文档库 最新最全的文档下载
当前位置:文档库 › High performance environmental barrier coatings, Part II_ Active

High performance environmental barrier coatings, Part II_ Active

High performance environmental barrier coatings, Part II_ Active
High performance environmental barrier coatings, Part II_ Active

Available online at https://www.wendangku.net/doc/6a10456176.html, Journal of the European Ceramic Society31(2011)

3011–3020

High performance environmental barrier coatings,Part II:Active?ller

loaded SiOC system for superalloys

Kaishi Wang a,Martin Günthner b,Günter Motz b,Rajendra K.Bordia a,?

a University of Washington,Department of Materials Science and Engineering,Seattle,WA98195-2120,USA

b University of Bayreuth,Cerami

c Materials Engineering(CME),D-95440Bayreuth,Germany

Received2March2011;received in revised form23May2011;accepted31May2011

Available online13July2011

Abstract

Polymer derived ceramic(PDC)matrix composite coatings are a promising candidate to be used as alternative environmental barrier coatings, such as in oxidation protection.This paper reports the processing of three PDC coating systems on a superalloy substrate,Inconel617,using a simple dip coating method.The performance of SiON coating,particle?lled SiOC coating,and their combined coating system is evaluated by long time static oxidation testing at800?C for100–200h.Two key parameters have been analyzed:the weight gain of the coating samples and the thickness of the thermally grown oxide(TGO)layer at the ceramic–metal interface.Results show that all three coating systems are able to signi?cantly reduce the weight gain of metal substrates due to oxidation.However,the SiON bond coat+particle?lled SiOC top coat double-layer coating system is most effective in maintaining the integrity of the substrate in the investigated200h.Based on the kinetics of oxidation,likely rate controlling steps are identi?ed.

?2011Elsevier Ltd.All rights reserved.

Keywords:Polymer derived ceramics;Composites;Interfaces;Structural applications;Failure analysis

1.Introduction

Ceramic coatings play an important role in providing struc-tural or environmental protection and functionality to a system. Commercially,expensive vapour phase techniques,like PVD and CVD,are used to deposit single or multi-elemental ceramic materials,for instance,those used in gas turbines.In contrast, a large number of preceramic polymers are liquid or soluble so that low-cost alternatives such as dip-coating,spray-coating and spin-coating can be utilized to deposit polymers or their solu-tions onto substrates,which can then be converted to ceramic coating materials.And since the polymer derived ceramic(PDC) approach is a liquid based technique,it is non-line of sight and able to coat complex shapes.

DOI of original article:10.1016/j.jeurceramsoc.2011.05.018.

?Corresponding author.Tel.:+12066858158;fax:+12065433100.

E-mail addresses:kshwang@https://www.wendangku.net/doc/6a10456176.html,(K.Wang),

martin.guenthner@uni-bayreuth.de(M.Günthner),

guenter.motz@uni-bayreuth.de(G.Motz),

bordia@https://www.wendangku.net/doc/6a10456176.html,(R.K.Bordia).

SiCN ceramic coatings have been produced in multiple ways. Zeigmeister1used spray-coating method to make50?m-thick SiCN ceramic coating on C/C/SiC substrate;a dense and nearly crack-free coating is achieved by repeating the procedure4 times.SiCN coatings have been proposed for wear,erosion or corrosion protection applications2as well as micro-electronic and optoelectronic devices.3Using a specially tailored ABSE polycarbosilazane solution as precursor for dip-and spray-coating techniques,Motz et al.4coated complex-shaped samples with a ceramic-like coating(at higher temperatures)that has good corrosion and thermal stabilities;moreover,the high?ex-ibility of ABSE?lm also allows the coating of?exible metal foils.SiCN membranes(200–500nm thick)can be spin-coated onto a porous Si3N4substrate for hot gas separation applications due to their high temperature stability.5Iwamoto et al.6reported such a microporous amorphous membrane that exhibits hydro-gen gas permeance of1.3×10?8mol/m2s Pa at573K and the selectivity ratio of H2/N2at141.

SiOC ceramic coatings are attractive because they can be used as thermal or environmental barrier coatings against harsh environments at elevated temperatures.Fukushima et al.7used transition metals as catalyst and alkoxysilane as precursor to

0955-2219/$–see front matter?2011Elsevier Ltd.All rights reserved. doi:10.1016/j.jeurceramsoc.2011.05.047

3012K.Wang et al./Journal of the European Ceramic Society31(2011)3011–3020

produce SiOC coatings with a crack-free thickness of0.2mm after crosslinking;the material shows good?exibility and adhe-sion on several types of plastic substrates due to the high-T3-ratio structure in the sol stage.Polysiloxanes have a natural advantage of making SiOC ceramic materials because of the incorporation of bonded oxygen in the backbone of the polymer.Blum et al.8–11 developed a family of linear polysiloxane material,which can be crosslinked in situ at low temperature(150?C)and converted to ceramics below450?C.Its suitable viscosity for the coating process and low cost(as a byproduct of the silicone industry) has made it an attractive precursor for this purpose.Torrey12 used polyhydromethylsiloxane(PHMS)as matrix material to make a type of composite coatings with a tunable thickness of10–30?m;active?llers were added to compensate for the shrinkage of the polymer so that low-porosity and crack-free coatings can be formed.It was found that the coating layer can be chemically bonded to the metallic substrates after heat treat-ment and provide good oxidation protection.13,14Torrey and Bordia recently wrote a book chapter on the?ller systems used in PDC bulk components and nano-composites,15while Schef-?er and Torrey co-authored another chapter speci?cally on PDC coatings.16

However,there is lack of a study on the performance of active ?ller reinforced SiOC composite ceramic coatings in long term exposure to high temperature oxidizing environments.Torrey12 reported a cyclic oxidation study on such coatings and found that all the samples survived ten consecutive cycles of heating(to 800?C,one hour holding)and cooling(to room temperature,two hour holding)at10?C/min with no visible damage but increased coating density.This paper presents for the?rst time the results of200-h static oxidation testing at800?C on these coatings,and the signi?cant improvement due to a bond coat layer.

2.Experimental procedure

The metal substrate used in this study for PDC deposition was Inconel617,a nickel-based superalloy.The metal plates were30mm long,10mm wide and1.2mm thick,polished to 1200grit?nish and cleaned using ultrasonication bath prior to processing.

ZrSi2submicron particles(Accumet Materials Co.,Ossining, NY,USA)were used as active?llers and PHMS polymer(HMS-992,Gelest Inc.,Morrisville,PA,USA)was the precursor for the matrix.The ZrSi2particles were attrition milled in isopropyl alcohol for10h at room temperature,dried at relatively low temperature(~100?C)in a convection drying oven,and ground back to?ne powders using mortar and pestle.30vol.%of?llers were mixed with the required amount of PHMS(70vol.%)and half of the required n-octane(98+%,Alfa Aesar,Ward Hill,MA, USA)solvent.By virtue of its low boiling point(126?C)and low viscosity(~1centiPoise),n-octane was added to adjust the viscosity of the mixture to a range suitable for dip coating.The slurry was then ball-milled for4h in order to mix all the reactants well and remove agglomerates.0.05wt.%of Ru3(CO)12(Alfa Aesar,Ward Hill,MA,USA)catalyst(to PHMS)was dissolved in the other half of n-octane,and the solution was added to the slurry,which would be ball-milled for another30min prior to dip coating.It formed the slurry with a?nal composition having a volume ratio of3:5between(?ller+PHMS)and n-octane. The volume ratio of“?ller to polymer”was determined using the calculated result of the method developed by Greil17for zero shrinkage pyrolysis of the composite system.The rheology of the slurry,which is mainly controlled by the amount of the solvent,is optimized to make coatings of the desired thickness, based on Torrey and Bordia’s work.18

A mechanical testing frame,Instron4505(Illinois Tool Works Inc.,Norwood,MA,USA),was used to dip coat slur-ries onto metallic alloy substrates.Dip coating took place under ambient conditions.Typical withdrawal speeds were between100and1000mm/min.Due to a long travelling distance (>20mm)for the Instron crossbar,the substrate was assumed to move at a constant and accurate speed as programmed.The tran-sition region of non-uniform coating thickness due to crossbar acceleration was estimated to be less than1mm.

Pyrolysis was performed in a tube furnace(CM-1200,CM Furnace Inc.,Bloom?eld,NJ,USA).Humid air was used for polymer’s in situ crosslinking in the tube.The temperature pro-?le had a2?C/min ramp rate for both heating and cooling processes.Temperature was held constant at150?C for2h for crosslinking,and at800?C for another2h for the pyrolysis of PHMS and oxidation of active?llers.This heating pro?le ensured that the ceramic matrix remained amorphous but fully converted,and?ller particles could be highly oxidized.

For the pure silicon oxynitride(SiON)ceramic coating(used as bond coat),perhydropolysilazane PHPS NN120-20(a solu-tion of20wt.%PHPS in dibutyl ether,Clariant Advanced Materials GmbH,Sulzbach,Germany)was used as the polymer precursor.PHPS is produced by ammonolysis of the dichlorosi-lane SiH2Cl2and subsequent base-catalyzed dehydrogenative coupling.19Due to the large number of Si–H groups,PHPS is highly reactive with hydroxyl groups.Several studies have reported that PHPS polymer can be converted to a ceramic at temperatures as low as50?C in a high humidity environment (95%20)or with ceramic-transformation promoting agents,like NH3,amine,acid compound or peroxide.21However,for high temperature applications,such as oxidation resistance,pyroly-sis of the polymer is still the desirable route of converting PHPS to ceramic.Below1000?C,it is able to form silicon nitride if heat treated in inert atmosphere and SiON in air or oxy-gen atmosphere as reported by Günthner et al.22According to their thermogravimetric analysis results,PHPS was completely crosslinked around150–200?C.During crosslinking,there was no signi?cant weight loss/gain.The main weight gain by incor-poration of oxygen occurs in the200–400?C range despite the loss of ammonia and hydrogen.After400?C,the material does not have signi?cant weight change,implying the completion of ceramic conversion.

