文档库 最新最全的文档下载
当前位置:文档库 › 玻璃与铝的超声辅助钎焊方案

玻璃与铝的超声辅助钎焊方案

玻璃与铝的超声辅助钎焊方案
玻璃与铝的超声辅助钎焊方案

1、实验研究内容

玻璃是一种具有无规则结构的非晶态固体,在熔融时形成连续网格结构,冷却过程中粘度逐渐增大并硬化而不结晶的硅酸盐类非金属材料。普通玻璃化学氧化物的组成(Na2O·CaO·6SiO2)主要成分是二氧化硅。广泛应用于建筑物,用于隔风透光,属于混合物。玻璃具有很高的化学稳定性,可以抵抗除氢氟酸以外所有酸类的侵蚀,硅酸盐玻璃一般不耐碱。玻璃遭受侵蚀性介质腐蚀,也能导致变质和破坏。大气对玻璃侵蚀作用实质上是水气、二氧化碳、二氧化硫等作用的总和。通过改变玻璃的化学成分,或对玻璃进行热处理及表面处理,可以提高玻璃的化学稳定性。

铝合金是工业中应用最广泛的一类有色金属结构材料,比强度高,成为理想的结构材料,广泛用于机械制造、运输机械、动力机械及航空工业等方面,飞机的机身、蒙皮、压气机等常以铝合金制造,以减轻自重。采用铝合金代替钢板材料的焊接,结构重量可减轻50%以上,在航空、航天、汽车、机械制造、船舶及化学工业中得到大量应用。

对比玻璃和铝的典型物理性能可以发现,玻璃属于脆性材料,工业纯铝属于塑性材料。工业纯铝的线膨胀系数是玻璃的3倍左右,焊接时热变形量不匹配,接头中会产生较大的残余应力。而由于玻璃属于脆性材料,在应力的作用下很容易产生断裂而使得焊接接头失效。

玻璃的化学性质非常稳定,难于与其他金属物质发生反应或产生扩散。因此如何实现玻璃和铝的牢固连接是本实验的一个难点。

2、研究方案论证

2.1、玻璃和铝的焊接的研究现状

2.1.1、玻璃和铝常用的焊接方法

胶连接:利用耐温粘合剂将玻璃和金属连接在一起。该粘结剂要求对金属和玻璃都有较高的粘结强度,同时为克服金属和玻璃因膨胀系数不同在使用过程中产生封装应力,粘结剂应有较好的韧性。

密封圈连接:常用的密封圈材料为各种橡胶、氟塑料和软金属等,其中只有软金属密封圈耐高温,且放气远比橡胶少。而软金属密封圈也存在一些缺点:弹性差,需要很大的密封力才能保证可靠的真空密封;法兰密封面的粗糙度和配合精度要求高,很小的伤痕都能破坏密封,特别是大尺寸加工很困难;密封圈和法兰材料的热膨胀系数相差较大,加热不均匀或密封结构设计不正确,会引起局部变形而造成漏气。

热压封接:热压封接是属于材料固态焊接技术中一种特殊的焊接方法。先将玻璃端面制成法兰形式,在加热和加压的条件下,以铅或铝为焊料,对玻璃端面和金属盖之间进行固态封接。通常的实施方法是当金属焊料铅或铝达到焊接熔点的0.7-0.9倍刚刚开始软化时,通常气缸迅速向其施加一定的冲击压力,使焊料迅速变形分解,并形成气密的封接面。

熔封:又称火封,是一种传统的玻璃金属封接工艺。熔封时,将玻璃加热至1000℃左右,使之融化,从而与金属封接在一起。按金属和玻璃线膨胀系数的差值,熔封分为

匹配封接和不匹配封接。在室温至玻璃软化点的温度范围内,若两种材料线膨胀系数非常相近,相互间差值小于6%,则为匹配封接;否则为不匹配封接。熔封工艺的优点是封接件耐高温,玻璃排气彻底,使用寿命长,抗拉强度也较大;缺点是熔接温度难于控制,需要仔细退火,工艺重复性较差。熔封工艺是目前能制造合格高温太阳能集热管的唯一成熟工艺。

过渡玻璃封接法:为回避石英玻璃与金属封接,而将石英玻管一次次地与相应的玻管封接,每次封接的玻璃的线膨胀系数都比上次的高一些,经过近10次的对接,最后其对接的玻管的线膨胀系数与钨接硬料玻璃的线膨胀系数相同。

场致扩散焊(阳极焊):西安交通大学的喻萍等人通过对金属Al与K4玻璃阳极焊的研究,发现此两种材料在大气环境中可以进行阳极焊,结合面处结合情况比较理想。实验原理为:在阳极焊过程中,由于外加电场的作用,K4玻璃中的Na+向阴极移动,使得玻璃中靠近阳极的一面产生贫Na+区。在强电场作用下产生的离子迁移,除了玻璃中较活跃的阳离子向阴极移动外,还包括连接阳极金属中的阳离子向玻璃中迁移,以及玻璃中相对不活跃的阴离子向阳极迁移。在贫化区内,由于Na+向阴极迁移,引起负电荷增多,因此在贫化区靠近玻璃体一侧产生负电荷聚集区,该区与阳极之间形成强大的电场,使两种材料紧密接触。在贫化区非负电荷聚集区,阳极金属正离子向玻璃中扩散,而玻璃中的负离子向阳极移动,最终在界面处发生化学冶金反应,所生成的复合化合物将被焊接件牢固地连接在一起。

2.1.2、玻璃和铝焊接的应力问题

董为勇等人对玻璃与金属封接件的应力进行了分析。在最常见的玻璃—金属圆柱形封接件中,一般遇到的应力有三种:轴向应力、径向应力和切向应力。其中每种应力可能是张应力或是压应力,应力的大小和选用的金属或玻璃材料有关。由于玻璃是脆性材料,其抗压强度远远大于抗张强度,故封接后的玻璃体宜承受压应力,或承受在安全范围内的张应力。

图1 套封结构内的应力示意图

基于薄壳理论可以导出在封接后的冷却过程中,金属环周界上作用着径向应力和切向应力。同时,可以得到一些结论:a.当玻璃圆片的半径增大时径向应力降低;b.当金属环壁厚度增加时,切向应力也随之增加;c.在金属环壁厚度相同时,封接应力随环直径的增大而减小。在封接玻璃中,允许应力为5~10MPa的数值则是满意的匹配封接。诚然,有时应力值可以达到10~20MPa。但超过这个数值时便需谨慎,开裂的可能性随封

接件尺寸的增大而增加。如果封接件在不受到摩擦的理想情况下,应力可以允许高达30MPa。若应力超过30MPa,便属非匹配封接范畴。从上分析可知,为了尽量减少封接后封接件产生的残余应力,应尽量选择良好的封接温度等封接参数。

徐迪等人利用真空扩散焊接将高硼硅玻璃和可伐合金进行连接。工艺参数为:温度-1000℃,压力-10MPa,冷却速度-10℃/min。得到如图2所示的玻璃-金属搭接接头。

图2 玻璃与可伐合金搭接接头

利用有限元对玻璃-金属平板搭接接头的残余应力进行了分析,并利用X射线衍射法测量了接头的残余应力,并将二者进行了对比,得到了了几个影响玻璃与金属扩散焊接残余应力的结论:

(1) 残余应力的产生是由于在焊接冷却过程中两种材料参数的不匹配导致的。

(2) 在高硼硅玻璃上出现最大残余应力,沿界面产生的残余应力会导致焊接接头的开裂以及接头疲劳强度的降低。

(3) 运用有限元的方法能很好的描述分布在接头上的残余应力,分析的结果也证明了扩散焊接的影响因素有焊接温度、焊接压力、真空度和焊接时间。

(4) 最大的拉应力出现在高硼硅玻璃表面处而最大的压应力则出现在接近可伐合金的表面处。残余应力的变化则依靠的是焊接接头尺寸的改变。

2.2、玻璃和铝的焊接性

本实验中的玻璃母材采用最常用的平板玻璃。常用的平板浮法玻璃的部分物理性能如表1所示。

表1 常用浮法玻璃的部分物理性能

密度/g·cm-3

比热容

/J·(kg·℃)-1

软化点

/℃

导热系数

/W·m-1·℃-1

热膨胀系数

/10-6℃-1

弹性模量

/MPa

抗弯强度

/MPa

2.5 75

3.62 720~730 6~7 8.5 >7*10490

玻璃具有密度小,不导电,抗腐蚀性能好的特点。由表1中的数据可以看到,玻璃在720~730℃时会软化。玻璃的导热性能较差,如果加热不均匀会在玻璃内产生较大的温差,从而形成较大的热应力。线膨胀系数较小,加热过程中变形量较小。玻璃的抗压

