的情况(图15-1).设光波波长为λ,狭缝和刻痕的宽度分别为a和b,则通过各狭缝以角度φ衍射的光,经透镜会聚后如果是互相加强,在其焦平面上就得到明亮的干涉条纹.根据光的干涉条件,光程差等于波长的整数倍或零时形成亮条纹.由图15-1可知,衍射光的光程差为(a+b)sinφ,于是,形成亮条纹的条件为: (a+b)sinφ= Kλ,K = 0,±1,±2,… 或d sinφ=Kλ.(15-1) 式中,d=a+b称为光栅常数,λ为入射光波波长,K为明条纹(光谱线)级数,φ是K级明条纹衍射角. K=0的亮条纹叫中央条纹或零级条纹,K=±1为左右对称分布的一级条纹,K =±2为左右对称的二级条纹,以此类推. 光栅狭缝与刻痕宽度之和a+b称为光栅常数.若在光栅片上每厘米宽刻有n条刻痕,则光栅常数d=(a+b)= cm.当a+b已知时,只要测出某级条纹所对应的衍射角φ,通过式(15-1)即可算出光波波长λ.当λ已知时,只要测出某级条纹所对应的衍射角φ,通过式(15—1)可计算出光栅常数. 图15-2 光栅的放置 在λ和a+b一定时,不同级次的条纹其衍射角不同.如a+b很小,则光栅衍射的各级亮条纹分得很开,有利于精密测量.另外,如果K和a+b一定时,则不

用双缝干涉测量光的波长含答案

实验十五用双缝干涉测量光的波长 一、实验目的 1.理解双缝干涉的原理,能安装和调试仪器. 2.观察入射光分别为白光和单色光时双缝干涉的图样. 3.掌握利用公式Δx=l d λ测波长的方法. 二、实验原理 单色光通过单缝后,经双缝产生稳定的干涉图样,图样中相邻两条亮(暗)条纹间的距离Δx 与双缝间的距离d、双缝到屏的距离l、单色光的波长λ之间满足λ=d·Δx/l. 三、实验器材 双缝干涉仪,即:光具座、光源、滤光片、单缝、双缝、遮光筒、毛玻璃屏、测量头,另外还有学生电源、导线、刻度尺. 附:测量头的构造及使用 如图1甲所示,测量头由分划板、目镜、手轮等构成,转动手轮,分划板会向左右移动,测量时,应使分划板的中心刻度对齐条纹的中心,如图乙,记下此时手轮上的读数.然后转动测量头,使分划板中心刻线与另一条纹的中心对齐,再次记下手轮上的刻度.两次读数之差就表示这两个亮条纹间的距离. 图1 实际测量时,要测出n条亮条纹(暗条纹)的宽度,设为a,那么Δx= a n-1 . 四、实验步骤 1.安装仪器 (1)将光源、遮光筒、毛玻璃屏依次安放在光具座上,如图2所示. 图2 (2)接好光源,打开开关,使白炽灯正常发光.调节各部件的高度,使光源灯丝发出的光 能沿轴线到达光屏.

(3)安装单缝和双缝,中心位于遮光筒的轴线上,使双缝和单缝相互平行. 2.观察与记录 (1)调整单缝与双缝间距为几厘米时,观察白光的干涉条纹. (2)在单缝和光源间放上滤光片,观察单色光的干涉条纹. (3)调节测量头,使分划板中心刻度线对齐第1条亮条纹的中心,记下手轮上的读数a 1;转动手轮,使分划板向一侧移动,当分划板中心刻度线与第n 条相邻的亮条纹中心对齐 时,记下手轮上的刻度数a 2,则相邻两条纹间的距离Δx =|a 1-a 2|n -1 . (4)换用不同的滤光片,测量其他色光的波长. 3.数据处理 用刻度尺测量出双缝到光屏间的距离l ,由公式λ=d l Δx 计算波长.重复测量、计算,求出波长的平均值. 五、误差分析 测定单色光的波长,其误差主要由测量引起,条纹间距Δx 测量不准,或双缝到屏的距离测不准都会引起误差,但都属于偶然误差,可采用多次测量取平均值的方法来减小误差. 六、注意事项 1.调节双缝干涉仪时,要注意调整光源的高度,使它发出的一束光能够沿着遮光筒的轴线把屏照亮. 2.放置单缝和双缝时,缝要相互平行,中心大致位于遮光筒的轴线上. 3.调节测量头时,应使分划板中心刻线和条纹的中心对齐,记清此时手轮上的读数,转动手轮,使分划板中心刻线和另一条纹的中心对齐,记下此时手轮上的读数,两次读数之差就表示这两条纹间的距离. 4.不要直接测Δx ,要测多个亮条纹的间距再计算得Δx ,这样可以减小误差. 5.白光的干涉观察到的是彩色条纹,其中白色在中央,红色在最外层. 记忆口诀 亮光源、滤光片,单缝双缝成一线; 遮光筒、测量头,中间有屏把像留; 单缝双缝平行放,共轴调整不能忘; 分划线、亮条纹,对齐平行测得准; n 条亮纹读尺数,相除可得邻间距; 缝距筒长记分明,波长公式要记清.