Due to the viscosity of PHPS solution and the requirement of making crack-free coatings,a moderate withdrawal speed range was used:100–500mm/min,which would lead to thicknesses of pyrolyzed?lms around0.5–1.5?m.The coated samples were pyrolyzed at800?C.Pyrolysis was carried out in the same tube furnace aforementioned with both ends of the tube open to ensure that samples were always exposed to?owing air.Temperature

K.Wang et al./Journal of the European Ceramic Society31(2011)3011–30203013

ramp rates of2–3?C/min were used for both heating and cooling cycles,while a typical holding time at pyrolysis temperature was 2h.Once they were pyrolyzed,they were ready for subsequent processing or characterization.

The multi-layer coating system was made by dip-coating and pyrolyzing the SiON bond coat layer and the ZrSi2-?lled SiOC top coat layer in sequence.The experimental parameters have been described above.

In oxidation testings,weight gains of coated samples were measured by an analytical balance(RADW AG XA110Intell-Lab Balance,sensitivity0.01mg,Váhy-RADWAG Company,ˇSumperk,Czech Republic).Microstructural evolution of coat-

ing samples at different stages of oxidation was observed using scanning electron microscopy,SEM(JSM-6000F,JEOL USA, Inc.,Portland,OR).

3.Results and discussion

The primary objective of this study is to develop PDC coating systems that provide high level of oxidation protection to metal-lic systems at elevated temperatures.Three systems have been successfully made,which includes particle?lled SiOC ceramic matrix composite coatings(from PHMS),SiON ceramic coat-ings(from PHPS)and a combined system of bond coat(SiON) and top coat(particle-?lled SiOC)on metal substrates.They were tested under typical oxidizing environment(800?C in air with ambient humidity~30–50%)for long periods of time,i.e. 100h and200h,in order to investigate their long term oxidation resistance.The two key parameters that were monitored dur-ing oxidation were the weight gain per unit area on a coating surface and the thickness of the thermally grown oxide(TGO) layers close to the ceramic–metal or ceramic–ceramic interface. The effectiveness of PDC coatings in protecting metal substrates is evaluated and discussed mainly on their abilities in keeping the integrity of the tested surface and their robustness during long-term use.

Prior to long-term oxidation tests,coating systems were pyrolyzed for only2h,and this may not necessarily lead to fully transformed and stable ceramic products.Therefore,the con-tinuous weight gain of coating materials as powders were?rst studied.This experiment provided a baseline of weight gain in the coating system.SiON powder and ZrSi2particle-?lled SiOC powder were taken from the pyrolysis of the same slurries that were used to make the coatings.The thermal pro?le during pyrolysis was the same as that for the coatings.The pyrolyzed powders were ground back to<75?m using pestle and mortar. The oxidation tests on the powders were conducted at800?C in air for a total of200h with the weight gain measured at50-h interval.The results are summarized in Table1,and then plotted in Fig.1.

In powders,SiON exhibits weight gain that linearly increases with time throughout the investigated time span,however,the oxidized amount is very small,i.e.~0.16%,after200-h oxida-tion at800?C.However,its weight gain during pyrolysis(from 336.22mg to347.67mg,3.4%)is signi?cantly more.It is clear that SiON has almost reached its maximal oxidation potential within the?rst2h,dense passivating amorphous SiO2

scale Fig.1.Weight gain of SiON and30vol.%ZrSi2-?lled SiOC powders during 200-h oxidation at800?C.

forms on the particle surface.Therefore,oxidation after the completion of pyrolysis is limited.On the other hand,ZrSi2-?lled SiOC powder has a weight gain of about3.5%(from 347.99mg to360.01mg)during pyrolysis(2h at800?C).How-ever,it continues to oxidize linearly at a much higher rate(than that of SiON)for100h at800?C,then reaches a plateau value of approximately3%weight gain for the second100h.These results are indicative of the differences in kinetics of the oxida-tion between SiON and ZrSi2-?lled SiOC powders.PHPS can be almost fully oxidized in2h at800?C,and is quite stable up to this temperature for at least200h.However,ZrSi2-?lled SiOC composite shows only half of its weight gain(3.5%)during the 2-h pyrolysis and the other half of its weight gain(3%)at a much slower rate,which takes about100h.This slow but continuous weight gain could be mainly attributed to the slow oxidation kinetics of ZrSi2particles,where the rate limiting step lies in the diffusion of oxygen to the reactive core through a growing outer oxide shell on top of each?ller particles,which has been analyzed in the shrinking core model.17

Results on bulk powders mentioned above shed light on the oxidation mechanisms of different components in the ceramic coatings.However,they will not directly translate to the oxi-dation of the coatings,because of the size effect.For instance, the powders used in bulk tests were only milled to be on the 35–75?m level,whereas the ceramic coatings are typically only 15?m in the ZrSi2-?lled SiOC composite.Thus,the weight gain in the coating due to the oxidation of ZrSi2is expected to be at a faster rate than in the powder.The powder results should there-fore be used as a conservative estimate of the expected weight gain in the coatings.

3.1.100h oxidation testing

Weight gains of the three coating systems:(a)particle?lled SiOC ceramic matrix composite coatings(from PHMS);(b) SiON ceramic coatings(from PHPS);(c)combined system of bond coat(SiON)and top coat(SiOC+?ller),were recorded before and after100-h oxidation at800?C.Inconel617sub-strates(1200grit surface?nish)were used in this part of study.

3014K.Wang et al./Journal of the European Ceramic Society 31(2011)3011–3020

Table 1

200-h oxidation of SiON and ZrSi 2-?lled SiOC powders at 800?C.

SiON 30vol.%ZrSi 2-?lled SiOC Net wt.(mg)

wt.(mg)Wt.gain (%)Net wt.(mg) wt.(mg)Wt.gain (%)Before pyrolysis 336.22N/A N/A 347.99N/A N/A After pyrolysis (2h)347.6700360.010050h 347.730.060.02366.16 6.16 1.71100h 347.920.250.07370.8310.83 3.01150h 348.120.450.13370.8310.82 3.01200h

348.22

0.55

0.16

370.73

10.73

2.98

Table 2

100-h oxidation of the three PDC coating systems.

Area (mm 2)

Weight gain (mg)Normalized weight gain (?g/mm 2)Bare Inconel 617715.92 2.17 3.03SiOC 606.840.97 1.59SiON

584.560.63 1.08SiON +SiOC

595.84

0.69

1.16

All three systems were pyrolyzed at 800?C in air for 2h.Numer-ical results are average values based on multiple samples and they are summarized in Table 2and then plotted in Fig.2.

Fig.2clearly shows that all PDC coating systems are able to effectively reduce the weight gain due to oxidation at ele-vated temperatures.When bare Inconel 617metal substrates are exposed to the oxidation,they have a unit weight gain of roughly 3?g/mm 2after 100h,however,this number is reduced to 1.59?g/mm 2for particle ?lled SiOC composite coatings,and to 1.08–1.16?g/mm 2for SiON coatings or (SiON +particle ?lled SiOC)coatings.Note that the weight gain in PDC coat-ing samples includes not only the weight gain due to oxidation of the substrates,but also the weight gain in coatings them-selves (proved in powder oxidation part).Taking this factor into account,the weight gain solely due to metal substrate can be fur-ther decreased.In other words,the performance of PDC coatings in reducing metal oxidation has been underestimated to a certain degree in the results shown here.For instance,in SiOC

compos-

Fig.2.Column graph of the normalized weight gains of the three PDC coating systems in 100-h oxidation.

ite coatings,the withdrawal speed of 500mm/min results in a ?nal coating thickness of about 15?m and the density of a sim-ilar system (the same polymer,PHMS,with the same volume fraction 70%in slurry)was measured to be 2.57g/cm 3after pyrolysis at 800?C.12Therefore,in a unit area,1mm 2,the ini-tial weight of the pyrolyzed SiOC composite coating is about 38.55?g.The weight gain of the ZrSi 2-?lled SiOC powder was 3.01%(see Table 1)after 100h at 800?C,hence,the SiOC com-posite coating gained weight as 1.16?g/mm 2by itself.The total weight gain of the composite coating measured on metal sub-strate is 1.59?g/mm 2in Table 2,of which only 0.43?g/mm 2should be attributed to the metal substrate oxidation.In this case,the oxidation of Inconel 617substrates for 100h is reduced from 3.03?g/mm 2to 0.43?g/mm 2—a reduction of 86%.

Another important phenomenon in this experiment is that,with the addition of SiON bond coat,SiOC top coat has smaller weight gain than if it is used alone.The weight gain in SiON coatings on Inconel 617is 1.08?g/mm 2.It only increases to 1.16?g/mm 2with the addition of SiOC top coat,which is still considerably smaller than the value for only the SiOC coatings (1.59?g/mm 2).In fact,the calculated weight gain within the SiOC composite coating layer (1.16?g/mm 2)is equal to the total weight gain of the (SiON +particle ?lled SiOC)combined system measured on metal substrate (see Table 2).This implies that there is almost no oxidation of the Inconel 617substrate in the 100-h test period.Hence,the combined SiON bond coat +particle ?lled SiOC top coat system provides almost complete oxidation protection for Inconel 617at 800?C,which will be proved again in the next section using another method.

3.2.200h oxidation testing

In order to further con?rm the weight gain results in the previous section and the interpretation of a signi?cant part of the weight gain coming from the coating itself,another method was used to investigate the effectiveness of the coat-ing systems.We measured the thickness of the TGO layers that typically appear at the metal–ceramic interface.The three coat-ing systems,described in the previous section,were oxidized for a longer time (200h)at 800?C with data collected every 50h.Then,samples were sectioned in the thickness direction to reveal its cross section,using a low speed diamond saw.After polishing down to 0.05?m (alumina suspension polish-ing media)?nish and sputtered with platinum,the samples were

K.Wang et al./Journal of the European Ceramic Society31(2011)3011–3020

3015

Fig.3.Cross section backscattered SEM images of the SiON coating thermally oxidized at800?C for(a)0h;(b)50h;(c)100h;(d)150h;and(e)200h.

characterized with SEM in the backscattered mode.The micro-graphs of each sample in the three coating systems are shown in Figs.3–5respectively.The thicknesses of measured TGO layers in the ZrSi2-?lled SiOC coating system are listed in Table3.