表2 工业纯铝的典型物理性能

密度/g·cm-3熔点

/℃

导热系数

/W·m-1·℃-1

热膨胀系数

/10-6℃-1

抗拉强度

/MPa

屈服强度

/MPa

延伸率

/%

2.68 660 234 2

3.8 45 10 50

强度远大于抗拉强度,属于典型的脆性材料。因此,焊接过程中对玻璃中的应力的控制

是非常重要的。

本实验中的铝母材采用工业纯铝。常用的工业纯铝的典型物理性能如表2所示。工业纯铝具有铝的一般特点,密度小,导电、导热性能好,抗腐蚀性能好,塑性加工性能好,可加工成板、带、箔和挤压制品等。适用于常用的各种焊接方法,得到的焊接接头的质量均较好。

2.3、焊接方法的选择

玻璃和铝的焊接首先应该考虑的问题是焊接方法的选择。首先考虑最常用的电弧焊。

(1) 熔化焊玻璃属于无机氧化物材料,不导电,电弧无法在玻璃表面引燃,因而无法对玻璃进行直接加热。

(2) 熔钎焊可以考虑采用熔钎焊。对于玻璃和铝的对接接头,电弧在焊缝的铝侧和电极之间产生,依靠热传导和热辐射对玻璃侧进行间接加热。

但是玻璃的抗拉强度远小于抗压强度,属于典型的脆性材料。当对玻璃板单侧加热时,由于玻璃的导热性较差,玻璃板内温度梯度较大。温度高的位置玻璃膨胀较大,温度低的位置玻璃膨胀较小。在玻璃板内温度较低的位置会产生较大的拉伸应力,在此应力下玻璃将发生断裂破坏。因此,采用加热不均匀的电弧焊无法得到完整的玻璃和铝的焊接接头。

因此,应该选择温度场均匀的焊接方法进行玻璃和铝的焊接。可供选择的方法有扩散焊和钎焊。

(1) 扩散焊硅酸盐玻璃中,硅原子与邻近的氧原子的结合非常牢固,因而即使在高温下,硅酸盐的扩散系数也是很小的。只有半径很小的原子才能在玻璃里进行渗透和扩散,而半径较大的原子则无法轻易地在玻璃里扩散,主要是由于阳离子受到Si-O网络中氧原子的静电吸引。如果在扩散的过程中施加电场,则可以比较容易地实现金属原子在玻璃里的扩散,从而实现焊接。太原理工大学的孟庆森等人在此方面做了相关的研究。

(2) 钎焊场致扩散焊焊接工艺复杂,对焊件的表面质量要求高。因此,考虑使用更为广泛的钎焊。钎焊过程中,母材不熔化,焊接温度较低。选择合适的钎料可以使玻璃与钎料中的某些成分发生反应,而铝侧可以与钎料产生良好的扩散,从而实现玻璃与铝的钎焊。

2.4、钎料的选择

如果不使用钎料,在720℃时,玻璃的主要成分SiO2和Al存在反应4Al+3SiO2=2Al2O3+3Si,即此时玻璃与铝的界面可因发生反应而牢固结合。但是,此时的铝已经成为液态,而玻璃也已明显软化。因此,必须降低钎焊温度,既保证铝和玻璃没有明显的软化。钎料的选择成为一个关键的问题。

钎料的选择首先应该保证与玻璃产生牢固的结合。因金属原子向玻璃的扩散很困难,无法通过扩散来实现牢固的连接。金属阳离子会受到表面处氧原子的静电吸引,与玻璃表面形成电子型结合。硅酸盐化合物中的金属阳离子主要是惰性气体型离子(如

Na+、K+、Mg2+、Ca2+、Ba2+、Al3+等)和部分过渡型离子(如Fe2+、Fe3+、Mn2+、Mn3+、Cr3+、Ti3+等),可见这些离子对应的原子容易与Si-O网络形成结合。而铜型离子(如Cu+、Zn2+、Pb2+、Sn4+等)则较难形成硅酸盐化合物,即这些离子对应的原子较难和Si-O网络结合。其中,Ti和Al与Si-O网络结合能力较强,首先考虑使用这两种金属或其合金作为钎焊玻璃和铝的钎料。

考虑到玻璃和铝的线膨胀系数相差很大,在冷却过程中因收缩不一致会在接头中产生应力。钎焊温度越高,则冷却至室温时产生的残余应力越大,玻璃越容易开裂。因此,应该选择尽可能低的钎焊温度。Ti及其合金熔点均高于玻璃和铝母材的熔化温度,无法用于钎焊玻璃和铝。因此,选用含Al的钎料实现玻璃和铝的钎焊。

常用的含有Al的钎料有Al-Si系、Al-Cu-Si系、Zn-Al系。由于Al-Si系和Al-Cu-Si 系钎料熔点较高,铝有一定的软化,因此本实验中选用Zn-Al系钎料。为了探究Al元素对玻璃和钎料界面的影响,实验中采用两种含Al量不同的钎料Zn-10Al和Zn-25Al。另外,为了考察钎料熔点对玻璃和铝钎焊接头的影响,选用Sn基钎料Sn-9Zn在较低的温度下进行对比实验。

2.5、实验方案

钎焊时,要形成牢固的连接,钎料首先要润湿母材表面。对于玻璃,纯Al和纯Zn 均能浸渍润湿玻璃,而纯Sn不能浸渍润湿玻璃。实验中使用的三种钎料中均含有可以浸渍润湿玻璃的Zn和Al,可以实现玻璃表面的润湿。对于铝,采用施加超声的办法去除铝表面的氧化膜,实现钎料在铝表面的润湿。

采用超声辅助钎焊的方法进行玻璃和铝的钎焊,主要是利用超声去除铝表面的氧化膜和促进钎料的填缝。实验温度应该保证钎料具有良好的流动性。超声施加时间应保证钎料充分填满钎缝。实验方案如表3所示。

表3 玻璃和铝的钎焊实验方案

实验编号钎料钎焊温度/℃超声时间/s 冷却方式

1 Sn-9Zn 300 10s 缓冷

2 Zn-10Al 420 10s 缓冷

3 Zn-25Al 500 10s 缓冷

3、实验过程

实验时,采用超声辅助钎焊设备进行钎焊。采用搭接接头,如图3进行装配。玻璃和铝板的尺寸均为10mm×3mm×50mm,装配时玻璃板位于上侧,纯铝板位于下侧。搭接长度为30mm,钎缝间隙为200μm。待温度达到钎焊温度时,将钎料置于搭接接头一端使其熔化,戴钎料熔化后停止加热并通过超声波换能器将超声引入于纯铝板,超声振幅6~7μm。钎料量充足,确保可完全填充整个钎缝。超声作用10s使钎料充分填缝后进行冷却。冷却过程中应尽可能降低冷却速度,尤其应该使玻璃板上下表面的温差尽可能小以减小冷却过程中的热应力。如果冷却速度过快,玻璃会因应力过大而发生断裂破坏。

图3 超声辅助钎焊示意图

铝合金的钎焊工艺

( 二 〇 一 三 年 十 二 月 本科科研训练论文 题 目:铝合金的钎焊工艺 学生姓名:/// 学 院:材料科学与工程 系 别:材料成型及 控制工程 专 业:材料成型及控制工程 班 级:材///班 指导教师:///