大学物理实验教案-用透射光栅测定光波波长

实验名称:用透射光栅测定光波波长 实验目的: 1、理解光栅衍射的基本原理与特点; 2、掌握分光仪、光栅的调节要求与方法,掌握各步调节的目的和实现的判据; 3、认识光栅光谱的分布规律,并能正确判别衍射光谱的级次; 4、利用光栅测定光栅常量、光波波长。 实验仪器: 分光计 透射光栅 双面反射镜 汞灯 实验原理: 若以单色平行光束垂直照射光栅,通过每个狭缝的光都会发生衍射,这些衍射光又在一些特殊方向上被透镜会聚于焦平面上一点后,因干涉加强而型成各级亮线,如图1,若衍射角为φ的光束经透镜会聚后互相加强,则角φ必须满足关系式 ,...) 3,2,1,0(, sin =±=k k d k λ? 即光程差必须等于光波长的整数倍。式中λ为单色光波长,k 是亮条纹级次,?k 为k 级谱线 如果入射光是复色光,由于各色光的波长各不相同,则由公式(41-1)可以看出,其衍射角k ?也各不相同,经过光栅后,复色光被分解为单色光。在中央0=k ,0=k ? 位置处,各色光仍将重叠在一起,形成0级亮条纹。而在中央亮条纹两侧,各种波长的单色光产生各自对应的谱线,同级谱线组成一个光带,这些光带的整体叫做衍射光谱。如图所示,它们对

称地分布在中央亮条纹的两侧。 1、 测量光栅常数 用汞灯光谱中的绿线(546.07nm λ=)作为已知波长测量光栅常数d 。测量公式 sin k k d λ ?= 2、 测量波长 用上面求出的光栅常数,测量光谱线的波长。测量公式 sin k d k ?λ= 3. 光栅的角色散 角色散是光栅的重要参数,它表示单位波长间隔内两单色谱线之间的角距离。汞灯光谱中双黄线的波长差之差λ?=2.06nm ,两条谱线偏向角之差??和两者波长之差λ?之比: λ???= D 对光栅方程微分可有 ?λ?cos d k D = ??= 由上式可知,光栅光谱具有如下特点:光栅常数d 越小,色散率越大;高级数的光谱比低级数的光谱有较大的色散率。 实验内容 1、光栅的调节 (1)调节分光计,使望远镜对准无穷远,望远镜轴线与分光计中心轴线相垂直,平行光管出射平行光。调节方法见光学实验常用仪器部分。狭缝宽度调至约1毫米。 (2)安置光栅,要求入射光垂直照射光栅表面,平行光管狭缝与光栅刻痕相平行。 (3)调节光栅使其刻痕与转轴平行。注意观察叉丝交点是否在各条谱线中央,如果不是,可调节螺丝予以改正,调好后,再回头检查光栅平面是否仍保持和转轴平行。如有了改变,就要反复多次,直到两个要求都满足为止。 2、测定光栅常数 以汞灯为光源,测出K=±1波长为5460.7nm 绿光衍射角φ,求d 。但应注意:+1与-1级的衍射角相差不能超过几分,否则应重新检查入射角是否为零。 3、测定未知光波波长及色散率 用上法在K=±1时测出汞的紫、双黄线的衍射角,求出 它们的波长。 3、测定未知光波波长 求出汞的两条黄线λ1及λ2的衍射角角之差??,求出 λ1及λ2并计算出Δλ,再

光栅衍射法测量光波长

光栅衍射法测量光波长数据处理参考 1.数据记录 表一 汞灯绿光衍射角的测量 次序 k θ 'k θ k -θ 'k -θ 1 230°3’ 50°0’ 268°27’ 88°25’ 2 230°2’ 49°59’ 268°28’ 88°24’ 3 230°2’ 50°0’ 268°26’ 88°23’ 4 230°2’ 49°59’ 268°28’ 88°24’ 5 230°3’ 49°58’ 268°27’ 88°24’ 6 230°2’ 49°59’ 268°28’ 88°25’ 7 230°2’ 49°59’ 268°27’ 88°25’ 8 230°3’ 49°59’ 268°28’ 88°23’ 注:极限误差0.017,2,1/300()m k d mm ?=?== 2、实验数据处理(数据计算要有过程,即计算公式、数值代入,有效数字的保留要正确) A 、对 k θ进行数据处理: 根据肖维涅准则,对以 k θ测量量进行检查,无坏值出现。 8 1 1230.048k ki i θθ===?∑ 0.0031k S θ= =? vp t =1.08 1.080.00310.0034k A vp u t S θ==?= 0.0098B u = == 0.010k u ===? B 、对 'k θ进行数据处理: 根据肖维涅准则,对以 'k θ 测量量进行检查,无坏值出现。 8 ''1 149.988k k i i θθ===?∑ ' 0.0038k S θ= = ? vp t =1.08 ' 1.080.00380.0041k A vp u t S θ==?= 0.0098B u = == '0.010k u ===? C 、对 k -进行数据处理: 根据肖维涅准则,对以 k θ-测量量进行检查,无坏值出现。

迈克尔逊干涉仪测量光波的波长实验报告

迈克尔逊干涉仪测量光波的波长实验报告

迈克尔逊干涉仪测量光波的波长 班级:姓名:学号:实验日期: 一、实验目的 1.了解迈克尔逊干涉仪的结构和原理,掌握调节方法; 2.利用点光源产生的同心圆干涉条纹测定单色光的波长。 二、仪器及用具(名称、型号及主要参数) 迈克尔逊干涉仪,He-Ne激光器,透镜等 三、实验原理 迈克尔逊干涉仪原 理如图所示。两平面反 射镜M1、M2、光源S 和观察点E(或接收 屏)四者北东西南各据 一方。M1、M2相互垂 直,M2是固定的,M1 可沿导轨做精密移动。 G1和G2是两块材料 相同薄厚均匀相等的平行玻璃片。G1的一个表面上镀有半透明的薄银层或铝层,形成半反半透膜,可使入射光分成强度基本相等的两束光,称G1为分光板。G2与G1平行,以保证两束光在玻璃中所走的光程完全相等且与入射光的波长无关,保证仪器能够观察