For SiON coatings,the average coating thickness is about 1.5?m and the coatings are dense and amorphous from the beginning of the test(0h)to the end(200h).In the?rst100h, the TGO layer–a very thin layer lighter in colour than that of the Table3

TGO layer thickness in ZrSi2-?lled SiOC coatings.

Hours TGO thickness(?m) 00.378±0.084 500.751±0.088 1000.986±0.111

150 1.248±0.155

200 1.586±0.130bulk part of the coating–can be observed at the ceramic–metal interface.It is coherent and stable during this period of time. Estimated from a10,000×SEM micrograph(not shown),the thickness of this TGO layer is only~0.15?m,namely1/10 of the total thickness.As shown in Fig.3(d)and(e),the TGO layer has grown much thicker(nearly1/3of the total thickness) and more obvious in the last100h.The ceramic–metal inter-face is not as straight as before either,which is a clear sign of material degradation of the metal substrate.Especially in the200-h sample(Fig.3(e)),internal cracks can be seen to a depth of about1?m underneath the metal surface.There are some small pieces of metal debris present in the SiON coat-ing close to the ceramic–metal interface.The reason for the debris formation is uncertain.Various possible explanations for these have been considered.The most likely reason appears to be the in situ formation of precipitates due to coalescence of diffused metal atoms.Other reasons,e.g.impurities intro-duced during processing,can be excluded since these are only observed in samples after long-term oxidation test.Further qual-

3016K.Wang et al./Journal of the European Ceramic Society 31(2011)

3011–3020

Fig.4.Cross section backscattered SEM images of the ZrSi 2-?lled SiOC coating thermally oxidized at 800?C for (a)0h;(b)50h;(c)100h;(d)150h;and (e)200h.

itative investigation needs to be done to con?rm their origin.Although starting to degrade,the PHPS coating is able to pro-tect the metal substrate from oxidation up to 200h at 800?C.No major cracks can be observed either within the body of the coating itself or along the ceramic–metal interface.The cracks underneath the metal surface are minor at this point (200h),but if the exposure is continued they will keep growing and eventually interconnect with each other to cause catastrophic failures.

For ZrSi 2-?lled SiOC coatings,the coating thickness is about 20–25?m in this section.It possesses the microstructure of a typical particle reinforced composite material with limited porosity.In terms of oxidation resistance performance,the more important features are the obvious growth of TGO layer at the ceramic–metal interface and the propagation of internal cracks roughly 1?m underneath the metal surface.After coating pyrol-ysis,the TGO layer is only about 0.4?m as shown in Fig.4(a),but grows to be ~1.6?m after 200h.The measured TGO layer thickness is summarized in Table 3.

The correlation between TGO layer thickness and oxidation time is governed by a mixed form of parabolic relationship,which was ?rst proposed by Evans 23,24as follows Eq.(1):x 2+Ax =B (t +τ)

(1)A ≡2D ef f 1k +

1

h (1.a)B ≡

2D ef f C ?N 1

(1.b)τ≡

x 20+Ax 0

B

(1.c)

where x is oxide thickness at any given time,t is time,D eff is the effective diffusion coef?cient,k is solid-phase transport rate con-stant,h is gas-phase transport coef?cient,C*is the equilibrium concentration of the oxidant in the oxide,N 1is the number of oxidant molecules incorporated into a unit volume of the oxide layer,x 0is the initial oxide thickness at t =0.The solution to

K.Wang et al./Journal of the European Ceramic Society31(2011)3011–3020

3017

Fig.5.Cross section backscattered SEM images of the combined SiON and ZrSi2-?lled SiOC coating thermally oxidized at800?C for(a)0h;(b)50h;(c)100h;

(d)150h;and(e)200h.

Eq.(1),which yields the oxide thickness as a function of time,

is stated below:

x A/2=

1+

t+τ

A2/4B

1/2

?1(2)

Simpli?ed solutions for Eq.(2)under two limiting conditions have been proposed by Deal et al.25as follows:

When t A2/4B and t τ,

x A/2~=

t

A2/4B

1/2

or x2~=Bt(3)

When t A2/4B,

x A/2~=1

2

t+τ

A/4B

or x~=

B

A

(t+τ)(4)

For the long time scale investigated in this study,the form of

Eq.(3)is appropriate.Fig.6is a plot of the TGO layer thick-

ness,x2,as a function of time.A linear?t is applied to the data

set and indicates that Eq.(3)is valid.Data scatters around the

?tting line in an acceptable range,revealing that the oxidation of

ZrSi2-?lled PHMS coatings indeed follows the typical parabolic

kinetics.The parabolic rate constant B,therefore,can be deter-

mined to be B=0.01134for this material system.The initial

oxide thickness at hour=0,measured to be0.378?m,is essen-

tially due to the coating pyrolysis for2h.In the early stage of

oxidation,oxide thickness has a linear relationship with time as

shown in Eq.(4),and the rate constant(B/A)is much larger than

parabolic rate constant B.

The real problem with this material system is evident from

the internal cracks in the substrate that start to form as early as

pyrolysis takes place.At0h,very small and short cracks vertical

to the ceramic–metal interface can be observed at their initia-

tion stage.After50h,they propagate deeper into the substrate,

3018K.Wang et al./Journal of the European Ceramic Society31(2011)

3011–3020

Fig.6.A plot of the square of the TGO layer thickness as a function of thermal oxidation time at800?C.

meanwhile,voids start to form roughly on a plane parallel to the interface but about1?m underneath it.Between hour100and 200,these voids develop to a higher density.Once they become interconnected,major cracks that could either keep on that plane or de?ect and kink out of the plane are present.Therefore,deep cracks into the substrate can be observed at45?relative to the interface at hour150and200.There were also the same type of internal cracks present in PHPS coatings,but they do not appear until after150h of oxidation.However,they form right after pyrolysis in the particle?lled SiOC coating.This phenomenon is very closely depicted by Evans,26where the TGO layer cohe-sively bond with the ceramic but the metal fails in a ductile manner.

In fact,most ceramic–metal bonds are vulnerable to brittle debonding at the interface.However,in this study,the failure mode is different.From the microstructures,it is clear that the TGO layer and the SiOC coating are strongly bonded.The growth of the TGO layer is primarily facilitated by the active oxygen transported to this interface and the diffusion of metal atoms towards it.This diffusion is postulated to lead to the for-mation of the voids as shown in SEM micrographs.Thus,the interface fracture is mainly due to the nucleation,growth and coalescence of these voids.This mechanism was well studied by Evans et al.26as one of the four typical fracture mechanisms at metal–ceramic interfaces.Following the analysis presented in Ref.[26]the case in this study is a modi?ed ductile fracture type with two additional factors:constraint and void nucle-ation.The constraint arises in this layered system with strong ceramic–metal bonds,where high hydrostatic stress builds up near the interface due to“inherent limitations on slip”.The TGO layer is cohesively bonded:this is unlike a metal–metal interface, since metallic bonds allows certain degrees of slip without catas-trophic plastic deformation.The presence of voids and cracks in this case is also a mechanism by which strain energy could be released and it is only governed by plastic dissipation.On the other hand,the number density of void nucleation sites is critical when the metal layer is thick,because the majority of the plas-tic dissipation is con?ned to the metal ligaments between the voids,which are favoured as the easiest path for the propagation of cracks parallel to the interface plane.Thus,the higher the void density,the lower the interface fracture resistance.As time progresses,more and more voids form due to unrelaxed stresses associated with the growth of the TGO layer,which eventually result in failure.Experimentally,delamination of SiOC coatings in small portions was observed during thermal oxidation,includ-ing in the early stage,since this fracture mechanism is more or less a local effect.

Experimentally,this problem seems to be solved by combin-ing the two coating systems.The most important microstructural feature in the combined coating system in Fig.5is the elimi-nation of TGO layers and thus the internal cracks in the metal. This should substantially improve the service life of metallic components.The proposed mechanism for this is the following. In the SiOC coatings,their open porosity is the diffusion path that oxygen can constantly and easily transport to the ceramic–metal interface and form the TGO layer.According to the parabolic relationship between oxidation time and TGO thickness,it takes long time for the TGO layer to reach its steady state-in fact this study has shown that steady state was not reached even after 200h of oxidation.Thus,it is possible that catastrophic failure would occur in the SiOC coating before the equilibrium thick-ness of the TGO layer has been achieved.Therefore,to make robust oxidation resistant coatings from the PHMS system,it is important to block off the transport of oxygen to the metal sur-face.This can be achieved by the thin but dense SiON coating (~1.5?m),since dense SiO x and Si3N4are nearly impermeable to gas molecules like H2O,O2,N2,Ar,Ke and Xe.27By itself, the thin SiON coating is a reasonable barrier to oxidation and for this case,internal cracks are not observed until150h.Ideally,to further improve SiON coating’s service life,in other words,to further postpone the appearance of internal cracks,thicker coat-ings should be used,which requires repeating the dip-coating and pyrolysis process for multiple times.For instance,it needs about14times(~1.5?m per layer)for the SiON coating to reach 20?m thick.However,thick SiOC top coat(~20?m)can be made in one step and it is more compliant than SiON coating of the same thickness due to its porosity and even lower Young’s modulus.It is reasonable to assume that when the system is heated to800?C during operation the ceramic coating is nearly stress-free,because it was pyrolyzed at the same temperature. When cooling from high temperature to room temperature,due to its lower thermal expansion,the ceramic coating will be under compression as opposed to tension in the substrate.Thicker coat-ings tend to fail due to spallation under compressive stresses,26 however,in this system it is possible to make thick coatings without failure,because the modulus and hence the stresses are low.A simple approximate calculation indicated that the magnitude of the maximum compressive stress,(σC)compressive, in the coating at room temperature should be of the order of:

(σC)compressive=E C T(αM?αC)(5) in which C and M denote for ceramic and metal respectively, E is Young’s modulus, T is temperature difference between 800?C and room temperature( T=~780?C),andαis CTE.

K.Wang et al./Journal of the European Ceramic Society31(2011)3011–30203019 Table4

Calculation of Young’s modulus and stress in the“combined ceramic layer”.