内蒙古工业大学本科科研训练论文 摘要 焊接是制造业的重要组成部分,应用广泛,发展迅速,在制造行业占有重要的地位。我国是世界产钢、用钢大国,也是焊接大国。随着高新技术和新工艺的不断出现,机械制造、安装、维修业也逐步向精细方向发展,对焊接技术的要求也越来越高。近几年来,焊接的使用量迅速增加;焊接机械化自动化技术改造加快;焊接自动化率快速提高。钎焊是用比母材熔点低的金属材料作为钎料,用液态钎料润湿母材和填充工件接口间隙并使其与母材相互扩散的焊接过程,这篇论文对钎焊焊接前的准备和焊接方法的做了设计,介绍了焊接所需的钎料和钎剂,给出了钎接接头形式以及接头的质量检测方法,在钎焊操作中应该注意的安全问题。 关键词:焊料,焊剂,钎焊接头,钎焊装置,钎焊气体

Abstract Welding is an important part of the manufacturing industry, widely used, rapid development in the manufacturing industry occupies an important position. China is the world steel production, steel big country, but also the welding power. With the emergence of high-tech and new technology, machinery manufacturing, installation and maintenance industry is also gradually to the fine direction of welding technology requirements are also increasing. In recent years, the rapid increase in the amount of welding; welding mechanization and automation to accelerate technological innovation; welding automation rate rapidly increased. Brazing with a lower melting point than the base metal material is used as brazing filler metal, wetted with a liquid base material and the solder filling the gap and the interface to the work piece during welding and the base material inter diffusion, the paper prior to brazing welding preparation and welding methods to do the design, introduces the required solder and soldering flux, solder joints is given in the form of joint detection methods and the quality of the brazing operation should p ay attention to security issues. Key words: Solder, Flux, Solder joints, Soldering equipment, Soldering gas

超声波焊接技术

哈尔滨工业大学 金属工艺学课程论文 题目:超声波金属焊接技术的综合介绍 院系:能源科学与工程学院 专业:能源与动力工程

班级: 1502403 学号: 1150240325 姓名:石嘉成 超声波金属焊接技术的综合介绍 石嘉成1 (1.哈尔滨工业大学能源科学与工程学院) 摘要:本文主要介绍特种焊接中的超声波金属焊接技术,将从超声波焊金属接技术的应用背景、工艺过程、特点及实际应用情况及最新发展等发面展开介绍。通过文献的查阅得到了以下的结论:超声波焊接的应用越来越广泛,它具有能耗低、压力小、速度快、稳定性高、程序简便、精度高等优点,虽然对仪器的要求较高导致成本较高,但是仍不失为一种很有前景的焊接技术。 关键词:超声波焊接;金属;工艺过程;文献查阅

1.超声波金属焊接技术应用背景 超声波金属焊接起源于1950年的美国1。超声波金属焊接在电子工业、电器制造、新材料的制备、航空航天及核能工业、食品包装盒、高级零件的密封技术方面都有很广泛的应用,加上其节能、环保、操作方便等突出优点,对于我国建设资源节约型、环境友好型的现代化社会,超声波金属焊接将发挥很大的促进作用2。 2.超声波焊接技术的原理及工艺过程 2.1超声波金属焊接技术的原理 超声波金属焊接主要过程是被夹持在一起的两块工件受到硬砧和焊接端头之间的静压力,将超声波能量传输给工件顶部,维持短暂的时间,待结合表面之间的摩擦破碎氧化膜和其它沾污,每个表面上暴露出清洁新生的金属,从而使两个表面相互结合。一旦两表面处于一个原于间距内,就会产生金属型结合,由于超声波清理作用是连续的,就没有时间来形成阻碍原于接近的新氧化膜。完成最终的冶金结合时,无电弧和飞溅,无焊缝金属的熔化,铸造组织无熔化,厚度变形也很小3。 2.2超声波金属焊接技术的工艺过程 如图1所示,超声波焊接过程分为4个阶段: 第1阶段:焊头与零件接触,施压并开始振动。摩擦发热量熔化导能筋,熔液流入结合面。随着两零件之间距离的减少,焊接位移量(两零件之间由于熔体流动产生的距离减小值)开始增加。起初焊接位移量快速增加,然后在熔化的导能筋铺展并接触下零件表面时放慢增速。在固态摩擦阶段,发热是由于两表面之间的摩擦能和零件中的内摩擦产生的。摩擦发热使聚合物材料升温至其熔点。发热量取决于作用频率、振幅和压力4。

铝及铝合金的钎焊

铝及铝合金的钎焊 08材控 邢钧魁 20080607131 摘 要 本文主要论述了铝及铝合金的分类、性能,以及铝及铝合金钎焊的研究现状、钎焊过程中有可能出现的问题以及在具体实施钎焊时钎剂、钎料的选择与搭配,还介绍了施焊前如何对表面进行清理、准备以及焊后的清理与处理工作、注意事项等。 关键词 钎焊 铝合金 钎剂 钎料 1 铝及铝合金 1.1铝及铝合金钎焊的研究现状 铝合金具有密度小、强度高和耐腐蚀等优点,因而广泛应用于汽车、高速铁路车辆、航空航天和军事工业。由于它特有的物理、化学性能,其焊接过程中会遇到一系列困难,如氧化、焊缝热裂纹和气孔等。对于铝合金的焊接,传统的方法主要以熔化焊接为主,设备复杂,且对焊工的技术要求也比较严格。铝钎焊作为铝合金连接的重要方法,具有钎焊件变形小。尺寸精度高等优点,近年来在我国得到广泛的应用。铝及铝合金的钎焊技术近年来研究较多。随着新材料、新方法的不断出现,铝及铝合金的钎焊工艺也得到了快速的发展,其钎焊方法、钎料及钎剂都有很大的进步。 1.2 铝及铝合金的分类及性能 铝及铝合金可以分为工业纯铝、变形铝合金和铸造铝合金。变形铝合金是指经不同的压力加工方法制成的板、带、管、型、条等半成品材料;铸造铝合金以合金铸锭供应。变形铝合金又分为不能热处理强化的铝合金和能热处理强化的铝合金。 铝是一种轻金属,密度小,仅为3/7.2cm g ,约为铜或钢的3/1;具有优良的导电性、导热性,良好的耐蚀性以及优良的塑性和加工性能等。铝合金仍保持纯铝的密度小和耐蚀性好的特点,且力学性能比纯铝高得多。经热处理后铝合金的力学性能要求可以和钢铁材料相媲美。 1.3 铝及铝合金钎焊的问题 铝及铝合金的钎焊与其他合金相比比较难,是由于其表面有一层极为致密的氧化膜,这一层氧化膜的性能非常稳定,能够充分抵抗大气的腐蚀,又能在旧摸上随时生成新膜。铝及铝合金在焊接的时候需要破坏这一层膜,否则熔化的钎料不能与母材润湿;焊后又需要维持保护膜的完整,否则接头将产生严重的腐蚀。 铝能极缓慢地溶于中等浓度的硝酸,但在浓硝酸中是稳定的,硝酸的浓度越高越稳定。运输发烟硝酸的槽罐是用纯铝做的。铝的抗碱能力较弱,易溶于NaOH 、KOH 。 无缝药芯焊丝是铝铜钎焊连接的最新技术成果,是铝铜钎焊用料的升级换代产品。其主要成分由锌铝铜和无腐蚀性氟铝铯盐组成,其钎焊工艺性、接头机械性能和接头导电性均优于锌镉、锌锡铜钎料。 2 铝及铝合金的钎焊方法 铝及铝合金的钎焊可以采用火焰钎焊、盐浴钎焊和炉中钎焊等方法[1]。 火焰钎焊,其设备简单,燃气来源广,灵活性大,应用很广。主要用于钎焊小型焊件和单件生产。有多种火焰可以使用。有报道,我国与其他国家合作生产了一种介于液化气与氧乙炔之间的夏普气。这种气体火焰柔和,其强度介于液化