单、复色光的干涉。可见G 2作为补偿光程用,故称之为补偿板。G 1、G 2与平面镜M 1、M 2倾斜成45°角。 如上图所示一束光入射到G 1上,被G 1分为反射光和透射光,这两束光分别经M 1和M 2’反射后又沿原路返回,在分化板后表面分别被透射和反射,于E 处相遇后成为相干光,可以产生干涉现象。图中M 2’是平面镜M 2由半反膜形成的虚像。观察者从E 处去看,经M 2反射的光好像是从M 2’来的。因此干涉仪所产生的干涉和由平面M 1与M 2’之间的空气薄膜所产生的干涉是完全一样的,在讨论干涉条纹的形成时,只需考察M 1和M 2两个面所形成的空气薄膜即可。两面相互平行可到面光源在无穷远处产生的等倾干涉,两面有小的夹角可得到面光源在空气膜近处形成的等厚干涉。若光源是点光源,则上述两种情况均可在空间形成非定域干涉。设M 1和M 2’之间的距离为d ,则它们所形成的空气薄膜造成的相干光的光程差近似用下式表示 若 M 1与M 2平行,则各处d 相同,可得等倾干涉。系统具有轴对称不变性,故屏E 上的干涉条纹应为一组同心圆环,圆心处对应的光程差最大且等于2d,d 越大圆环越密。反之中心圆斑变大、圆环变疏。若d 增加,则中心“冒出”一个条纹,反之d 减小,则中心“缩进”一个条纹。故干涉条纹在中心处“冒出”或“缩进”的个数N 与d 的变化量△d 之间有下列关系 2cos d i δ=

激光波长测量l

一、引言 长久以来,人们都一直在进行着与光有关的研究以及应用。人类都还没有形成文明的时候,由于人类掌握了火源的获取,我们将火光用于照明。再在之后一两千年时间里,随着冶金技术的发展,制造玻璃的工艺的产生,以及人们对于光的反射和渐渐地一系列的简易的光学器件,如凹凸面镜、眼镜、透镜。然而还是没人知道管到底是什么。非常自然地,人开始对于光的本质产生了好奇。对光本质的研究道路是十分曲折的,我们走了很多的弯路,犯过错误。 我国古代对于一些光学现象就有详细记载。春秋战国时期,在墨翟(公元前468-376年)所著的《墨经》中就有关于光的直线传播和在镜面上的反射现象的记载。而目前为止可以考证的最早的关于光学的系统著作《光学》出自古希腊数学家、哲学家欧几里得(公元前330-275年)之手。而也就从这开始,我们终于对光学有了系统的研究。受限于研究手段,在之后的一千多年时间里,光的研究进度十分缓慢。 一直到进入被称为“科学的世纪”的十七世纪,光学理论研究终于迎来了飞跃。作为新哲学创立者之一的笛卡尔根据他的形而上学的观点系统地阐述他对于光本质地见解。其中他就认为光本质上就是一种压力,而这个力传播媒介就是完全弹性地、充满整个空间的以太,他解释说光之所以由颜色差异就是因为各色光所在媒介中粒子做转动运动时的速率不同。而几乎就是在同一时期,1621年斯涅尔(1591-1626年)从实验室中带来了著名的折射定律。二十六年后,费马(1601-1665年)提出了最小时间原理——光永远沿一条路线行进,并且是用时最短的路线,而后他在这个原理上假设不同介质对光的阻力就使其变为定律。而正是这两个定律将光学研究带入几何光学时代。在1666年牛顿用三棱镜进行了著名的色散实验,由此揭开了物质颜色之谜,说明了物质表现出不同的颜色是因为物质不同颜色反射率以及折射率不同。牛顿提出了光的“微粒说”,肯定了光的粒子性。而同时期的一个荷兰人惠更斯(1629-1695年)提出不同的观点。他认为光是一种波,在“以太”中传播。因为牛顿的影响力实在是太大了,他的波动假说并没有成为那个时代的主流。整个十八世纪,光学的发展近乎停滞。 但是随着干涉、衍射等波动现象的出现,光学又向物理光学阶段进发。1801年英国人托马斯·杨(1773-1829年)进行了“物理最美实验”之一的双缝干涉实验。杨用光源照射间距极小的两条缝,从而获得了来自同一波列的两束偏振光,产生明显的干涉现象。然后利用几何关系,计算光程差,最后人类第一次测出了光的波长。1807年杨在他的论文中详细记述了双缝干涉实验,写道“比较各次实验,看来空气中极红端的波的宽度约为三万六千分之一英寸。”他所测得的“波的宽度”与现代精确测量值近似相等。它证明了光是以波动形式存在,也就推翻了牛顿所想象的光颗粒,为波动说打下坚实的基础。这之后,一个法国人菲涅尔(1788-1827年)对惠更斯地理论进行了补充,提出惠更斯—菲涅尔原理,成功解释了光衍射现象。另一个法国人马吕斯(1775-1812年)发现了光的偏振现象。至此波动光学的研究已经基本完成。1845年,法拉第(1804-1891年)发现光的偏振面在强磁场下的旋转行为。而后麦克斯韦(1831-1879年)在提出他最著名的麦克斯韦方程之后,成功预言了光就是一种电磁波。德国人赫兹(1857-1894年)则是在实验上证明了电磁效应。至此,光学也就正式地步入了物理光学。1896年,洛伦兹(1853-1928年)创立电子论。同年塞曼(1865-1943年)发现了塞曼效应。基于干涉现象李普曼(1845-1921年)发明了照片重现彩色技术。物理光学整一个推动了物理学的发展,将光学与电磁学结合在了一起。 到了十九世纪末至二十世纪初,光学的研究深入道路光的发生以及光和物质相互作用的围观机制中,开始了量子光学时代。先是普朗克(1858-1947年)于1900年提出著名的黑