E(GPa)Thickness(h)(?m)CTE(α)(K?1)

Substrate28160–11.6×10?6

Bond coat2977.4 1.5–

Top coat2958.7~20 1.0×10?6

Combined ceramic layer60.021.5~1.0×10?6

In Eq.(5),the effective modulus of the combined top and

bond coat layer is given by:

E coating~=h bond·E bond+h top·E top

h bond+h top

(6)

Using the values in Table4for the modulus and the thickness, we can calculate the effective modulus to be60GPa.Substituting this in Eq.(5),together with values ofαM=11.6×10?6K?1,αC=1.0×10?6K?1(estimated value for the amorphous SiOC matrix),and T=780?C,we calculate the maximum com-pressive stress in the coating at room temperature to be approximately496MPa.Since the residual stresses in the coat-ing are not only compressive but also relatively low,it is therefore able to survive temperature changes in this temper-ature range.Thus,the two coating systems complement each other if used together and result in a robust oxidation protection system.

The oxidation experiments on this combined system success-fully proved this concept.The bond coat links the substrate and the top coat together via strong chemical bonding.As shown in Fig.5,no reaction products are formed at the SiOC–SiON inter-face during the200-h test;meanwhile,after200h,the TGO layer(<0.15?m)at the SiON–metal interface is observed to be less than1/10of its thickness(~1.5?m)in a8000×SEM micrograph(not shown).By the end of oxidation at200h,the integrity of the metal is intact with no cracks visible.Thus,the metallic components protected by the combined PDC coating system have the potential for a long service life.

4.Conclusion

This paper summarizes the details of the processing of three coating systems designed to provide oxidation protection to metallic systems and the results of long term static oxida-tion tests.The three systems are all based on polymer derived ceramic coatings and are:SiON,ZrSi2-?lled SiOC and SiON bond coat+particle?lled SiOC top coat.Signi?cant reduction in weight gain of metal substrates due to oxidation was observed in the samples of all three coating systems.Further investigation of the TGO layer thickness reveals that the double-layer coating system,made of SiON bond coat and particle?lled SiOC top coat,is the most effective in oxidation protection of Inconel617 superalloy at800?C.No degradation in the coatings,the metal substrate or the interfaces was observed for times up to200h in air.Acknowledgement

KW and RKB would like to acknowledge partial support for the research at University of Washington from US Air Force Of?ce of Scienti?c Research(Grant No.FA95550-09-1-0633). References

1.Zeigmeister U.Development of a mechanical and oxidation protection for

ceramic substrates.Darmstadt,Germany:Diploma Thesis,Department of Materials and Earth Sciences,Darmstadt University of Technology;

2003.

2.Badzian A,Badzian T,Drawl WD,Roy R.Silicon carbonitride:a rival to

cubic boron nitride.Diamond Relat Mater1998;7(10):1519–25.

3.Zhang W,Zhang K,Wang B.In?uence of temperature on the properties of

SiCxNy:H?lms prepared by plasma-enhanced chemical vapour deposition.

Mater Sci Eng B1994;26(2–3):133–40.

4.Motz G,Kabelitz T,Ziegler G.Polymeric and ceramic-like SiCN coatings

for protection of(light)metals against oxidation and corrosion.In:Mandal H,Ovecoglu L,editors.Euro ceramics VIII,key engineering materials.

Trans Tech Publications Ltd.;2004.p.481–4.

5.V?lger KW.Ceramic materials through a nonoxidic sol–gel process.Darm-

stadt,Germany:PhD Thesis,Department of Materials and Earth Sciences, Darmstadt University of Technology;2002.

6.Iwamoto Y,Sato K,Kato T,Inada T,Kubo Y.A hydrogen-permselective

amorphous silica membrane derived from polysilazane.J Eur Ceram Soc 2005;25(2–3):257–64.

7.Fukushima M,Yasuda E,Nakamura Y,Kita H,Kawabata H,Tanabe

Y.Preparation of a transition metal containing polymethylsilsesquioxane hybrids and silicon oxycarbide ceramics–the fabrication of coating and self-supported?lms.J Ceram Soc Jpn2005;113(1315):210–5.

8.Blum YD.Hydroxysiloxane precursors for ceramic https://www.wendangku.net/doc/6a10456176.html, Patent

5,128,494;1992.

9.Blum YD,Johnson SM,Gusman MI.Hydridosiloxanes as precursors to

ceramic https://www.wendangku.net/doc/6a10456176.html, Patent5,635,250;1997.

10.Blum YD,MacQueen DB.Modi?cations of hydrosiloxane polymers for

coating applications.Surf Coat Int B:Coat Trans2001;84(1):27–33. 11.Blum YD,McDermott GA.Dehydrocoupling treatment and hydrosilyla-

tion of silicon-containing polymers,and compounds and articles produced https://www.wendangku.net/doc/6a10456176.html, Patent5,639,844;1997.

12.Torrey JD.Polymer derived ceramic composites as environmental barrier

coatings on steel.Seattle:PhD Thesis,Materials Science and Engineering, University of Washington;2006.

13.Torrey JD,Bordia RK.Phase and microstructural evolution in polymer-

derived composite systems and coatings.J Mater Res2007;22(7): 1959–66.

14.Torrey JD,Bordia RK.Mechanical properties of polymer-derived ceramic

composite coatings on steel.J Eur Ceram Soc2008;28(1):253–7.

15.Torrey JD,Bordia RK.Filler systems(bulk components and nano-

composites).In:Colombo P,et al.,editors.Polymer derived ceramics:from nano-structure to https://www.wendangku.net/doc/6a10456176.html,ncaster,Pennsylvania,USA:DEStech Publications,Inc.;2010.p.329–39[chapter5.2].

16.Schef?er F,Torrey JD.Coatings.In:Colombo P,et al.,editors.Polymer

derived ceramics:from nano-structure to https://www.wendangku.net/doc/6a10456176.html,ncaster,Penn-sylvania,USA:DEStech Publications,Inc.;2010.p.358–65[chapter5.4].

17.Greil P.Active-?ller-controlled pyrolysis of preceramic polymers.J Am

Ceram Soc1995;78(4):835–48.

18.Torrey JD,Bordia RK.Processing of polymer-derived ceramic composite

coatings on steel.J Am Ceram Soc2008;91(1):41–5.

19.Seyferth D,Wiseman GH.High-yield synthesis of Si3N4/SiC ceramic

materials by pyrolysis of a novel polyorganosilazane.J Am Ceram Soc 1984;67(7):C132–3.

20.Bauer F,Decker U,Dierdorf A,Ernst H,Heller R,Liebe H,et al.Prepa-

ration of moisture curable polysilazane coatings Part I.Elucidation of low temperature curing kinetics by FT-IR spectroscopy.Prog Org Coat 2005;53(3):183–90.

3020K.Wang et al./Journal of the European Ceramic Society31(2011)3011–3020

21.Shimizu Y,Matsuo H,Yamada https://www.wendangku.net/doc/6a10456176.html,position for forming ceramic mate-

rial and process for producing ceramic https://www.wendangku.net/doc/6a10456176.html, Patent5,922,411;

1999.

22.Günthner M,Kraus T,Dierdorf A,Decker D,Krenkel W,Motz G.Advanced

coatings on the basis of Si(C)N precursors for protection of steel against oxidation.J Eur Ceram Soc2009;29(10):2061–8.

23.Evans UR.Relation between tarnishing and corrosion.Trans Am Elec-

trochem Soc1924;46:247–82.

24.Evans UR.The corrosion and oxidation of metals:scienti?c principles and

practical applications..New York,USA:St.Martin’s Press Inc;1960. 25.Deal BE,Grove AS.General relationship for the thermal oxidation of

silicon.J Appl Phys1965;36(12):3770–8.26.Evans AG,Dalgleish BJ.The fracture-resistance of metal ceramic inter-

faces.Acta Metall Mater1992;40:S295–306.

27.Barrer RM.Diffusion in and through solids.Cambridge,England:Cam-

bridge University Press;1941.

28.MatWeb of Automation Creations Inc.Special Metals INCONEL

Alloy617.Available from:https://www.wendangku.net/doc/6a10456176.html,/search/datasheet.

aspx?MatGUID=adf2123d8e494e75aef7417989ffea92.

29.Wang K.Polymer derived ceramic and ceramic matrix composite

coatings:processing,characterization and performance.Seattle:PhD Thesis,Materials Science and Engineering,University of Washington;

2010.

婚礼上互动游戏

婚礼上互动游戏 在婚礼上,该如何和宾客互动呢。下面小编为大家精心搜集了关于婚礼上的互动游戏,欢迎大家参考借鉴,希望可以帮助到大家! 和宾客互动游戏一:幸运抽奖 这个活动在婚礼上非常普遍,但是也最受欢迎。因为这样的活动投入的精力并不是很多,但是因为有礼物赠送,大家的积极性会很好地被调动起来。 方式一: 来宾进场时候,在新人提供的小卡片上写祝福语,投入票箱。票箱的制作很简单,一个纸盒子,上面挖一个小孔即可。在婚礼进行的过程中,可以由新人、新人的父母等等,来进行现场抽奖。抽中的宾客可以得到小礼物。这样的抽奖环节可以多进行几轮,让来宾们都沾沾喜气。 方式二: 新人准备好喜字或是小玫瑰贴纸,在布置会场的时候让伴娘在每桌挑一个凳子贴上。因为涉及到保密性,所以让伴娘或是个别工作人员知情就足够了。这样,每桌都会有一个幸运人选了,那就要准备与桌数相同的礼物,在婚宴上给大家惊喜,这样气氛会很好。 方式三: 使用电脑设备,事先把来宾的姓名都输入到电脑里,用大屏幕滚动放映出来。新人喊停,操作人员就按动控制键,屏幕就静止不动,上面是谁的名字那么得奖的就是谁。这个操作起来有点难度,首先需要有投影仪设备,第二需要懂技术的朋友做一个这样的软件。而且在经费方面,新人要投入更多的资金了,代价就有点高。个人不使用这个方式,预算比较高的姐妹可以考虑使用。 和宾客互动游戏二:友情表演 方式一: 事先在新人的朋友和亲戚中挑选唱歌比较好的人,跟他们沟通一下,让他们事先准备,在婚礼上,司仪让大家上台表演的时候,以“托”的形式,积极上台表演,