超声波焊接常见缺陷及处理办法

超声波焊接常见缺陷及处理办法 一、强度无法达到欲求标准。 当然我们必须了解超音波熔接作业的强度绝不可能达到一体成型的强度,只能说接近于一体成型的强度,而其熔接强度的要求标准必须仰赖于多项的配合,这些配合是什么呢? ※塑料材质:ABS与ABS相互相熔接的结果肯定比ABS与PC相互熔接的强度来的强,因为两种不同的材质其熔点也不会相同,当然熔接的强度也不可能相同,虽然我们探讨ABS与PC这两种材质可否相互熔接?我们的答案是绝对可以熔接,但是否熔接后的强度就是我们所要的?那就不一定了!而从另一方面思考假使ABS与耐隆、PP、PE相熔的情形又如何呢?如果超音波HORN瞬间发出150度的热能,虽然ABS 材质己经熔化,但是耐隆、PVC、PP、PE只是软化而已。我们继续加温到270度以上,此时耐隆、PVC、PP、PE已经可达于超音波熔接温度,但ABS材质已解析为另外分子结构了!由以上论述即可归纳出三点结论: 1.相同熔点的塑料材质熔接强度愈强。

2.塑料材质熔点差距愈大,熔接强度愈小。 3.塑料材质的密度愈高(硬质)会比密度愈低(韧性高)的熔接强度高。 二、制品表面产生伤痕或裂痕。 在超音波熔接作业中,产品表面产生伤痕、结合处断裂或有裂痕是常见的。因为在超音波作业中会产生两种情形:1.高热能直接接触塑料产品表面 2.振动传导。所以超音波发振作用于塑料产品时,产品表面就容易发生烫伤,而1m/m以内肉厚较薄之塑料柱或孔,也极易产生破裂现象,这是超音波作业先决现象是无可避免的。而在另一方面,有因超音波输出能量的不足(分机台与HORN上模),在振动摩擦能量转换为热能时需要用长时间来熔接,以累积热能来弥补输出功率的不足。此种熔接方式,不是在瞬间达到的振动摩擦热能,而需靠熔接时间来累积热能,期使塑料产品之熔点到达成为熔接效果,如此将造成热能停留在产品表面过久,而所累积的温度与压力也将造成产品的烫伤、震断或破裂。是以此时必须考虑功率输出(段数)、熔接时间、动态压力等配合因素,来克服此种作业缺失。 解決方法:

铝及其合金钎焊培训

铝及其合金钎焊知识培训 钎焊概念 钎焊是采用液相线温度比母材固相线温度低的金属材料做钎料,将零件和钎料加热到钎料熔化,利于液态钎料润湿母材,填充接头间隙并与母材相互溶解和扩散而实现连接零件的方法。与熔焊相比,钎焊具有以下优点: 1)钎焊接头平整光滑,外形美观; 2)钎焊加热相对温度较低,对母材组织和性能的影响较小; 3)焊件变形较小,尤其是采用均匀加热(如炉中钎焊)的钎焊方法,焊件的变形可减少到最低程度,容易保证焊件的尺寸精度。 4)某些钎焊方法一次可焊成几十条或成百条钎缝,生产效率高; 5)可以实现异种金属或合金,金属和非金属的连接。 缺点是钎焊接头强度比较低,耐热能力比较差,装配要求比较高等。 根据使用钎料的不同,钎焊一般分为: 1)软钎焊——钎料液相线温度低于450℃; 2)硬钎焊——钎料液相线温度高于450℃。 铝及其合金钎焊存在困难: 1、由于纯铝不能在空气中存在,铝表面会形成一层致密的氧化膜,钎焊时氧化膜将妨碍液态 钎料在母材表面润湿,因此焊前要清理母材表面,焊接时要配合使用化学钎剂,经过多年的不断研究开发,对一般材料都可以成功焊接,但对母材中Mg含量超过1%的铝镁合金及含Si超过3%的铝硅合金尚难克服。 2、在钎焊过程,由于钎料与铝及铝合金的液相线温度相差不大,且铝及铝合金在加热过程中 颜色不变,因此不容易判断温度,母材容易发生过热,使母材严重软化甚至过烧,这需要操作者要十分小心,用丰富的经验来掌控钎焊温度及热力分布。 3、钎焊接头耐腐蚀性差,接头腐蚀是因为在钎缝的不同位置,电极电位不同形成电势差,从 而造成接头腐蚀,通过钎料优化选择,使母材钎缝的电极电位过渡为平缓,从而提高抗蚀性。 钎料选择:GB/T13815-1992 BAl88Si (料400)成份含量:Si11.0~13.0%Cu<0.30%Zn<0.20%Fe<0.80%Mg <0.10%Mn<0.05%其他≤0.15% BAl90Si 成份含量:Si9.0~11.0%Cu<0.30%Zn<0.10%Fe<0.80%Mg<0.50%Mn<0.05%Ti<0.20%其他≤0.15% 熔化温度: BAl88Si (HL400)固相线577℃液相线580℃ 钎焊温度:582~640℃ BAl90Si 固相线577℃液相线590℃ 美国钎料 BAlSi-2 Si 6.8~8.2%Cu 0.25%Zn 0.20%Mn 0.1%Fe 0.80% BAlSi-3 Si9.3~10.7%Cu 3.3~4.7%Mg 0.15%Zn 0.20%Mn 0.15%Fe 0.80%

铝及铝合金的焊接特点

铝及铝合金的焊接特点 (1)铝在空气中及焊接时极易氧化,生成的氧化铝(Al2O3)熔点高、非常稳定,不易去除。阻碍母材的熔化和熔合,氧化膜的比重大,不易浮出表面,易生成夹渣、未熔合、未焊透等缺欠。铝材的表面氧化膜和吸附大量的水分,易使焊缝产生气孔。焊接前应采用化学或机械方法进行严格表面清理,清除其表面氧化膜。在焊接过程加强保护,防止其氧化。钨极氩弧焊时,选用交流电源,通过“阴极清理”作用,去除氧化膜。气焊时,采用去除氧化膜的焊剂。在厚板焊接时,可加大焊接热量,例如,氦弧热量大,利用氦气或氩氦混合气体保护,或者采用大规范的熔化极气体保护焊,在直流正接情况下,可不需要“阴极清理”。 (2)铝及铝合金的热导率和比热容均约为碳素钢和低合金钢的两倍多。铝的热导率则是奥氏体不锈钢的十几倍。在焊接过程中,大量的热量能被迅速传导到基体金属内部,因而焊接铝及铝合金时,能量除消耗于熔化金属熔池外,还要有更多的热量无谓消耗于金属其他部位,这种无用能量的消耗要比钢的焊接更为显着,为了获得高质量的焊接接头,应当尽量采用能量集中、功率大的能源,有时也可采用预热等工艺措施。 (3)铝及铝合金的线膨胀系数约为碳素钢和低合金钢的两倍。铝凝固时的体积收缩率较大,焊件的变形和应力较大,因此,需采取预防焊接变形的措施。铝焊接熔池凝固时容易产生缩孔、缩松、热裂纹

及较高的内应力。生产中可采用调整焊丝成分与焊接工艺的措施防止热裂纹的产生。在耐蚀性允许的情况下,可采用铝硅合金焊丝焊接除铝镁合金之外的铝合金。在铝硅合金中含硅%时热裂倾向较大,随着硅含量增加,合金结晶温度范围变小,流动性显0.5. 着提高,收缩率下降,热裂倾向也相应减小。根据生产经验,当含硅5%~6%时可不产生热裂,因而采用SAlSi条(硅含量4.5%~6%) 焊丝会有更好的抗裂性。 (4)铝对光、热的反射能力较强,固、液转态时,没有明显的色泽变化,焊接操作时判断难。高温铝强度很低,支撑熔池困难,容易焊穿。 (5)铝及铝合金在液态能溶解大量的氢,固态几乎不溶解氢。在焊接熔池凝固和快速冷却的过程中,氢来不及溢出,极易形成氢气孔。弧柱气氛中的水分、焊接材料及母材表面氧化膜吸附的水分,都是焊缝中氢气的重要来源。因此,对氢的来源要严格控制,以防止气孔的形成。 (6)合金元素易蒸发、烧损,使焊缝性能下降。 (7)母材基体金属如为变形强化或固溶时效强化时,焊接热会使热影响区的强度下降。 (8)铝为面心立方晶格,没有同素异构体,加热与冷却过程中没有相变,焊缝晶粒易粗大,不能通过相变来细化晶粒。 2. 焊接方法 几乎各种焊接方法都可以用于焊接铝及铝合金,但是铝及铝合金对