光的各个波长区域nm

光的各个波长区域 光是一种电磁波,它的波长区间以几个nm(1nm=10-9m)到1mm左右。这些光并不是都能看得见的,人眼所能看见的只是其中的一部分,我便把这部分光称为可见光。在可见光中,波长最短的是紫光,稍长的是蓝光,以后的顺序是青光、绿光、黄光、橙光和红光,其中红光的波长最长,在不可见光中,波长比紫光短的光称为紫外线,比红光长的光叫做红外线。下表列出紫外可见光和红外区的大致的波长范

围。波长小于200nm的光之所以称为真空紫外,是因为这部分光在空气中很快被吸收,因此它只能在真空中传播。 现在常用的光波波长单位是μm,nm和?(埃),它们之间的关系是:1μm=103nm=104?。光除具有波动性之外,还具有粒子性。量子论认为,光是由许多光量子组成的,这些光量子具有的能量为hυ,其中h=6.626×10-34J·S是普朗克常数,υ=c/λ是光的频率,c=3×10-8m/s是真空中的光速。量子论较好地反映了光的波粒二象性。 在光辐射中的一部分是人眼能够看得见的。人眼怎么会感到这部分光的呢?原来在人眼的视网膜上面布满了大量的感光细胞。感光细胞有两种:柱状细胞和锥状细胞。前者灵敏度高,能感觉极微弱的光;后者灵敏度较低,但能很好的区别颜色。在柱状细胞和锥状细胞里都会有一种感光物质,当光线照到视网膜上时,感光物质发生化学变化,刺激神经细胞,最后由神经传到大脑,产生视觉。如同感光片对各种颜色光的灵敏度也不一样,它对绿光的灵敏度最高,可对红光的灵敏度低得多。也就是说,相同能量的绿光和红光,前者在人眼中引起的视觉强度要比后者大得多。实践表明,不同的观察者的眼睛对各种波长的光的灵敏度稍有不同,而且还随着时间、观察者的年龄和健康状况而变。因此,只能以许多人的大量观察结果中取平均。现在大家公认的视觉函数曲线是国际照明委员会(简称CIE)根据平均人眼对各种波长的光的相对灵敏度值画成的曲线。

用透射光栅测定光波波长

用透射光栅测光波波长 一、实验目的 1、进一步学习分光计的调整和使用。 2.加深对光的衍射理论及光栅分光原理的理解 3 掌握用透射关光栅测定光波波长、光栅常数及角色散率的方法。 二、实验仪器 分光计、钠灯、光栅等 三、实验原理 光栅是根据多缝衍射原理制成的一种分光元件。它 不仅适用于可见光,还能用于红外和紫外光波。由于制造方法或用途不同,光栅的种类很多,有刻痕光栅和全 息光栅之分;有透射光栅和反射光栅之分等等。本实验 选用透射式平面刻痕光栅,它在光栅上每毫米刻有n 条 刻痕,其光栅常数d = 1/n 。现代光栅技术可使n 多达一千条以上。 1.光栅衍射及光波波长的测定 由夫琅和费衍射理论,当波长为λ的单色光垂直入射至光栅上,满足光栅方程 λθk d =sin ( ,3,2,1,0=k ) (1) 时,θ方向的光加强,其余方向的光几乎完全抵消。式中d 为光栅常数,θ为衍射角。若已知λ,则可求d ;若已知d ,则可求λ。 2. 光栅的角色散率 光栅在θ方向的角色散率为 θ λθcos d k d d D == (2) 测出d 及θ,可求出该方向的角色散率D 。 四、实验内容和步骤 1.调节分光计 分光计的调节要求是:望远镜聚焦于无穷远;准直管发出平行光;准直管与望远镜同轴并与分光计转轴正交.调节时,首先用目视法进行粗调。使望远镜、准直管和载物台面大致垂直于分光计转轴,然后按下述步骤和方法进行细调. (1)用自准法调节望远镜聚焦于无穷远. (2)调节望远镜主轴垂直于仪器转轴. 1 75——图b d θP θ2L 1L S G