从而在给婚礼助兴的同时,带动现场嘉宾积极上台的气氛。 方式二: 请有特长的小朋友表演节目。现在的小朋友,父母常常从他们小时候开始就培养他们的才艺,可以让他们表演节目。比如两个孩子有跳拉丁舞的特长,让两个小家伙上台像模像样的表演起来。虽说孩子的表演不可能十分专业,但是特别容易跳动现场、活跃气氛,得到大家的赞赏。而且在面对小礼物的时候,以及几个小朋友一起比赛才艺的时候,有表演才能的小朋友会更容易乐于展现自己。 和宾客互动游戏三:互动问答 方式一: : 司仪或是新人事先准备一些题目,然后现场提问,让全场来宾拿出手机,第一个打进电话的来宾进行回答问题,如果答对了,送上小礼物。如果答错了,那么大家继续争先恐后地打电话进来争取回答权。这样的互动比较容易操作,也比较受欢迎。 方式二: 也可以即兴问一些跟新娘新郎想干的问题,比如什么时候认识的,谁追的谁?等等,让宾客抢答,第一个答对的将有精美的小礼品作为奖励,这个也很好玩,以这样的方式让宾客了解一对新人从相识到相知再到相守的甜美经历。 和宾客互动游戏四:幸运手捧花 西式婚礼上会有抛手捧花的环节,单身女性可以去抢手捧花,这样就能得到新娘的祝福,得到婚恋天使的眷顾,会很快告别单身。灵子觉得在婚宴上,抛手捧花不太现实,如果新娘比较激动,一不小心抛歪了,抛到菜里就不好了。所以,可以用很多不同颜色、不同款式的丝带,大家一起来拉手捧花。当然,只有一根是系在新娘手捧花上的,拉中的女生不仅能够拿到手捧花,而且可以得到新娘送出的礼物和祝福。这样方式,我还是是比较喜欢的。很有神秘感。 和宾客互动游戏五:婚庆公司提供的表演嘉宾 现在很多婚庆公司会提供芭蕾、变脸、小提琴等等表演的人员,新人支付一定的费用,就可以邀请他们来婚宴现场为大家表演。当然,这笔费用价格并不便宜,

常用英文缩写大全(全)

企业各职位英文缩写: GM(General Manager)总经理 VP(Vice President)副总裁 FVP(First Vice President)第一副总裁 AVP(Assistant Vice President)副总裁助理 CEO(Chief Executive Officer)首席执行官,类似总经理、总裁,是企业的法人代表。 COO(Chief Operations Officer)首席运营官,类似常务总经理 CFO(Chief Financial Officer)首席财务官,类似财务总经理 CIO(Chief Information Officer)首席信息官,主管企业信息的收集和发布CTO(Chief technology officer)首席技术官类似总工程师 HRD(Human Resource Director)人力资源总监 OD(Operations Director)运营总监 MD(Marketing Director)市场总监 OM(Operations Manager)运作经理 PM(Production Manager)生产经理 (Product Manager)产品经理 其他: CAO: Art 艺术总监 CBO: Business 商务总监 CCO: Content 内容总监 CDO: Development 开发总监 CGO: Gonverment 政府关系 CHO: Human resource 人事总监 CJO: Jet 把营运指标都加一个或多个零使公司市值像火箭般上升的人 CKO: Knowledge 知识总监 CLO: Labour 工会主席 CMO: Marketing 市场总监 CNO: Negotiation 首席谈判代表CPO: Public relation 公关总监 CQO: Quality control 质控总监 CRO: Research 研究总监 CSO: Sales 销售总监 CUO: User 客户总监 CVO: Valuation 评估总监 CWO: Women 妇联主席 CXO: 什么都可以管的不管部部长 CYO: Yes 什么都点头的老好人 CZO: 现在排最后,等待接班的太子 常用聊天英语缩写

旅行车上的互动小游戏

旅行车上的互动小游戏 旅游车上的互动小游戏 1.可以叫他们说一下厨房里有什么东西,然后用这些洗澡,理由不成立就唱歌 2.当着大家的面在一张纸上面写一个数字,条件是你写的数字要在1-100的范围內!然后让客人猜,如果你写的数字是53,然后第一位客人猜87,那么范围就缩小到1-87.第二位客人猜49,那么范围就缩小到49-87.这样猜下去.最后猜中的人就上来表演! 3.问三个问题,第一个问题是:说出你最喜欢乘坐的交通工具,第二个问题:说出你最喜欢的动物。第三个问题是:说出你最爱说的口头禅。。。。。说了一圈后,你再说:“我们接下来做一个连环游戏。大家记得自己刚才说的话吗?现在我们将自己刚才说的答案连成一句话。这句话的格式是这样的:我乘做着。。。(最喜欢的那个交通工具),遇见了。。。(最爱的那个动物),我对他说:。。。我爱你。那个动物说:。。。(你的那个口头禅)笑倒一大片. 4.大家有都这么聪明,那不如来说个绕口令!我在带汽车团的时候,会和客人说绕口令!比如:“走一步,扭一扭,见到一棵柳树搂一搂”,“走两步,扭两扭,见到两棵柳树搂两楼” ……,以此类推,如果客人多的话,到十六步时返回从一开始。要求是客人必须用普通话讲,前面一个人说完,后面的人要紧跟着讲,并且不允许停顿,导游也要参加,谁说不下来,就要表演一个节目!这个游戏看客人的表现!!导游一定要在气氛比较活跃的时候做,效果才会好。比如讲完一个笑话之后。 5.吃鸡或者吃其他的什么一个游戏。游戏规则:有一只鸡,在大家面前,每个人轮流去吃,要说清楚每个人要吃的具体部位,前面吃过的,后面的人就不可以再说,到最后,没的吃的人就要出节目. 6、“新婚之夜”:就是让每一位客人准备一个以数字开头的这种(数字包括一、 二、三、百、千、万等,比如“万紫千红”、“一针见血”、“一夫当关,万夫莫开”等就很经典!),把它写在一个本子上,然后记下对应客人的名字,之后导游把本子收回,让对应的客人来读“新婚第一夜,xx(客人姓名)xx(四字的成语)”,这个游戏效果不错哦,现场笑话会有出奇的效果! !在回家的路上用这个,游客们会带笑容离开bus!类似的有“新婚之夜,我和爱人xxxx(aabb格式的词语)”,如果客人说了像重重叠叠、上上下下、前前进进之类的词,效果就更好了!当然,这个度要掌握好。比如团上有小孩子。。。 7.说一个连词。比如:红彤彤,软绵绵等等,让客人在前面加上:我的脸蛋几个字,有的毁损一点,让客人加上我的屁股……,还要一个一个地说出来,这个游戏也是有的时候效果好,有的时候也是不行…… 8、讲完了笑话,还几个脑筋急转弯吧: 最难吃的一道菜——炒鱿鱼 最多同名的妹妹——打工妹 最神气的领子——白领 最畅销的书——女秘书 最受宠爱的动物——小燕子 最难解的式子——三点式 大家都猜的不错,再来一段。 一片青草地(打一种花名)——梅(没)花

婚礼可以玩的小游戏

经典之一:泡泡糖 主持人召集若干人上台,人数最好是奇数,当大家准备好时,主持人喊“泡泡糖”大家要回应“粘什么”,主持人随机想到身体的某个部位,台上的人就要两人一组互相接触主持人说的部位。比如,主持人说左脚心,那么台上的人就要两人一组把左脚心相接触。而没有找到同伴的人被淘汰出局。当台上的人数剩下偶数时,主持人要充当1人在其中,使队伍始终保持奇数人数。最后剩下的两人胜出。因为游戏并不具有技术和智力上的难度,所以在胜出人获得奖品时,还可以稍微刁难一下,比如让他站在椅子上用身体表现一个字(可以是他的名字之类)或者让他表演一个节目等。此游戏要注意,主持人喊出的身体部位要有一定的可实行性,要是不慎喊出上嘴唇,恐怕大家都得笑晕。 经典之二:成语接龙 这个游戏的名字只是用来迷惑大家,而并不是真的要接龙。选出几位年轻人上台,让大家先在纸上写出5个成语,因为游戏题目叫成语接龙,所以大家会考虑的是成语如何接龙,最后一个字该容易还是简单。等大家都写好之后,让大家都把自己的成语向台下观众读一遍。然后让每个人在5个成语前加上“我初恋时、我结婚时、我洞房花烛夜时、我结婚后、我的婚外恋”,这样连起来就变成“我初恋时(第一个成语)、我结婚时(第二个成语)、我洞房花烛夜时(第三个成语)、我结婚后(第四个成语)、我的婚外恋(第五个成语)”。有时效果会意想不到的搞笑。(有一次那人写的是七上八下,还正好是第三个成语。) 经典之四:传呼啦圈 这个游戏要较大的场地和较多人参加,恐怕也不是特别适合。若干人一组,手拉手围成一个封闭的圆圈,在其中一人手臂上套上一个呼啦圈,比赛开始时,各小组同时运动,在不许用手的情况下,把呼啦圈穿过每个人的身体,最后传一圈,最先完成的一组胜出。呼啦圈不能太大,否则穿越的时候太容易,也不能太小,让大家都穿不过去。 经典之五:吸管运输 同上一个游戏一样要分出若干人一组,每人嘴里叼一支吸管,第一个人在吸管上放一个有一定重量的钥匙环之类的东西,当比赛开始时,大家不能用手接触吸管和钥匙环,而是用嘴叼吸管的姿势把钥匙环传给下个人,直到传到最后一个人嘴叼的吸管上。 经典之六:正话反说 选几个口齿伶俐的人参加游戏,主持人要事先准备好一些词语。主持人说一个词语,要参加游戏的人反着说一遍,比如“新年好”,游戏者要立刻说出“好年新”,说错或者猛住的人即被淘汰。从三个字开始说起,第二轮四个字,第三轮五个字,以此类推,估计到五个字以上的时候游戏者就所剩无几了。 经典之八:顶橘子 每个组两个同学上来参加,奖橘子顶在头上,不能用手扶,然后按主持人安排做动作,比如跨凳子,向后转,坐下起立,相互之间除了接触外也允许使用吓唬等手段,按坚持的时间长短算胜负。这是几个比较有意思的,其他的象心有灵犀,抢凳子,击鼓传花就不用多说了吧。另一个要热闹的关键是惩罚措施,每个游戏获胜的领奖品,最后两名则要接受惩罚。可以将惩罚措施写成一堆纸条,让受罚者抓阄。