超声振动辅助 A7 N01铝合金激光-M IG 复合焊接组织及力学性能

第37卷第6期2016年6月 焊 接 学 报 TRANSACTIONSOFTHECHINAWELDINGINSTITUTION Vol.37 No.6June 2016 收稿日期:2015-10-09 基金项目:国家自然科学基金资助项目(51405398);中央高校基本 科研业务费专项资金资助(2682015CX007) 超声振动辅助A7N01铝合金激光-MIG复合 焊接组织及力学性能 朱宗涛, 祝全超, 李远星, 陈 辉 (西南交通大学材料科学与工程学院,成都 610031) 摘 要:文中针对铝合金激光-MIG复合深熔焊过程易出现气孔缺陷问题,设计了超声振动辅助的焊接方法.通过对堆焊试样的X射线探伤和截面的宏观金相观察,对比了超声振动对气孔的数量、大小以及分布位置的影响.同时研究了超声振动作用对A7N01铝合金激光-MIG复合熔覆层的成形、组织及力学性能的影响.结果表明,在超声振动作用下,激光-MIG复合堆焊熔覆层气孔的数量明显减少,小尺寸气孔发生聚集并有上浮趋势;熔合线附近的柱状晶组织宽度明显小于无超声辅助的熔覆层;超声振动辅助激光-MIG复合焊接接头各区的冲击吸收功和抗拉强度都有一定程度的提高,具有一定的应用优势.关键词:铝合金;激光-MIG复合焊;超声;气孔 中图分类号:TG456.9 文献标识码:A 文章编号:0253-360X(2016)06-0080-05 0 序 言 激光-MIG复合焊接技术是一种高效的铝合金 焊接方法[1,2] ,与单一MIG电弧热源焊接相比,它具有激光焊熔深深、热影响区窄、变形和残余应力小、效率高等优点,并且接头性能优于MIG焊接接头[3] ;而与单一激光热源焊接相比,由于MIG电弧的引入,不仅有助于提高高反材料对激光的吸收率,还可以提高对接头的桥接能力,大大降低对焊接工装、定位的要求,此外还有助于减缓熔池凝固时间,便于气体的溢出,减少气孔、裂纹等焊接缺陷. 但综合文献报道发现,气孔缺陷(或缺欠)仍然是铝合金激光-MIG复合焊接过程难以解决的主要 问题[5,6] ,尤其是高效深熔焊接过程中,激光功率大、熔深深,而熔池金属凝固较快,气体来不及溢出,最 后很容易在焊缝中形成气孔[7] ,降低铝合金焊接接头的强度,特别是动载条件下的疲劳强度. 超声的破除氧化膜、细化晶粒作用在焊接过程 中已有应用(如钎焊[8]、TIG/MIG焊[9] 、激光焊[10] ),但超声去除气孔的作用在焊接领域中一直 未受到关注,而在铸造领域已有研究[11] .液态金属在超声波的“湍动效益”和“微扰效益”下,强化了液体传质过程,气泡在超声场的作用下易于聚集变大, 最终浮出液体表面.Xu等人 [12] 利用超声振动的方 法有效地去除了液态A356铝合金中的气孔,并且发现液态金属量越少,超声对气孔的去除率越高(这一特点特别适合焊接熔池),国内也有一些学者研究了超声功率和时间对除气效果的影响 [13,14] . 文中选用高速列车车体常用A7N01铝合金材料,通过在激光-MIG复合焊接过程中在试板上施加超声振动,对比了超声振动辅助作用对堆焊层的成形、气孔及熔覆层组织的影响,并研究超声振动辅助对激光-MIG复合焊接接头冲击和拉伸性能的影响规律. 1 试验方法 试验材料为A7N01P-T4铝合金板材,堆焊试样尺寸为300mm×150mm×10mm;对接接头试样尺寸为300mm×150mm×6mm,采用Y形40°坡口,留有3mm钝边,焊丝为直径矱1.6mm的ER5356.母材和焊丝的合金成分如表1所示. 激光-MIG复合焊接系统中的激光器为IPG YLS-4000光纤激光器,焊机采用KEMPPIKempArc-450一元化数字焊机.旁轴式复合焊枪由IRB2600 机器人装卡,人工示教进行自动焊接.超声振动采用Hy2050型超声振动冲击设备施加在试板上表面中间距离一侧边缘50mm处,振动频率为19.1kHz,最大振幅为50μm.复合方式为激光在前引导

超声波焊接技术

超声波焊接技术大全 n ewmaker 超声波焊是一种快捷,干净,有工工国 效的装配工艺,用来装配处理热塑性塑料配件,及一些合成构件的方法。目前被运用的朔胶制品与之间的粘结,朔胶制品与金属配件的粘结及其它非朔胶材料之间的粘结!它取代了溶剂粘胶机械坚固及其它的粘接工艺是一种先进的装配技术!超声波焊接不但有连接装配功能而且具有防潮、防水的密封效果。 超声波的优点: 1,节能 2,无需装备散烟散热的通风装置 3,成本低,效率咼 4,容易实现自动化生产! 超声波焊接机的工作原理! 超声波焊接装置是通过一个电晶体功能设备将当前50/60HZ的电频转变成 20KHZ或40KHZ的电能高频电能,供应给转换器。转换器将电能转换成用于超声波的机械振动能,调压装置负责传输转变后的机械能至超声波焊接机的焊头。焊头是将机械振动能直接传输至需压合产品的一种声学装置。

振动通过焊接工作件传给粘合面振动磨擦产生热能使塑胶熔化, 振动会在熔融状态物质到达其介面时停止,短暂保持压力可以使熔化物在粘合面固化时产生个强分子键, 整个周期通常是不到一秒种便完成,但是其焊接强度却接近是一块连着的材料!!焊接: 指的是广义的将两个热塑性塑料产品熔接的过程。当超音停止振动时, 固体材料熔化,完成焊接。其接合点强度接近一整块的连生材料, 只要产品的接合面设计得匹配, 完全密封是绝对没有什么问题的, 碟合: 熔化机械锁形成一个材质不同的塑料螺栓的过程。 嵌入: 将一个金属无件嵌入塑料产品的预留孔内。 具有强度高,成型周期短安装快速的优点!! 类似于模具设计中的嵌件!

11 Ultrasonic Welding Hatt jitint itiretw (nti J ildltCil Yf ( p Welding Technique ? Poor but joint design < Eicesske M6l (9 timff f E?(強睜钊叫 汕卑「gy * £xlidtng nielt re suds in a visual defect ? Improved bull J G I nt design ? Reduced w?ld tlnw * R^uc&d w&ld &n@rgy ? Exuding 12雷H (/Isible) ? FE??sh 俪 |p jddwd * R&ductlanln wflIM ar?a ? Exiting mol( not mult In a visual defect ? Step joint design # Fwprcv^d -sneM f?si$nnce ? Exiting nt< does nor mult in a visual dated ? Assist in locaiiftg 因厲昂 Ultras onic Weldi ng 1 W elding Techniques Ultrasonic Welding Airorplious polymer Seml-crystalhie polymer Ditn” Small part Largs part Small part L 白 ”g 电 part h S3 - 04 05 *0.6 05 - 07 0.1 ? to 0 60° (0 9Q D 90? rypiatt dimlttr di tin ■? > in/! \iiHiUimt ^7 s/ Ultras onic Weldi ng 2