图33-5-------图33-6 (3)调节分划板上十字叉丝水平与垂直.转动载物平台,从目镜中观察绿十字像是否沿叉丝水平线平行移动,若不平行,则可转动分划板套筒使其平行(注意不要破坏望远镜的调焦), 到此,望远镜已调好,可作为基准进行其它调节. (4)调节准直管发出平行光且准直管主轴与转轴垂直 2、光栅位置的调节 将光栅按照上面平面镜的位置放置,并与准直管尽量垂直。一般情况下,因为光栅片与载物小平台并不垂直,因此,光栅放在已经调好的分光计上后,还要对分光计进行调节,但此时不能调节分光计的望远镜系统,只能调节载物小平台。其要求是:亮十字反射回来的像(绿十字)及狭缝像与调整叉丝的竖直线重合,亮十字反射回的像的水平线同时与调整叉丝的水平线重合。因为光栅的两面并不严格平行,因此,此时调节光栅时不必将光栅转动1800 。 用钠灯照亮狭缝,转动望远镜观察光谱,如果左右两侧的光谱线相对于目镜中的叉丝的水平线高低不等,说明光栅的衍射面和观察面不一致,这时可调节平台上的螺钉c ,使他们一致(调整a,b 可否?为什么?)。 3、测定光栅常数d 根据(1)式,只要测出第k 级光谱中波长为λ的已知谱线的衍射角θ,就可以求出d 值。测量钠光谱中双黄线中的nm D 995.5882=λ的第1级或第2级的衍射角。 方法:转动望远镜使叉丝对准谱线的中心,记录两游标的读数21,v v ;将望远镜转到另一侧,使叉丝对准谱线的中心,记录两游标的读数' '21,v v ,衍射角 )]()[(2 12211v v v v -'+-'=θ 重复测量三次,计算光栅常数d 及其标准不确定度。 4、测量光谱中绿光的波长 用以测出的光栅常数,在测量此谱线的衍射角就可以用衍射公式求出谱线的波长。衍射角的测量同上,测量三次。 5、测量光栅的角色散 对钠光灯,光谱中的双黄线nm D 592.5891=λ,nm D 995.5882=λ,两黄线的波长差为nm 597.0=?λ,测出其第1级、第2级光谱中的两黄线的衍射角21,θθ,衍射角的测量同上,测量三次。根据公式(2)计算角色散率。 思考题 1.本实验对分光仪的调整有何特殊要求?如何调节才能满足测量要求? 2.分析光栅和棱镜分光的主要区别。 3.如果光波波长都是未知的,能否用光栅测其波长?

光波波长测量

梧州学院实验论文 实验课程:近代物理实验 院别:信息与电子工程学院 专业:应用物理学 班级:12物理班 姓名:陈世杰 学号:201200603006 实验时间:2015.6.30

基于光波波长的测量及光栅特性的研究 【引言】 衍射光栅是利用多缝衍射原理使光发生色散的一种光学元件,光栅衍射能产生亮度较大、间距较宽的均匀排列光谱,具有分辨本领较高的优点,因此光栅常作为精确测量光波长的一种光学器件。 【摘要】 在已知光栅常数时,利用光栅测量光波长的常用方法是光栅垂直法:将入射光垂直于平面光栅,即入射角i=0,在已知光栅常数的情况下测量衍射角,即可测得光波波长。已知波长求光栅常数。本实验希望通过观察光栅的衍射现象,研究光栅衍射的特点.测定光栅常数和汞黄光的波长.通过对光栅常数和波长的测量,了解光栅的分光作用,并加深对光的波动性的认识 【关键字】 光栅光波波长衍射角 【正文】 A:实验原理1:若以单色平行光垂直照射在光栅面上,则光束经光栅各缝衍射后将在透镜的焦平面上叠加,形成一系列间距不同的明条纹。根据夫琅和费衍射理论,衍射光谱中明条纹所对应的衍射角应满足下列条件: 式中d=a+b称为光栅常数(a为狭缝宽度,b为刻痕宽度,参见图2),k为光谱线的级数,?k为k级明条纹的衍射角,λ是入射光波长。该式称为光栅方程。 如果入射光为复色光,则由(1)式可以看出,光的波长λ不同,其衍射角也各不相同,于是复色光被分解,在中央k=0,?k=0处,各色光仍重叠在一起,组成中央明条纹,称为零级谱线。在零级谱线的两侧对称分布着k=1,2,3,…级

谱线,且同一级谱线按不同波长,依次从短波向长波散开,即衍射角逐渐增大,形成光栅光谱。 由光栅方程可看出,若已知光栅常数d,测出衍射明条纹的衍射角?k,即可求出光波的波长λ。反之,若已知λ,亦可求出光栅常数d。 实验原理2:将光栅方程(1)式对λ微分,可得光栅的角色散为角色散是光栅、棱镜等分光元件的重要参数,它表示单位波长间隔内两单色谱线之间的角距离。由式(2)可知,如果衍射时衍射角不大,则cos?近乎不变,光谱的角色散几乎与波长无关,即光谱随波长的分布比较均匀,这和棱镜的不均匀色散有明显的不同。 实验原理3:分辨本领是光栅的另一重要参数,它表征光栅分辨光谱线的能力。设波长λ为和λ+dλ的不同光波,经光栅衍射形成的两条谱线刚刚能被分开,则光栅分辨本领R为 根据瑞利判据,当一条谱线强度的极大值和另一条谱线强度的第一极小值重合时,则可认为该两条谱线刚能被分辨。由此可以推出 R=kN (4) 其中k 为光谱级数,N是光栅刻线的总数。 B:实验内容和步骤 1.调整分光计。调整望远镜使其能接收平行光,且其光轴与分光计的中心轴垂直;调整载物台平面水平且垂直于中心轴;调整平行光管发出平行光,且光轴与

用迈克尔逊干涉仪测光波波长和波长差

评分:大学物理实验设计性实验实验报告 实验题目:用迈克尔逊干涉仪测光波波长和波长差 班级:自动化(1)班 姓名:陈杰学号:20100151 指导教师:魏同利 实验日期:2011 年12月23日