网络中常用简称(在网络中常用的一些英文缩写及解释)

DARPA :国防高级研究计划局 ARPARNET(Internet) :阿帕网 ICCC :国际计算机通信会议 CCITT :国际电报电话咨询委员会 SNA :系统网络体系结构(IBM) DNA :数字网络体系结构(DEC) CSMA/CD :载波监听多路访问/冲突检测(Xerox) NGI :下一代INTERNET Internet2 :第二代INTERNET TCP/IP SNA SPX/IPX AppleT alk :网络协议 NII :国家信息基础设施(信息高速公路) GII :全球信息基础设施 MIPS :PC的处理能力 Petabit :10^15BIT/S Cu芯片: :铜 OC48 :光缆通信 SDH :同步数字复用 WDH :波分复用 ADSL :不对称数字用户服务线 HFE/HFC:结构和Cable-modem 机顶盒 PCS :便携式智能终端 CODEC :编码解码器 ASK(amplitude shift keying) :幅移键控法 FSK(frequency shift keying) :频移键控法 PSK(phase shift keying) :相移键控法 NRZ (Non return to zero) :不归零制 PCM(pulse code modulation) :脉冲代码调制nonlinear encoding :非线性编程 FDM :频分多路复用 TDM :时分多路复用 STDM :统计时分多路复用 DS0 :64kb/s DS1 :24DS0 DS1C :48DS0 DS2 :96DS0 DS3 :762DS0 DS4 :4032DS0 CSU(channel service unit) :信道服务部件SONET/SDH :同步光纤网络接口 LRC :纵向冗余校验 CRC :循环冗余校验 ARQ :自动重发请求 ACK :确认 NAK :不确认

个婚礼创意互动小游戏推荐

个婚礼创意互动小游戏推 荐 The Standardization Office was revised on the afternoon of December 13, 2020

50个婚礼创意互动小游戏推荐 上不仅需要新人hold住自己的主场,还需要与来宾亲密互动,把全场氛围搞起来。在婚礼仪式结束后,新人不要觉得自己的任务做完了,除了敬酒,还可以和大家做做小游戏,准备些奖品能更加吸引人们的参与,使整场婚礼高潮迭起、记忆深刻! 1.成语接龙:新人抛出一个成语,随机抽选宾客做成语接龙,谁接不上就接受惩罚。 2.唱歌不间断:一首歌开始播放,随时可以把话筒传给另一个人看看他唱不唱的出下面的歌词。 3.新人默契考验:设计几个问题询问男女双方,答案不一致有惩罚。 4.猜歌名:播放音乐片段,抢答歌名。 5.绕口令:准备几段绕口令,看看谁能又快又准确地念出来。 6.共吃一根面条:准备一碗面,让新郎新娘吸同一根面条,知道亲上为止。 7.点烟:宾客站在椅子上,新郎抱起新娘给他点烟。 8.击鼓传花:播放音乐,音乐停时,东西在谁手上谁就要接受惩罚。 9.蒙眼吃蛋糕:新娘蒙上眼睛,根据新郎的口令将蛋糕喂到他嘴里。 10.问答考验:智力问答,回答不上来就喝酒。 11.运气王:准备几块夹心饼干,其中一块加上芥末,看看谁运气最好吃到芥末!

12.手舞足蹈:几个人一起比划组成一个单词,另一个人猜。 13.你画我猜:一个人画一个人猜,题材不限。 14.摸手找新娘:几个妹子一起上台,让新娘摸摸看哪只手是新娘的! or no:新郎新娘背对背,根据主持人的提问,给出答案,看看是否心有灵犀。 16.手速王:屏幕上给出一个号码,谁第一个打进电话就可以拿到奖品。 17.身上寻物:将一个小糖果放在新郎身上,让新娘找! 18.现场抓拍:限时五秒谁能根据指定提示做出动作或表情并出现在照片中就能获得奖品。 19.心愿抽奖:在宾客入场时每人写下自己的愿望放入盒子中,等待新人抽奖。愿望价值不能太大哦~ 20.表演节目:根据情境现场抽几个人准备10分钟,迅速表演一台舞台剧。 21.找东西:提前将一样指定物品藏好,现场所有人开始找,看看谁能找到。 22.甩一甩:在嘉宾身上贴满便利贴,规定时间内甩动身体,最后谁剩下的少谁就赢。 23.拼速度:几位参与嘉宾面前准备10杯饮料,看谁能最快喝完。 24.记忆力考验:给几分钟时间,记住整桌人名字,第一个能全部记住的人赢得大奖。 25.配音游戏:截取一些动画影视片段,欢迎有勇气的嘉宾上来尝试配音。

婚礼晚会上的互动游戏

婚礼晚会上的互动游戏 Company number:【WTUT-WT88Y-W8BBGB-BWYTT-19998】

1. 正话反说 游戏规则: 8-10人 参与者并排站在台上,主持人将对每一个人说出一个词语或短语,参与者需要将说给自己的短语反着告诉主持人,现实5秒 第一轮时主持人给出的短语一般是两个字或三个字,比如主持人“你好吗”,你就要回答“吗好你”,5秒内失败者,淘汰出局。 第一轮过后,剩下的人继续比赛,这次主持人给出的短语将变为四个字,同样的规则,如果剩余的人多,那么第三轮就是五个字 两个字 蜜蜂——蜂蜜 牛奶——奶牛 上海——海上 事故——故事 马上——上马 干部——不干 工人——人工 英雄——雄鹰 学生——升学 商贾——假商 萝卜——菠萝 孤僻——屁股 精辟——屁精

人间——贱人 陪我——我呸 模特——特磨 繁星——心烦 父亲——情妇 三个字 狗咬我——我咬狗 我坚强——强坚我 留下我——我下流 无底洞——洞无底 大风吹——吹大风 武大郎——郎大武 西门庆——庆门西 狗咬我——我咬狗 上山去——去山上 注视我——我是猪 我喂猪——猪喂我 我打他——他打我 硬骨头——头骨硬 四个字 我是霸王——王八是我相信爱情——情爱信箱

近墨者黑——黑者莫近 杀鸡儆猴——请猴杀鸡 杀人是我——我是人渣 张杰爱我——我爱结账 孤僻的我——我的屁股 五个字 你叫猪才怪——怪才猪叫你希腊我去过——过去我拉稀高尔基的妈——妈的基尔高清晨我和猪——猪和我成亲清晨我上马——马上我成亲擒贼先擒王——王擒先贼擒三下五除二——二除五下三杀人不眨眼——眼眨不人杀狗咬吕洞宾——宾洞吕咬狗同一个世界——界世个一同同一个梦想——想梦个一同我爱总复习——媳妇总爱我好象对我说——说我对象好2. 找东西 游戏规则: 8-10人

网路聊天常用缩略语和中文意思

招呼篇 GTSY:Glad To See You高兴认识你 PMJI:Pardon My Jumping In =PMFJI:Pardon Me For Jumping In 败势,加入你们的谈话 WB:Welcome Back 欢迎回来 LTNS:Long Time No See 好久不见 笑篇 BEG:Big Evil Grin (非常)邪恶的笑 C&G:Chuckle And Grin 喀喀笑 GMBO:Giggling My Butt Off 笑掉我的屁屁 BWL:Bursting With Laughter 笑掉不行 CSG:Chuckle Snicker Grin 嘿嘿窃笑 KMA:Kiss My A$$ =MKB:Kiss My Butt 亲我的屁屁 LMAO:Laughing My A$$ Of =LMBO:Laughing My Butt Off =LMHO:Laughing My Head Off 笑死我了 LOL:Laughing Out Loud 放声笑 LSHMBB:Laughing So Hard My Belly Is Bouncing =LSHMBH:Laughing So Hard My Belly Hurts 笑到我肚子痛 告知篇 AFK:Away From Keyboard 离开键盘 BBL:Be Back Later =BBS:Be Back Soon =BRB:Be Right Back 稍待回来 CNP:Continue In Next Post 请看下一个留言 FYI:For Your Information 只给你知道 OIC:Oh,I See 喔,瞭 PS:Post Script 附注 QSL:Reply 回答 RTF:Read The FAQ 请看常见问题 AKA:Also Known As 又名为 FAQ:Frequently Asked Question 最常被问的问题 IC:I See 瞭 IGP:I Gotta Pee 我要去尿尿 POOF:I Have Left Chat 我已经离开聊天室啰 PM:Private Massage 私下寄消息。在聊天室常见的功能,你可以单独对有兴趣的人私下聊