铝及铝合金钎焊综述

铝及铝合金的钎焊 摘要:综述了近年来铝及铝合金钎焊在钎焊方法、钎料及钎剂三个方面的技术发展现状,分别介绍了它们各自的发展方向。指出铝及铝合金的钎焊问题是近年来研究较多、发展较快的研究领域之一,铝及铝合金钎焊技术应用前景广阔。 1 铝及铝合金钎焊的研究现状 铝合金具有密度小、强度高和耐腐蚀等优点,因而广泛应用于汽车、高速铁路车辆、航空航天和军事工业。由于它特有的物理、化学性能,其焊接过程中会遇到一系列困难,如氧化、焊缝热裂纹和气孔等。对于铝合金的焊接,传统的方法主要以熔化焊接为主,设备复杂,且对焊工的技术要求也比较严格。铝钎焊作为铝合金连接的重要方法,具有钎焊件变形小。尺寸精度高等优点,近年来在我国得到广泛的应用。铝及铝合金的钎焊技术近年来研究较多。随着新材料、新方法的不断出现,铝及铝合金的钎焊工艺也得到了快速的发展,其钎焊方法、钎料及钎剂都有很大的进步。 铝及铝合金的钎焊问题,是近年来研究较多、发展较快的领域之一。这主要是因为其具备一系列优良性能,如强度大、耐蚀性好、电导性及热导性高,因此在航天、航空、电子、冶金、机械制造和轻工业等部门的应用日趋广泛。特别是随着铜材料的大幅度涨价,以及为了减轻质量、提高功效、增强美观,以铝代铜、以铝代钢技术在某些领域成功应用。最典型的就是汽车铜水箱被铝水箱的替代。我国大规模生产铝焊剂的厂家很少,目前使用的铝焊剂多为国外进口。因铝及铝合金的熔点较低、化学活性强、氧化膜熔点高和稳定性大,并能牢固、致密地粘附在铝或铝合金的表面,所以一般通用的钎剂均不能满足钎焊铝及铝合金的要求,必须采用专用钎剂- 铝及铝合金用钎剂。此外,铝及其合金的钎焊接头的耐蚀性易受钎料和钎剂的影响,这主要是因为钎料和母材之间的电极电位差别极大,使接头耐蚀性降低,尤其是对软钎焊接头的影响更为明显。通常,为了能很好去除铝及其合金表面的氧化膜,大部分钎剂中都添加了具有强烈腐蚀性的材料,而这些材料即使在钎焊后进行清理,也难全部除去对接头耐蚀性的影响。 2 钎焊方法 铝及铝合金的钎焊可以采用火焰钎焊、炉中钎焊和盐浴钎焊等方法。火焰钎焊,其设备简单,燃气来源广,灵活性大,应用很广。主要用于钎焊小型焊件和单件生产。有多种火焰可以使用。有报道,我国与其他国家合作生产了一种介于液化气与氧乙炔之间的夏普气。这种气体火焰柔和,其强度介于液化气与氧乙炔的强度之间,是一种比较好的铝钎焊加热热源。但与其它连接方法相比,铝及铝合金火焰钎焊加热温度难以掌握,而且对操作者的经验要求较高。 盐浴钎焊具有加热快而均匀、焊件不易变形、去膜充分的优点,因而焊件质量好、生产效率高。特别适合于大批量生产,尤其适用于密集结构钎缝的焊接。铝的盐浴钎焊一般使用膏状、箔状钎料或钎料包覆层,钎料包覆层是Al-Si共晶成分或Ai-Si亚共晶成分。目前钎焊生产大多使用钎料包覆层,既能提高生产效率又能较好的保证钎焊质量。其不足之处:首先.由于加热工件和去氧化膜都靠熔盐进行,对于结构复杂的工件,进盐和出盐都比较困难,这样就给结构设计和工艺带来限制,使其复杂化,而且不容易保证焊接质量。其次,由于特定的使用环境和使用寿命要求,有些产品对耐蚀性要求比较高,而盐浴钎焊后工件内残留

超声波焊接工艺特点

超声波焊接的焊点,应有高的接合强度和合格的表面质量,除了表面不能有明显的挤压坑和焊点边缘的凸出以外,还应注意与上声极接触处的焊点表面情况,不允许有裂纹和局部未熔合,因此,超声波焊接的形式选择、接头设计和焊接参数选择非常重要。 一、超声波焊接特点 1) 可焊接的材料范围广,可用于同种金属材料、特别是高导电、高导热性的材料(如金、银、铜、铝等)和一些难熔金属的焊接,也可用于性能相差悬殊的异种金属材料(如导热、硬度、熔点等)、金属与非金属、塑料等材料的焊接,还可以实现厚度相差悬殊以及多层箔片等特殊结构的焊接。 2) 焊件不通电,不需要外加热源,接头中不出现宏观的气孔等缺陷,不生成脆性金属间化合物,不发生像电阻焊时易出现的熔融金属的喷溅等问题。 3) 焊缝金属的物理和力学性能不发生宏观变化,其焊接接头的静载强度和疲劳强度都比电阻焊接头的强度高,且稳定性好。 4) 被焊金属表面氧化膜或涂层对焊接质量影响较小,焊前对焊件表面准备工作比较简单。 5) 形成接头所需电能少,仅为电阻焊的5%;焊件变形小。 6) 不需要添加任何粘结剂、填料或溶剂,具有操作简便、焊接速度快、接头强度高、生产效率高等优点。超声波焊接的主要缺点是受现有设备功率的限制,因而与上声极接触的焊件厚度不能太厚,接头形式只能采用搭接接头,对接接头还无法应用。 二、超声波焊接的分类 超声波焊接分类按照超声波弹性振动能量传入焊件的方向,超声波焊接的基本类型可以分为两类:一类是振动能量由切向传递到焊件表面而使焊接界面产生

相对摩擦,这种方法适用于金属材料的焊接;另一类是振动能量由垂直于焊件表面的方向传入焊件,主要是用于塑料的焊接。常见的金属超声波焊接可分为点焊、环焊、缝焊及线焊;近年来,双振动系统的焊接和超声波对焊也有一定的应用。 (1)点焊点焊是应用最广的一种焊接形式,根据振动能量的传递方式,可以分为单侧式、平行两侧式和垂直两侧式。振动系统根据上声极的振动方向也可以分为纵向振动系统、弯曲振动系统以及介于两者之间的轻型弯曲振动系统。功率500W以下的小功率焊机多采用轻型结构的纵向振动;千瓦以上的大功率焊机多采用重型结构的弯曲振动系统;而轻型弯曲振动系统适用于中小功率焊机,它兼有上述两种振动系统的优点。 (2)环焊环焊方法如图5所示,主要用于一次成形的封闭形焊缝,能量传递采用的是扭转振动系统。焊接时,耦合杆4带动上声极5作扭转振动,振幅相对于声极轴线呈对称分布,轴心区振幅为零,边缘位置振幅最大。该类焊接方法最适合于微电子器件的封装工艺,有时环焊也用于对气密性要求特别高的直线焊缝的场合,用来代替缝焊。由于环焊的一次焊缝的面积较大,需要有较大的功率输入,因此常常采用多个换能器的反向同步驱动方式。 (3)缝焊与电阻焊中的缝焊类似,超声波缝焊实质上是由局部相互重叠的焊点形成一条连续焊缝。缝焊机的振动系统按其滚轮振动状态可分为纵向振动、弯曲振动以及扭转振动三种形式(图6)。其中最常见的是纵向振动形式,只是滚轮的尺寸受到驱动功率的限制。缝焊可以获得密封的连续焊缝,通常焊件被夹持在上下滚轮之间,在特殊情况下可采用平板式下声极。 (4)线焊它是点焊方法的一种延伸,利用线状上声极,在一个焊接循环内形成一条狭窄的直线状焊缝,声极长度就是焊缝的长度,现在可以达到150mm,这种方法最适用于金属薄箔的封口。 (5)双超声波振动系统的点焊:上下两个振动系统的频率分别为27kHz和20kHz(或15kHz),上下振动系统的振动方向相互垂直,焊接时二者作直交振动。当上下振动系统的电源各为3kW时,可焊铝件的厚度达10mm,焊点强度达到材料本身的强度。双超声波振动系统多用于集成电路和晶体管细导线的焊接,虽然焊接方法与点焊基本相同,但焊接设备复杂,要求设备的控制精度高,以便实现焊点的高质量和高可靠性焊接。