用迈克尔逊干涉仪测光波波长和波长差 实验提要 实验课题及任务 《用迈克尔逊干涉仪测光波波长和波长差》实验课题任务是:给定的仪器是迈克尔逊干涉仪、钠光钉,运用所学的光的干涉理论,结合所给的仪器,设计出实验方案,测量出钠黄光的波长差λ?。 学生根据自己所学的知识,并在图书馆或互联网上查找资料,设计出《用迈克尔逊干涉仪测光波波长和波长差》的整体方案,内容包括:写出实验原理和理论计算公式,研究测量方法,写出实验内容和步骤,然后根据自己设计的方案,进行实验操作,记录数据,做好数据处理,得出实验结果,按书写科学论文的要求写出完整的实验报告。 设计要求 ⑴ 通过查找资料,并到实验室了解所用仪器的实物以及阅读仪器使用说明书,了解仪器的使用方法,找出所要测量的物理量,并推导出波长的计算公式,在此基础上写出该实验的实验原理。 ⑵ 选择实验的测量仪器,设计出实验方法和实验步骤,要具有可操作性。 ⑶ 在分光计上观察反射光的偏振现象,测定起偏角。 ⑷ 应该用什么方法处理数据,说明原因。 ⑸ 实验结果用标准形式表达,即用不确定度来表征测量结果的可信赖程度。 实验仪器 迈克尔逊干涉仪、白炽灯与毛玻璃屏。 问题提示 钠光灯发出的光,其中两条主谱线的波长和强度都很接近,在迈克尔逊干涉仪中将独立地发生干涉条纹,两组条纹叠加的结果使干涉条纹的视见度的发生周期性变化,实验时只要测出邻两个视见度最差(也可以是间隔n 个视见度最差)的鼓轮读数d ?,重复五取平均值,利用迈克尔逊干涉实验得到的相干公式找出它们的内在联系,导出波长差的计算公式d ?= ?22 λλ,即可求出波长差。 钠黄光较强的两条主谱线的波长分别为nm 5891=λnm 6.5892=λ, nm 3.589=λ。 必答问题 ⑴ 定域干涉与非定域干涉的区别? ⑵ 提出减少误差的方法。

实验:用双缝干涉测量光的波长试题(含答案)

实验:用双缝干涉测量光的波长试题(含答案) 一、实验:用双缝干涉测量光的波长实验题 1.在“用双缝干涉测量光的波长”实验中,实验装置如图所示. (1)以线状白炽灯为光源,对实验装置进行了调节并观察实验现象后,总结出以下几点A.灯丝和单缝及双缝必须平行放置 B.干涉条纹与双缝垂直 C.干涉条纹疏密程度与双缝宽度有关 D.干涉条纹间距与光的波长有关 以上几点中你认为正确的是______________. (2)当测量头中的分划板中心刻线对齐某条刻度线时,手轮上的示数如图甲该读数为 _____________mm. (3)如果测量头中的分划板中心刻线与干涉条纹不在同一方向上,如图所示.则在这种情况下测量干涉条纹的间距Δx时,测量值____________实际值.(填“大于”、“小于”或“等于”) 2.(1)利用甲图所示装置研究光的某些现象,下列说法正确的是______。 A.若在光屏上得到的图样如(a)图所示,则光源和光屏间放置的是单缝挡板 B.若光源和光屏间放置的是双缝挡板,光源由红光换作蓝光后,图样的条纹宽度会变窄C.若光源和光屏间放置的是三棱镜,光源能发出红、绿、紫三色光,则红光最有可能照射不到光屏上

D.若光源和光屏间放置的是三棱镜,光源能发出红、绿、紫三色光,则紫光最有可能照射不到光屏上 (2)用双缝干涉测量某单色光的波长时,所得图样如乙图所示,调节仪器使分划板的中心刻线对准一条亮条纹A的中心,测量头卡尺的示数如丙图所示,其读数为______mm,移动手轮使分划板中心刻线对准另一条亮条纹B的中心,测量头卡尺的示数为18.6mm。已知双缝挡板与光屏间距为0.6m,双缝相距0.2mm,则所测单色光的波长为______m。 3.某同学用如图所示的实验装置测量光的波长。 (1)用某种单色光做实验时,在离双缝1.2m远的屏上,用测量头测量条纹的宽度:先将测量头的分划板中心刻线与某亮纹中心对齐,将该亮纹定为第1条亮纹,此时手轮上的示数如图甲所示;然后同方向转动测量头,使分划板中心刻线与第4条亮纹中心对齐,此时手轮上的示数如图乙所示。图甲读数为__________mm,图乙读数为___________mm。已知两缝间的间距为0.3mm,由以上数据,可得该单色光的波长是_________m(结果保留2位有效数字)。 (2)若实验中发现条纹太密,难以测量,可以采用的改善方法有____________。 A.改用波长较短的光作为入射光 B.增大双缝到屏的距离 C.换窄一点的单缝 D.换间距为0.2mm的双缝 4.(1)在“单摆测重力加速度”实验中,测量周期时,秒表指针如图1所示,读数为_____秒