结婚小游戏完整版

结婚整人小游戏 1.五子登科——考验新人互相配合的默契,找根红绳子,新人用嘴各叼一头,中间系上一支点燃的香烟,在桌上放5跟竖直的火柴(可插在水果上)然后新人不能用手帮忙,两人合作把5根火柴全部点燃。提示:一定要紧绷绳子眼睛瞄准。 2.爱心杯——取2个一样的杯子,倒满酒在其中一个杯子口部盖上保鲜膜,然后将2个杯子口对口的扣上缓缓抽出薄膜,要求新人不能动手一起喝完扣在一起的两杯酒,不能洒出。提示:只要新人中其中一人将杯子稍稍推开,另一人只管使劲喝就可以了。 3.香唇探宝——新郎平躺在4把椅子上,弟兄们在旁边围着看,新郎身上放上8-10个小物件,可以是小糖果,牛肉干之类,新娘蒙上眼睛转个圈然后不用手要用“香唇”把新郎身上的小物件收集齐全然后拆去眼布一个一个喂给新郎吃。提示:新郎可以对新娘说,指挥她左边点或者右边点。 4.探囊取物——两个生鸡蛋分别由新郎两个裤管放入,往上移动并使两颗鸡蛋于“重要部位”交会再分别由另一裤管移出。 5.甜蜜的交流——准备各6颗颜色一样的奶糖混在一起共12颗平分给新郎新娘含在嘴里,然后要求不能用手帮忙让新娘和新郎分别在嘴里最终呈现同样颜色的奶糖(比如新郎嘴里全是红色奶糖,而新娘嘴里全是乳白色的奶糖)提示:此游戏重在新娘新郎互相配合,可以张开嘴巴让对方观察,然后互相配合把对方需要的糖果“送”过去。 6.农夫山泉有点甜——准备一矿泉水,新郎立于凳子上用腿夹紧矿泉水瓶(夹的部位要监督好)然后新娘咬开盖子喝一口对着话筒说:“***的农夫山泉有点甜” 7.冲击波——在新郎新娘身上的关键部位贴上充了气的小气球,然后绑住两人的手和脚,双方只能用身体的相互挤压和碰撞,弄破气球,直到双方身上所有气球都破了为止。 8.见缝插针——在新娘的臀部绑上一块海绵,在其正中间割开一条缝。在新郎的腰间垂直绑一香蕉。游戏开始,新郎必须把香蕉插进海绵的缝隙里。每插一下,新娘都要问一声“中不中”?新郎根据实际情况回答“中”或“不中”! 9.爆笑俯卧撑——让新娘平躺在床上,上面放一个汽球,再让新郎在上面做俯卧撑100个,新郎支持不住时会压在新娘身上,他俩之间的汽球就会爆炸,给洞房之夜带来欢乐。 10.口红诉真情——让新娘口含一支口红,在新郎脸上写下“I LOVE YOU”,再让新郎和新娘脸贴着脸,直至新娘脸上也印上“I LOVE YOU”,大家都认可为止。11.肉麻够不够——让新郎对新娘说甜言蜜语,直到大家都认为够肉麻为

英文网络聊天口语中非正式用语中的缩写和简写-推荐下载

duno=don't know u=you ur=your kinda=kind of sorta=sort of 2=two或to 4=for shoulda=should have congrat=congratulation thx=thanks X'mas=Christmas wat=what biz=business ad=advertisement ft.=featuring abt=about pls=please rgds=regards ---问好--- 1,hiho=hola=yo=hi=hey=hellow=你好,大家好 2,wuz up=sup=what's up=(原意:怎么样你?/有什么事儿嘛?)也可作为问好用(当然是比较熟的两个人之间的问候),回答时有事说事,没事用"nothing/nothin much/not much/nm等回答就可以。 ---再见--- 1,cya=cu=see ya=see you=再见 2,laterz=later=cya later=see ya later=see you later=再见 3,gn=gn8=gnight=good night=晚安 4,nn=nite=晚安 说明:一般第一个人常说gnight/gn8,然后第二个人用nite,后面的用nn什么的都可以了。不要问我为什么,约定俗成而已。 ---惊叹赞扬--- 1,OMG=oh my god=我的天;**! 2,OMFG=oh my f ucking god=我的老天;**靠; 3,wtf=what the f uck=怎么会事!?;*!; 4,n1=nice 1=nice one=漂亮 5, pwnz=ownz=牛比!(例句:pwnz demo!;lefuzee ownz all the others!) 6,rullz=强!(例句:lefuzee rullz!;you guyz rull!!!) 7,you rock!=你牛比!(口语中常用,irc中偶尔能看到。) ---笑--- 1,lol=laughing out loud /laugh out loud=大笑 2,lmao=laughing my ass off=笑的屁股尿流 3,rofl=roll on floor laughing=笑翻天了 排序:hehe

与外国人聊天常用缩略词

与外国人聊天常用缩略词 刚上线时一般的使用:----------------------------- 1. Hi 嗨 2. Hey 嘿 3. Yo 喂 4. WOW 哇 5. ICQ 我找你. I seek you. 6. TNS 好久不见. Long time no see. 7. VG 很好 Very good. 8. yep 是 <俚> yes. 9. yup 是 <俚> yes. 10. yeah 是 = yes. 11. RYOK 你好吧? Are you ok? 12. YR 对,是的. yeah,right. 中间有事离开一会儿:----------------------------- 13. bbiam 我很快回来 Be back in a minuta. 14. hang on 等一下. 15. bll 过一会儿回来. Be back late. 16. BRB 很快回来. Be right back. 17. RSN 马上 Real soon now. 19. afk 暂时离开(键盘) away from keyboard. 20. bak 回(键盘前)来了. back at keyboard. 21. BBIAB 马上回来. be back in a bit. 告诉对方欲下线:---------------------------- 22. TAFN 到此为止. That's all for now. 23. GTGB 得走了.再见. Got to go,Bye. 24. SRI 对不起. Sorry. 25. Gotta go 我得走了. Gotta go=have to go=I have to go. 告别:---------------------------------------------- 26. Bye 再见. 27. CU 再见. See you. 28. CU2 再见. See you too. 29. CUL 下次再会. See you later. 30. CUA 再会. See you again. 31. HTH 睡觉去了. Hit the hay (hay <俚> 床) 33. See ya. 再见. See ya = See you (ya 表示 you 或 young adult) 34. AMF 再会,我的朋友. Adios my friend.

50个婚礼创意互动小游戏推荐

50个婚礼创意互动小游戏推荐 婚礼上不仅需要新人hold住自己的主场,还需要与来宾亲密互动,把全场氛围搞起来。在婚礼仪式结束后,新人不要觉得自己的任务做完了,除了敬酒,还可以和大家做做小游戏,准备些奖品能更加吸引人们的参与,使整场婚礼高潮迭起、记忆深刻! 1.成语接龙:新人抛出一个成语,随机抽选宾客做成语接龙,谁接不上就接受惩罚。 2.唱歌不间断:一首歌开始播放,随时可以把话筒传给另一个人看看他唱不唱的出下面的歌词。 3.新人默契考验:设计几个问题询问男女双方,答案不一致有惩罚。 4.猜歌名:播放音乐片段,抢答歌名。 5.绕口令:准备几段绕口令,看看谁能又快又准确地念出来。 6.共吃一根面条:准备一碗面,让新郎新娘吸同一根面条,知道亲上为止。 7.点烟:宾客站在椅子上,新郎抱起新娘给他点烟。 8.击鼓传花:播放音乐,音乐停时,东西在谁手上谁就要接受惩罚。 9.蒙眼吃蛋糕:新娘蒙上眼睛,根据新郎的口令将蛋糕喂到他嘴里。 10.问答考验:智力问答,回答不上来就喝酒。 11.运气王:准备几块夹心饼干,其中一块加上芥末,看看谁运气最好吃到芥末! 12.手舞足蹈:几个人一起比划组成一个单词,另一个人猜。 13.你画我猜:一个人画一个人猜,题材不限。 14.摸手找新娘:几个妹子一起上台,让新娘摸摸看哪只手是新娘的!

15.yes or no:新郎新娘背对背,根据主持人的提问,给出答案,看看是否心有灵犀。 16.手速王:屏幕上给出一个号码,谁第一个打进电话就可以拿到奖品。 17.身上寻物:将一个小糖果放在新郎身上,让新娘找! 18.现场抓拍:限时五秒谁能根据指定提示做出动作或表情并出现在照片中就能获得奖品。 19.心愿抽奖:在宾客入场时每人写下自己的愿望放入盒子中,等待新人抽奖。愿望价值不能太大哦~ 20.表演节目:根据情境现场抽几个人准备10分钟,迅速表演一台舞台剧。 21.找东西:提前将一样指定物品藏好,现场所有人开始找,看看谁能找到。 22.甩一甩:在嘉宾身上贴满便利贴,规定时间内甩动身体,最后谁剩下的少谁就赢。 23.拼速度:几位参与嘉宾面前准备10杯饮料,看谁能最快喝完。 24.记忆力考验:给几分钟时间,记住整桌人名字,第一个能全部记住的人赢得大奖。 25.配音游戏:截取一些动画影视片段,欢迎有勇气的嘉宾上来尝试配音。 26.猜猜他是谁:给出一张新人小时候的照片,有没有人能快速准确地找到。 27.礼物拍卖:将新人准备好的礼物以喝酒形式拍卖,出价啤酒杯数最多者上台并获得奖品。 28.用奶瓶喝啤酒:用奶瓶喝啤酒可是件技术活,谁能先喝完酒赢了。

网络聊天中常见英语缩写词

网络聊天中常见英语缩写词 下面列举一些典型的网络英文潮语。 btw(by the way):这个大多数人都会用,就是“顺便再说一句”的意思。 g2g(got to go):要走了。原句是I've got to go。 ttyl(talk to you later):下次再说。 brb(be right back):很快回来。也就是I'll be right back 或I'm gonna be right back的简写。 jk(just kidding):开玩笑,别当真。 omg(oh my god):我的天啊!有时为了表达更强烈的情感,有人会打:OMGGGGGGG! lol(laugh out loud):大声地笑。这个缩写已经快被用烂了。 Imao(laughing my arse/ass off):笑死我了。遇到真正搞笑的事,可以这么说,不过有点粗俗。 rofl(rolling on the floor laughing):笑到摔到地上。 roflmao(rolling on the floor laughing my ass of):前两个的结合版,也就是超级搞笑的意思。 sth(something):某事某物。 nth(nothing):什么也没有。 plz(please):请。please 字尾是z 音,所以按照读音缩写为plz。 thx(thanks):谢谢。按照发音来看,thanks字尾的ks可以用字母X代替。 idk(I don't know):我不知道。 imho, imo(in my humble opinion, in my opinion):在我看来,常见于论坛。 以上这些网络潮语当然不是叫大家不顾场合,不看对象地乱用。写信给校长,总不能以"Yo! Wassup?" 开头问好吧。运用你的智慧,尽情享用这些最流行的英文潮语吧。 ASAP:As soon as possible尽快 BF:Boyfriend男朋友 BTW:By the way随便说一下 BBL:Be back later稍后回来