铝与铝合金的焊接方法

铝合金焊接的几种先进工艺:搅拌摩擦焊、激光焊、激光- 电弧复合焊、电子束焊。针对于焊接性不好和曾认为不可焊接的合金提出了有效的解决方法,几种工艺均具有优越性,并可对厚板铝合金进行焊接。 关键词:铝合金搅拌摩擦焊激光焊激光- 电弧复合焊电子束焊 1 铝合金焊接的特点 铝合金由于重量轻、比强度高、耐腐蚀性能好、无磁性、成形性好及低温性能好等特点而被广泛地应用于各种焊接结构产品中,采用铝合金代替钢板材料焊接,结构重量可减轻50 %以上。 铝合金焊接有几大难点: ①铝合金焊接接头软化严重,强度系数低,这也是阻碍铝合金应用的最大障碍; ②铝合金表面易产生难熔的氧化膜(Al2O3 其熔点为2060 ℃) ,这就需要采用大功率密度的焊接工艺; ③铝合金焊接容易产生气孔; ④铝合金焊接易产生热裂纹; ⑤线膨胀系数大,易产生焊接变形; ⑥铝合金热导率大(约为钢的4 倍) ,相同焊接速度下,热输入要比焊接钢材大2~4 倍。 因此,铝合金的焊接要求采用能量密度大、焊接热输入小、焊接速度高的高效焊接方法。 2 铝合金的先进焊接工艺 针对铝合金焊接的难点,近些年来提出了几种新工艺,在交通、航天、航空等行业得到了一定应用,几种新工艺可以很好地解决铝合金焊接的难点,焊后接头性能良好,并可以对以前焊接性不好或不可焊的铝合金进行焊接。 2. 1 铝合金的搅拌摩擦焊接 搅拌摩擦焊FSW( Friction Stir Welding) 是由英国焊接研究所TWI ( The Welding Institute) 1991 年提出的新的固态塑性连接工艺[1~2 ] 。图1为搅拌摩擦焊接示意图[3 ] 。其工作原理是用一种特殊形式的搅拌头插入工件待焊部位,通过搅拌头高速旋转与工件间的搅拌摩擦,摩擦产生热使该部位金属处于热塑性状态,并在搅拌头的压力作用下从其前端向后部塑性流动,从而使焊件压焊在一起。图2 为搅拌摩擦焊接过程[4 ] 。由于搅拌摩擦焊过程中不存在金属的熔化,是一种固态连接过程,故焊接时不存在熔焊的各种缺陷,可以焊接用熔焊方法难以焊接的有色金属材料,如铝及高强铝合金、铜合金、钛合金以及异种材料、复合材料焊接等。目前搅拌摩擦焊在铝合金的焊接方面研究应用较多。已经成功地进行了搅拌摩擦焊接的铝合金包括2000 系列(Al- Cu) 、5000 系列(Al - Mg) 、6000 系列(Al - Mg - Si) 、7000 系列(Al - Zn) 、8000 系列(Al - Li) 等。国外已经.进入工业化生产阶段,在挪威已经应用此技术焊接快艇上长为20 m 的结构件,美国洛克希德·马丁航空航天公司用该项技术焊接了铝合金储存液氧的低温容器火箭结构件。 铝合金搅拌摩擦焊焊缝是经过塑性变形和动态再结晶而形成,焊缝区晶粒细化,无熔焊的树枝晶,组织细密,热影响区较熔化焊时窄,无合金元素烧损、裂纹和气孔等缺陷,综合性能良好。与传统熔焊方法相比,它无飞溅、烟尘,不需要添加焊丝和保护气体,接头性能良好。由于是固相焊接工艺,加热温度低,焊接热影响区显微组织变化小,如亚稳定相基本保持不变,这对于热处理强化铝合金及沉淀强化铝合金非常有利。焊后的残余应力和变形非常小,对于薄板铝合金焊后基本不变形。与普通摩擦焊相比,它可不受轴类零件的限制,可焊接直焊缝、角焊缝。传统焊接工艺焊接铝合金要求对表面进行去除氧化膜,并在48 h 内进行加工,而搅拌摩擦焊工艺只要在焊前去除油污即可,并对装配要求不高。并且搅拌摩擦焊比熔化焊节省能源、污染小。 搅拌摩擦焊铝合金也存在一定的缺点:

铝合金真空钎焊用低温铝基钎料的研究

铝合金真空钎焊用低温铝基钎料的研究 北京华航无线电测量技术研究所于文花 肖爱群 北京航空航天大学庄鸿寿 摘要为了避免在铝合金焊接中产生晶粒长大、溶蚀等缺陷,提高铝合金的钎焊质量,本文在Al-Si共晶钎料的基础上加入合金元素Cu和其它微量元素,研制新的低熔点钎料,最后确定新钎料为Al19Cu9Si。该钎料的熔点为543℃,比BAl86.5SiMg钎料的熔点降低了40℃,试验结果表明新钎料具有良好的润湿性、流动性,接头的剪切强度、抗腐蚀性能均满足铝合金钎焊要求。 关键词真空钎焊 铝合金 铝基钎料 1 引言 铝合金由于具有密度小、比强度高等优点,在航空、航天工业中已获得愈来愈广泛的应用。例如很多传统的铜合金波导、高频器件已被铝合金所取代,利用钎焊方法制造复杂的铝结构是最理想的方法。共晶铝硅钎料因具有良好的润湿性、流动性、钎焊接头的抗腐蚀性和可加工性,是铝合金钎焊中应用最广的一种铝钎料[1]。但它也具有严重缺点:熔点较高(液相线温度为577℃),钎焊温度均在600℃以上,所以钎焊温度非常接近于合金的固相线温度,易使母材发生晶粒长大、溶蚀等现象。目前,美国、日本、欧洲等研究机构对铝合金用低温铝基钎料进行了大量的研究。日本的茅本隆司、恩泽忠男[2]等人研究发现锗、铟、镱和铜均可作为铝硅钎料的添加剂,降低钎料的熔点,但锗、铟、镱的加入会使钎料脆性和耐腐蚀性均遭到恶化,且价格昂贵,难以应用于实际生产;铜元素的加入量多时也会使钎料变脆及钎焊时出现对母材的溶蚀,很难得到性能优良的钎焊接头。为此,所研制的新钎料既要具有较低的熔点,又要保持良好的机械性能。 本文通过分析既能降低铝熔点又能与铝形成共晶合金的元素特性,选择合适的能降低铝熔点的元素,对成分进行优化试验,同时考虑钎料的流动性和组织特性,在钎料中加入适量提高钎料流动性和细化组织的微量元素,经过试验确定铜、铋及微量元素为添加剂,配制新钎料,对新钎料进行熔点、润湿性、流动性、金相组织以及接头剪切强度、环境试验。 2 钎料的配制 为了降低钎料的熔点,必须寻找能降低铝熔点的元素,能与铝形成共晶的合金见表1。 表1 共晶元素及共晶温度 合金元素 Al-11.5Si Al-72Ag Al-32.7Cu Al-51.6Ge Al-94Zn 共晶温度/℃577 567 548 420 381 由表1可知Al-72Ag的共晶温度567℃,与铝硅共晶温度差不多,并且这种合金很脆,抗腐蚀性也不高,不宜作钎料;Al-32.7Cu,熔点548℃,此合金因含铜量高,脆性大;Al-Ge、Al-Zn共晶温度仅400℃左右,对降低钎料的温度作用极佳,但Ge是贵重元素,价高并且极脆,而Zn极易挥发,不易用于真空钎焊[3]。 分析能与铝形成共晶的合金特点,二元合金的熔点不能满足要求,必须加入第三种元素。在Al-Si-Ag 三元合金中有一共晶成分,其熔点为563℃,它与Al-Ag共晶熔点相差不大,无实用价值。 在三元合金中,只有Al-Si-Cu合金最有希望, 收稿日期:2005-09-26