用光栅测量光波波长

用光栅测量光波波长实验报告 学院班级学号姓名 实验目的与实验仪器 【实验目的】 (1)学习调节和使用分光仪观察光栅衍射现象。 (2)学习利用光栅衍射测量光波波长的原理和方法。 (3)了解角色散与分辨本领的意义及测量方法。 【实验仪器】 JJY分光仪(1’)、光栅、平行平面反射镜、汞灯等。 实验原理(限400字以内) 1、光栅方程 dsin?=kλ (k=0,±1,±2,…) 主极大的级数限制:k≤d λ 2、光栅色散本领与分辨本领 光栅的分光原理:波长越长,衍射角越大。 色散现象:入射光是复合光,不同的波长被分开,按从小到大依次排列,成为一组彩色条纹,就是光谱。 K级次的角色散率:D?=d? dλ=k dcos? 光栅的分辨本领定义为刚好能分辨开的两条单色谱线的波长差δλ与这两种波长的平均值之比:R=λ δλ 实验步骤 光栅方程是在平行光垂直入射到光栅平面的条件下得出的,因此要按此要求调节仪器:1)按实验【实验装置】部分的“1.分光仪的构造”和“2.分光仪的调节”内容调节好分光仪。 2)调节光栅平面使之与平行光管光轴垂直:调B2或B3十字水平线。 3)调节光栅使其透光狭条与仪器主轴平行:调B1使谱线高度一致。 4)用汞灯照亮平行光管的狭缝,设平行光垂直照射在光栅上,转动望远镜定性观察谱线的分布规律与特征;然后改变平行光在光栅上的入射角度,转动望远镜定性观察谱线的分布的变化。 5)测量肉眼可以很清楚看到的汞灯蓝色、绿色、黄色I、黄色II四条谱线。使望远镜对准中央亮线,向左转动,对观察到的每一条汞光谱线,使谱线中央与分划板的垂直 线重合,将望远镜此时的角位置(P 左,P 左 ′) 记录到表到中。同样的,向右转动,将望 远镜此时的角位置(P 右,P 右 ′) 记录到表到中。 读数: 【分析讨论】 讨论光栅的作用、汞光谱线的分布规律与特征、平行光入射角度对谱线分布的影

光栅测定光波波长

用透射光栅测定光波波长 用平面透射光栅得到日光灯白光的夫朗和费衍射条纹,其中可以清晰的得到汞光谱中的绿线(546.07nm λ=),钠光谱中的二黄线(1589.592D nm λ=,2588.995D nm λ=)。若d 为光栅常数,θ为衍射角,λ为光波波长,k 为光谱级数(0,1,2k =±± ),则产生衍射亮条纹的条件为: sin d k θλ= (光栅方程) (1)测量光栅常数 用汞灯光谱中的绿线(546.07nm λ=)作为已知波长测量光栅常数d 。 测量公式: sin k d λθ = (2)测量未知波长 已知光栅常数d ,测量钠灯光谱中的二黄线波长1D λ和2D λ。 测量公式: sin d k θλ= (3)测量透射光栅的角色散 已知钠光谱中的二黄线的波长差λ?,测出钠光谱中的二黄线的衍射角,求光栅的角色散D 。 测量公式: D θ λ?=? 分光计测量光波波长 当一束平行光垂直入射到光栅上,产生一组明暗相间的衍射条纹,原理如图 9— 1所时,其夫朗和费衍射主极大由下式决

定: λm d =Φsin 式中:d :光栅常数 d = a + b Φ:衍射角 m :主极大级次 m = 0 ,±1, ±2 此式称光栅方程 由(9 — 1)式得 : m d Φ= sin λ 由此可以看出:只要测出任意级次的某一条光谱线的衍射角,即可计算出该光波长。 牛顿环测量钠光灯谱线的波长 根据理论计算可知,在反射光中暗环半径rk 与入射光的波长λ和透镜球面的曲

率半径R 之间的关系是 () 21λkR r k = 式中,k 为正整数0,1,…,k ,称为环的级数。 由上式可知,如果用已知波长的单色产生牛顿环,当已知暗环的半径rk ,就可算出透镜球面的曲率半径R;若已知R ,测出rk ,就可算出产生牛顿环的光波波长λ。 钠光灯谱线的波长为: () ()R n m D D n m --= 422λ 用迈克尔逊干涉仪测激光波长 1、光程:折射率与路程的乘积,nr =? 2、分振幅干涉:波面的个不同部分作为发射次波的光源,次波本身分成两部分,做不同的光程,重新叠加并发生干涉。 3、等倾干涉公式推导:(如图所示) 次波分成两部分,一部分直接反射从A 点经过透镜到达S ,另一部分透射到B 点,再反射到 C

用光栅测光波波长

实验6 用透射光栅测光波波长 光的衍射现象是光波动性质的一个重要表征。在近代光学技术中,如光谱分析、晶体分析、光信息处理等领域,光的衍射已成为一种重要的研究手段和方法。衍射光栅是利用光的衍射现象制成的一种重要的分光元件。光栅相当于一组数目众多的等宽、等距和平行排列的狭缝。光栅分应用透射光工作的透射光栅和应用反射光工作的反射光栅两种,本实验用的是透射光栅。 利用光栅分光制成的单色仪和光谱仪已被广泛应用,它不仅用于光谱学,还广泛用于计量、光通信、信息处 理、光应变传感器等方面。所以,研究衍射现象及其规律,在理论和实践上都有重要意义。 预习要点 1、什么是光栅?它的作用是什么? 2、光栅光谱有什么特点? 3、分光计的作用是什么?如何调节?什么是渐近法? 4、分光计的读数原理。设两个游标的原因。 实验目的 1.了解分光计的结构;学会分光计的调节和使用方法。 2.加深对光的衍射和光栅分光作用基本原理的理解。 3.学会用透射光栅测定光波的波长及光栅常数。 实验仪器 分光计,平面光栅,汞灯。 实验原理 光栅相当于一组数目众多的等宽、等距和平行排列的狭缝,被广泛用在单色仪、摄谱仪等光学仪器中。光栅分应 用透射光工作的透射光栅和 应用反射光工作的反射光栅 两种,本实验用的是透射光 栅。 如图1所示,自透镜L 1 射出的平行光垂直地照射在 光栅G上。透镜L 2将与光栅 法线成θ角的衍射光会聚于 其第二焦平面上的P θ点。由 光栅方程得知,产生衍射亮条纹的条件为 λθk d =sin (k =±1,±2,…,±n ) (1) 式中θ角是衍射角,λ是光波波长,k 是光谱级数,d 是光栅常数,因为衍射亮条纹实际上是光源狭缝的衍射象,是一条锐细的亮线,所以又称为光谱线。 当k =0时,任何波长的光均满足(1)式,亦即在0=θ的方向上,各种波长的光谱线重叠在一起,形成明亮的零级光谱,对于k 的其它数值,不同波长的光谱线出现在不同的方向上(θ的值不同),而与k 的正负两组相对应的两组光谱,则对称地分布在零级光谱的两侧。若光栅常数d 已知,在实验中测定了某谱线的衍射角θ和对应的光谱级k ,则可由(1)式求出该谱线的波长λ;反之,如果波长λ是已知的,则可求出光栅常数d 。 θ