婚礼晚会上的互动游戏

1. 正话反说 游戏规则:8-10人 参与者并排站在台上,主持人将对每一个人说出一个词语或短语,参与者需要将说给自己的短语反着告诉主持人,现实5秒 第一轮时主持人给出的短语一般是两个字或三个字,比如主持人“你好吗?”,你就要回答“吗好你”,5秒内失败者,淘汰出局。 第一轮过后,剩下的人继续比赛,这次主持人给出的短语将变为四个字,同样的规则,如果剩余的人多,那么第三轮就是五个字 两个字 蜜蜂——蜂蜜 牛奶——奶牛 上海——海上 事故——故事 马上——上马 干部——不干 工人——人工 英雄——雄鹰 学生——升学 商贾——假商 萝卜——菠萝 孤僻——屁股 精辟——屁精 人间——贱人 陪我——我呸 模特——特磨 繁星——心烦 父亲——情妇 三个字 狗咬我——我咬狗 我坚强——强坚我 留下我——我下流 无底洞——洞无底 大风吹——吹大风 武大郎——郎大武 西门庆——庆门西 狗咬我——我咬狗 上山去——去山上 注视我——我是猪 我喂猪——猪喂我 我打他——他打我 硬骨头——头骨硬

四个字 我是霸王——王八是我 相信爱情——情爱信箱 近墨者黑——黑者莫近 杀鸡儆猴——请猴杀鸡 杀人是我——我是人渣 张杰爱我——我爱结账 孤僻的我——我的屁股 五个字 你叫猪才怪——怪才猪叫你 希腊我去过——过去我拉稀 高尔基的妈——妈的基尔高 清晨我和猪——猪和我成亲 清晨我上马——马上我成亲 擒贼先擒王——王擒先贼擒 三下五除二——二除五下三 杀人不眨眼——眼眨不人杀 狗咬吕洞宾——宾洞吕咬狗 同一个世界——界世个一同 同一个梦想——想梦个一同 我爱总复习——媳妇总爱我 好象对我说——说我对象好 2. 找东西 游戏规则:8-10人 主持人说出一件物品,参与者讲对应物品拿到台上,未找到物品的人淘汰留到最后的拿奖品 一只打火机 一毛、五毛各一枚 一只诺基亚手机 三根白头发 两只不同的高跟鞋 一枚钻戒 一张广发银行卡 一个iphone充电器 一个红酒开酒器 三瓶不同的饮料 3. 站错队游戏 游戏规则:20-30人 主持人问几个关于生活小知识问题,每个问题都有两个选项,参与者可选择站到A选项的队伍,还是站B选项的队列。站错队伍的遭淘汰,留到最后的拿奖品。

网络英语聊天中常用缩写短语

网络英语聊天中常用缩写短语(很好很强大!!!)来源:郭年顺的日志 问好 hiho = hola = yo = hi = hey = hellow 你好,大家好 wuz up = sup = S’up What's up?原意:怎么样你?有什么事儿嘛?也可作为问好用(熟人之间候) 再见 cya = cu =see ya see you 再见 laterz = later = cya later = see ya later see you later 再见 gn = gn8 = gnight good night 晚安 nn = nite 晚安 说明:一般第一个人常说gnight/gn8,然后第二个人用nite,后面的用nn什么的都可以了。不要问我为什么,约定俗成而已。 惊叹赞扬 OMG oh my god 我的天 OMFG oh my f ucking god = 我的老天;**靠 wtf what the f uck = 怎么会事!?;我日! n1 = nice 1 nice one 漂亮 pwnz = ownz 牛比!(例句:pwnz demo!;lefuzee ownz all the others!) rullz 强!(例句:lefuzee rullz!;you guyz rull!!!) you rock! 你牛比!(口语中常用,irc中偶尔能看到。)

lol laughing out loud / laugh out loud 很好笑.因为lol像笑脸,和我们常用的^-^一样 lmao laughing my ass off 笑的屁股尿流 rofl roll on floor laughing 笑翻天了 其他简写 FU fuck you *你;滚 STFU Shut the fuck up! ***给我闭嘴! k=ok=okay=okie 好的,恩 gimme give me 给我 em them 他们的宾格 thx thanks 谢谢 ty thank you 原本用的不多,不过现在又开始兴起来了 happy bday = happy b-day happy birthday! 生日快乐 dunno dont know 不知道 kinda a little bit 有点(例句:The game is kinda hard for me.i kinda think i should get it d one as soon as possible.) cmon = c'mon come on 加油/别吹了/快点/起来(这个词意思太多了,不赘述了) hax = hack = cheat 作弊,说谎(很地道时尚的词,老外用的比较多)

婚礼上游戏环节互动的技巧

婚礼上游戏环节互动的技巧 1.婚礼艺术品 请当地的艺术家以婚礼和宴会上发生的事件为主题作幅画,这样婚礼一结束,你们的洞房里就可以多上一件艺术品啦。 2.自制格调卷烟 如果是在户外举行婚礼,那么一个很有气氛的活动便是请来卷烟师为男性宾客们现场用烟草制作传统卷烟,男人们会喜欢这种很有男人味道的独特格调。 3.印度舞蹈增添食欲 当宾客们在享用美食的时候,不要让他们的眼睛闲着。这时候你可以奉上一些特色舞蹈或表演,如苗族、傣族的舞蹈、四川的变脸、印度的肚皮舞、巴西的桑巴等等,一定会让宾客们胃口大增。 4.抓住季节灵感 让举行婚礼的季节带给你灵感。秋天,你可以用苹果一样的蜡烛、杯子或图案来装点现场;冬天,可以组织宾客们用油彩画出圣诞、新年的节日景象,并作为小礼物送给他们;春天,在入场处用五彩的鲜花搭成拱门;夏天,可以制作一个巨型的冰淇淋圣代。 5.美妙品酒会 鸡尾酒会也可以妙趣横生,为了让大家互动起来,可以调出各种口味的鸡尾酒和香槟,举行一场品酒会。待客人们品尝后,再为大家介绍每道酒的口味和其中蕴藏的故事。 6.特别的肖像漫画 请来一名漫画师为在场的重要宾客画肖像画,当然来宾可以把它拿回家留作纪念,或者是让化妆师为孩子们以及那些童心未泯的成人朋友涂个大花脸。 7.邀请名人助兴 你是不是很喜欢某位艺人?如果财力允许的话,可以邀请他/她作为特别来宾在你的婚礼鸡尾酒会上为宾客们表演助兴,以及签名拍照留念。 8.舞蹈教练的魔力 举行婚礼舞会时,聘请一位舞蹈教练教宾客们如何跟着音乐像模像样的跳舞。让教练在前面跳,邀请大家跟在后面学,只要简单易掌握,相信会有很多人愿意参与。 9 .地方经典菜肴

网络常用英语缩写

网络常用英语缩写 A字头: ASL = Age/Sex/Location AFAIC = As Far As I’m Concerned AFAIK = As Far As I Know AFK = Away From Keyboard AIAMU = And I’m A Monkey’s Uncle AISI = As I See It AKA = Also Known As AMBW = All My Best Wishes AOTS = All Of The Sudden ASAP = As Soon As Possible ATST = At The Same Time AYSOS = Are You Stupid Or Something B字头: B4 = Before B4N = Bye For Now BBIAB = Be Back In A Bit BBIAF = Be Back In A Few BBL = Be Back Later BBN = Bye Bye Now

BCNU = Be Seein’You BF = Boyfriend BFN = Bye For Now BIF = Basis In Fact BITD = Back In The Day Biz = Business BM = Byte Me BMOTA = Byte Me On The Ass BNF = Big Name Fan BOHICA = Bend Over Here It Comes Again BR = Bathroom BRB = Be Right Back BRT = Be Right There BS = Big Smile BT = Byte This BTDT = Been There Done That BTW = By The Way BTWBO = Be There With Bells On BWDIK = But What Do I Know? BWO = Black, White or Other C字头: Cam = Web Camera

100个婚礼上的互动游戏

结婚时的互动游戏 目录 一、婚礼上游戏 (4) 1、摸新郎 (4) 2、五子登科 (4) 3、口福不浅 (4) 4、白头偕老 (4) 5、旧爱重演 (4) 6、含冰求戒 (4) 7、小到暴雨 (4) 8、who am I? (4) 9、旺火早(枣)生 (5) 10、真心大巡游 (5) 11、幸福裤中寻 (5) 12、流行大翻唱 (5) 13、手机代言人 (5) 14、心有灵犀一点通 (5) 15、大型席间游戏 (6) 二、闹洞房游戏 (6) 1、投壶 (6) 2、接吻 (6) 3、撒喜床 (6) 4、吃香蕉 (7) 5、吃苹果 (7) 6、说昵称 (7) 7、齐分享 (7) 8、夹弹子 (7) 9、冲击波 (7) 10、取筷子 (7) 11、鬼马电话 (7) 12、鲤跃龙门 (7) 13、见缝插针 (7) 14、香唇探宝 (7) 15、公鸡下蛋 (7) 16、新人剧场 (8) 17、夫娼妇随 (8) 18、心心相印 (8) 19、脱衣新郎 (8) 20、零存整取 (8) 21、乌鸦喝水 (8) 22、如鱼得水 (8)

24、招财进宝 (8) 25、甜甜蜜蜜 (8) 26、敲锣打鼓 (8) 27、婚前教育 (8) 28、紧密配合 (8) 29、害羞香蕉 (8) 30、花样接吻 (9) 31、寻宝奇兵 (9) 32、如数家珍 (9) 33、运转乾坤 (9) 34、相亲相爱 (9) 35、爱的苹果 (9) 36、要你好看 (9) 37、四面埋伏 (9) 38、巧克旗袍 (9) 39、爱情汽球 (9) 40、香酥巧克 (9) 41、昨曰重现 (9) 42、洞房上锁 (9) 43、错爱结晶 (9) 44、七步成诗 (9) 45、警告逃妻 (9) 46、旧情绵绵 (9) 47、生辰八字 (10) 48、哑口无言 (10) 49、比手划脚 (10) 50、爱的黑痣 (10) 51、解同心结 (10) 52、一帆风顺 (10) 53、胡椒飞天 (10) 54、三围新裁 (10) 55、春泥护花 (10) 56、爱的软糖 (10) 57、三寸金莲 (10) 58、弹簧有爱 (10) 59、情歌接唱 (10) 60、跳草裙舞 (10) 61、夫妻识字 (10) 62、对诗比赛 (11) 64、反串新娘 (11) 65、十全十美 (11) 66、喜庆锣鼓 (11) 67、吃同心果 (11)

相关文档