炉中钎焊的一般工艺流程

炉中铝钎焊的一般工艺流程 1.工件的表面准备 为了确保形成均匀优质钎焊接头,焊前必须清除工件表面的油污、氧化物;为了改善某些材料的钎焊性或增加钎料对母材的润湿能力等常需在母材表面镀覆金属。 (1)清除油污 常用有机溶剂去除油污,如酒精、汽油、三氯乙烯、四氯化碳等。大批量生产常在有机溶剂蒸汽中脱脂。在浴槽中清洗时可采用机械搅拌或超声波振动以提高清洗作用。脱脂后须用水清洗并烘干。 (2)清除氧化物 零件表面氧化物的清除按材料、生产条件和批量,可在机械法、化学浸蚀法和电化学浸蚀法等方法中选择。经化学浸蚀或电化学浸蚀后还须进行光亮处理或中和处理,随后用水清洗并干燥。 a. 适合批量生产的机械清除方法有砂轮、金属刷、喷砂等方法。 b. 化学浸蚀清除表面氧化物始于批量生产,生产率高。浸蚀液的选择取决于母 材及其表面氧化物的性质状态。铝及铝合金可选用(10%NaOH,余量水或 10%HSO的浸蚀液成分。余量水)42,c. 电化学浸蚀同样适用于大批量生产及须快速清除氧化物的情况,大多用于不锈钢和碳钢的清除氧化物工艺。 (3)母材表面镀覆金属 在母材表面镀覆金属主要是为了改善钎料的钎焊性;增加钎料对母材的润湿能力;作为预置钎料层以简化装配提高生产率。 表1-1铝母材镀覆金属材料及镀覆方法 2.预置钎剂和阻流剂 有些焊接方法需要预先放置钎剂和阻流剂。预置的钎剂多为软膏式液体,以确保均匀涂覆在工件的待接两表面上。粘度小的钎剂可以采用浸沾、手工喷涂或自动 0C50~60,不用稀释便能降低其粘度,热的钎剂其喷洒。粘度大的钎剂将其加热到表面张力降低,易粘于金属。 用于气体钎剂的炉中钎焊和火焰钎焊,以及使用自钎剂钎料的钎焊,无须预置钎料。真空钎焊也不需钎剂。 阻流剂是钎焊时用来阻止钎料泛流的一种辅助材料。在气体保护炉中钎焊和真 1 空炉中钎焊时用的最广。阻流剂主要是由稳定的氧化物(如氧化铝、氧化钛、氧化镁等)与适当的粘结剂组成。焊前把糊状阻流剂涂覆在不需要钎焊的母材表面上。由于钎剂不润湿这些物质,故能阻止其流动。钎焊后再将阻流剂清除。 3.装配定位与放置钎料 最好的装配方法是部件能自定位和自支撑,此外可以用夹具进行定位于夹紧。针

铝合金焊接技术

钛合金焊接技术 日期:08-12-10 09:00:09 作者:鲜雪强川航机务部 由于钛合金低重量、强度高、耐腐蚀性优异,又具有与先进复合材料在热学、电化学方面的相容性,一直是航空、宇航工业上应用的重要结构材料。焊接作为钛合金加工中的重要手段,在提高材料利用率、减轻结构重量、降低成本等方面有独特的优势,因此有必要研究飞机结构修理中的钛合金焊接技术。关键词:焊接、疲劳性能、残余应力、疲劳寿命 一、钛合金焊接的重要性 疲劳断裂是材料在交变载荷(或应力)作用下发生的破损断裂。国内外研究表明,飞机结构疲劳破坏是飞机主要破坏形式。早期设计的飞机只考虑静强度问题,直到上个世纪五十年代,随着航空事业的不断发展,飞机性能不断提高,飞机的使用要求不断严格,飞机在使用过程中疲劳破坏与安全可靠性之间的矛盾逐渐暴露出来。 焊接是一种运用(多种情况下为局部)加热或加压手段、添加或不添加填充材料将构件不可拆卸的连接在一起,或在基材表面堆敷覆盖层的加工工艺。焊接技术广泛的应用于国民经济的各个部门,如机械工程、桥梁工程、压力容器船舶工程、航空航天等领域。焊接结构在现代工业中应用越来越广泛,无论是在航天领域还是在一般的工程领域,无论是小部件还是大型结构,都在不断扩大焊接结构的比重。例如,飞机中央翼焊接下壁板是关键承力构件,承受机翼传来的弯矩、扭矩、剪力和油箱压力的作用;在国外第四代战斗机中钛合金含量已达到40%左右。而对于钛合金焊接结构疲劳特性与寿命评估技术的研究则是为实现钛合金结构在先进飞机上的合理使用,所必不可少的前提条件之一。 二、焊接区域材料性能的确定 焊接接头由焊缝、热影响区、母材组成,是一种非均质材料,各向异性。热影响区是焊缝到母材的过渡区域,其材料性能也介于焊缝和母材之间。

铝真空钎焊工艺

铝真空钎焊工艺 1.总则 1.1本守则适用于小型铝制板翅式换热器的真空钎焊 1.2本守则是铝制板翅式换热器真空钎焊操作人员的法规性文件,必须遵照执行; 2.真空钎焊炉的技术性能: 2.1大炉有效加热区尺寸为1200×800×800毫米(长×宽×高);小炉有效加热区尺寸为1200×600×600毫米(长×宽×高); 2.2炉子最高温度:700℃; 2.3炉温均匀性±3℃; 2.4极限真空度:大8.0×10-4Pa,小炉6.7×10-4Pa; 2.5常用真空度10-1~10-3Pa;2 .6炉子总负荷:大炉800Kg,小炉500K g; 2.7压升率:0.50Pa/h; 2.8加热功率:大炉240KW、小炉150KW; 3.对炉子维护保养的要求 3.1炉子的状态应经常保持良好; 3.2停炉时,应关闭炉门,避免潮湿空气进入内部,保持适当的真空度; 3.3计量仪器应按照仪器仪表的管理进行定期校验,保证量值的正确可靠,避免仪器失灵而造成废品损失; 3.4炉内应进行定期或不定期刷除镁粉和清理脏物,防止工件表面污染; 3.5水路.气路管线应保持畅通,各阀门开关灵活; 3.6电气绝缘和炉子密封性能良好; 3.7钎焊炉应保持完好状态,每月进行一次设备点检,真空度2×10-2;5×10-3.水压0.1~0.3MP a;

3.8环境保持清洁,养成文明生产习惯; 4.工件装炉的注意事项 4.1工件进出炉应注意磕碰; 4.2根据大小不同工件装炉时应注意: 4 2.1工件放置应尽量保持水平; 4 2.2工件六个面距各向加热元件的距离应大致均匀相同; 4 2.3工件装炉时应注意安全; 5.真空钎焊工艺 5.1工件入炉后关上炉门,先启动机械真空泵,打开旁路阀,抽真空约10分钟后再启动罗茨泵,打开主路阀启动扩散泵,扩散泵工作80-90分钟,在这段时间中,,可以边抽真空边预温360度以下,,到扩散泵起作用后,真空度达到10-2Pa以上继续加温到钎焊结束(注:在加温中真空度有一定的下降,可根据真空度调整加热速率); 5.2炉温温度在520℃以前升温速度应缓慢,以避免出现内外较大的温差,根据温差的情况和工件的大小可以加速或中间增加保温段,目的是使内外温差尽量缩小,提高真空度,一般小工件可以升温快些(见钎焊-工艺图); 5.3当工件中心温度达到或接近钎焊温度时,可视工件大小提前或推迟,当达到钎焊温度时应停止加热,使工件在钎焊温度下恒温钎焊(见钎焊-工艺); 5.4钎焊工件温度换热器为575~605度、散热条为560—605度,对大工件应控制心部温度,钎焊时间应根据工件大小来决定; 5.5工件出炉后,在空气中自然冷却,此时要检查钎焊缝是否饱满,检查钎焊质量及外形尺寸等项目,然后在工件上打上钎焊钢印(包括:钎焊日期、或编号); 5.6钎焊过程参数应做好详细记录,记录要纳入产品质量档案,以备分析和研究产品质量问题时查考; 5.7规定工件宽度小于或等于150毫米时,按钎焊—工艺图Ⅰ进行,工件宽度大于150毫米时,按钎焊—工艺图Ⅱ进行钎焊,散热条按钎焊—工艺图Ⅲ进行; 6.附图:钎焊—工艺图Ⅰ,钎焊—工艺图Ⅱ,钎焊—工艺图Ⅲ进行

相关文档