分光计和透射光栅测光波波长实验报告【最新版】

分光计和透射光栅测光波波长实验报告 【实验目的】 观察光栅的衍射光谱,掌握用分光计和透射光栅测光波波长的方法。 【实验仪器】 分光计,透射光栅,钠光灯,白炽灯。 【实验原理】 光栅是一种非常好的分光元件,它可以把不同波长的光分开并形成明亮细窄的谱线。 光栅分透射光栅和反射光栅两类,本实验采用透射光栅,它是在一块透明的屏板上刻上大量相互平行等宽而又等间距刻痕的元件,刻痕处不透光,未刻处透光,于是在屏板上就形成了大量等宽而又等间距的狭缝。刻痕和狭缝的宽度之和称为光栅常数,用d表示。 由光栅衍射的理论可知,当一束平行光垂直地投射到光栅平面上时,透过每一狭缝的光都会发生单缝衍射,同时透过所有狭缝的光又会彼此产生干涉,光栅衍射光谱的强度由单缝衍射和缝间干涉两因素共同决定。用会聚透镜可将光栅的衍射光谱会聚于透镜的焦平面上。凡衍射角满足以下条件 k=0,±1,±2, (10) 的衍射光在该衍射角方向上将会得到加强而产生明条纹,其它方向的光将全部或部分抵消。式(10)称为光栅方程。式中d为光栅的光栅常数,θ为衍射角,λ为光波波长。当k=0时,θ=0得到零级明

纹。当k=±1,±2…时,将得到对称分立在零级条纹两侧的一级,二级…明纹。 实验中若测出第k级明纹的衍射角θ,光栅常数d已知,就可用光栅方程计算出待测光波波长λ。 【实验内容与步骤】 1.分光计的调整 分光计的调整方法见实验1。 2.用光栅衍射测光的波长 (1)要利用光栅方程(10)测光波波长,就必须调节光栅平面使其与平行光管和望远镜的光轴垂直。先用钠光灯照亮平行光管的狭缝,使望远镜目镜中的分划板上的中心垂线对准狭缝的像,然后固定望远镜。将装有光栅的光栅支架置于载物台上,使其一端对准调平螺丝a,一端置于另两个调平螺丝b、c的中点,如图12所示,旋转游标盘并调节调平螺丝b或c,当从光栅平面反射回来的“十”字像与分划板上方的十字线重合时,如图13所示,固定游标盘。 物理实验报告·化学实验报告·生物实验报告·实验报告格式·实验报告模板 图12光栅支架的位置图13分划板 (2)调节光栅刻痕与转轴平行。用钠光灯照亮狭缝,松开望远镜紧固螺丝,转动望远镜可观察到0级光谱两侧的±1、±2级衍射光谱,调节调平螺丝a(不得动b、c)使两侧的光谱线的中点与分划板中央十字线的中心重合,即使两侧的光谱线等高。重复(1)、(2)的调节,直到两个条件均满足为止。 (3)测钠黄光的波长

光波波长的测量

用不同的方法测量光波的波长 顾怀斌 (红河学院理学院,物理系 08物理2班,200802050220) 摘要:光学实验是大学基础物理实验重要的一部分,其中光波波长的测量是其中的重要部分,本文就对两种不同的方法来测量光波的波长进行说明,①用双棱镜测量光波的波长,②用透射光栅测量光波的波长。 关键词:波长;双棱镜;透射光栅;分光计;钠光 Abstract: The optical experiments of the University an important part of basic physics experiments, in which the measurement wavelength is one of the important part of this paper on two different methods to measure the wavelength of light waves a description, ①double-prism measuring the wavelength of light waves,② measured by means of transmission grating wavelength of light waves. Key words: wavelength; double prism; transmission grating; spectrometer; sodium 引言:随着科学的发展进步,光波在科学发展的领域中也越来越具有重要的地位,很多仪器装备都与光波,如广波给食物加热,遥控等等,在这些应用中我们需要不同波长的光波,在选择光波时,波长则是一个重要的参量,因此对光波波长的测量方法在科学领域中也是尤为重要的,因此我们要懂得光波波长的测量方法并加以应用。 实验原理 1. 双棱镜测量光波的波长 如果两列频率相同的光波沿着几乎相同的方向传播,并且它们的相

相关文档
相关文档 最新文档